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Abstract
The primary factor governing the accuracy of the vibration test is the sensor placement. Positioning of sensors for conduct-
ing the modal analysis test must be done with utmost care. Conducting a trial test on massive structures like dams, bridges, 
high-rise buildings, etc. is generally challenging and expensive. With the availability of advanced finite element software 
packages, it is possible to simulate models and obtain satisfactory and reliable results. Therefore, a pretest planning of sensor 
positions can be done, based on results obtained from finite element analysis. There are only limited number of earlier stud-
ies in the field of optimization of sensors for Structural Health Monitoring of civil engineering structures. In the practice of 
Vibration-based Structural Health Monitoring of structures, in order to detect both bending and twisting modes, the common 
practice is to fix the sensors on both sides of the structure and at equal spacing. When the sensors are placed in this fashion, 
there might be sharing of information between adjacent sensors, thus unnecessarily escalating the instrumentation cost. Sen-
sor optimization helps in reducing the cost of instrumentation and maximizing the individuality in the information obtained 
from the sensors. The current study utilizes multiple criteria-based sensor optimization for Structural Health Monitoring of 
a bridge. The optimization strategy utilizes two criteria: (i) Triaxial Effective Independence and Threshold of Redundancy, 
in order to ensure the individuality in the information gathered from the sensors. Based on the above criteria, it was found 
that for a redundancy value of 0.60, 27 accelerometers were required for observing 12 modes. As the optimization strategy 
involves a least square estimation, it was observed that when the sensors were increased beyond 25, the condition number 
of Fisher Information Matrix (FIM) was stabilized to 1.5 and the mean of trace of estimation error variance minimized to a 
value of 0.17. The modal information extracted from modal test conducted based on the optimized layout of sensors was in 
good agreement with the analytically obtained results. A maximum variation of 8.55% for modal frequency and 10.13% for 
damping ratio was observed. In addition to these two criteria, the study also uses an information entropy-based criterion to 
fine tune the number and position of sensors in the final sensor set. The proposed method is also compared with two other 
state-of-the-art optimization methods—Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). Information 
Entropy Index (IEI) was used to compare the layout obtained from proposed method and state-of-the-art method. The IEI 
values for the layout based on the proposed method were 22–40% lower than those obtained using GA and PSO.

Keywords Finite element analysis · Triaxial Effective Independence · Redundancy Information · Fisher Information 
Matrix · Genetic Algorithm · Particle Swarm Optimization · Information Entropy Index · Condition Number

Introduction

The position of sensors in a vibration test must be decided 
with utmost care, as it has a profound effect on the quality 
of the modal test. Usually, for structures like aircraft, 

