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Abstract
Annual crop yield fluctuation due to natural and anthropogenic factors is a major concern of the Ethiopian Government. For 
an immediate response to drastically changing crop yields and resulting harvest failures and to enhance the country’s food 
security in general, extensive area crop growth monitoring and early prediction of production are needed. In this study, we 
developed an early maize (Zea mays) yield forecasting model using Sentinel-2 MSI (Multispectral Instrument); the study 
was carried out in the Abaya district of the Oromia Regional State in Ethiopia. The model consists of the following compo-
nents: (1) Sentinel-2 image-based cropland identification for different crop development stages, (2) extraction of time series 
Sentinel-2 vegetation indices for crop growth monitoring, and (3) a simple linear stepwise forward regression approach for 
yield prediction. We tested different spectral indices regarding their performance in describing the crop development and 
eventually predicting the expected yield. The result showed that (1) the linear Red-Edge Enhanced Vegetation Index (Red-
Edge EVI), (2) the combination of the Enhanced Vegetation Index (EVI) and the Green Vegetation Index (GVI), (3) the 
combination of the Red-Edge EVI and Soil Adjusted Vegetation Index (SAVI), and (4) the combination of the Normalized 
Difference Vegetation Index (NDVI), Red-Edge EVI and SAVI offer the best predictive model about 2 months before har-
vesting with the highest coefficients of determination (R2) of 0.73, 0.80, 0.84, and 0.88, respectively. The correlation for the 
GVI was generally lowest compared to established models, and no evidence of a peak correlation for NDVI was observed. 
Our approach showed a high accuracy of detecting maize fields, detecting crop phenology, and early predicting of grain yield 
for the study year 2018. Our simple model may generate early warning information, which may support in-time decision-
making regarding food supply when critical yield fluctuations are to be expected.

Keywords Crop phenology · GVI · Red-Edge EVI · SAVI · Spectral indices · Zea mays

DGPF

 * Muluken N. Bazezew 
 mulukenn@du.edu.et

1 Department of Natural Resource Management, College 
of Agriculture and Natural Resource Science, Debre Berhan 
University, P.O. Box 445, Debre Berhan, Ethiopia

2 Department of Plant Science, College of Agriculture 
and Natural Resources, Dilla University, P.O. Box 419, Dilla, 
Ethiopia

3 Present Address: Forest Inventory and Remote Sensing, 
Faculty of Forest Sciences and Forest Ecology, University 
of Göttingen, Büsgenweg 5, 37077 Göttingen, Germany

4 Forest Inventory and Remote Sensing, Faculty of Forest 
Sciences and Forest Ecology, University of Göttingen, 
Büsgenweg 5, 37077 Göttingen, Germany

http://orcid.org/0000-0003-4440-1167
http://crossmark.crossref.org/dialog/?doi=10.1007/s41064-021-00178-5&domain=pdf


536 PFG (2021) 89:535–548

1 3

Zusammenfassung
Jährliche Schwankungen der Ernteerträge aufgrund natürlicher und anthropogener Faktoren sind ein Hauptanliegen der äthio-
pischen Regierung. Für eine sofortige Reaktion auf sich drastisch verändernde Ernteerträge und daraus resultierende Ernte-
ausfälle sowie zur Verbesserung der Ernährungssicherheit des Landes im Allgemeinen sind eine großflächige Überwachung 
des Pflanzenwachstums und eine frühzeitige Vorhersage der Produktion erforderlich. In dieser Studie haben wir ein Modell 
zur frühzeitigen Vorhersage des Maisertrags (Zea mays) unter Verwendung des Sentinel-2 MSI (Multispectral Instrument) 
entwickelt; die Studie wurde im Bezirk Abaya im Regionalstaat Oromia in Äthiopien durchgeführt. Das Modell besteht aus 
den folgenden Komponenten: (1) Sentinel-2-Bild-basierte Ackerland-Identifikation für verschiedene Pflanzenentwicklungs-
stadien, (2) Extraktion von Zeitreihen von Sentinel-2-Vegetationsindizes (VIs) für die Überwachung des Pflanzenwachstums 
und (3) ein einfacher linearer schrittweiser Vorwärtsregressionsansatz für die Ertragsvorhersage. Wir testeten verschiedene 
Spektralindizes hinsichtlich ihrer Leistung bei der Beschreibung der Pflanzenentwicklung und schließlich der Vorhersage 
des erwarteten Ertrags. Das Ergebnis zeigte, dass: (i) der lineare Red-Edge Enhanced Vegetation Index (Red-Edge EVI), (ii) 
die Kombination aus dem Enhanced Vegetation Index (EVI) und dem Green Vegetation Index (GVI), (iii) die Kombination 
aus dem Red-Edge EVI und dem Soil Adjusted Vegetation Index (SAVI), und (iv) die Kombination aus dem Normalized 
Difference Vegetation Index (NDVI), Red-Edge EVI und SAVI das beste Vorhersagemodell etwa zwei Monate vor der 
Ernte mit den höchsten Bestimmtheitsmaßen  (R2) von 0,73, 0,80, 0,84 bzw. 0,88, bieten. Die Korrelation für den GVI war 
im Vergleich zu den etablierten Modellen generell am niedrigsten, und für den NDVI wurde kein Hinweis auf eine Spitzen-
korrelation beobachtet. Unser Ansatz zeigte eine hohe Genauigkeit bei der Erkennung von Maisfeldern, der Erkennung der 
Pflanzenphänologie und der frühzeitigen Vorhersage des Kornertrags für das Studienjahr 2018. Unser einfaches Modell kann 
Frühwarninformationen generieren, die eine rechtzeitige Entscheidungsfindung bezüglich der Nahrungsmittelversorgung 
unterstützen können, wenn kritische Ertragsschwankungen zu erwarten sind.

