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Abstract
Destructive tests for evaluating concrete compressive strength are costly and challenging in certain instances. Using a rebound 
hammer (RH) and ultrasonic pulse velocity (UPV), i.e., non-destructive methods for strength evaluation, proved more ben-
eficial in all senses. However, calibrating the model between non-destructive testing (NDT) and compressive strength is 
essential for estimating strength. The reliability of this calibration is a crucial task that leads to selecting a minimal number 
of cores to be taken out (core) from a structure. The present study aims to identify and optimize the on-site reliability model. 
Extensive data from 275 core samples were obtained from the Construction Diagnostic Centre, Pune (India), which RH 
and UPV examined. The cores are taken from thirty existing RCC structures built between 1975 and 2005. The Root Mean 
Square Error (RMSE) and the coefficient of determination (R2) for single method (SM) and combined method (CM) are 
used to investigate the total number of cores needed for calibration. According to RMSEpred and R2pred, at least 6–8 cores 
are required to achieve the correct prediction phase with a CM rather than using SM. The CM leads to more reliable results 
than an SM with the least RMSE and higher R2 values by analyzing 100 iterations for each number of cores (NC). Also, 
the CM shows more reliable results than the SM in the fitting and prediction phase. As a reasonable number of samples, 9 
cores must be considered to converge for an SM, compared to 6–8 cores necessary for CM to estimate the strength precisely.

Keywords  Concrete strength · Calibration model · Non-destructive testing methods · On-site evaluation · Statistical 
analysis

Introduction

The structural members must be compacted at the construc-
tion stage to achieve durability and performance. For many 
reasons, some parts of structural members are compacted 
manually, or some parts may remain without compaction, 
and these also vary with the type of structure and location. 
When structural concrete is exposed to heat load, its hard-
ness and microstructural behavior are affected. It is well-
known that reducing the water-to-cement ratio enhances the 
strength of concrete and affects its hydration and hardness 

properties. The strength of the existing concrete structure 
degrades over time due to environmental conditions and car-
bonation. In the construction phase, concrete shows higher 
alkalinity (pH-12 to 13) due to the Ca (OH)2 in its interfacial 
transition zone. Reduction of voids and increased volume of 
reactants in the concrete due to lower pH and carbonation 
progress from surface to the internal structure.

The existing structures often need to be assessed for sta-
bility in various circumstances, such as rehabilitation, seis-
mic behavior forecasting, and alteration following severe 
damage. It is essential to test the characteristics of the con-
crete to evaluate structural performance more precisely [1]. 
Even so, destructive testing of concrete allows only a tiny 
range of experiments, attributable to the explanation that, 
in some cases, it is costly, inefficient, and challenging in 
many old structures. The rebound hammer (RH) and ultra-
sonic pulse velocity (UPV) results for the same structures 
are used for reliability assessment with destructive testing 
results (DT). This will help reduce the need to take many 
cores to assess the performance of whole structural concrete 
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behavior using a non-destructive technique [2]. The selec-
tion of core location is based on the average core results that 
can provide a representative picture of the complete dataset. 
Measurement uncertainty arises because the values obtained 
from destructive tests do not perfectly match non-destructive 
test values at the exact test location. Consideration of the 
position of the test is not represented as a specific point but 
as a restricted region, which makes it possible to consider 
the repeatability of the rebound test results.

The average values of root mean square error (RMSE) of 
the fitted and predicted model dataset could be more effi-
cient, and the resulting reliability of the model needs to be 
addressed during the prediction phase. However, the reliabil-
ity of the predicted model could be less than that of the fitted 
model. The difference between fitted and predicted error in 
the model generally evolves due to the generalization of the 
model approach. Benyahia [3] pointed out the technological 
challenge of testing the model identification approach's real 
dataset at the prediction stage.

In some instances, the use of a single NDT method can 
be less precise; hence, combining the NDT (RH and UPV) 
methods is always better to ensure higher accuracy and relia-
bility of the concrete strength assessment. More emphasis is 
placed on the trustworthy conversion model, which depends 
on factors such as the number of core and heterogeneous 
datasets. [4–6].

