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Abstract
Considering the pivotal role of compressive strength in assessing concrete quality, accurately predicting it is essential for 
guiding construction practices. However, conventional techniques have primarily emphasized factors like raw admixture or 
curing temperature, often neglecting the influence of relative humidity. This study focuses on predicting the compressive 
strength of concrete, conducting an in-depth analysis of concrete under different curing conditions by combining experimen-
tal data and machine learning models. The study found that the XGBoost model performed the best in terms of prediction 
accuracy, with an R2 of 0.9264, RMSE of 2.9255, and MAE of 2.0314. In comparison, traditional mathematical models 
such as the ACI model and the fib model performed poorly in predicting compressive strength affected by relative humidity. 
Additionally, the study revealed that curing time is the most critical factor influencing concrete compressive strength, and the 
contribution of curing relative humidity to strength is close to that of temperature, emphasizing the importance of considering 
relative humidity when evaluating strength growth. Furthermore, analysis of parameters indicated that temperature, relative 
humidity, and curing time exhibit diverse trends in their effects on concrete compressive strength under different curing 
conditions. Despite the effectiveness of machine learning methods in predicting concrete compressive strength, challenges 
remain in model interpretability and real-world application. Future research could explore more advanced machine learning 
models and utilize larger and more diverse datasets to enhance prediction capabilities.
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Introduction

The compressive strength of concrete plays a pivotal role in 
the structural design and construction process of concrete 
structures like buildings, bridges, and infrastructure. Serving 
as a key indicator of overall concrete quality and durability, 
accurately predicting the compressive strength is essential 
not only to ensure that the concrete mix design aligns with 
the requirements of the intended structure, but also to avoid 
costly and time-consuming complications related to quality 
control, planning, and scheduling. The compressive strength 
of concrete is influenced by an array of factors, which 
include the quality of raw materials, water-to-cement ratio, 
curing process, ambient temperature, and humidity condi-
tions during and after curing. As these factors can vastly 
vary, they significantly impact the final compressive strength 
of the concrete. Hence, precise prediction of the compressive 
strength is vital to ascertain if it meets the intended strength 
and durability requirements. Standard tests performed on 
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concrete specimens such as cubes or cylinders are the fre-
quent method employed to predict concrete’s compressive 
strength. These tests, carried out at varying ages, help assess 
the concrete’s compressive strength, which has the same mix 
ratio as the on-site cast concrete. The results can, hence, be 
used to estimate the compressive strength of in-field concrete 
and determine the structure’s quality accordingly. Another 
alternative approach is resorting to mathematical models 
based on regression analyses such as the maturity model. 
Accounting for the multiple factors affecting the compres-
sive strength of concrete, mathematical models predict the 
compressive strength effectively, reducing cost, testing time, 
and eliminating the need for physical testing.

Ambient temperature and humidity considerably impact 
the development of concrete strength. Higher temperature 
and humidity expedite the hydration process, leading to 
rapid strength gain, yet increasing the potential for crack-
ing and shrinkage. Conversely, low temperature and humid-
ity slow the hydration process, decreasing the concrete's 
final strength. Optimal strength development necessitates 
maintaining appropriate temperature and humidity con-
ditions during the curing period [1–3]. This importance 
extends to predicting the compressive strength of concrete, 
with the maturity method—which evaluates the impact of 
temperature and ageing on the compressive strength of con-
crete—being the most adopted approach [4]. To assess the 
compressive strength development of concrete under varied 
temperature and humidity conditions, several humidity-
adjusted maturity models have been suggested [5, 6]. Despite 
prior research successfully assessing the time-dependent 
growth of concrete strength under temperature and humid-
ity influences, the interdependence of these factors is still 
not fully understood, and there is scope for improving the 
evaluation's accuracy [5]. Traditional methods of predicting 
concrete strength mostly incorporate semi-theoretical and 
semi-empirical models, supplemented by parameters fit-
ted mechanistically to formulate the strength development 
evaluation. Considering the time-consuming numerical 
implementation of such evaluation techniques, there is an 
urgent need for a more accurate and time-efficient evaluation 
method that improves computing efficiency.