1 Introduction

Maize (Zea mays) is a crucial staple crop in Ethiopia. Maize 
is mainly grown as a rain-fed agricultural system without 
irrigation by smallholder private farmers. The production 
has been fluctuating from year to year due to rainfall and 
temperature variability, variation in soil fertility, plant 
diseases, and changing types of crop management (MOA 
2015). Currently, yield fluctuations remain one of the sig-
nificant challenges for the country's food security strategy 
(Cochrane and Bekele 2018; FAO 2015).

The agriculture sector of Ethiopia contributes more than 
80% of the Gross Domestic Product (GDP) of the coun-
try (MOA 2019). Cereal crops are the primary food source 
where maize plays the most critical role in food security. 
Timely yield estimation for this significant crop is essen-
tial for supporting efficient agricultural decision-making 
for timely planning of food import in case of shortage or, 
optionally, to export in case of surplus production. Tradition-
ally, in Ethiopia, early crop yield estimation is done from 
the observed data, such as the farmers' request for agricul-
tural inputs and the yearly rainfall and distribution pattern. 
This technique, however, turned out to be biased, costly, 
and associated with significant uncertainties leading to poor 
estimates of crop area and predictions of crop yield (Bal-
aghi et al. 2008; Ramirez-Villegas and Challinor 2012). Such 
information is also released late or even after the end of the 
season, which is too late to take appropriate actions to avert 
hunger. Locally specific models for a reliable annual yield 

prediction would significantly improve well-informed and 
timely decision-making in food provision.

The development of earth observation technology 
suggests that remotely sensed data be straightforwardly 
employed for agricultural crop yield forecasting. Remote 
sensing data offers at modest cost spatially explicit, large 
area and timely monitoring of the earth’s surface, including 
crop fields and development (Liu and Kogan 2002). To iden-
tify plants and their cover, discriminate individual plants, 
vegetation indices (VIs) are used to measure vegetation 
greenness. VIs are computed as a combination of different 
spectral bands, usually including the red and near infrared. 
VIs were also found to have a solid link to plant physiology 
and crop productivity (Meng et al. 2014; Noureldin et al. 
2013; Prabhakara et al. 2015; Sakamoto et al. 2014). The 
relationship of various satellite image derived VIs with bio-
physical parameters of plants has been investigated, such as 
in Ban et al. (2016), Bussay et al. (2015), Chipanshi et al. 
(2015), Darvishzadeh et al. (2009), Prabhakara et al. (2015), 
Sharma et al. (2015) and Smethurst et al. (2017). Several 
researches have also been conducted on the relationships 
between various crops including maize, and vegetation indi-
ces (Bolton and Friedl 2013; Chivasa et al. 2017; da Silva 
et al. 2020; Maresma et al. 2016; Peng and Gitelson 2011; 
Zhou et al. 2017). These studies have established a positive 
linear correlation between VIs and crop biophysical vari-
ables, such as leaf area index, leaf traits, biomass, and grain 
yields.