NDT incorporated with cores provides a better option for 
structural strength evaluation [7, 8]. An empirical relation 
must be formed between the findings of the NDT and the 
strength calculated on cores taken from the exact locations. 
EN (13,791–2019) [9] suggested that at least eight cores 
for > 75 mm diameter, where it is recommended to core at 
least ten test locations, to allow for possible outliers. The 
minimum number of cores > 75 mm diameter of cores for 
use in combination with indirect testing is three, where at 
least four test locations should be cored to allow for a pos-
sible outlier. ACI 228.1R [2] standard suggested that at least 
6–9 data sets are needed for the non-destructive strength 
assessment. Even so, consulting practices are typically based 
on a minimum of 3 or 4 cores, although the accuracy of 
this measurement is still being determined and needs to be 
addressed [4].

Cristoforo [10] offered a wide range of approaches for 
describing concrete strengths, which made use of a broad 
dataset to verify the efficiency of established prediction 
models and suggested new relationships that are successful 
in predicting the substantial strength of the Italian reinforced 
cement concrete (RCC) structures constructed in the twen-
tieth century.

Careful consideration has been paid to the reliability of 
the model based on the following parameters: a large num-
ber of cores data, NDT methods for quality control, range 
of statistical parameters (Range, Standard Deviation (SD), 

coefficient of variation (COV)), reliability of the model, the 
influence of uncontrolled parameters (cracks, carbonation, 
moisture) [6, 11].

Due to variations in the mix proportion, the core stresses 
in normal-strength concrete are double that of those in low-
strength concrete if the transverse and longitudinal bars 
are identical [12–14]. A machine learning algorithm was 
employed to establish a correlation between variables and 
outcomes and forecast the 28-day compressive strength 
while modifying the water-to-cement ratio and superplas-
ticizer. The various models are used for predicting future 
results [15, 16]. An acceptable level of precision is addition-
ally appreciated for concrete strength estimation. Therefore, 
the resulting equations for strength prediction could be used 
securely for in situ concrete strength assessment [17].

Implication of the research

1.	 To address the influence of the number of cores used for 
calibration using statistical parameters: the root mean 
square error (RMSE) and the coefficient of determina-
tion (R2).

2.	 To conduct statistical analysis for a dataset collected 
from various structures constructed between 1975 and 
2005, and to compare with two indicators RMSE, R2.

3.	 To access the reliability precision of the model in the 
fitting and prediction phase.

4.	 To compare model identification approach for the effec-
tiveness and performance of single-method versus com-
bined-method strategies.

5.	 To scrutinize the practical performance of the model in 
real-world scenario, with a specific emphasis on evaluat-
ing the effectiveness of the calibration approach.

Dataset collection

The dataset collected from the Construction Diagnostic 
Centre, Pune, shown in this research study, relates to thirty 
(five structures in each group) RCC structures located in 
Pune, which comes under the metropolitan area, where the 
humidity and carbonation affect the atmosphere severely. 
The structural concrete elements (column and beam) under-
went NDT (RH and UPV), and DT tests of cores were taken. 
Coring and NDT measurements were conducted perpendicu-
larly to the direction of the concrete casting. The UPV test is 
performed at the propagation rate of the ultrasound velocity 
determined on the structural elements under study. In con-
trast, the rebound hammer test is defined by the rebound 
index. A total of 275 elements, consisting of columns and 
beams, underwent testing through a combination of NDT 
and coring. For each element, two NDT measurements 
were conducted before coring, and one to three cores were 
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extracted at the NDT measurement location. In total, 275 
core samples with a 61–105 mm dia. were extracted, as 
shown in Table 1 and subjected to compression testing until 
ultimate failure.

The core diameter drops for a specific height/diameter 
(H/D) ratio, reducing the specimen volume significantly. As 
a result, the diameter of the core increases with decreasing 
strength. The core length generally depends upon the length/
diameter (L/D) ratio; it should be 1.0 for the cube strength 
value and 2.0 for the cylinder strength value. It is required 
to apply a correction factor if the ratio is less than 2.0. The 
reason for using a correction factor is that long cores tend to 
give lower test values than short cores of the same cross-sec-
tional area. A correction factor is applied to the calculated 
strength to convert all core specimens to approximately the 
same strength as the standard test cylinder. It is experienced 
that the core diameter gets affected by factors like maxi-
mum aggregate size, member dimension, and steel reinforce-
ment in the member. EN 12504–1 [18] suggested that the 
core diameter/aggregate (D/A) ratio must be more than 3.0, 
while ASTM C42 [19] suggested its value as 2.0. Several 
standards consider the diameter of the core to be 100 mm, 