The advent of Artificial Intelligence (AI) has provided 
a novel approach to predict concrete compressive strength 
through the application of Machine Learning (ML) models. 
These models are capable of processing vast amounts of 
data and identifying complex relationships between vari-
ables such as temperature, humidity, and other environmen-
tal factors, leading to more accurate predictions. Moreover, 
these methods are flexible and can adapt to changing condi-
tions, thereby enhancing their robustness and reliability [7]. 
There has been a proliferation of research in the field of civil 
engineering utilizing ML approaches to predict the mechani-
cal properties of structural concrete. Various ML algorithms, 

including Multiple linear regression(MLR) [8–11], Support 
vector machine (SVM) [12–16], Artificial neural network 
(ANN) [17, 18], Decision Trees (DTs) [19–22], Random 
Forests (RF) [21, 23], Adaptive boosting (AdaBoost) [13, 
20, 21] and Extreme gradient boosting (XGBoost) [24–26], 
have been applied to this task and have shown promising 
results in structure/bridge health monitoring, mechanical 
performance prediction, and predictive maintenance.

In the field of concrete research, extensive studies uti-
lizing machine learning techniques have been conducted, 
covering various types of concrete such as ordinary con-
crete[27–30], high-performance concrete [29, 31–34], and 
recycled aggregate concrete [35–37]. Kakasor Ismael et al. 
[38] utilized machine learning techniques and multiscale 
models to assess the influence of silicon dioxide (SiO2) and 
calcium oxide (CaO) in fly ash on the compressive strength 
of fresh concrete. Additionally, Yasin et al. [39] employed 
artificial neural networks (ANNs) to predict the compressive 
strength of lightweight concrete containing different types 
of Tuff aggregates, optimizing the optimal content of Tuff 
aggregates in lightweight concrete. Furthermore, Ahmed 
et  al. [40] introduced innovative modeling techniques, 
including Multi-Expression Programming (MEP), artificial 
neural networks (ANNs), and Full Quadratic (FQ) models, 
to predict the compressive strength of geopolymer concrete, 
emphasizing the significant impact of curing temperature on 
the compressive strength of geopolymer concrete. Moreover, 
Ojeda et al. [41] developed a Convolutional Neural Network 
(CNN) model trained on a database containing 2650 images 
of failed concrete cylinders to predict failure types during 
compression testing of concrete cylinders. While recent 
studies have focused on improving the accuracy and inter-
pretability of models for predicting the compressive strength 
of ordinary concrete[42]. It is noteworthy that most research 
primarily discusses the use of admixture mixing proportions 
as features for predicting compressive strength, neglecting 
the influence of curing conditions such as curing temperature 
and relative humidity, which warrants further investigation.

To address these issues, this study collected a dataset com-
prising 432 sets of data related to the compressive strength of 
cement mortars under varying curing conditions. In this data-
set, three factors—curing temperature, relative humidity, and 
curing time—serve as input variables, while the compressive 
strength functions as the output. This study conducted a com-
parative analysis of the prediction accuracy of four machine 
learning models against the empirical mathematical models 
commonly used in model codes. An investigation into the 
role of each curing condition on compressive strength was 
carried out through a 'feature importance' analysis. Leverag-
ing the XGBoost model, the relative importance of different 
individual features was analyzed to understand the interplay 
of multiple environmental factors on compressive strength. 
This study's findings enhance comprehension of the influence 
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of various curing conditions on cement mortars' compressive 
strength development.

Models for the prediction of compressive 
strength

Empirical mathematical models

Three empirical mathematical models were also used in this 
work to estimate the compressive strength of concrete under 
different curing settings as a verification of the accuracy of the 
ML method. Two of them are the strength prediction model 
from the ACI model and the fib model code. Both approaches 
are based on the maturity method, which involves first calcu-
lating the equivalent time and then estimating the compressive 
strength of concrete using the strength-time development equa-
tions, shown as the following equations.

Maturity function

Strength-time equation of ACI model

Strength-time equation of fib model

where, te is the equivalent time; T is the temperature; Δt is 
the time interval that the temperature T prevails; fcm(t) is 
the computed strength in MPa at the age t; fcm28 is the mean 
compressive strength of concrete at the age of 28 days; a, b 
and s are coefficients depended on both the type of cement 
and the curing condition of concrete. As the cement applied 
in this study is CEM I class cement, the parameter values 
are taken as a = 4.0, b = 0.85, s = 0.38.