spacecraft, vehicles, etc., the test engineer is knowledgeable 
about the structural behaviour. Hence, the sensor positions 
are decided based on engineering judgement and insights 
obtained from earlier research. However, in the case of mas-
sive structures like dams, bridges, etc., conducting a trial test 
might turn out to be a tedious job and rather expensive. 
However, with the availability of present-day robust finite 
element packages, it is possible to conduct simulations under 
near identical conditions as that of the original structure, 
making it easy to obtain a complete picture of the probable 
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structural behaviour. As adopting a dense network of sensors 
would turn out to be expensive especially with limited 
budget, the optimization of sensors is an ongoing research 
topic. There has been very few research investigations in the 
area of sensor optimization for modal test in the field of civil 
engineering [1]. Kammer (2005) modified the key findings 
from the initial attempt in sensor optimization by Shah and 
Udwadia (1978) and introduced the novel idea of Effective 
Independence (EI). EI is a measure of information carried 
by each sensor regarding the observability of modes [2–6]. 
Kammer’s approach adopted expansion of the initial sensor 
set in an iterative fashion, as it reduced the computation 
effort considerably. The attractive feature about this method 
was that it allowed the analysts to include the positions in 
the sensor set where they absolutely want to measure. Thus, 
the method could be started with even only one sensor in the 
initial set and could later be expanded to the desired number 
of sensors. The target of sensor optimization is to maximize 
the mode observability by increasing the quantity of infor-
mation obtained from each sensor and also to avoid the 
potential chances of choosing low vibration energy areas. 
One of the previous attempt to exclude the selection of areas 
with low vibration energy was utilization of mass matrix for 
weighing the candidate Degree Of Freedom (D.O.F) [7]. 
This method helped in the inclusion of points with large 
vibration energy in the final sensor set, thereby also increas-
ing the signal-to-noise ratio. One of the variants of weighing 
EI method is Effective Independence Driving-Point Residue 
method (EFI-DPR), where the EIs are weighted based on the 
residues of the driving point. The residues were found to be 
proportional to the peak in the frequency response function 
at the driving point [8, 9]. The conventional method of maxi-
mizing the linear independence of mode shape vectors is to 
minimize the off-diagonal elements present in the Modal 
Assurance Criterion matrix (Min MAC). Li et al. (2008) 
adopted a computational algorithm which was proven to be 
simple and faster compared to the usual approach of maxi-
mizing the Fisher Information Matrix (FIM) matrix. Fisher 
Information (FI) quantifies how informative a vector of 
observation is about a parameter. Fisher Information Matrix 
(FIM) consists of a covariance matrix of the score vector. 
Score vector is defined as the vector of first partial derivative 
of the log-likelihood function with respect to its parameter. 
The algorithm was dependent on the relation between modal 
kinetic energy and effective independence, as the conven-
tional method of EI is dependent on determining either 
Eigen Value Decomposition (EVD) or inverse of FIM, which 
is computationally demanding. The QR decomposition 
method is based on determining the norms of the orthonor-
mal modes of modal matrix. The QR downdating steps uti-
lized householder transformation and Gram-Schmidt pro-
cess. The QR method was applied to a numerical example 
and compared to conventional methods, in terms of floating 