although, in Australia, a diameter of 75 mm is considered 
acceptable [20]. Table 1 shows the dataset for different years 
of construction grouped into six categories (D1 to D6) since 
it reflects the variation in strength in structural members 
caused by environmental conditions and voids, cracks, and 
carbonation, with parameters such as number of cores (diam-
eter and height), ranges, standard deviation (SD), and coef-
ficient of variation (COV). The core strength mentioned in 
this study has been calculated after conversion to an equiva-
lent in-situ cube strength (equivalent cube strength as core 
strength/0.8). The value associated with the COV of the core 
strength, which is in the range of 13–35%, demonstrates that 
the dataset presented here is heterogeneous.

Assessment methodology

The assessment methodology is based on and influenced by 
controlled parameters such as the number of test locations 
for cores-NT, within-test variability, and methods of NDT 
(RH, UPV, and Combined Method (CM)). Uncontrolled 
parameters considered are concrete mix characteristics, i.e., 

Table 1   Statistical database parameters based on year of construction

Year Statistical parameters Diameter of core (mm) Height of core (mm) UPV (Km/Sec) Rebound No Core Equi. 
Cube Strength 
(MPa)

1975–1980 No of cores 50 50 50 50 50
Range 73.88–105.74 85.64–204.25 0.768–4.368 10.07–48.37 7.65–23.75
SD 13.42 30.10 0.84 8.40 4.14
COV 0.16 0.21 0.27 0.28 0.26

1981–1985 No of cores 50 50 50 50 50
Range 73.64–105.50 85.27–204.25 0.976–4.078 15.08–50 6.16–25.83
SD 15.73 29.92 0.82 9.38 5.33
COV 0.19 0.21 0.29 0.28 0.35

1986–1990 No of cores 50 50 50 50 50
Range 61.08–105.47 80.23–209.07 2.028–4.503 17.50–47.37 5.94–28.28
SD 12.98 28.32 0.64 8.94 5.90
COV 0.16 0.20 0.21 0.27 0.35

1991–1995 No of cores 25 25 25 25 25
Range 73.53–105 74.38–200.30 1.516–4.409 12.37–50.9 9.37–21.28
SD 0.36 22.82 0.66 10.58 2.93
COV 0.00 0.17 0.21 0.29 0.18

1996–2000 No of cores 50 50 50 50 50
Range 73.49–105.71 80.21–210.99 2.610–4.166 22.12–50.28 12–38.09
SD 15.82 37.20 0.41 6.25 6.41
COV 0.18 0.22 0.12 0.17 0.25

2000–2005 No of cores 50 50 50 50 50
Range 73.04–74.94 87.26–147.87 0.875–4.098 17.05–47 5.96–24.98
SD 0.47 18.02 0.69 8.07 4.72
COV 0.01 0.13 0.23 0.23 0.29
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type of cement, aggregate, compaction methods, curing 
conditions, water-to-cement ratio, elevated temperature, and 
carbonation. Fig. 1 shows a flow chart of the strength evalu-
ation using reliability techniques. The evaluation approach 
for model accuracy is implemented and tested on a homo-
geneous data set of 275 core results collected from the in-
situ structure categorized in D1 to D6, following normal 
distribution. Values obtained from the difference between 
estimated and observed results are strength values achieved 
by applying the same technique to a small set of cores. The 
core strength results selected for each number of cores (NC) 
between 2 and 20 are randomly chosen from the 275 core 
samples.

The statistical regression is used to validate the relation-
ship between core strength and strength estimated by the 
NDT (RH, UPV) method. A set of NC (x and fc) pairs is 
obtained, where x represents the NDT measurement (RH, 
UPV- Independent variable) and fc (Dependent variable) 
is the equivalent cube strength of the core corresponding to 
the test location. The fitted error has been estimated from 
the NC pairs, and the predicated error has been estimated 
from the (NT-NC) pairs in terms of RMSE and the coeffi-
cient R2. The compressive strength values are available at all 
core points in this study. This condition is often impractical 
in common scenarios due to the constraints on the dataset 
size. Since the findings may have some randomness, every 
collection of NC data showed a different outcome. Because 

of this, the same process is repeated 100 times for each NC 
element. The mean and standard deviation of the strength 
values over 100 repetitions shall be calculated for the NC 
reliability assessment.