The following equations illustrate another empirical math-
ematical model that we applied to the strength-time equation 
of the fib model code for strength prediction. This model is 
based on our previously proposed relative humidity modified 
maturity method.

RH-modified model
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where, teT ,RH is the equivalent time effected with temperature 
T and relative humidity RH; �RH is the relative humidity 
factor; k is a coefficient depended on curing age and speci-
men size.

Machine learning models

The best accurate model for predicting compressive strength 
in diverse curing conditions is created using four widely 
used machine learning techniques: linear regression, deci-
sion trees, random forests, and XGBoost. The decision tree 
is a common tree-based single model, while random forests 
and XGBoost are two frequently employed ensemble mod-
els. Linear regression serves as the baseline for all of these 
models. These models provide in-depth machine learning 
analysis of concrete compressive strength predictions in this 
study.

Linear regression

The goal of linear regression is to minimize the residual 
sum of squares (RSS) between the dataset's responses and 
the approximations provided by the linear model. Linear 
regression is still a helpful and popular machine learning 
technique, despite the fact that it may appear rather straight-
forward in comparison to other of the more advanced statis-
tical learning techniques. Given a sample xi with p features, 
the predicted value ŷ is determined by:

where, w =
(
w1,… ,wp

)
 is the regression coefficients; 

T denotes the transpose, so that xTw is the inner product 
between vectors xi and w . In the least-squares setting, the 
optimum coefficients are defined as such that minimizes the 
sum of mean squared loss:

To get the optimized value of the regression coefficients, 
this process starts with random values for w , then repeatedly 
updates the values.

Decision trees

Decision trees (DTs) are a nonparametric supervised learn-
ing technique that can be applied to classification and regres-
sion issues. It entails breaking up the predictor space into a 
variety of simple sections. The average of the training obser-
vations is often employed to forecast a particular observa-
tion. It is a tree-based approach that is straightforward and 
helpful to explain. However, in terms of prediction accuracy, 
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DTs usually cannot compete with integrated supervised 
learning methods such as XGBoost.

The predictor space of X is divided into J distinct and 
non-overlapping high-dimensional subspaces, R1,R2,… ,RJ . 
Finding R1,R2,… ,RJ that minimizes the RSS is the objec-
tive, given by

where, ŷRj
 is the mean response for the training observations 

within the j-th subspace. To reduce on computing consump-
tion, a greedy top-down method known as recursive binary 
splitting is employed.

To execute recursive binary splitting, predictor xi,j is ini-
tially selected as the cut point, which enables the predictor 
space to be divided into the regions xi|x(i, j) < s and {
xi
|||xi,j < s

}
 , thereby minimizing the RSS. For any j and s, 

the pair of half-planes is defined as

and the value of j and s that minimize the equation

where ŷR1 , ŷR2 are the mean responses of the training obser-
vations in R1 (j, s) and R2 (j, s), respectively. To further 
divide the data and reduce the RSS within each resulting 
region, the procedure is then repeated in search of the opti-
mum predictor and cut point.

Random forest

Random forest (RF) is an ensemble model that uses bagging 
as the ensemble method and DTs as the individual model. 
A seemingly insignificant change that decorrelates the trees 
makes it superior than packaged trees. The prediction of an 
ensemble model, typically bagging, is given by

where f (⋅) is final strong learner; fk(⋅) is weak learner gener-
ated by the DTs model; K is the number of weak learners.

XGBoost

XGBoost is an upgraded version of the ensemble learning 
technique Gradient Enhanced Decision Tree (GBDT). It pro-
vides an improvement with regard to loss function and loss 
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optimization method. With the assistance of XGBoost, many 
data science issues may be quickly and accurately solved. To 
learn the set of weak learners employed in the ensemble model 
as shown in Eq. (12), XGBoost minimizes the following regu-
larized loss function:

Here the first term l in the right-hand side measures the dif-
ference between the prediction ŷi and the target yi. The second 
term Ω penalizes the complexity of the model, where N is tree 
node number; � and λ are penalty coefficients; βk is leaf scores. 
The first term typically uses a squared loss function, while the 
second term is based on the tree node number N and the leaf's 
L2 norm. Newton Raphson is adopted for the optimization 
together with a second-order Taylor's approximation.