point operations required to solve the problem. It was found 
that the flops required for QR method, Projection Matrix 
Approach and EVD of FIM were 2,22,600, 7,02,000 and 
4,39,200, respectively. Hence, the QR method was found to 
outperform the other two approaches [10]. Vincenzi and 
Simonini (2017) studied the influence of errors in modelling 
and uncertainties in parameters in sensor placement strate-
gies, especially for modal test and Structural Health Moni-
toring (SHM). The sensor placement used an exponential 
correlation function and covariance matrix for determining 
the Information Entropy (I.E). The determinant of FIM was 
based on Cholesky factorization and Singular Value Decom-
position (SVD). It was found that the exponential correlation 
function depends on modal vector and distance between the 
sensors. A case study was conducted for a steel footbridge 
in Corregio (Italy). The correlation function and stiffness of 
the connecting elements of the truss members influenced the 
accuracy of the modal identification [11]. Jaya et al. (2020) 
determined the optimal location of sensors for SHM applica-
tions based on the minimization of the expected value of the 
distance between the expanded mode shape and real mode 
shape. The criterion was applied to two case studies: (i) sim-
ple cantilever beam and (ii) industrial milling tower. It was 
observed that maximizing the independence of columns of 
FIM does not guarantee that the expanded mode shapes 
would agree with the real mode shapes, especially in the 
existence of modelling errors and measurement noise. In this 
method, an exhaustive search was done among all possible 
layouts which would minimize the distance between the two 
mode shapes. The sensor set based on distance approach 
reduced the square of normal distance up to 24% for canti-
lever and 40% for milling tower compared to the conven-
tional algorithms (Genetic Algorithm and Sequential Sensor 
Placement). The efficacy of the proposed method was also 
demonstrated with Monte Carlo Simulation [12]. Zhang and 
Liu (2016) applied Kalman Filter-based approach for opti-
mal placement of multiple type of sensors such as strain 
gauges, accelerometers, displacement transducers. The OSP 
aimed to reconstruct the response of structural elements 
which are not equipped with sensors. The objective function 
was dependent on minimizing the variance of unbiased esti-
mate of the state of a structure. The Kalman Filter-based 
approach was applied on a case study structure of simply 
supported over hanging steel beam under different types of 
excitations. The response reconstructed was found to be 
superior to the conventional methods [13]. Kulla (2019) 
applied the Bayesian estimation for generating sensor data 
with less noise based on output only modal identification. 
Later virtual sensing was used to expand the algorithm to 
estimate full field response. Sensor noise influences the 
accuracy of physical measurement. The upper limit of vari-
ance of sensor noise has been determined, and its effect of 
accuracy of virtual sensing has been studied [14]. Instead of 
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adopting an iterative approach, earlier researchers have also 
been on the application of evolutionary methods for sensor 
placement optimization. The frequently used methods were 
multi-objective Genetic Algorithm and firefly algorithm. 
However, the EI-based methods were found to be more effi-
cient than the conventional methods. But the EI-based 
method had an inherent drawback of tendency of spatial 
clustering. This drawback was resolved by the key work by 
Stephan (2012). The algorithm utilized an additional criteria 
of redundancy of information to avoid sensor clustering. 
However, the algorithm was applied only to uniaxial sensors 
[15]. The EI-based method was modified by Kim et al. 
(2018) [16] which involved an additional part accounting for 
uncertainty in the model called stochastic effective inde-
pendence (SEFI). The information entropy-based sensor 
optimization proposed by Papadimitriou (2004) accounts for 
the uncertainty involved in the estimation of modal param-
eters. The amount of mutual information between neigh-
bouring sensors was avoided by considering the effect of 
error in the modelling and measurement noise in the sensor 
placement strategy. The study utilized bayesian statistical 
inference for accounting the uncertainty, and also an asymp-
totic estimate was used for quantifying the uncertainty 
involved in the models with large data [17]. Tran-Ngoc et al. 
(2018) used Genetic Algorithm and Particle Swam Optimi-
zation for finite element model updating of NamO bridge in 
Vietnam. The uncertainty related to the connection of truss 
members was mitigated by considering three support condi-
tions, namely (i) pinned, (ii) rigid, (iii) semirigid. For each 
condition, the natural frequencies were compared between 
numerical and experimental modal analyses. It was inferred 
that semirigid support condition gave maximum agreement 
between the numerical and experimentally obtained natural 
frequencies. For determining modal frequencies experimen-
tally, an ambient vibration test was conducted. The objective 
function for model updating was based on mode shape and 
natural frequencies. PSO and GA were utilized for converg-
ing the objective function to minimum. It was also inferred 
that PSO outperforms GA in terms of number of iterations 
required for convergence to find the best solution [18]. Len-
ticchia et al. (2018) studied the feasibility of application of 
OSP for seismic vulnerability study of concrete vault struc-
tures. The structure chosen for the study was Turin Exhibi-
tion Centre, Nervi, Italy. The study compared the effect of 
degradation of non-structural elements on the placement of 
sensors. OSP was applied for two different conditions of the 
structure (i) undamaged, (ii) damaged: deterioration of infill 
walls. It was inferred that the presence of degradation in 
non-structural elements influenced the seismic behaviour of 
the vault structure and eventually the optimal sensor loca-
tions [19]. In the recent applications of Structural Health 