The spectral and temporal changes of satellite images 
and their response to the biophysical characteristics of crop 
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plants play a significant role when establishing an effective 
pre-harvest estimation of crop productivity. Multispectral 
satellite imageries have been extensively used for the spec-
tral reflectance intensity in different spectral bands of vis-
ible to mid-infrared regions of the electromagnetic spectrum 
(Kamal and Bhatia 2010). There are many classes of spectral 
indices which have been subjected in substantial researches; 
such as Normalized Difference Vegetation Index (NDVI) 
(Rouse et al. 1973), Soil Adjusted Vegetation Index (SAVI) 
(Baret et al. 1989), Enhanced Vegetation Index (EVI) (Huete 
et al. 2002), Green Vegetation Index (GVI) (Panda et al. 
2010), and Normalized Difference Flood Index (NDFI) 
(Boschetti et al. 2014). New group of VIs has also been 
developed based on the shape and position of the spectral 
reflectance curve. It comprises the Red-Edge part of the 
electromagnetic reflectance spectrum, such as the Red-Edge 
Normalized Difference Vegetation Index (Red-Edge NDVI) 
and Red-Edge Enhanced Vegetation Index (Red-Edge EVI) 
(Mutanga and Skidmore 2004). These VIs have a steep slope 
between the lower parts of the visible region and the higher 
reflectance of the near-infrared region (0.67–0.79 µm). The 
red-edge inflection point depends on the chlorophyll amount 
detected by the sensor and is strongly correlated with plant 
leaves chlorophyll concentration, offering a sensitive indi-
cator of vegetation stresses and biomass content (Rossini 
et al. 2007).

The main aim of this study was to improve decision-
making regarding food provision from agriculture and thus 
contribute to better food security in Ethiopia. The techni-
cal goals are (1) to validate the potential of Sentinel-2 MSI 
to identify and map maize fields; (2) to develop a remote 
sensing-based technique to monitor maize phenology; and 
(3) to establish models to predict the expected maize yield.

2  Materials and Methods

2.1  Study Site

Our study area is in the district of Abaya Woreda, Oromia 
Regional State, Ethiopia. It is situated in the Borena Zone 
at the southern part of the capital city of Addis Ababa, 
between 6° 17′ 14″ and 6° 28′ 4″ N, and 38° 7′ 54″ and 
38° 19′ 19″ E (Fig. 1). The agricultural fields in the dis-
trict where our investigation piloted is about 30,000 ha and 
is mainly cultivated by smallholder farmers. The altitude 
ranges from 1100 to 1900 m a. s. l. The area has a sub-
tropical climate with an average annual rainfall of 1500 mm 
(mainly between beginning of April and October), and the 
monthly mean temperature ranges from 18 to 25 °C. Accord-
ing to UNDP (2000), the land comprises 41% of arable land 
(28.7% is under annual crops), 35% pasture, 15% forest, and 

Fig. 1  Location of the study area
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the remaining 9% is swampy and degraded land. Four major 
crops are cultivated: maize (Zea mays), teff (Eragrostis tef), 
barley (Hordeum vulgare L.), and haricot beans (Phaseolus 
vulgaris L.), and there is also some cultivation of Sorghum 
(Sorghum bicolor) (CSA 2018).

2.2  Field Data

The maize in our study area was sown at the beginning of 
April and harvested in October of 2018, which is the suit-
able cropping season of the study site. Principally, the local 
variety of ‘Pawuner’ was cultivated. In situ crop information 
of phenological or growth stages and transition dates, viz, 
sowing and establishment, vegetative growth, tasselling and 
silking, yield formation and maturity, harvesting and yield 
information, were noted regularly during the field observa-
tion. We used random sampling with a sample size n = 250 
for training data collection.

The maize reference data required for phenological or 
growth stages monitoring and yield modelling were col-
lected in a sample of n = 31 square field plots of 100  m2 
(10*10 m) whose position was recorded by a global navi-
gation satellite system (GNSS) with the accuracy of ± 3 m. 
This plot size represented one single Sentinel-2 image pixel.

2.3  Satellite Data

Time series of Sentinel-2A MSI for the 2018 maize grow-
ing season was used for classification and vegetation indi-
ces (VIs) extraction. The satellite image is part of ESA´s 
Sentinel mission for the monitoring of the Earth´s surface. 
It has a high revisit time of 10 days at the equator with one 
satellite resulting in 5 days from the two satellites constella-
tion under cloud-free conditions in 2–3 days at mid-altitude 
(ESA 2016).

