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Abstract
In this study, the multilayer perceptron (MLP) model underwent optimization using evolutionary artificial intelligence 
algorithms. This optimization was further enhanced by integrating the Evaporation Rate-based Water Cycle Algorithm 
(ER-WCA). This integrated approach resulted in a refined technique employed to forecast the load-settlement behavior of 
shallow footings located near slopes. Addressing this intricate engineering challenge necessitates a comprehensive approach, 
considering various input variables such as unit weight (UW) (kN/m3), elastic modulus (EM) (kN/m2), friction angle (FA), 
dilation angle (DA), Poisson's ratio (PR) (v), and setback distance (SD) (m). To construct the requisite dataset, finite element 
analysis was conducted. Throughout the model's implementation, it became apparent that the hybrid model’s performance 
was notably influenced by the population size parameter in ER-WCA  (R2 = 0.9964 and 0.99631, RMSE = 20.4937 and 
19.53741). Consequently, the proposed hybrid model demonstrated significant potential in accurately predicting the vertical 
load necessary to achieve a specific footing settlement.

Keywords Load-settlement · Bearing capacity · Artificial neural network · Multilayer perceptron · Evaporation rate-based 
water cycle algorithm

Introduction

As one of the first steps in building a project, it is essen-
tial to carefully analyze the soil-bearing capacity of shal-
low footing, among the most crucial construction criteria 
[1, 2]. Because bearing capacity depends on various soil 
parameters, obtaining a precise estimation is vital for sev-
eral geotechnical engineering operations. The maximum 
settlement ratio, equal to 0.1 of the foundation width, deter-
mines the final operational stress  (Full). Many scientists have 
debated and developed formulae to offer an accurate esti-
mate of the  Fult of foundations on layered soils, including 
Meyerhof and Hanna [3], Florkiewicz [4], and Lotfizadeh 
and Kamalian [5]. So far, various analytical and numerical 
techniques have been used to study the bearing capacity. 
However, classical methodologies and laboratory techniques 

cannot be used without investing significant money and time. 
In contrast, due to their outstanding competence in many 
industrial applications, artificial intelligence approaches may 
be employed as low-cost but reliable models for evaluating 
geotechnical factors like bearing capacity.

The primary goal of evaluating bearing capacity  (Fult) is 
to reduce the likelihood of high settlement when the con-
structions above' real-world pressures have been imposed 
[6–9]. The soil characteristics, which correlate to the lay-
ers under the foundation and include cohesiveness and 
internal friction angle, unit weight, dilation angle, elastic 
modulus, poison's ratio, and imposed loads on the footing, 
are the most crucial variables in determining the bearing 
capacity [10]. Generally, the  Fult is the maximum applied 
stress for a foundation settling to footing width ratio (S/B), 
corresponding to 10% of the footing width [11, 12]. The 
bearing capacity of a thin footing is affected by a variety 
of factors, including multilayer soil condition, geological 
condition, footing width, failure model taken into account 
during the assessment, soil type, and position of the firm soil 
(e.g., soil layer pattern) [13–16]. Numerous neural network-
based models have recently been developed to aid  Fult esti-
mation in single homogeneous soil conditions [14, 17–19]. 
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Several finite element method (FEM) simulations [20–24] 
were also performed in addition to the experimental labo-
ratory testing as part of a practical strategy to support the 
findings. The results demonstrated that the  Fult rises with 
increasing relative density rate, footing width, and setback 
distance and falls with decreasing slope angle. Ismail and 
Jeng [25] examined the load-settlement characteristic of 
piles using a high-order neural network model (HON-PILE). 
The findings showed that the HON estimates outperformed 
traditional ANN techniques [26]. The new model claims to 
achieve superior forecasts than current theoretical models. 
A general regression neural network (GRNN) was created 
by Sarkar et al. [27] to forecast SPT-N based on soil value 
in Khulna City, Bangladesh. A thorough geotechnical and 
geological assessment of the city and its surroundings was 
conducted to broadly generalize the subsurface state of the 
investigation region depending on SPT measurements and 
the type of soil. And over 2326 fieldwork SPT values (N) 
were gathered from 42 clusters of 143 boreholes scattered 
across a 37  km2 region to suggest the GRNN model. Con-
sequently, the city was split into four geological formations 
and three geotechnical areas. The results from the GRNN 
model forecast accurately and could be applied to future city 
design compared to the actual site investigation. Adaptive 
neuro-fuzzy inference systems (ANFISs), artificial neural 
networks (ANN), and other relevant, efficient simulations 
were made available by introducing soft computing tech-
nologies for various engineering computations emphasizing 
estimating jobs [28]. For load-settlement relation evalua-
tion, such models have also been effectively employed [13, 
29]. In this regard, Padmini et al. [30] applied three mod-
els to forecast the eventual bearing capacity of weak soil, 
including ANN, neuro-fuzzy, and fuzzy (on cohesionless 
soil). Their findings demonstrated that intelligent simula-
tions outperformed well-known carrying capacity theories. 
To determine the final bearing capacity of shallow foun-
dations laying on rock masses, Alavi and Sadrossadat [31] 
used linear genetic programming. Metaheuristic algorithms 
suggest effective methods for a variety of optimization issues 
[32]. The efficiency of widely used predictive models such 
as the ANN, support vector machines (SVMs), and ANFIS 
is improved using them [33, 34]. In terms of implementing 
metaheuristic algorithms for bearing capacity assessment, 
multiple algorithms were utilized to increase the validity of 
the described models [1, 14, 35]. Moayedi et al. [36] used 
the biogeography-based optimization (BBO) technique on 
ANN and ANFIS to estimate the failure probability of shal-
low footings. The findings show that the employed approach 
may improve the ANFIS's classification accuracy for ANFIS 
(from 97.6 to 98.5%) and the ANN (from 98.2 to 98.4%). 
Similarly, Moayedi et al. [37] contrasted the efficacy of the 
dragonfly algorithm (DA) and the Harris Hawks optimi-
zation (HHO) to optimize the computing variables of the 