Experimental dataset and performance 
measures

Experimental procedure

The applied dataset includes a total of 432 samples of com-
pressive strength results from experimental test. Temperature, 
relative humidity, specimen size and curing age are the main 
features to be investigated in this study. The samples were 
used with cement mortar and cement paste with a water-to-
cement ratio of 0.5, the detail of the mix proportion is shown 
in Table 1. Cylindrical specimens of two sizes, 5 cm diameter 
with 10 cm height and 10 cm diameter with 20 cm height, 
were used for the compressive strength test. Specimens of each 
size were cured within the curing chamber at three different 
temperatures with 10℃, 18℃, and 40℃ and four different rela-
tive humidity levels with 70%, 80%, 90%, and 100%. Water 
bath curing is conducted as 100% relative humidity at each 
temperature during the experiment. After casting, all speci-
mens were immediately relocated to their appropriate cur-
ing chambers to suffer the curing temperature and RH on the 
specimens. According to the ASTM standard test method for 
compressive strength of cylindrical concrete specimens [43], 
the mean compressive strength values of each type of mortar 
were determined based on measurements from three corre-
sponding specimens. To account for the influence of curing 
temperature and relative humidity (RH) on the specimens at 
an early age, all specimens were promptly transferred to desig-
nated curing chambers immediately after casting. Demolding 
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Table 1   Mixing proportion of test specimen, unit: kg/m3

Type Water Cement Sand

Mortar 282.3 564.6 1552.7
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of the specimens occurred between 12 and 15 h post-casting, 
depending on the extent of hardening observed in the speci-
mens. Subsequently, all specimens were subjected to a pre-
determined temperature and RH environment for the speci-
fied curing duration. During compressive strength testing, a 
uniform loading rate of 0.006 mm/sec was applied to ensure 
consistency across all tests conducted in the study.

Performance measures

In this study, the performance of the prediction algorithms 
used was examined by taking regular performance meas-
urements using three metrics: correlation of determination 
(R2), root-mean-squared error (RMSE), and mean absolute 
error (MAE). R2 denotes the extent of the linear correlation 
between the predicted and tested values. The value of R2 
ranges from zero to one. As R2 is closer to one, the better the 
performance exhibited by the prediction model. The RMSE 
is defined as the square root of the mean square error aver-
age, which represents the deviation between predicted and 
actual values. The MAE is a statistical measure of prediction 
accuracy that reveals the error between predicted and actual 
data. The lower the RMSE and MAE values, the better the 
prediction algorithm. The three measures are listed as:

Correlation of determination (R2)

Root-mean-squared error (RMSE)

Mean absolute error (MAE)

where, Ti and Pi is the experimental compressive strength 
and predicted compressive strength, respectively; T  is the 
mean experimental compressive strength; j is the number 
of samples.

Cross‑validation of ML models

To construct the prediction model, the experimental data 
was divided into two parts: the training set and the testing 
set. The training set is used to create the learners, while 
the testing set is used to demonstrate the accuracy of the 
model. In this study, the percentages of the training and test 
sets in the whole experimental dataset are 80% and 20%, 
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respectively. A tenfold cross-validation procedure was uti-
lized to further illustrate the performance of ML models. 
This technique separates the experimental data samples into 
10 equal subsets, then establishes a good learner with 9 sub-
sets and verifies the model with 1 subset. After repeating this 
operation 10 times consecutively, the obtained accuracy of 
the 10 times is averaged as the accuracy of the algorithm. 
The flowchart of the research procedure is shown in Fig. 1. 
The sample distribution of the adopted dataset is shown in 
Fig. 2.

Result and discussion

Performance measures of utilized machine learning 
methods and empirical mathematical models