The images were originally published in the Copernicus 
Open Access Hub with Top of Atmosphere (ToA) reflec-
tance, and we obtained it as LevelC. Images with a cloud 
cover surpassing 20% were discarded. Pre-processing, such 
as radiometric calibration, geometric and atmospheric cor-
rections were completed in Google Earth Engine. Of 13 
spectral bands of Sentinel-2 MSI ranging between 0.443 and 
2.190 µm of wavelength and 10–60 m spatial resolution, we 
used seven spectral reflectance bands for maize field clas-
sification, phenological monitoring, and model prediction: 
blue (0.458–0.523 µm), green (0.543–0.578 µm), red (0. 
650–0. 680 µm), Red-Edge (0.773–0.793 µm), near infrared 
(NIR) (0.785–0.900 µm), and short-wave infrared (SWIR) 
(2.10–2.28 µm). Blue, green, red, and NIR spectral bands 
have a 10 m spatial resolution, while Red-Edge and SWIR 
bands originate with a pixel size of 20 m and were later resa-
mpled to 10 m of pixel size following Park and Schoweng-
erdt (1983) of nearest neighbour resampling approach.

2.4  Methods

The approach of this study comprises three main steps: (1) 
classification and mapping of maize crop fields; (2) devel-
opment of a remote sensing-based crop phenological moni-
toring technique; and (3) building yield prediction models. 
Detailed activities implemented in each step are discussed in 
the following sections, and the overall procedural workflow 
of the study is illustrated in Fig. 2.

2.4.1  Processing of Vegetation Indices (VIs)

A composite of Sentinel-2 scene executed from each phe-
nological stage was used to derive Vegetation Indices (VIs). 
Seven VIs were applied as remote sensing-based phenol-
ogy and yield predictors: Normalized Difference Vegetation 
Index (NDVI), Enhanced Vegetation Index (EVI), Green 
Vegetation Index (GVI), Soil Adjusted Vegetation Index 
(SAVI), Normalized Difference Flood Index (NDFI), Red-
Edge Normalized Difference Vegetation Index (Red-Edge 
NDVI) and Red-Edge Enhanced Vegetation Index (Red-
Edge EVI). Calculations of spectral indices were executed 
according to the equations in Table 1.

2.4.2  Classification and Validation of Maize Fields

Composite scenes of phenologically adjusted images were 
used for classification. The composite was executed based 
on averaging the image pixel information (Running et al. 
1995), acquired in different phenological stages. Due to the 
study site's high cloud cover effects in some months (espe-
cially in July and August), few scenes (about four images 
of composite per month) were considered only. We used 
a supervised random forest (RF) classifier (Breiman 2001) 
to discriminate maize fields (with package “ee.Classifier.
smileRandomForest” in the Google Earth Engine). The RF 
classifier was chosen due to its lack of overfitting, its thrifty 
for user-defined features, low sensitivity to the number of 
input parameters, minimize correlation between classifiers, 
low computational demands, high processing speed and its 
ability to reduce noise (Belgiu and Drăguţ 2016; Gislason 
et al. 2006; Lambert et al. 2018). From a sample of n = 250 
ground-truthing plots, a random subset of 70% of these field 
data was used for model building and the remaining 30% 
for validation. Randomly distributed reference training poly-
gons were initially delineated manually in ArcMap for RF 
modeling based on the GPS location recorded during field 
observation. These reference polygons reflect the spectral 
properties of the maize crop and other land cover classes. 
The number of trees was set to 500 following the recom-
mendation by Rodriguez-Galiano et al. (2012). A number 
of classifications were executed at different phenological 
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stages to determine the best phenological transitional dates 
for accurate maize field identification. The classification 
accuracy was evaluated in terms of producer accuracy, user 
accuracy, and overall accuracy along with the standard tech-
niques (Congalton 1991).

2.4.3  Monitoring of Maize Phenology Development

Crop phenology is the change in the growing phases of 
plants (Ruml and Vulic 2005). Maize phenologies and 
transition dates were regularly recorded in the field once 
a week (for n = 31 maize sample plots). Remote sensing-
based spectral reflectance patterns of maize throughout the 
cropping season were then compared against field observed 
phenologies. We applied NDVI, EVI, GVI, SAVI, Red-
Edge NDVI, and Red-Edge EVI for phenological informa-
tion, while NDFI was used as an agronomic water level and 
flooding indicator. The VIs were obtained based on a total of 
25 multi-temporal images distributed throughout the maize 
development stages.