ANN. As mentioned earlier, their analysis showed that both 
algorithms can handle the job. Regarding the area under the 
curve (AUC) values, the DA, with an AUC of 0.942 and an 
error of 0.1171, outperformed the HHO, with an AUC of 
0.915 and an error of 0.1350.

The objective of the current study was to utilize the 
ERWCA-ANN artificial intelligence approach, in combi-
nation with MLP, to establish a robust predictive network. 
This network was intended to accurately estimate the load-
settlement relationship specific to a particular engineering 
problem, incorporating key factors influencing the load-
settlement trend, including the soil's bearing capacity.

To achieve this objective, a comprehensive dataset was 
assembled through numerous finite element simulations. The 
subsequent sections detailed the database compilation pro-
cess, as well as the optimization and modeling procedures 
undertaken during the implementation of the proposed solu-
tion, which harnessed machine learning techniques. Ulti-
mately, the study entailed an assessment of the outcomes 
derived from each approach. Furthermore, a thorough exam-
ination of the influential factors was conducted, thus facili-
tating a comprehensive discussion of their impacts.

Established database

In this study, the effectiveness of the intelligent models is 
trained and validated using a finite element data set. A shal-
low footing was deliberately developed on two-layered soil 
using the Mohr–Coulomb constitutive models. Triangular 
components with 15 nodes were used to evaluate the system. 
To create the input parameters, data about the seven critical 
system components—the angle of friction (FA), unit weight 
(UW) 

(
kN

m3

)
 elastic modulus (EM) 

(
kN

m3

)
 , Poisson's ratio (PR) 

(v), dilation angle (DA), and setback distance (SD) (m)—is 
gathered. The objective is then attained using the settlement 
(m) values of 901 implemented stages. Figure 1 displays soil 
types and data collection. Also, the values of all input vari-
ables are given in Table 1.

The predicted values that were produced vary from 0 to 
10 cm. Conversely, settlement values greater than 5 cm sug-
gest errors, while settlement values less than 5 cm suggest 
the system's stability. In this view, the numbers 0 and 1 stand 
for stability and error, respectively. The descriptive statisti-
cal analysis for every parameter is also included in Table 2.

For the 80–20 split ratio, 721 samples were chosen ran-
domly as training data. These data are provided to intelligent 
models to deduce the correlation between the stability values 
(SV) and conditioning variables. After the SV behavior has 
been derived, the models are then utilized in the remaining 
180 samples to gauge how well they function under stranger 
circumstances.
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Methodology

This study employs a sophisticated non-linear intelligent 
model known as ERWCA-MLP to accurately determine 
soil bearing capacity. A comprehensive dataset of eight 
hundred and eighty samples, encompassing diverse soil 
qualities and layer thicknesses, was meticulously analyzed 
to achieve this objective while assessing their influenc-
ing factors. To construct the aforementioned models, a 
library consisting of seven inputs and one output  (Fy) was 
established. This procedure is depicted in Fig. 2. The sub-
sequent sections provide comprehensive insights into the 
methodologies harnessed throughout this investigation.