Estimation methodology

Coefficient of determination (R2) estimation

The coefficient of determination (R2) is commonly used by 
researchers as a measure of the effectiveness of the fitted 
regression model, as indicated in Eq. (1).

where R2—coefficient of determination, SST- is the total 
sum of squares (total variation in values of the response vari-
able) and SSE- is the sum of squares of residuals (amount of 
variation unexplained by the fitted regression model)

To analyze the relationship between core strength and 
NDT parameters (RH, UPV). We used the R2 coefficient 
as stated in Eq.  (2). NDT tests were conducted before 
extracting the core from the in-situ members. The corre-
lation between the two measures is used to evaluate con-
crete compressive strength. Ministry of railways-India 
[21] suggested that the probable accuracy of estimating 

(1)R2 = 1 −
SSE

SST

Fig. 1   Flow chart of the 
strength evaluation using reli-
ability techniques

Dataset: Core taken from in situ structure constructed in between 

1975-1980, 1981-1985, 1986-1990, 1991-1995, 1996-2000, 2001-

2005 from same region.

Random selection of NC (2 to 20) for RMSE calculation from 

a reduced dataset of Number of Cores = 50

Application of the model identification approach using 

regression analysis for strength estimation (fcm)

Reliability assessment (RMSE, R2) 

by fitting phase

Reliability assessment (RMSE, R2) 

by prediction phase

Counter for repetition: I=I+1

Input: Dataset of (NT- 275 core specimens) triplicate pairs with the true 

in-situ strength, core strength and NDT values (RH, UPV, fcm)

Repetition: Number of test locations = 50

Output: For each NC, each approach, 275 fest RMSE and R2

drawn in terms of standard deviation error bar 
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concrete strength in a structure is ± 25%. The coefficient 
R2 assesses the reliability of goodness of fit but does not 
warn about the model's reliability when applied to the pre-
diction. The R2 value for single and multiple variables 
with two regression equations (Power and Exponential) 
with nonlinear mathematical models are used in this analy-
sis, as shown in Table 2. Equations of one variable (RH 
or UPV) provide best-fit correlations R2 > 0.70, which 
has improved R2 > 0.80 in the case of two variables (com-
bined) equations.

where fm, fe, and f are measured, estimated, and average 
strength respectively, NC- number of cores

According to the EN (13,791–2019) [9], at least eight 
cores for > 75 mm diameter of cores, where it is recom-
mended to take at least ten test locations (core) to allow 
for possible outliers. According to the ACI 228.1R-03 
[2], a minimum of twelve cores is required for the regres-
sion approach. RILEM TC 43-CND [22] committee 

(2)R2 =

�

∑NC

i=1

�

fm − f
�2

−
∑NC

i=1

�

fm − fe
�2

�

∑NC

i=1

�

fm − f
�2

Table 2   Destructive and Non-
destructive parameters

Year Method Equations Type R2

1975–1980 (D1) UPV fcm = 6.8454*V0.7359 Power 0.75
fcm = 6.2165*e0.2885v Expo 0.73

RH fcm = 1.4347*R0.7108 Power 0.72
fcm = 6.7881*e0.0273R Expo 0.65

(UPV, RH) fcm = 2.317*(R0.387)* (V0.546) Power 0.82
fcm = 5.747*e0.013 V *e0.188R Expo 0.81

1981–1985 (D2) UPV fcm = 5.6741*V0.9236 Power 0.75
fcm = 4.4843*e0.4039 V Expo 0.79

RH fcm = 0.4104*R1.0205 Power 0.74
fcm = 4.3936*e0.0348R Expo 0.76

(UPV, RH) fcm = 0.741*(R0.658)* (V0.655) Power 0.85
fcm = 3.693*e(0.020 V) *e(0.241R) Expo 0.88

1986–1990 (D3) UPV fcm = 3.0186*V1.5306 Power 0.75
fcm = 3.4964*e0.4999 V Expo 0.71

RH fcm = 0.3306*R1.121 Power 0.72
fcm = 4.8074*e0.0363R Expo 0.73

(UPV, RH) fcm = 0.569*(R0.755)* (V0.677) Power 0.86
fcm = 4.104*e(0.025R)*e(0.187 V) Expo 0.85

1991–1995 (D4) UPV fcm = 7.4362*V0.6951 Power 0.74
fcm = 7.4854*e0.2457 V Expo 0.74