2.4.4  Yield Predictive Model and Production Estimation

The phenologically adjusted values of multi-temporal VIs cor-
responding to the field sampling plots were weighted by an 
average fraction of each pixel. The values were subsequently 

used as predictor variables for yield models. For single VI-
based predictive model tests, linear, exponential, power, loga-
rithmic, and polynomial mathematical functions were ana-
lyzed. Predictive models of multiple regressions were executed 
through a stepwise forward regression approach using “stats” 
and “ggplot2” of statistical packages from RStudio (RStudio 
Team 2018). Accordingly, phenologically adjusted multi-mod-
els were established. The next step was to optimize the phe-
nological periods to predict final grain yields in a timely and 
more accurate way. The model optimizations were evaluated 
based on the computed coefficient of determination (R2), root 
mean square error (RMSE), and bias (Eqs. 1–3). The R2 and 
RMSE values served as a model performance indicator. The 
VIs that provides peak accuracy when regressed with observed 
yield can then be selected as the best predictor of the final 
grain yield estimates.

(1)RMSE =

�∑n

i=1
(yi − ŷi)

2

n
,

(2)

RMSE (%) =
RMSE

⎛⎜⎜⎜⎜⎝

.∑n

i=1
(yi)

n

⎞⎟⎟⎟⎟⎠

∗ 100,

Table 1  Mathematical equations of Sentinel-2 MSI vegetation indices (VIs)

a B2, B3, B4, B7, B8, and B12 are spectral reflectance of blue, green, red, Red-Edge, NIR, and SWIR bands of Sentinel-2 MSI; The coefficient 
adopted L = 1 is adjust soil and canopy background (varied depending on the terrain and vegetation conditions); G = 2.5 represents a gain factor; 
C1 = 6 and C2 = 7.5 are coefficients used to adjust the aerosol scattering in the atmosphere

VI Formulaa Remark References

NDVI B8−B4

B8+B4
Indicator for plant chlorophyll content, overall 

greenness, vegetation health, stress, and biomass
González-Gómez et al. (2018), Haerani et al. 

(2018) and Rouse et al. (1974)
EVI G ∗

B8−B4

B8+C1∗B4+C2∗B2+L
Less spectral saturation, effective in higher humid-

ity, reduces soil and atmospheric effects
Huete et al. (1997, 2002)

GVI B8−B3

B8+B3
Sensitive to vegetation pattern variation, less 

affected by variations in soil and atmospheric 
conditions

Huete and Jackson (1987)

SAVI
[

(B8−B4)

(B8+B4+L)

]
∗ (1 + L) Reduces soil brightness impacts, useful for moni-

toring the early period of plant growth (before 
the soil is completely covered with vegetation)

Panda et al. (2010)

Red-Edge NDVI B8−B7

B8+B7
Show strong correlation with plant chlorophyll 

content, sensitive to vegetation stress and 
biomass

Gitelson and Merzlyak (1994) and Rossini et al. 
(2007)

Red-Edge EVI G ∗
B8−B7

B8+C1∗B7+C2∗B2+1
Increases sensitivity to biomass increment and 

vegetation detection
Guo et al. (2017)

NDFI B4−B12

B4+B12
Considers soil moisture availability and occur-

rence of agricultural flash floods
Cian et al. (2018)
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where yi—observed value of maize yield; ŷi—predicted 
value of maize yield; n—number of observations.

3  Results and Discussion

3.1  Discriminating Maize Fields

The overall accuracy (OA) results of maize discrimina-
tion were varied with different multi-date classifications 
subsequent to phenological phases. At the beginning of 
the developmental stages (between April and July), the 
OA of classifications was relatively low (ranging from 
55 to 67%). This confirms that it is challenging to dis-
criminate maize crops at these growth stages due to the 
spectral mixes of several plants. For instance, high weed 
infestations, which were not yet entirely removed at these 
stages, contribute to high spectral confusion. A high weed 
infestation during the cropping season leads to substantial 
omission error, which is also revealed from other studies 
(Eddy et al. 2014; Lambert et al. 2018).