Multilayer perceptron (MLP)

The soil's bearing capacity can be estimated through a 
unique artificial intelligence system known as ERWCA-
MLP, which is grounded in multilayer perceptron (MLP) 
methodologies. Initially introduced by McCulloch and 
Pitts [38], artificial neural networks (ANNs) form the 
foundation of this approach. The initial training approach 
for ANNs, stems from a multitude of principles grounded 
in theories and neuro-physiological facts [32]. Research-
ers have extensively explored the development of both 
simple and nonlinear mathematical models inspired by 
human neurons [39–43], resulting in various architectures 

Fig. 1  A 3D view of soil types 
and data collection

Table 1  Soil types and input 
values

� � � E � Setback

1 30 3.4 19 17,500 0.333 1–7
2 33 5.8 19.9 25,000 0.313 1–7
3 36 8 20.5 35,000 0.291 1–7
4 39 10 20.9 50,000 0.27 1–7
5 42 11.5 21.1 65,000 0.249 1–7

Table 2  Descriptive statistics 
of the compressive strength and 
key factors

Minimum Maximum Mean Standard deviation

Friction angle 30.0000 42.0000 36.7458 3.9094
Dilation angle 3.4000 11.5000 8.2777 2.6143
Unit weight (kN/m3) 19.0000 21.1000 20.4376 0.6549
Elastic modulus (kN/m2) 17,500.0000 65,000.0000 41,087.6804 16,408.7231
Poisson’s ratio (v) 0.2490 0.3330 0.2860 0.0276
Setback distance 1.0000 7.0000 4.1898 2.0754
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or topologies [44, 45]. The models constructed using 
ANN techniques involve training a network and evalu-
ating the anticipated outcomes against a predefined 
test dataset. In this context, Fig. 3 illustrates the archi-
tecture of the ANN employed for soil bearing capacity 
forecasting.

Evaporation rate‑based water cycle algorithm

Sadollah et al. [46] proposed the ER-WCA by modifying 
the water cycle algorithm. It is a population-based opti-
mizer that has proven adept at coping with various regres-
sion [47] and classification [48] problems. As explained, 
the WCA algorithm is the fundamental theory underlying 
this paradigm. This algorithm simulates the water cycle 
found in nature. Water transpiration and evaporation 

Fig. 2  Schematic view of the data provision process

Fig. 3  The MLP structure 
utilized in this study
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combine to form clouds. The water then returns to the 
earth in the form of various precipitations.

Regarding convergence speed and precision, the WCA 
outperforms the majority of other optimizers. The algo-
rithm's functionality in all dimensions contributes to this 
advantage [49]. Compared to the binary WCA, the ER-
WCA has a more optimal equilibrium between exploitation 
and exploration, resulting in greater precision and faster 
convergence. This algorithm may be expressed in several 
phases. First, the population is generated randomly, and 
initial members (i.e., streams, rivers, and seas) are formed. 
A cost function is applied to each stream to monitor the 
minimization of the error. Next, flow intensity (FI) is cal-
culated for the members, and the positions are exchanged 
accordingly. The rivers flow to the sea, and the evaporation 
rate (ER) is determined. Based on the obtained ER, the 
position of the members is updated. Some mathematical 
explanations are presented in the following. Considering 
highly fitted members as rivers and the rest as streams, the 
candidate streams ( CS ) array is defined as follows:

in which K represents the dimension of the problem. Assum-
ing Kpop as the population size, generating the population is 
expressed by Eq. (2):

Equation (3) gives the FI:

Moreover, Eqs. (4) and (5) reflect the process of desig-
nating the streams to the rivers and the sea:

where Ksr shows the number of individuals who opted for the 
best-fitted ones. Subsequently, KStream denotes the number of 
the remaining individuals.