Monitoring in civil engineering structures, uniaxial sensors 
have been replaced by triaxial sensors. The triaxial sensors 
were found to reduce the instrumentation effort as they are 
more compact in size and also provide information about all 
the three axes unlike uniaxial sensors. Based on the research 
work conducted in the past, it was inferred that usual 
approach adopted to place the sensors for health monitoring 
of bridges is fixing the sensors on both sides of the bridge 
and at equal spacing. In order to ensure the identification of 
both horizontal and vertical bending modes, both horizontal 
and vertical components of accelerations are measured. But 
in this approach, there might be chances that two neighbour-
ing sensors might be sharing same information and that 
would be resulting wastage of the sensor considering their 
high cost. For a developing country like India, the primary 
agenda is to extend the serviceable life of the structures of 
strategic importance in order to ensure judicious utilization 
of the funds allocated for their operation and maintenance. 
Optimization of the sensors plays a key role in reducing the 
cost of implementation of SHM system. Moreover, in earlier 
studies sensor placement optimization strategies have been 
adopted in structures like Spacecraft, Aeroplane, Truss, and 
Lab Scale structures, as there has been very minimal appli-
cation of sensor optimization strategy for health monitoring 
applications in structures such as dams, bridges, etc. In this 
study, the opportunity for the feasibility of optimal sensor 
placement for successful implementation of a vibration-
based health monitoring system of a full-scale structure has 
been explored. Establishment of a Vibration-based Struc-
tural Health Monitoring system under plausibility of fund 
becomes challenging; hence, it was decided to ensure judi-
cious use of sensors through optimization. An effective sen-
sor placement strategy is proposed in the current study for 
the health monitoring of a bridge structure in Tiruchirappalli 
city of Tamil Nadu, India. The study utilizes a combination 
of Triaxial Effective Independence and Redundancy Infor-
mation criteria for forming the initial sensor set and fine 
tuning the final sensor set based on the measure of mutual 
information. The approach adopted is also compared with 
the conventional evolutionary algorithms. The triaxial accel-
erometers are fixed on the positions determined by the opti-
mization results and are found to contribute toward success-
ful completion of the vibration test. It has also been inferred 
that conventional algorithms lead to clustering of sensors, 
which eventually indicates the majority of sensors sharing 
mutual information and violating the judicious use of the 
sensors. The suboptimal methods based on Triaxial Effective 
Independence and redundancy of information ensure the 
sensors share as minimum mutual information as possible. 
Thus, the individuality in the information from each sensor 
is ensured.
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Theoretical background of Triaxial Effective 
Independence method

In order to extract modal information accurately, sensor place-
ment must be planned with utmost care, because the success 
of modal testing relies on the positioning of sensors. As men-
tioned in introduction, the sensors must be well distributed 
on the structure, i.e. there must be no clustering of sensors as 
clustering of sensors indicates considerable sharing of mutual 
information among them. The vibration analysis must ensure 
the judicious use of sensors and also ensure maximum infor-
mation is obtained from the modal test. The sensor placement 
strategy adopted in this study is iterative in nature. These itera-
tive strategies are called Sequential Sensor Placement methods 
(SSP). The SSP methods can be classified in to two types. (i) 
Forward Sequential Sensor Placement (FSSP), (ii) Backward 
Sequential Sensor Placement (BSSP). In FSSP, after the deci-
sion on candidate sensor positions, one sensor is added in turn 
to the initial sensor set and the objective function is evaluated. 
After adding each sensor to the initial set, the sensor posi-
tion which causes largest decrease in the objective function is 
removed from the candidate set and placed in the optimal set, 
whereas in BSSP, the candidate sensor set consists of thou-
sands of candidate location. In each iteration, a single loca-
tion is removed, and the cost function is evaluated. The sensor 
location which results in smallest increase in the cost function 
would be included in the optimal set. For finite element models 
with fine mesh, BSSP has been found to be computationally 
expensive compared to FSSP. Thus, FSSP is more preferable 
also in the condition where a constraint in the form of Redun-
dancy Information is used.