In our study, classification accuracy significantly 
improved during tasselling and silking phenologies, typi-
cally between 80 and 110 days after sowing. During these 
stages, the OA of maize classification reached about 85%. 
The maize fields were well-weeded during these pheno-
logical stages and enabled the maize to have a distinct 
spectral signature and low commission errors. In addition, 
these periods offer a complete stage of maize development, 
while other cereal crops, such as bean (Phaseolus vulgaris 
L.) and barley (Hordeum vulgare L.) and some weed rem-
nants were already at dehydration and senescence stages. 
This allows us for clear spectral discrimination of maize 
from other vegetation. Kussul et al. (2016) also reported 
an improved crop mapping with an OA of 87% during 
early growth stages that increased to 94% at late devel-
opment stages. Several studies also distinguish specific 
temporal ranges for more accurate classifications (Mazzia 
et al. 2020; Vuolo et al. 2018; Waldhoff et al. 2017). The 
final classified maize fields accounted for about 8% of all 
land covers in the study site (Fig. 3).

We also confirmed that using multi-date composite 
images in the optimal temporal casement offered better 
maize discrimination accuracy when compared to using 
a single-date dataset. Belgiu and Csillik (2018) and Pal-
chowdhuri et al. (2018) also reported classification accu-
racy increases when using multi-temporal composite 
images. With the opportunities to highly accurate crop 
discrimination potential of the high-resolution Senti-
nel-2 MSI, our ultimate classification result was slightly 

(3)Bias =

∑n

i=1
(yi − ŷi)

n
,

lower than several other studies (Khaliq et al. 2018; Leb-
ourgeois et al. 2017; Nasrallah et al. 2018; Sonobe et al. 
2018; Zheng et al. 2017). This is because the study area is 
highly fragmented farmlands with several adjusting agro-
forestry plant species, which can lead to spectral confusion 
between different species. Various studies also recognized 
spectral confusions among different species (Forkuor et al. 
2014; Hu et al. 2019). In addition, intercropping opera-
tions in our study site, principally soybean (Glycine max) 
within the same maize fields, can also contribute to spec-
tral confusions.

3.2  Remotely Sensed Maize Phenology Monitoring 
Technique

The remotely sensed monitoring of phenology of maize 
development revealed a distinct temporal pattern as pre-
sented in Fig. 4. Plant spectral reflectance-based VIs (NDVI, 
EVI, GVI, SAVI, Red-Edge NDVI, Red-Edge EVI) unveiled 
almost identical and consistent temporal patterns. At the 
same time, NDFI showed irregular patterns with the vari-
ability of moisture. During the initial periods, VIs showed 
the lowest records. After few weeks (around mid-April), 
NDFI values increased, which denotes the start of rainfall 
and might also point to agronomic flooding. This period is 
when farmers started maize sowing. Likewise, it is also pos-
sible to recognize sowing dates in remote sensing from the 
smoothed VIs temporal profile. A few weeks later (from 30 
to 70 days after sowing), VIs steadily increased, representing 
the emerging of the maize plants and rapid growth. The crop 
reached its period of peak growth between 80 and 110 days 
after sowing. During this period, the VIs rose to the highest 
values. The decrease of VIs around 120–150 days after sow-
ing represents plant maturity and senescence. VIs dropped 
to their lowest values around 160–180 after sowing as the 
leaves dried out and died, which was the time of harvesting 
operations in the study area. In the typical environmental 
conditions of the crop growing season, various plant spectral 
VI profiles showed a similar reflectance characteristic, which 
confirms numerous previous studies (Liao et al. 2019; Lobell 
et al. 2003; Sakamoto et al. 2005; Tian et al. 2019). Only 
NDFI revealed distinct reflectance properties linked with the 
frequency and quantity of rainfall in the study site.

3.3  Grain Yield Forecasting Models and Production 
Estimation

We analyzed the capability of six spectral VIs to predict 
maize grain yield early before the harvesting period. The 
result showed VIs could significantly predict the grain yield 
in the middle and late phenological stages. More accurate 
predictive models were achieved during the peak maize 
spectral reflectance period (between 80 and 110 days after 
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sowing). Predictive models of this phenological stage are 
presented in Table 2. The use of single spectral VI, from 
Model 1–9, performed relatively low. From a single VI per-
spective, the Red-Edge band and EVI performed better with 
all estimations below 700 kg/ha of RMSE. The most accu-
rate model was achieved through a combination of spectral 
VIs. Mathematical models: Model 10 (EVI and GVI), Model 
11 (Red-Edge EVI and SAVI), and Model 12 (NDVI, Red-
Edge EVI, and SAVI) all offered  R2 values ≥ 80% of yield 
estimations.