(1)CS =

[
x1, x2,… , xK

]

(2)

Total population =

⎡
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(3)Costi = f
(
xi
1
, xi

1
,… , xi

K

)
i = 1, 2,… ,Kpop

(4)Cn = Costn − CostKsr+1
n = 1, 2,… ,Ksr

(5)

NSn = round

�������
Cn∑Ksr

n=1
Cn

� × Kstreams

�
, n = 1, 2,… ,Ksr

The ERWCA is a nature-inspired optimization algorithm 
inspired by the water cycle process in nature. It's important 
to note that the specific advantages of ERWCA may vary 
depending on its implementation details, problem context, 
and empirical performance in comparison to other optimi-
zation algorithms. Empirical validation and benchmarking 
against established optimization methods are essential steps 
to assess its effectiveness and competitiveness in practical 
applications. Like many nature-inspired optimization algo-
rithms, ERWCA likely balances exploration (searching for 
new solutions) and exploitation (exploiting known solu-
tions) effectively. This balance can help it converge to high-
quality solutions efficiently. ERWCA is likely based on a 
simple conceptual framework, mimicking the water cycle 
process. This simplicity can make it easier to understand, 
implement, and apply compared to more complex optimiza-
tion algorithms. As with many nature-inspired algorithms, 
ERWCA is likely versatile and applicable to various prob-
lem domains. It can be used for optimization problems in 
engineering, economics, finance, and other fields. Indeed, 
nature-inspired algorithms often exhibit robustness to noise 
and uncertainty in the optimization landscape. ERWCA 
may also possess this characteristic, making it suitable for 
noisy or uncertain optimization problems. ERWCA may be 
amenable to parallelization, allowing it to leverage parallel 
computing resources for faster convergence and scalability 
to large-scale optimization problems. They also typically 
have low computational complexity, making them suitable 
for optimization problems with computational constraints. 
ERWCA may offer a balance between solution quality and 
computational cost. In addition, ERWCA likely offers oppor-
tunities for customization and parameter tuning to adapt to 
specific problem characteristics and optimization require-
ments. This flexibility allows users to tailor the algorithm 
to their needs effectively.

Results and discussion

The primary goal of this research is to forecast the soil's 
bearing capacity under two soil layers. To estimate the  Fy, 
the traits that had the most significant impact on its computa-
tion were determined. The 20 and 80% parameters were ran-
domly selected for the testing and training databases. Leven-
berg–Marquardt's (LM) back-propagation training technique 
was utilized for the analysis. Because of its efficiency and 
ease, this method has been used in numerous investigations 
successfully [13, 50–53]. The number of neurons in the hid-
den layer is one of the most critical aspects in constructing 
an ANN design. This number typically ranges from one to 
10, depending on recommendations derived from previous 
experiments and the characteristics of the dataset utilized 
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in this study. In this regard, the performance indices of the 
MLPs are presented in Table 3.

As previously mentioned, the primary objective of the 
current study was to enable the algorithm to determine the 
optimal weights and biases matrix for the MLP. To achieve 
this goal, an MLP with one hidden layer consisting of five 
neurons (determined through a trial-and-error approach) was 
initially recommended as the base model. Consequently, the 
MLP under consideration had a total count of 751 input/out-
put variables. This process was carried out using the MAT-
LAB 2020 programming language. It is important to note 
that, in this investigation, the activation functions for the hid-
den and output neurons were selected as "tangent-sigmoid 
(i.e., Tansig)" and "purelin," respectively. Subsequently, the 
ERWCA method was integrated to create the ERWCA-MLP 
neural ensemble quantitatively.

Hybridizing the MLP Using metaheuristic algorithm

Combining the Evaporation Rate-based Water Cycle Algo-
rithm (ERWCA) with a Multilayer Perceptron (MLP) neural 
network can be a promising approach for optimization prob-
lems, particularly in the context of training MLP models. By 
combining ERWCA with MLP, you leverage the strengths 
of both optimization techniques to effectively train neural 
networks while exploring the search space for optimal solu-
tions. This hybrid approach can potentially lead to improved 
convergence, better generalization, and enhanced perfor-
mance of MLP models in various tasks. Two techniques are 
combined based on the below mathematical phases.

Initialization of MLP Parameters: Use ERWCA to initial-
ize the weights and biases of the MLP. ERWCA can explore 
the search space to find an initial set of parameters that may 
lead to better performance during training.

Optimization of MLP Parameters: Apply ERWCA to 
optimize the parameters of the MLP during training. This 

includes adjusting the weights and biases of the MLP based 
on the performance of the network on the training data.

Objective Function: Define an objective function that 
measures the performance of the MLP model. This could 
be a loss function, such as mean squared error for regression 
tasks or cross-entropy loss for classification tasks.

Fitness Evaluation: Use the objective function to evaluate 
the fitness of each candidate solution generated by ERWCA. 
In the context of optimizing MLP parameters, the fitness 
would correspond to the performance of the MLP model on 
a validation set.