The comparative performance of applied Machine Learning 
(ML) models and empirical mathematical models is illus-
trated in Fig. 3. Evidently, the XGBoost model outperforms 
others, achieving a remarkable prediction performance, sig-
nified by R2 = 0.9293, RMSE = 2.8671, and MAE = 1.9348. 
The Random Forest model, while not far behind, dis-
plays marginally inferior performance with R2 = 0.9264, 
RMSE = 2.9255, and MAE = 2.0314. Both employ an 
integrated learning algorithm, amalgamating several weak 
learners engendered by single learning algorithms to fur-
nish more precise and robust predictions. The Decision Tree 
model also shows commendable prediction capabilities with 
R2 = 0.9197, RMSE = 3.0565, and MAE = 2.1403. Despite 
Decision Tree models typically lagging behind integrated 
learning algorithm models, in this study it showed com-
parable performance to the Random Forest model and the 
XGBoost model. This could be attributed to the relatively 
small dataset with limited features and samples, which leads 
to enhanced accuracy and generalizability of the tree models 
as well as integrated models. It also highlights the suitabil-
ity of machine learning models for this problem, surpassing 
the overall accuracy of traditional methods. Furthermore, 
as the number of samples and features in the dataset grows, 
the generalization potential of the integrated model, with 
fitting hyperparameter settings, will further manifest, and 
even higher accuracy be anticipated. Among the suite of 
ML models utilized, the Linear Regression model delivered 
the least desirable performance. With respect to empiri-
cal mathematical models, both the ACI and the fib mod-
els notably underperformed in terms of model efficiency. 
The RH-modified model, a derivation of the fib model, 
significantly enhanced the model's predictive accuracy by 
integrating the RH influence factor. Consequently, its R2 
increased dramatically from 0.2134 to 0.8386. Despite this 
improvement, its predictive precision still falls short when 
measured against the prowess of integrated machine learning 
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algorithms. Machine learning algorithms, more specifically 
the XGBoost and Random Forest models, demonstrate con-
siderable supremacy in predicting the compressive strength 
of concrete.

The predictive outcomes for the compressive strength 
from the four utilized machine learning (ML) procedures 
are portrayed in Fig. 4a. The x-axis represents the quantity 
of samples tested, while the y-axis denotes the compressive 
strength. The experimental compressive strength is illus-
trated by the black curve in the figure. The black dashed 
line in the figure represents the experimental compressive 
strength, while the colored dashed lines represent the pre-
dicted values of each model. The closer the colored dashed 
lines are to the black dashed line, the more accurate the 
model predictions are. In the context of Fig. 3, the accuracy 
of the model's predictions can be assessed by calculating 
the MAE between the predicted compressive strength values 
and the experimental curve. A lower MAE indicates greater 
accuracy, implying that the predicted results are closer to the 
true values represented by the black curve. Therefore, as the 
predicted outcomes from decision trees, random forest, and 
XGBoost exhibit smaller deviations from the experimental 
curve compared to linear regression, they are considered to 
have higher accuracy in predicting compressive strength.

Figure 4b presents the results of compressive strength 
evaluation from existing empirical mathematical models. 
A notable variance is seen between the predicted value of 
the ACI and fib models and actual experimental values, 
imputing a low evaluation accuracy. The inaccuracy in 

these two compressive strength prediction models stems 
from their failure to accurately determine strength growth 
under variant temperature and humidity conditions, as they 
weigh the effects of temperature on strength development 
and neglect the role of relative humidity. Additionally, 
the ACI and fib models show strikingly close predicted 
values. Both models, while employing different strength-
time functions, rely on the same maturity model, rendering 
their development curves analogous at an early age (up to 
28 days).

Despite the RH-modified model producing relatively sat-
isfying evaluation results (owing to the model considering 
both temperature effects and introducing the effect factor 
of relative humidity into the maturity model), it still lacks 
the precision of ML methods such as random forest and 
XGBoost. The tight coupling of parameter fluctuations with 
specimen size and curing ages was observed while problem-
solving related parameters. This model, although advanc-
ing over the limitations of the primary maturity method and 
amplifying the accuracy of compressive strength prediction, 
doesn't match the accuracy offered by ML methods. The 
root cause resides in the intrinsic characteristics of predic-
tion methodologies—empirical mathematical models adhere 
to individual learning algorithms, whereas ML procedures 
like random forest and XGBoost follow integrated learning 
algorithms. As integrated learning algorithms incorporate 
numerous weak learners generated by multiple individual 
learning algorithms, better-performing weak learners receive 
higher weights, whereas poor-performing ones get lower 

Fig. 1   Flowchart of the prediction of compressive strength
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weights. Hence, integrated learning algorithms are capable 
of delivering more accurate predictions.