RH fcm = 3.5129*R0.4308 Power 0.75
fcm = 9.1285*e0.0156R Expo 0.78

(UPV, RH) fcm = 4.032*(R0.254)*(V0.437) Power 0.82
fcm = 7.398*e(0.010R)*e(0.136 V) Expo 0.86

1996–2000 (D5) UPV fcm = 2.2338*V1.939 Power 0.74
fcm = 3.3974*e0.5703 V Expo 0.74

RH fcm = 0.2604*R1.2758 Power 0.74
fcm = 6.4351*e0.0373R Expo 0.72

(UPV, RH) fcm = 0.814*(R0.506)* (V1.304) Power 0.82
fcm = 4.122*e(10.015R) *e(0.363 V) Expo 0.81

2000–2005 (D6) UPV fcm = 5.4942*V0.9874 Power 0.78
fcm = 4.5742*e0.4112 V Expo 0.80

RH fcm = 0.3415*R1.091 Power 0.78
fcm = 4.8052*e0.0344R Expo 0.76

(UPV, RH) fcm = 0.879*(R0.633)* (V0.621) Power 0.86
fcm = 4.305*e(10.018R) *e(0.22 V) Expo 0.87
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recommended a process to develop iso-strength curves for 
concrete (materials and mix from different countries for 
which the curves are developed). If the mix is known, a 
correction factor should be applied, and if it is unknown, 

the correction factor should be estimated using cores 
extracted from the structure under investigation.

Figure 2 illustrates the combined approach's experimen-
tal vs. predicted FCM≈fcm results with the regression model. 
Less variance is reported in D1, D4, D5, and D6, while more 

Fig. 2   Experimental vs. predicated FCM results of combined method
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significant variance is observed in D2 and D3. Hence, it is 
essential for correct model validation to use the regression 
approach. All outcomes are derived using a power function 
with a standard deviation ranging from 2.93 to 6.41 and a coef-
ficient of determination (R2) ranging from 0.82 to 0.86.

Variability

This approach is used to identify “regions” that can be consid-
ered homogeneous in terms of the COV. All data sets appear 
to have relatively closer results according to mean, SD, and 
COV. Results from 1986 to 1990 present slightly better statisti-
cal values than others, as shown in Table 2. The variability of 
the NDT parameters measured between the mean values for 
each database is approximately 5 percent, which is just one-
third of the within-subset variability. Kumavat and Chandak 
[23] pointed out that uncertainties affect assessment, and the 
concrete strength variability was induced in the structure due 
to batch-to-batch (mix composition, compaction deficiency, 
different curing conditions), member-to-member (environmen-
tal conditions), within member (voids and cracks) conditions.

RMSE estimation

Another measure that Liu et al. [24] can be used for this 
purpose is the Root Mean Square Error (RMSE) as given in 
Eq. (3). Its functional interest is that it gives the amount of 
error linked to the predicted strengths more explicitly.

The R2 values, indicating the correlation degree between 
predicted and experimental values, vary between the low-
est and highest across all models. The Mean Absolute Error 
(MAE) and Root Mean Squared Error (RMSE) values dem-
onstrate minimal error levels when compared to individual 
models [25, 26]. The model established for core test locations 
is used in actual practice to predict strength at test locations 
where only NDT measurements exist. The predictability of the 
model is, therefore, a crucial issue. According to Shcherba-
kov [27], statistics carried out a range of prediction indicators. 
Between these indicators, RMSE is used by NDT experts to 
test the error of prediction Nobile [28]. The prediction error 
can be determined for (NT-NC) test locations using the follow-
ing adjusted form of Eq. (4).

(3)RMSE(fitted) =

�

∑NC

i=1

�

fm − fe
�2

NC

(4)RMSE(predicated) =

�

∑NT−NC

i=1

�

fm − fe
�2

NT − NC

where NC- number of cores, NT- total number of test loca-
tions for NDT measurements

Results and discussion

Influence of the number of cores on the evaluation 
accuracy

The values of RMSE (RH, UPV, and CM (combined 
method)) calculated for fitted and predicated error are shown 
in Fig. 3 as a function of the number of cores. The average 
value of RMSE at the prediction stage is always higher than 
at the fitting stage, as shown in Fig. 3. When NC increases, 
their standard deviation decreases. The difference between 
the fitting and prediction error is due to extrapolation. This 
precision difference is very significant, mainly when NC is 
small, but in actual practice, only the precision of the fitting 
model is estimated. If fitting errors are significantly low, it 
may indicate overfitting, where the model performs excep-
tionally well on the training data but fails to generalize to 
new, unseen data.