The sensor placement strategy consists of two stages.
Stage I: Forming the Initial Sensor Set:
In this study, FSSP was adopted. Based on the Triaxial 

Effective Independence (TEI), an initial sensor set with modal 
matrix Φm having linearly independent columns was formed. 
TEI is defined as a measure of decrease in the amount of infor-
mation in the initial set due to removal of a sensor position. 
Thus, the first stage started with computation of norm (spectral 
radius) of elementary information matrix Q3i for each position 
i and sorted in decreasing order. The position with the highest 
norm was removed from candidate set and placed in initial set. 
In addition to this position, the vibration analyst has the choice 
to add positions to the initial set, where they absolutely want 
to measure the vibration. Let, the initial information matrix be 
Q0 which is singular having rank u < n and eigen vectors rep-
resented by �0 . These vectors will be spanning in u-n dimen-
sional space. Thus, the orthogonal projector P is represented as

Let Qc be the information in the candidate set which is 
orthogonal to Q0 i.e the information contained in the updated 

(1)P = �0�
T
0

candidate sensor set Qc which can be obtained using the 
orthogonal projector P.

From Eq. (2), the position with highest contribution to Qc 
can be determined. Reference [2] explains the procedure for 
deriving TEI in terms of Qc . Let EfI3i represent the Triaxial 
Effective Independence value of each ith position.

where I3 = 3 × 3 identity matrix, Φ3i = modal matrix consist-
ing of three rows with each row representing the translation 
along each axis for ith sensor position, EfI3i values range 
between 0 and 1. The location with the highest TEI value 
is removed from the candidate set and placed in the initial 
sensor set. This step is repeated till the initial sensor set is 
full rank.

Stage II: Formation of the final sensor set.
To obtain the remaining positions, mean of trace of estima-

tion error variance is adopted as the objective function and 
considering Redundancy Information as constraint. Redun-
dancy Information measures the amount of information mutu-
ally shared between sensors at node i and node j and is com-
puted using the following equation:

Q3i = elementary FIM at the ith node

Q3j = elementary FIM at the jth node.
The Rij value of 1 indicates sensors share no mutual infor-

mation and a value of 0 indicating the sensors bring the same 
information. One position from the current candidate set is 
added to the final sensor set, and the mean of trace of the 
estimation error variance is computed based on Eq. [10]. The 
location which gives the least value of the objective function 
is selected. The computation of estimation error variance is 
based on estimation theory as follows:

In structural dynamics, the displacement of a structure 
under dynamic loading is expressed as:

where �(t) = Displacement response with Nsx1 dimension, 
where Ns = Number of sensors, �(t) = Modal Co-ordinates 
with n × 1 dimension, n = number of mode shape vectors 
selected, Φ = Modal matrix containing n selected mode 
shape Φk , with dimension of Nsxn , qk = Modal coordinates 

(2)Q⃛c = PQcP
T

(3)
⋯

EfI
3i

= 1 − ���
[
I3 −�3iQ⃛

†

c
�T

3i

]

(4)Rij =
Q3i − Q3j

Q3i + Q3j

=ΦT
3i
Φ3i

(5)X(t) =

N∑
k

�kqk(t) =

n∑
k

�kqk(t) = �q(t)
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corresponding to Φk , N = Total Degrees of freedom in the 
FE Model.

The vector �(t) can be divided in to xm(t) and xd(t) indi-
cating measured and unmeasured part of the response vec-
tor �(t).

Let y(t) denote the measured response and is given by:

whereΦm represents measured degrees of freedom, �(t) 
denotes the error during measurement which is inevitable 
and is of Gaussian White Noise (GWN) nature. Thus, it is 
important to minimize the residual �y(t),

where q̂(t) = estimate of modal co-ordinates.
Modal co-ordinate estimation is treated as a least square 

estimation problem. Thus, for the inverse to exist, the num-
ber of parameters (mode shapes) must be smaller than the 
number of observations (Number of sensors), thus paving 
the way for the first assumption.

Assumption 1: (i) �(t) = Gaussian, uncorrelated with 
zero mean.

(ii) Number of sensors is greater than the number of 
mode shapes.