Figure 5 depicts the scatter plots of the prediction results 
of each ML models and the empirical numerical models ver-
sus the experimental results. The sparsity and linearity of the 
scatter points offer a better description of the superiority of 
each prediction approach. Noticeably, the predictions of the 
ML methods employed in Fig. 5b, c and d are more linear 
with respect to the experimental values and show better per-
formance in predicting compressive strength. It is worth not-
ing that the empirical mathematical models in Fig. 5e and f 
result in multiple cases with the same prediction value. This 
is attributed to the fact that these two models do not have 
a mechanism for computing humidity. Therefore, different 

relative humidity conditions at each temperature are consid-
ered as in the case of RH = 100 for the calculation. However, 
during the concrete curing process, it is difficult to maintain 
curing humidity at 100%, whereby the conventional empiri-
cal numerical model overestimates the compressive strength 
of concrete, which is unfavorable to guiding practical work. 
The RH-modified model in Fig. 5 improves the prediction 
accuracy of the empirical mathematical model to a large 
extent by introducing a humidity factor. Furthermore, it can 
be found in Fig. 5g that this model shows a higher prediction 
accuracy in the range of strength ≤ 10 MPa.

Undoubtedly, the evidence above has established the 
proficiency of machine learning methods in accurately pre-
dicting the compressive strength of concrete under various 

Fig. 2   Statistical distributions of input variables
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curing conditions. Traditional numerical techniques solely 
factor in temperature while neglecting the influence of cur-
ing humidity, rendering the strength prediction outcomes 
inaccurate. Conversely, the numerically empirical model 
with RH adjustment necessitates complicated regression 
calculations for parameter determination, leading to inef-
ficiency in computation. When juxtaposed with either 
traditional empirical numerical models or the modified 

variant, machine learning procedures have evidently exhib-
ited superiority in prediction precision, efficiency, and 
user-friendliness.

Analysis of the importance of features

Figure  6 illustrates the feature importance rank-
ing of the XGBoost model, trained with typical 

Fig. 3   Performance measures of 
utilized prediction models
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hyperparameter settings: gamma = 0.1, max_depth = 4, min_
child_weight = 4. As depicted in Fig. 6, curing time emerges 
as the most influential factor affecting compressive strength, 
with the relative contribution of curing humidity to strength 
nearly equivalent to that of temperature, underscoring the 
critical role of relative humidity in strength enhancement. 
This underscores the importance of incorporating relative 
humidity when determining the compressive strength of 
cement. Reflecting on the impact of curing time, tempera-
ture, and relative humidity on the process of cement hydra-
tion and the progression of strength offers valuable under-
standing about the dynamics that dictate the compressive 
strength of concrete. Several research studies have reiterated 
the indispensable role of these factors. They assert that the 
curing temperature and relative humidity have a profound 
and direct effect not only on the process of cement hydra-
tion but also on the evolution of the concrete's strength[44]. 
Suitable curing conditions for concrete are critical for its 
strength development, durability, and overall performance. 
According to the American Concrete Institute (ACI), proper 
curing maintains the desired moisture and temperature 

conditions both at depth and near the surface for extended 
periods of time[45]. Therefore, to develop the most accurate 
predictive models for the compressive strength of concrete, 
one must take into account the interplay between these cru-
cial factors—curing time, temperature, and relative humid-
ity. This comprehensive understanding aids in our quest to 
engineer concrete variants with improved performance and 
functionality.

Evaluation accuracy at various features

The identification of each environmental parameter's con-
tribution to compressive strength substantially enriches our 
understanding of the process of strength generation. In this 
study, an importance analysis was executed on the dataset 
with each individual feature applied independently. The 
specific procedure was carried out in the following steps. 
First, the datasets were partitioned to obtain numerous sub-
datasets under distinct curing conditions. Next, XGBoost-
based machine learning prediction was implemented on each 
sub-dataset separately to discern the importance of features 

Fig. 4   Experimental and predicted data of compressive strength by different methods
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under singular conditions. Ultimately, the results of the fea-
ture importance under each corresponding condition were 
collated and subjected to cross-analysis. Utilizing the meth-
odology of the control variable, we were able to ascertain the 
relative importance of the residual features in compressive 
strength under a selected feature. Figure 7 graphically rep-
resents the relative influence of each feature on compressive 
strength for a chosen feature. This methodical and systematic 
approach allows for a more intimate understanding of the 
intricate interplay between environmental parameters and 
their impact on the compressive strength of concrete.