On the other hand, understanding prediction errors assists 
in refining the model to enhance its generalization ability. 
Recognizing the precision difference allows practitioners to 
address overfitting and create robust and applicable models 
to diverse situations. Kumavat and Chandak [29] pointed out 
that the relationship between CV and rebound values varies 
with the structural age (18–32 yrs.) and its type. It is help-
ful to be conscious that a fitting model could have a good 
quality of precision and a deficient predictive capacity. In 
the case of minimal NC numbers, this problem is essential 
because the graphs show that the predicted RMSE can be 
doubled that of the fitted RMSE. The consistent values of 
RMSE are seen when the number of cores ranges between 9 
and 20; this indicates that a minimal number of nine cores is 
required for assessment precision. Regarding the number of 
cores from 9 to 20, prediction and fitting errors are stabilized 
at 1.8 MPa for RMSE with RH and 1.9 MPa for RMSE with 
UPV for groups D1, D2, and D6.

Similarly, prediction and fitting errors are stabilized at 
2 MPa for RMSE with RH and UPV for groups D3 and 
D5 and 1.0 MPa for RMSE with RH and UPV for group 
D4. These errors occur due to measurement uncertainties 
and the influence of uncontrolled factors like carbonation, 
moisture condition, and temperature variation Kumavat et al. 
[30]. When comparing results from different experiments or 
instruments, knowing uncertainties is essential. It provides a 
basis for evaluating the reliability of the data and determin-
ing whether observed differences are statistically significant 
or within the expected margin of error. A clear understand-
ing of uncertainties ensures that researchers stay within the 
precision of their findings. Uncontrolled factors refer to the 
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variables that can affect measurements but are not under 
direct observation or control. Error mitigations may involve 
refining experimental setups, conducting additional analy-
ses, generalizing results, and improving reproducibility.

Table 3 illustrates the comparative analysis of RMSEpred 
and R2pred between single and combined NDT methods. 
When NC increases, the RMSEpred of UPV is greater than 
that of RH, and the R2pred of RH is greater than that of 
UPV with a consistent variance. According to RMSEpred 
and R2pred, at least 6–8 cores are required to achieve a bet-
ter prediction phase with a combined approach compared 
to a single method. The combined method yields more reli-
able results than a single method regarding the least RMSE 
and more excellent R2 value by analyzing 100 iterations for 
each NC.

Generalization of results

Alwash et al. [4] investigated the efficacy of RMSEpred for a 
combination of NDT measurements (UPV and R) according 
to NC. Based on average RMSE, the conclusion indicates 
the effectiveness is observed beyond a minimal number of 
cores (9 or 5). It is observed when the NDT measurement 
quality of the first technique is high (low within-test vari-
ability) and the second technique is low or average. Benyahia 
et al. [3] incorporating a second technique proves effective 
with at least 5 cores if the first technique is UPV and with 
at least 6 cores if the first technique is R. This difference 
arises from the repeatability of rebound measurements. The 
minimal number of cores specified by both authors may be 
specific to the case. In the present work, a second technique 
proves to be effective with at least 8 cores if the first tech-
nique is UPV and with at least 6 cores if the first technique 
is R. In addition, both techniques proved effective for earlier 
years (2000–2005) results with at least 6 cores illustrated 
in Table 3.

Influence of number of cores on the efficacy 
of the CM

The combined method (CM) trends for the same database 
are almost similar to those of a single approach. A modest 
improvement in RMSE, due to the combined method, has 
also stabilized a slightly lower RMSE trend than a single 
method. By observing Fig. 3, the fitted error is lower for the 
combined approach (CM) than for the single method (SM) 
when the number of cores (NC) differs. The efficacy of the 
combined technique during the fitting phase is not affected 
by the NC.

When NC varies, the RMSEfit of UPV is more significant 
than RH and equivalent to the constant difference, as shown 

in Fig. 4. Also, when NC varies, the R2
fit of rebound is more 

effective than that with UPV which is equivalent to the con-
stant difference as shown in Table 3. Comparative analysis 
of the fitted R2 value in terms of the construction age (D1 to 
D6) with regression equation (Power and Exponential func-
tion) as shown in Fig. 5. It should be stressed here that these 
findings are specific to this present study and rely primarily 
on the respective precision of both evaluation methods in 
this situation. From previous case studies [3], identical or 
opposite circumstances seem to be based on the structural 
condition and measuring system.