Model validation was carried out using regression analy-
sis between actual field observations and predicted yield 

(Fig. 5). The scatterplots were established on one-hectare-
based agricultural land production rates. In accordance with 
Table 2, Models 1–6 were performed according to empirical 
linear functions, Model 7 with a polynomial function, Mod-
els 8 and 9 with exponential functions, and Models 10–12 
were based on multiple-variable regressions. According 
to these predictive models, there was a clear relationship 
between the observed and predicted grain yields. The math-
ematical Model 12 offered the most highly accurate yield 
estimations in our study with a RMSE of 449.66 kg/ha. 
The model showed a slight overestimation with an overall 
computed bias of 3.00 kg/ha. Mathematical Model 5, which 

Fig. 3  Maize fields of the study district (2018 growing season), depicting a highly fragmented spatial arrangement of many small and few large 
fields. The overall accuracy of this classification was estimated to be 85%
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bases on GVI, showed the lowest predictive power with a 
RMSE of 784.61 kg/ha.

In our study, remarkable yield regression models 
were obtained with evidence for practical use (Table 2). 
The accuracy of yield estimates peaked between 80 and 
110 days after sowing for linear and multiple regression 
models, which was the tasselling and silking stages after 
green-up. A similar result was obtained using MODIS 

images, suggesting that grain yield prediction using spec-
tral indices offers high accuracy (Bolton and Friedl 2013). 
Other studies found that the time for peak correlation with 
the best time for early yield predictive models is during the 
reproductive stage of maize (Mkhabela et al. 2011; Sacks 
and Kucharik 2011).

In particular, GVI and NDVI-based simple linear regres-
sions resulted in relatively lower predictive grain estimation 

Fig. 4  Vegetation indices from Sentinel-2 MSI over the growth period of maize fields, depicting changing phenology for the 2018 crop growing 
season. Rectangular boxes in different colours represent the phenological stages observed in the field

Table 2  Correlation between vegetation indices and maize grain yield, executed from tasselling and silking phenological stages (between 80 and 
110 days after sowing) of 2018 crop growing season

Y predicted yield, e 2.71828183

Predictive model Equation R2 RMSE (kg/pixel) RMSE (%) Bias (kg/pixel)

Model 1 Y = 44.561 ∗ NDVI + 7.8961 0.65 7.595 31.73 0.333
Model 2 Y = 53.66 ∗ Red − Edge NDVI + 5.5263 0.71 6.957 29.07 0.079
Model 3 Y = 57.244 ∗ EVI + 1.5586 0.72 6.736 28.15 0.006
Model 4 Y = 56.734 ∗ Red − Edge EVI + 3.188 0.73 6.698 27.99 0.099
Model 5 Y = 53.045 ∗ GVI + 0.7981 0.63 7.846 32.78 -0.002
Model 6 Y = 66.188 ∗ SAVI − 3.3743 0.64 7.737 32.33 -0.036
Model 7 Y = 16.92 +

(
74.064 ∗ NDVI2

)
− (18.023 ∗ NDVI) 0.70 6.969 29.12 0.412

Model 8 Y = 9.038e2.2948∗Red−Edge EVI 0.72 6.821 28.09 0.908
Model 9 Y = 7.8438e2.2445∗GVI 0.64 7.756 32.24 0.730
Model 10 Y = −2.742 + 39.093 ∗ EVI + 25.741 ∗ GVI 0.80 5.730 23.92 0.032
Model 11 Y = −5.154 + 38.587 ∗ Red − Edge EVI + 35.796 ∗ SAVI 0.84 5.092 21.28 -0.110
Model 12 Y = −4.965 + 16.47 ∗ NDVI + 24.286 ∗ Red − Edge EVI + 33.419 ∗ SAVI 0.88 4.496 18.79 0.030
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compared to other models, suggesting that yield was under 
and overestimated, respectively. The poor correlation is 
because the high greenness of the cultivated maize variety 
can make these VIs easily saturated. Thus, these VIs have 
the character of easy saturation with low biomass (Casa-
nova et al. 1998; Xue and Su 2017). In crop fields with low 
moisture content and low weed infestation, NDVI can be a 
good yield predictive indicator (Noureldin et al. 2013). In 
fragmented small-scale farmlands, variable moisture, and 
high greenness crop fields of our study, using EVI, Red-
Edge-based, and soil suppressing spectral indices improve 

predictive models' precision. Studies of Clevers and Gitelson 
(2013), Dong et al. (2015), and Forkuor et al. (2017) also 
point to the importance of Red-Edge to minimize saturation 
problems in crop analysis and crop mapping.