The analysis presented in Fig. 7a and b showcases intrigu-
ing findings regarding the influence of specific parameters 

on the compressive strength of concrete specimens. Docu-
mented in Fig. 7a, is the observation of how the relative 
impact of curing temperature and relative humidity on com-
pressive strength diminishes as the size of the specimen 
increases. In contrast, the impact of curing time on com-
pressive strength noticeably intensifies, suggesting larger 
specimens are less susceptible to environmental variables 
like temperature and relative humidity. Thus, larger speci-
mens depict improved cement hydration conditions com-
pared to their smaller counterparts. In Fig. 7b, the relative 
influence of specimen size, relative humidity, and curing 
time on compressive strength across multiple curing tem-
perature conditions is depicted. Across the range of curing 

Fig. 5   Scatter plots of predictive versus experimental compressive strength

Fig. 6   Relative importance of 
XGBoost model
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temperatures, the effects on compressive strength from spec-
imen size, relative humidity, and curing time are observed 
to be comparatively balanced. Notwithstanding, the data 
reveals that curing time has the most significant impact on 
compressive strength, followed by curing temperature, while 
specimen size carries the least influence. Interestingly, it 
emerges that the influence of variables other than tempera-
ture on strength tends to remain constant across varying tem-
peratures. Insights from these observations carry profound 
implications for concrete material composition and curing 
techniques.

In Fig. 7c, an interesting pattern presents itself—as the 
relative humidity escalates, the effect of the sample size on 

compressive strength dwindles, even reaching zero when the 
relative humidity attains a full 100%. This inverse relation-
ship can be attributed to the similar rates of water loss from 
the surfaces of all specimen sizes under a fixed, unsaturated 
relative humidity. Consequently, larger specimens reportedly 
hold more average interior moisture than their smaller coun-
terparts [5]. Thus, showcasing a superior internal environ-
ment for cement particles to undergo ample hydration reac-
tions, larger specimens affirm their increased significance. 
Figure 7d showcases the changing dynamics of effects by 
relative humidity and temperature on compressive strength 
with respect to curing time. The influence of relative humid-
ity on compressive strength gains steady traction as curing 
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time elapses, while the impact of temperature wanes in com-
parison over the same duration.

This pattern implies that sufficient moisture within the 
specimens expedites cement hydration at the initial curing 
phase, causing temperature to primarily dictate compressive 
strength formation. However, with the rise in curing age, the 
internal moisture in specimens gradually succumbs to the 
influence of environmental relative humidity, thereby affect-
ing the cement hydration process. By the 28th day of curing, 
the curing temperature and relative humidity demonstrate 
nearly matching influences on compressive strength. Nev-
ertheless, the more pronounced average internal humidity in 
large-sized specimens under unsaturated relative humidity 
conditions, as compared to their smaller counterparts, leads 
to greater impacts on compressive strength over time.

Parametric analysis

The application of a machine learning approach effectively 
enables the generation of prediction results within a specific 
range of variables. It not only renders it possible to accu-
rately derive predictive findings across a defined array of 
variables, but also to dissect the impact that shifting curing 
variables have on the compressive strength of cement mortar 
in granular detail. Presented in Fig. 8, is the intricate interre-
lationship drawn from a pairwise analysis of crucial param-
eters: curing time, temperature, and relative humidity, on 
the outcome variable—compressive strength. The dynamics 
demonstrated in this figure underscore the interplay between 
these parameters in regulating the strength characteristics of 
the cured cement mortar. When examining each combination 
of parameters, the third one is held constant and utilized as 
a reference point. For instance, the influence of time rela-
tive humidity on compressive strength, depicted in Fig. 8a, 
was derived while maintaining the temperature at a steady 
18 °C. Here, the selected reference benchmarks for relative 
humidity, temperature, and curing time are assigned 100% 
RH, 18 °C, and 28 days, respectively.