Thus, homoscedasticity solution for modal co-ordinates 
is expressed as

Equation 8 is a condition of homoscedasticity as it 
assumes equal confidence in all the measurement points 
and in variance of the measurement noise; however, if 
there is more confidence in some points, then the condi-
tion of heteroscedasticity may be considered. Thus follows 
the second assumption.

Assumption 2: If there is more confidence in some 
points compared to other measurement points, then het-
eroscedasticity (weighted least square) of    q̂(t) must be 
considered.

W = weighing matrix (diagonal matrix)

�2
i
 = Measurement variance for each sensor.

where 
∑

q = 
(
ΦT

m
WΦm

)−1 , ∑q = Error covariance 
matrix.

(6)y(t) = xm(t) + �(t)

(7)�y(t) = y(t) −�mq̂(t)

(8)q̂(t) = (ΦT
m
Φm)

−1ΦT
m
y(t) = Φ†

m
y(t)

(9)q̂(t) = (ΦT
m
WΦm)

−1ΦT
m
Wy(t)

W =

⎡⎢⎢⎣

�2
i
⋯ 0

⋮ ⋱ ⋮

0 ⋯ �2
m

⎤⎥⎥⎦

From the unmeasured degrees of freedom, the variance 
of estimation error for displacement estimate is expressed 
as:

where Φd represents unmeasured degree of freedom. The 
measurement noise was considered as uncorrelated and 
equal at all location of sensor. Thus, the error covariance 
matrix takes the following expression:

where Q represents the Fisher Information Matrix. In Effec-
tive Independence, the objective is to maximize the FIM 
(trace or determinant). Thus, Q can also be represented in 
terms of contribution from each sensor as:

m = number of sensor degree of freedoms, i = ith row of Φ.
In the case of triaxial sensors, Eq. 12 becomes

mn = number of candidate sensor location, �2
0
 = 1 (assumed).

The objective for is to minimize mean of trace of esti-
mation error variance for the unmeasured DOFs

Implementation of Optimization

The methodology explained above was implemented as 
follows:

1. The location where the analysts absolutely want the sen-
sor to be fixed was chosen.

2. First Stage: Formation of Initial Sensor Set based on 
Sequential Sensor Placement and Triaxial Effective 
Independence criterion.

 (i) For all the chosen sensor location (candidate 
set), Q3i is calculated and sorted based on the 
norm. The sensor location with largest norm is 
selected as first node.

(10)
∑
�xd

= E
[(
x̂d − xd

)(
x̂d − xd

)T]
= Φd

∑
q

ΦT
d

(11)
∑
q

= E[(q − q̂)
(
q − q̂)T

]
= �2

0

(
�T

m
�m

)−1
= Q−1

(12)Q =
1

�2
0

m∑
i=1

�iT
m
�i

m
=

1

�2
0

m∑
i=1

Qi

(13)Q =
1

�2
0

mn∑
i=1

ΦT
3i
Φ3i =

1

�2
0

mn∑
i=1

Q3i

1

d
tr

(
Φd

∑
q

ΦT
d

)
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 (ii) Sensors in the candidate set are ranked based 
on the EfI3i  value, and the sensors with highest 
contribution are placed in the initial sensor set 
till the rank is full.

3. Second Stage: For the initial sensor set formed, the Rij is 
calculated and all the sensor nodes having Rij less than 
the threshold value R0 are removed from the in the initial 
set. Figure 1 shows the flowchart for the optimization 
strategy adopted for programming in MATLAB

Metaheuristic algorithms (Genetic Algorithm 
and Particle Swarm Optimization)

Genetic Algorithm

The Genetic Algorithm (G.A) was invented in the 1970s 
by John Holland. The theory of evolution-based mecha-
nism called Natural Selection was the motivation behind 
G.A [20]. The implementation of G.A consists of 4 stages: 
Selection, Crossover, Mutation, Evaluation.