Updating Parameters: Apply ERWCA's optimization 
mechanisms, such as evaporation, precipitation, and infil-
tration, to update the parameters of the MLP. This involves 
modifying the weights and biases of the MLP based on the 
performance feedback obtained from the objective function.

Iterative Optimization: Iterate the optimization process 
until convergence criteria are met or a maximum number 
of iterations is reached. During each iteration, ERWCA 
explores the search space to find better parameter configu-
rations for the MLP.

Validation and Testing: After optimization, evaluate the 
performance of the trained MLP model on a separate valida-
tion set to assess its generalization ability. Additionally, test 
the final model on a held-out test set to evaluate its perfor-
mance on unseen data.

Hyperparameter Tuning: Conduct hyperparameter tuning 
for both ERWCA and the MLP to optimize their respective 
parameters. This may include adjusting parameters such as 
population size, evaporation rate, learning rate, and network 
architecture.

Following the ensemble's formation, a population-
based trial-and-error procedure determined the optimal 
metaheuristic algorithm's complexity [54]. To achieve this, 
ten different population numbers were used to examine 
the ERWCA-MLP network. One thousand times were run 
through the model to reduce error. This method's objective 

Table 3  MLP network 
optimization

Number 
of neu-
rons

Network result Scoring Total score Rank

MSE total RMSE train RMSEtest MSEtotal RMSE train RMSE test

1 1.495 1.480 1.490 3 3 3 9 8
2 1.396 1.438 1.409 5 4 5 14 6
3 1.294 1.285 1.292 8 8 8 24 3
4 2.051 2.040 2.048 2 2 2 6 9
5 1.232 1.220 1.229 10 10 10 30 1
6 1.289 1.266 1.282 9 9 9 27 2
7 1.388 1.378 1.385 7 7 7 21 4
8 1.459 1.420 1.448 4 5 4 13 7
9 1.390 1.392 1.391 6 6 6 18 5
10 3.190 3.146 3.177 1 1 1 3 10
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function (OF) was configured to assess the training error 
within every repetition as the root-mean-square error 
(RMSE). Equation (1) represents this function. The result-
ing RMSEs for the studied population numbers are shown in 
Fig. 4. Additionally, this image shows the convergence curve 
of the most precise model.

where N is the number of data, and Yiobserved and Yipredicted stand 
for the observed and predicted stability values.

Improving the ERWCA-MLP algorithm's most crucial 
factor is crucial for obtaining the most significant prediction 
result from the model. The initial parametric inquiry strategy 
used, such as choosing the best-fit ANN design, required 
a set of error and trial advances to optimize the forecast-
ing ability of the hybrid ERWCA-MLP system. As a result, 
various models were created utilizing various population 
size values, including 50, 100, 150, 200, 250, 300, 350, 400, 
450, and 500. The adjustments in the original settings had a 
significant impact on the findings. It was shown that increas-
ing the number of nodes causes the estimated and measured 
network outcomes to converge more closely. Compared to 
other parameters, it is discovered that the version with 300 
swarms is the optimal value.

The initial step taken earlier than employing hybrid 
intelligence solutions is determining the appropriate MLP 

(1)RMSE =

√√√√ 1

N

N∑
I=1

[(
Yiobserved − Yipredicted

)]2

network architecture. In the second step, the four struc-
tures of the ERWCA-MLP must be optimized. By employ-
ing the RMSE reduction process, the performance of the 
above-cited trial and error procedure was estimated. Given 
the error procedures presented in Fig. 6, the invasive weed 
optimizer model with a population size of 500 indicated the 
optimum efficiency reflected as its lower root means square 
error value. As a result, such a structure was presented as the 
optimum ERWCA-MLP in a population size of 500 archi-
tecture for further evaluations of the capacity of friction for 
driven piles installed in cohesive soils. A reliable proce-
dure of prediction, which is applied through ANN hybrid 
models, is required to be created from several steps, such 
as (1) data normalization and processing, (2) choosing an 
appropriate hybrid technique, and eventually (3) determining 
the appropriate hybrid structure of the developed technique, 
obtainable through a trial-and-error process. Besides its 
faster training process, the IWO proposed models provided 
higher accuracies in predicting shaft friction capacity for the 
installed, driven piles. Figure 5 shows the ERWCA-MLP 
models in predicting the driven piles' final bearing capacity 
and the measured data for training and testing datasets. The 
obtained results of the model of ERWCA-MLP based on R2 
values were 0.98953, 0.99305, 0.99466, 0.99605, 0.9953, 
0.99364, 0.99523, 0.99435, 0.99499 and 0.99631 for the 
testing datasets, respectively, for size of population equal 
to 50, 100, 150, 200, 250, 300, 350, 400, 450, and 500 and 
0.9902, 0.9934, 0.9945, 0.9959, 0.9958, 0.9936, 0.9952, 
0.9947, 0.9946 and 0.9964 for training datasets, for size of 