An intriguing observation manifests in the distinct effects 
of varied curing parameters on the compressive strength. 
This translates into a variety of three-dimensional curve 
forms, represented by the diverse surface patterns revealed 
in Fig. 8. As shown in Fig. 8a, in the short term (1-day cur-
ing period), with the increase of relative humidity (RH), 
the compressive strength gradually increases, but the mag-
nitude of increase is limited. This indicates that in the ini-
tial stage, the influence of relative humidity on compres-
sive strength may be relatively small, and the increase in 
strength is limited. During the long-term curing period (28-
day curing period), with the increase of curing humidity, the 
compressive strength value increases sharply. This suggests 
that as the curing time increases, the influence of curing 
humidity on strength becomes more significant, and the 

magnitude of increase is also greater. This may imply that 
in long-term curing, curing humidity plays a more impor-
tant role in the development of concrete strength. Similar 
findings are observed regarding the influence of tempera-
ture on strength (Fig. 8b). As shown in Fig. 8c, under low 
temperature (10 °C) conditions, the compressive strength of 
concrete rapidly increases as the RH rises from 70 to 80%, 
and remains stable when approaching 100% RH. This phe-
nomenon is not observed under high temperature conditions 
(40 °C). This indicates that under high temperatures, the 
influence of relative humidity on the compressive strength 
of concrete is lower, or that temperature dominates the vari-
ation in concrete compressive strength. Additionally, the 
increase in temperature has a positive effect on the com-
pressive strength of concrete, and this effect is consistent 
across different relative humidity conditions. These results 
suggest that there is an interaction between temperature and 
relative humidity, both of which collectively influence the 
compressive strength of concrete. However, their effects may 
exhibit different trends and degrees under different tempera-
ture conditions. The computational strength of the employed 
machine learning method underpins its capability to rapidly 
and accurately yield predicted results for each unique com-
bination of parameters. This serves to illuminate the inter-
twined relationship between the parameters, enhancing our 
comprehension of the mechanisms driving the predictive 
results significantly.

Conclusion

This study aimed to predict concrete strength using both 
empirical mathematical models and machine learning 
techniques across various curing conditions. The origi-
nal maturity model and an enhanced mathematical model 
were employed alongside machine learning algorithms 
such as linear regression, decision tree, random forest, and 
XGBoost. A dataset comprising 432 experimental compres-
sive strength sets under diverse curing temperatures and 
humidity levels was utilized. The results emphasized the 
importance of considering curing parameters, particularly 
humidity, in concrete strength prediction models. Through 
evaluating predictive performance, feature importance, and 
parametric analysis, several significant conclusions were 
derived.

•	 The XGBoost ML model demonstrated remarkable pre-
dictive accuracy with an R2 value of 0.9293, outperform-
ing traditional empirical models. Its RMSE of 2.8671 
and MAE of 1.9348 underscore its efficacy in predicting 
concrete compressive strength.

•	 Curing time emerged as the most critical factor influ-
encing compressive strength, while curing humidity also 
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played a significant role. The relative contribution of cur-
ing humidity to strength nearly matched that of tempera-
ture, indicating its importance in strength augmentation.

•	 Traditional empirical models like the ACI and fib models 
showed lower prediction accuracy, with an R2 of only 
0.2134. These models often failed to account for curing 
humidity effects, resulting in less accurate strength pre-
dictions compared to ML models.

•	 The parametric analysis unveils complex relationships 
between curing parameters and compressive strength. 
Notably, it shows that while curing humidity gradually 
boosts strength over time, temperature fluctuations have 
varying effects. Concrete strength increases rapidly 
under low temperatures as humidity rises, but remains 
stable at higher temperatures.

Fig. 8   Compressive strength at different curing parameters
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Despite the effectiveness of machine learning methods 
in predicting concrete compressive strength under diverse 
curing conditions, challenges remain regarding model inter-
pretability and real-world applicability. The inherent com-
plexity and opaque nature of many machine learning models 
hinder the understanding of underlying prediction mecha-
nisms. This lack of interpretability may impede engineers' 
ability to extract actionable insights, particularly in critical 
construction scenarios. Practical implementation of machine 
learning models on construction sites may be constrained by 
logistical and operational factors, such as the availability of 
resources and technical expertise.

In future research on compressive strength forecast-
ing, several promising directions are worth noting. Firstly, 
exploring and experimenting with more advanced machine 
learning models might yield better results. For instance, 
ensemble methods could combine the predictions of several 
smaller models to enhance performance and predictability. 
Secondly, using larger and more diverse datasets can ensure 
that the model generalizes the compressive strength predic-
tion better. Moreover, data augmentation techniques can be 
used to artificially expand the available data. Including more 
mix variables such as proportions of various ingredients, age 
of the concrete, type of cement used, and curing conditions 
can enhance prediction capabilities.
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