 (i) Selection Operator: This refers to the process of 
selecting two or more parents from the population 
for crossing. The purpose of selection is to identify 
the fittest individual in the population in hope that 
their offsprings have higher fitness.

 (ii) Methods: Roulette Wheel Selection, Boltzman Selec-
tion, Tournament Selection, Rank Selection, Stochas-
tic Universal Sampling.

 (iii) Mutation: This step adds diversity to the selection 
process and alters the individuals randomly. Exam-
ple: Inverse Mutation, Displacement Mutation, 

Reversing Mutation, Scramble Mutation, Big Flip-
ping Mutation.

 (iv) Crossover: This operation is carried out during 
the mating process. A crossover point is selected 
between parent pairs randomly. The commonly used 
crossover methods are single point crossover, uni-
form crossover, k-point crossover, partially mapped 
crossover, cycle crossover, shuffle crossover, and 
order crossover.

In this study, the optimization employs a simple G.A 
method. Here, the number of variables to be optimized is the 
number of sensors  NO; the value of variable can range from 
1 to ND where ND represents number of degrees of freedom 
chosen for forming the Fisher Information Matrix. From a 
population of possible solutions, the initial parents are cho-
sen by Roulette wheel selection. The probability of crossover 
and mutation has been adopted as 0.9 and 0.01, respectively. 
The fitness function adopted for deciding the best sensor con-
figuration is Eq. (14); this equation represents the Information 
Entropy (I.E). The information entropy directly implies the 
uncertainty in the adopted sensor configuration. Thus, I.E is 
related to the determinant of the FIM matrix.

The I.E estimated for a sensor configuration δ using Eq. 14 
is used to determine the Information Entropy Index (I.E.I) as 
given in Eq. 15. I.E.I is a measure of uncertainty in the esti-
mate of parameters relative to the uncertainty obtained for a 
reference configuration.

(14)I.E =
1

2
N𝜃

[
ln(2𝜋) + ln�̂�2

]
−
1

2
ln
[
detQ(𝛿, 𝜃)

]

(15)I.E.I (�) = exp
[
h
(
�,�0,�0

)
− h

(
���� ,�0,�0

)
∕N�

]

Choice of Number of Modes , Number of Sensors  , Number of 
Candidate Position , Redundancy of Information (RI)

First Phase: Formation of Initial Sensor Set (FSSP)

i) Calculate the elementary information 3  for all candidate sensor positions, the node with largest norm (spectral radius) 
is chosen as the first sensor node.

ii)Rank all the nodes according to their ̅ 3  value

Second Phase: Selection of Remaining Position based on RI and Mean of trace of estimation error variance

i) Calculate RI between current candidate sensor locations and previously selected positions. Remove all the 
candidate positions with RI smaller than threshold

ii) Add one sensor from candidate set in to optimal set and evaluate the mean of trace of estimation error variance
If the optimal set reaches maximum capacity, end the allocation else continue the second phase till the set is full 

Fig. 1  Flowchart for the Optimization Strategy
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where I.E.I = Information Entropy Index, h(�,�,�) = Infor-
mat ion ent ropy for  sensor  conf igura t ion �  , 
h(���� ,�0,�0) = Information entropy for reference configu-
ration ( ���� ). In the reference configuration, the sensors are 
considered to be placed at all the nodes. Thus, I.E.I acts as a 
measure of effectiveness of each adopted sensor configura-
tion (δ), Q(�,�) = Fisher Information for sensor configura-
tion ( � ), N� = Number of modal parameters.

The detailed derivation of Eqs.  16 and 17 can be 
obtained in reference [6]. Flowchart for implementation 
of G.A in MATLAB (Algorithm) is shown in Fig. 2.