Fig. 4  Variation of the MSE 
versus iteration to find the best 
fit ERWCA structures
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Fig. 5  The results of accuracy for the different ERWCAMLP proposed models
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population equal to 50, 100, 150, 200, 250, 300, 350, 400, 
450, and 500. According to the results, the developed hybrid 
ERWCA-MLP model in a population size of 500 accurately 
predicts the ultimate bearing capacity of the installed, driven 
piles.

As of yet, R2 parameters have supported the ability of the 
metaheuristic algorithm to create a more potent MLP. The 
ERWCA-MLP application's outcomes are compared in this 
part to assess the model's effectiveness. The chosen model's 
testing and training results for forecasting the soil's bear-
ing capacity are premised on its R2 are shown in Table 4. 
As shown in Table 4, points were assigned based on the 
estimated R2 for every population size. The system that pro-
duced the most reliable results in each phase was chosen 
based on the total scores. Regarding R2 for the training and 
testing phases, Table 4 shows that the population size of 

500 achieved the most outstanding results ( R2 = 0.9964 and 
0.99631 for testing and training).

Accuracy assessment criteria

Accuracy assessment criteria are metrics used to evaluate 
the performance of predictive models, classifiers, or algo-
rithms by comparing their predictions or classifications with 
actual observed values or ground truth. These criteria pro-
vide quantitative measures of how well a model performs on 
a given dataset. These accuracy assessment criteria provide 
valuable insights into the performance of predictive models 
and classifiers, helping practitioners evaluate their effective-
ness, identify areas for improvement, and make informed 
decisions in various domains such as machine learning, 

Fig. 5  (continued)
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statistics, and data science. Choosing the most appropriate 
criteria depends on the specific characteristics of the dataset 
and the goals of the analysis. As an example, accuracy meas-
ures the proportion of correctly classified instances out of 
the total number of instances in the dataset. It is calculated 
as the sum of true positives and true negatives divided by 
the total number of instances. While accuracy is intuitive 
and easy to interpret, it may not be suitable for imbalanced 
datasets where one class dominates the others. Precision 
measures the proportion of true positive predictions among 
all positive predictions made by the classifier. It is calcu-
lated as the ratio of true positives to the sum of true posi-
tives and false positives. Precision is useful when the cost 
of false positives is high. MAE and MSE are metrics used to 
assess the accuracy of regression models by measuring the 
average difference or squared difference between predicted 
and observed values. Lower values of MAE and MSE indi-
cate better model performance. RMSE is the square root 
of the mean squared error and provides a measure of the 
average magnitude of errors in the predicted values. Like 
MAE and MSE, lower values of RMSE indicate better model 
performance.

The efficiency error of the systems was measured using 
the two error parameters of RMSE and mean absolute error 
(MAE). The MAE's formula is expressed in Eq. (2).

In this section, the capabilities of the best-fit algorithms 
are evaluated to assess their suitability for simulations. As is 
widely recognized, the results from the training phase indi-
cate the model's learning capacity, while findings from the 
testing phase illustrate its ability to generalize to unseen sce-
narios. Figures 6 and 7 depict the projected and actual results 
of ensemble models for each of the ten population sizes—50, 
100, 150, 200, 250, 300, 350, 400, 450, and 500. Figure 6 
illustrates that the errors of various training ERWCAMLP 

(2)MAE =
1

N

N∑
I=1

|||Yiobserved − Yipredicted
|||

structures are consistently low, indicating close alignment 
between target and output trends. Figure 7 displays the error 
frequencies for different training ERWCAMLP structures, 
revealing that the current optimization process has effec-
tively reduced errors across all population sizes.

There are two components to evaluating the models 
that have been used. The testing and training errors of the 
developed ERWCA-MLP are characterized quantitatively 
by the MSE and MAE. Figures 8 and 9 provide the find-
ings, including a visual evaluation of the soil's projected and 
actual bearing capacity and a histogram of the inaccuracies. 
Based on these results, combining the ERWCA evolutionary 
approach with the MLP has successfully enabled it to learn 
more about and estimate the soil's bearing capacity.