However, the model of the CM at the fitted phase tends 
to be less dispersive than the models with an SM, where 
the NC < 6, as shown in Fig. 4. This is because the model 
parameters have to be identified from the measurement error 
database [11]. It demonstrates that using a CM with limited 
cores at the prediction phase is risky and can result in enor-
mous uncertainties. Hence, attention must be paid to the 
calibration of the CM since the minimum number of NCs 
often used is a common practice in consultancy work [4].

The present study shows that at least 6–8 cores (concern-
ing RMSE and coefficient of determination (R2)) are neces-
sary to achieve a better prediction phase with a combined 
method than a single method. The number of cores should 
be increased to ensure the CM is extremely strong and sig-
nificantly more reliable than an SM. Consequently, it is also 
essential to analyze the statistical interpretation of the data 
to provide a more detailed understanding of the effective-
ness of the CM during the prediction phase. Therefore, it 
is necessary to check and quantify every 100 iterations to 
know how the CM contributes to the lower RMSE and a 
higher R2 than SM.

The absence of unanimous agreement among practition-
ers and researchers based on the study findings on core 
numbers can be attributed to the choice of the success rate 
(tolerance), which is considered a genuine benefit when uti-
lizing CM. This success rate is based on consideration of 
the practical quality of each non-destructive test; the mini-
mum number of cores needed will vary. The authors recom-
mended that CM measurements require a minimum of 6 to 
8 cores for an expected outcome.

Conclusion

After conducting tests on cores obtained from structures 
built between 1975 and 2005 and performing statistical 
analysis, the following inferences can be made:

The results were utilized for statistical analysis in assess-
ing strength, emphasizing the influence of the number of 
cores during the model identification approach using SM and 
CM methods. In the fitting and prediction stage, the variation 
in error depends on the number of cores used for calibration, 
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Table 3   Comparative analysis 
of RMSEpred and R2

pred between 
SM and CM (NDT)