Models from multiple regression offered higher accuracy 
of all yield forecasts; models 10, 11, and 12 featured lower 
RMSE of 5.73, 5.09, and 4.50 kg/pixel of grain, respec-
tively (Table 2). The use of more than one spectral index 
increased the accuracy of the models. This method allowed 
for a comprehensive assessment of different attributes, such 
as chlorophyll content, vegetation health, water level, and 
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Fig. 5  Scatterplots between maize observed and predicted yields for 2018 crop growing season. The dashed line represents a 1:1 relationship and 
the solid line denotes the fitted line
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soil and canopy conditions through several spectral bands. 
In addition, our approach offers improved yield estimates 
compared to the predictive models developed using climate 
variables, such as rainfall and temperature (Ramirez-Villegas 
and Challinor 2012). If highly accurate predictive models are 
required, multiple VIs-based models can be preferred. But, if 
parsimonious yield estimation is needed, predictive models 
with a single spectral index, such as EVI, Red-Edge-based 
NDVI, and EVI can be selected.

Grain yield mapping in the study area can be done 
through summing of all pixel yield estimates (10*10 m) 
in each maize field, and then converting it to standard pro-
duction rate (ha). We presented the spatial distribution 

maps by executing based on considering the best pre-
dictive models; potentially close to the 1:1 relationship 
line (Models 4, 10, 11, and 12) (Fig. 6). With the most 
refined predictive model (Model 12), about 3.4 t  ha−1 of 
mean grain production was obtained. With a total area of 
1917.74 ha of classified maize fields in the study area, 
about 6520.32 tonnes of maize grain was found to be har-
vested in the 2018 cropping season.

In our investigation, VIs can potentially provide pro-
duction anomalies. The potential of VIs for crop growth 
monitoring, and accurate yield prediction about 2 months 
before the start of the harvesting season, supports the 
government’s readiness for various early warning alerts. 

Fig. 6  Spatial distribution of maize yield predictions for 2018 for different prediction models
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Subsequently, the government can make reliable agricul-
tural decisions based on the crop growth conditions and 
production status, such as during the time of crop growth 
abnormalities, and shortage or surplus grain products.

4  Conclusion

We established approaches for remotely sensed maize phe-
nological monitoring and yield predictive models early 
before the real-time harvesting period for Abaya district of 
Oromia Regional State in Ethiopia using spectral indices 
derived from Sentinel-2 MSI data. We also verified the 
potential of Sentinel-2 high-resolution imagery to discrim-
inate maize fields in our study site. In addition, we evalu-
ated the suitability of different vegetation indices (VIs) for 
grain prediction. Overall, our finding shows that the best 
time to predict maize grain yields was between 80 and 
110 days after establishment. The uses of phenological-
adjusted spectral indices provide more precise grain yield 
estimates. Multiple regressions from various VIs also offer 
more precise yield estimates than single VI-based models.

It is important to note that using a small number of 
sampling plots and the size of Sentinel-2 MSI grids in 
our study can affect our predictive models. We relied on 
agricultural lands that landlords were cooperative with to 
provide us with reliable yield information. On the other 
hand, the predictive model established in our study using 
only annual data may not be used for another year. This 
is because there has been a lack of a production database 
for the past years. Likewise, the Sentinel-2 imagery mis-
sion has been available only from 2016 onwards. For regu-
lar use of Sentinel-2-based predictive models, it would 
be essential to refine these models with data from many 
years. Slight pixel geometrical mismatches with the geo-
referenced field measured plots were also observed. But, 
it is reasonable to assume that yield variation within a 
single farm field is relatively small, and thus its effect on 
the model development is assumed to be negligible. In 
general, the results from this study suggest that Sentinel-2 
MSI-based crop phenological information has the poten-
tial to support crop monitoring, mapping, and grain yield 
predicting in fragmented small-scale farming lands, like 
our study site, for agricultural decision-making.
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