For the size of the population of 50, 100, 150, 200, 
250, 300, 350, 400, 450, and 500, respectively, the values 
obtained of RMSE and MAE for the typical ANN during the 
training stage were (0.21222, 0.21259, 0.20904, 0.21093, 
0.20856, 0.20787, 0.21366, 0.21039, 0.21422, 0.21288) 
and (0.1627, 0.16375, 0.15858, 0.15944, 0.16102, 0.15 
The training error ranges were, respectively, [− 0.0031228, 
0.21236], [− 0.00086137, 0.21276], [0.00016558, 
0.20921], [0.0027594, 0.21108], [− 0.00078537, 0.20872], 
[0.0027133, 0.20802], [− 0.0097779, 0.2136], [− 0.011612, 
0.21023], [− 0.010712, 0.21412], and [− 0.00059669, 
0.21305].

All of the neural-metaheuristic groups outperformed the 
ANN in the testing stage, like the previous step, demon-
strating how well the algorithms adjusted this instrument's 
computational biases and weights. The RMSE decreased 
from 0.3465 to 0.3076, 0.3122, 0.2985, and 0.2745. The 
MAE decreased from 0.3055 to 0.2555, 0.2592, 0.2430, and 
0.1783. Figure 9 shows the graph of the errors as well as 
the discrepancies between the expected and actual stabil-
ity levels (assigned as errors). The extent of the variations 
in the ERWCA-MLP products are as follows: [− 0.010956, 
0.21565], [− 0.0068661, 0.21722], [− 0.0056265, 0.2153], 
[− 0.0018814, 0.21719], [− 0.0057661, 0.21232], 

Table 4  Network results based 
on statistical indices for ten 
proposed ERWCA-MLP swarm 
size

Swarm size Training dataset Testing dataset Scoring Total Score Rank

RMSE R2 RMSE R2 Training Testing

50 33.63664 0.9902 32.84075 0.98953 1 1 1 1 4 10
100 27.61826 0.9934 26.77856 0.99305 2 2 2 2 8 9
150 25.17768 0.9945 23.48538 0.99466 4 4 5 5 18 7
200 21.69037 0.9959 20.21634 0.99605 9 9 9 9 36 2
250 22.13985 0.9958 22.02639 0.9953 8 8 8 8 32 3
300 27.23986 0.9936 25.62252 0.99364 3 3 3 3 12 8
350 23.55317 0.9952 22.20675 0.99523 7 7 7 7 28 4
400 24.63257 0.9947 24.14804 0.99435 6 6 4 4 20 6
450 24.88393 0.9946 22.73835 0.99499 5 5 6 6 22 5
500 20.4937 0.9964 19.53741 0.99631 10 10 10 10 40 1
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Fig. 6  Value of errors different training ERWCAMLP structures
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Fig. 6  (continued)
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[− 0.0032159, 0.21094], [− 0.016106, 0.21991], 
[− 0.015968, 0.21231], [− 0.014801, 0.21675].

Taylor diagrams

A graphical tool used in meteorology and climate research 
to assess how well several datasets compare to a reference 
dataset is called a Taylor diagram, after Karl E. Taylor. It is 
often used to evaluate the effectiveness of climate models, 
numerical simulations, or other model outputs compared to 
observational data. The graphic shows how each dataset's 
standard deviation, correlation, and centered root mean 
square difference (RMSD) concerning the reference dataset 
are related. With the help of these graphic, researchers may 
rapidly determine which datasets are more knowledgeable 
and provide a thorough overview of model performance 
across all dimensions. Overall, Taylor diagrams are use-
ful tools for evaluating and comparing models, and they 
may help in model development by pointing out areas that 
need work. In terms of variability, correlation, and general 
agreement with observational data, they provide a thorough 
tool to display and assess model performance. It provides 
a graphical depiction of the degree of conformity between 

observations and a pattern or group of patterns and was first 
proposed by Taylor in 2001 [55]. The correlation, the cen-
tered root-mean-square difference, and the standard devia-
tions are used to gauge how similar the two patterns are. 
These graphs are very useful for comparing the performance 
of many models or analyzing complicated models with many 
different features, as in IPCC. The Taylor diagram in Fig. 10 
illustrates how the existing database compares how well 
different models can reproduce the regional distribution of 
annual average precipitation. Four models were subjected to 
statistical analysis, and each model was given a label. The 
placement of each label on the map shows how well the pre-
dicted precipitation pattern for that model matches the data.