NC UPV RH CM

RMSE SD R2 RMSE SD R2 RMSE SD R2

1975–1980 (D1)
2 2.29 4.07 0.72 2.55 5.45 0.72 1.89 4.35 0.82
4 2.18 3.46 0.73 2.23 4.76 0.74 1.83 3.99 0.85
6 2.10 3.15 0.76 2.15 3.04 0.76 1.69 3.26 0.88
8 1.92 2.78 0.77 1.93 2.12 0.82 1.54 2.43 0.90
10 1.96 1.72 0.78 1.89 1.89 0.83 1.43 2.05 0.91
12 1.53 1.20 0.79 1.54 0.96 0.87 1.06 1.17 0.92
16 1.53 0.18 0.80 1.45 0.72 0.87 1.06 0.85 0.92
20 1.53 0.06 0.82 1.43 0.44 0.88 1.00 0.08 0.93
1981–1985 (D2)
2 2.88 8.51 0.75 2.77 6.64 0.74 2.14 3.97 0.85
4 2.70 7.20 0.76 2.65 5.93 0.76 2.04 3.50 0.87
6 2.54 6.23 0.76 2.52 5.21 0.80 1.96 3.25 0.9
8 2.40 5.43 0.76 2.40 4.50 0.80 1.87 2.96 0.93
10 2.27 4.77 0.78 2.30 3.11 0.82 1.71 2.39 0.94
12 1.73 1.20 0.82 2.11 1.09 0.84 1.68 1.18 0.95
16 1.70 0.85 0.87 2.10 0.49 0.85 1.68 0.56 0.95
20 1.69 0.07 0.87 2.08 0.43 0.87 1.67 0.37 0.96
1986–1990 (D3)
2 3.38 8.24 0.75 2.86 8.95 0.70 2.25 5.08 0.84
4 3.15 6.29 0.76 2.69 7.89 0.76 2.10 4.08 0.86
6 2.96 4.91 0.76 2.52 5.85 0.79 2.00 3.61 0.87
8 2.80 2.99 0.76 2.35 3.73 0.83 1.90 2.26 0.89
10 2.63 1.99 0.76 2.16 2.51 0.86 1.79 1.78 0.89
12 2.34 0.98 0.77 1.81 1.98 0.87 1.58 1.01 0.90
16 2.32 0.50 0.78 1.80 0.37 0.88 1.57 0.74 0.91
20 2.30 0.36 0.78 1.80 0.24 0.90 1.57 0.42 0.91
1991–1995 (D4)
2 1.54 2.70 0.73 1.60 3.21 0.74 1.25 1.65 0.82
4 1.43 2.20 0.75 1.50 2.86 0.77 1.15 1.24 0.83
6 1.35 1.95 0.77 1.39 2.54 0.79 1.09 1.08 0.85
8 1.26 1.71 0.80 1.27 2.12 0.81 1.03 0.93 0.87
10 1.17 1.05 0.82 1.15 1.71 0.84 0.98 0.68 0.87
12 1.03 0.98 0.86 1.05 0.98 0.86 0.97 0.43 0.88
16 1.03 0.38 0.87 1.02 0.38 0.87 0.97 0.07 0.90
20 1.01 0.15 0.87 1.01 0.03 0.87 0.97 0.03 0.90
1996–2000 (D5)
2 3.21 6.98 0.74 3.60 8.94 0.74 2.75 8.87 0.82
4 2.94 4.82 0.76 3.35 5.59 0.77 2.55 7.36 0.84
6 2.78 3.58 0.79 3.13 3.89 0.80 2.37 6.30 0.87
8 2.63 2.61 0.81 2.93 2.56 0.82 2.20 4.20 0.89
10 2.50 1.71 0.83 2.43 1.78 0.87 1.74 2.10 0.89
12 2.05 0.98 0.84 2.26 0.98 0.89 1.69 1.71 0.90
16 2.01 0.78 0.88 2.25 0.08 0.90 1.70 0.45 0.92
20 1.97 0.20 0.88 2.25 0.02 0.91 1.69 0.22 0.93
2000–2005 (D6)
2 2.38 5.09 0.77 2.28 5.63 0.76 1.78 4.11 0.86
4 2.26 4.38 0.77 2.09 3.95 0.80 1.61 2.96 0.87
6 2.13 3.64 0.80 1.98 3.39 0.81 1.50 2.48 0.89
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expressed in the root mean square error (RMSE) and coef-
ficient of determination (R2), which will logically reduce as 
NC increases. The present study concluded that nine cores 
must be considered a reasonable number of samples to con-
verge for a single NDT method; additional increases yielded 
little improvements in the assessment.

It is, therefore, necessary to check and quantify each 
of the 100 iterations to know how the combined method 
contributes to a lower RMSE and higher R2 than the sin-
gle method. The average value of RMSE at the prediction 
stage is always higher than the fitting stage, but its standard 
deviation decreases when the number of cores increases. 
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Fig. 4   Comparative analysis of the fitted RMSE in terms of the number NC with construction ages (D1 to D6). a NDT method (UPV value) b 
NDT method (R-value) c CM (R, UPV value)

Table 3   (continued)

Significance of bold values illustrate minimal NC values for RMSE, R2, and SD for each NDT (UPV, RH, 
CM)

NC UPV RH CM

RMSE SD R2 RMSE SD R2 RMSE SD R2

8 2.03 3.08 0.82 1.89 3.04 0.81 1.40 1.14 0.91
10 1.93 2.64 0.83 1.80 2.73 0.83 1.30 0.98 0.92
12 1.74 1.25 0.85 1.53 1.07 0.87 1.02 0.78 0.92
16 1.72 0.48 0.85 1.52 0.78 0.88 0.97 0.07 0.95
20 1.71 0.08 0.85 1.52 0.07 0.88 0.97 0.03 0.95
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Compared with a single method, 6–8 cores are necessary for 
the combined method to estimate strength precisely.

We believe qualitative declarations in this study are 
expected to hold true across various situations, but quanti-
tative assertions may require further analysis. Examining the 
model's performance in actual practice is crucial for evalu-
ating the calibration process or increasing the number of 
testing samples.

Future recommendation

Additional research is needed to determine variations in the 
number of cores, while keeping in mind that combining two 
NDT methods enhances the evaluation.

Research contribution

In present study, it is proposed to take 9 cores as a reasona-
ble number of samples to converge for a single NDT method. 
Additional increase did not yield any significant improve-
ments in the results. In comparison with single method, 6–8 
cores are necessary for the combined method to estimate 
strength precisely. Examining the model's performance in 
actual practice is crucial for evaluating the calibration pro-
cess or increasing the number of testing samples.
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