Discussion

It is widely acknowledged that metaheuristic algorithms 
have the potential to enhance the performance metrics of 
artificial neural networks (ANNs). This positive impact has 
been extensively documented across various engineering 
disciplines [56–58], particularly in geotechnical engineer-
ing [59–62]. Building upon this understanding, this study 

Fig. 6  (continued)
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investigates the optimization capabilities of an innovative 
metaheuristic approach known as ERWCA.

A methodology was devised utilizing ERWCA, followed 
by the implementation of a multilayer perceptron (MLP) 
to tackle the significant geotechnical challenge of assess-
ing bearing capacity. The ERWCA-MLP model demon-
strated remarkable precision. Based on the findings of this 
research, a rapid, cost-effective, and accurate method for pre-
dicting soil bearing capacity can be developed by integrat-
ing neural computing with metaheuristic techniques. This 
approach contrasts with conventional methods that rely on 

time-consuming and potentially costly experiments, such as 
laboratory research and finite element analysis. Furthermore, 
comparison with traditional approaches revealed the poten-
tial benefits of employing metaheuristic methods to enhance 
efficiency. In practical terms, this study advocates for lever-
aging real-world events as strong motivators to optimize the 
computational settings of MLP.

In conclusion, the combination of MLP neural networks 
with ER-WCA presents a promising approach for solv-
ing engineering classification problems. Integrating MLP, 
a powerful machine learning technique, with ER-WCA, 

Fig. 7  Value of errors for different testing ERWCAMLP structures



Innovative Infrastructure Solutions (2024) 9:203 Page 15 of 25 203

Fig. 7  (continued)
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a nature-inspired optimization algorithm, offers several 
advantages. While MLP enables the learning of intricate 
patterns and relationships within engineering data, ER-WCA 
enhances the optimization process by leveraging principles 
from the water cycle and evaporation rates. The hybrid 
MLP-ER-WCA method has shown promising results in 
engineering classification problems. By effectively adjust-
ing the weights and biases of the MLP network through 
the ER-WCA optimization process, the model achieves 
improved accuracy and convergence while mitigating 
issues like local optima and overfitting. ER-WCA's ability 

to explore the solution space and exploit optimal regions 
enables the hybrid model to effectively handle complex and 
nonlinear engineering classification problems. Combining 
global search capabilities with MLP's learning capabilities 
enhances the model's robustness and generalization perfor-
mance. The hybrid MLP-ER-WCA method holds potential 
for various engineering classification applications, including 
fault diagnosis, image recognition, and pattern recognition. 
It offers benefits in enhancing decision-making processes 
and improving the accuracy and efficiency of classification 
systems.

Fig. 7  (continued)
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Conclusions

This study delves into the optimization capabilities of 
the novel metaheuristic technique ERWCA. A strategic 
framework was devised using this technique, coupled 
with a multilayer perceptron, to address the prominent 
geotechnical challenge of determining bearing capacity. 
This methodological fusion was then applied to predict 
the load-settlement behavior of shallow footings near 
slopes, necessitating consideration of numerous input vari-
ables such as unit weight (UW) (kN/m3), elastic modulus 
(EM) (kN/m2), friction angle (FA), dilation angle (DA), 

Poisson's ratio (PR) (v), and setback distance (SD) (m). 
Given the complexity of this engineering problem, a 
robust strategy was imperative. The optimal complexity 
of the metaheuristic algorithm was determined through 
a population-based trial-and-error process. The objective 
function of this approach was designed to assess training 
error, quantified by RMSE and  R2. Notably, a population 
size of 500 yielded exceptional results, achieving the high-
est  R2 values (0.9964 and 0.99631 for testing and train-
ing phases, respectively). In conclusion, the fusion of the 
Multilayer Perceptron with the Evaporation Rate-based 
Water Cycle Algorithm showcases substantial promise in 

Fig. 8  The error frequency for different training ERWCAMLP structures
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addressing engineering estimation challenges. However, 
it is essential to acknowledge that further research and 
validation are necessary to investigate the applicability 
and performance of the hybrid methodology in different 

engineering domains and real-world scenarios. Com-
parative studies with other optimization algorithms and 
machine learning approaches can provide insights into the 
strengths and weaknesses of the ERWCA-MLP method 
and its competitiveness.

Fig. 8  (continued)
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Fig. 8  (continued)
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Fig. 9  The error frequency for different testing ERWCAMLP structures
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Fig. 9  (continued)
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Fig. 9  (continued)
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