Particle Swarm Optimization

Particle Swarm Optimization (P.S.O) is a nature inspired 
algorithm developed by Eberhart and Kennedy in 1995 
[21]. This method mimics the fish schooling or bird 
flocking behaviour. There exists no supervisor or central 
control to give orders on how to behave in a group. It 
is based on two concepts: Self-organization and Division 
of labour. It uses a number of agents (particles) forming 
a swarm moving around in the search space looking for 
best solution. Each particle is treated as N-dimensional 
space which adjusts its “flying condition” according to 
its own experience (p Best) as well as experience of other 
particles (g Best) where p Best represents the personal best 
position and g best represents global best position. P.S.O 
finds solution through an iterative manner. The method 
randomly generates a swarm consisting of particles. Every 
particle represents a solution in the N-dimensional search 
space, where N represents the number of variables to be 
optimized.

The status of the ith particle is obtained from the follow-
ing two vectors as represented in Fig. 3

 (i) Current position Xi(t) = xi1, xi2,… , xin
 (ii) Flight Velocity Vi(t) = vi1, vi2,… , vin

Figure 3 shows the P.S.O terminologies.
In every iteration, the particle moves to a new position 

and finds the p Best. The updated velocity and position of 
each particle are obtained from Eq. (16) & (17)

where vi(t) = Current velocity of particle i, xi(t) = Current 
position of particle i, w = Inertial weight factor at the tth 
iteration, r1,r2 = two independent random numbers ranging 
between 0 and 1, c1,c2 = learning rates treated as constants.

The objective function chosen for the implementation 
of P.S.O is Information Entropy (I.E) which is obtained 
from Eq. 14 explained in section "Genetic Algorithm". Fig-
ure 4 represents the flowchart of P.S.O implementation in 
MATLAB.

(16)
vi(t + 1) = wxvi(t) + r1c1x(Pi(t) − xi(t)) + r2c2x

(
g − xi(t)

)

(17)xi(t + 1) = xi(t) + vi(t + 1)

Fig. 2  Flowchart for Implemen-
tation of Genetic Algorithm

Particle, i  

Position vector,

Velocity vector,

Fig. 3  P.S.O Terminology
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Performance evaluation of the optimization 
method

Three methods of sensor optimization, namely Triaxial 
Effective Independence, Genetic Algorithm, and Particle 
Swam Optimization, were applied on a case study struc-
ture (Cauvery Bridge) in Tiruchirappalli city. The Cauvery 
bridge was built in the year 1976 across River Cauvery and 
plays an important role in linking the city of Tiruchirappalli 
with the island of Srirangam. This bridge is deemed to be 
a strategically important structure as it facilitates both the 
movement of raw materials to and finished products from 
major industries that fall under the purview of the public 
sector undertakings overseen by the Government of India. 
Figure 5 shows the location of Tiruchirappalli City in the 
geographic map of India. The motivation behind selecting 
this bridge is the excessive vibration experienced during 
a routine maintenance inspection by the bridge authority 
(Trichy Padalur Toll Plaza). It was inferred that the bearing 
of the girder was leaning, which was later replaced by POT 
bearings and bridge was restored to its original condition. 
The inspection team implements a vibration-based monitor-
ing system for the bridge in order to have a keen watch on 
the bridge behaviour. Hence, for the implementation of the 

Begin

Initialize Location and Velocity vector of Particle Swarm

Update Particle Velocity and Location Vector

Calculate fitness function value

Update individual optimal value and global optimal value

Judge 
Termination 
Conditions

End

True

False

Fig. 4  Flowchart for P.S.O Algorithm

Fig. 5  Location of Tiruchirappalli City (https:// www. google. com)

https://www.google.com
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real time monitoring system for the bridge, Science Engi-
neering Research Board (SERB) had provided a funding 
for this project under the category of Impacting Research 
Innovation and Technology (IMPRINT-IIC). Thus, in the 
context of pretest planning for successful implementation 
of the vibration study of the bridge, it was decided to utilize 
the finite element analysis (F.E.A) results of the bridge mod-
elled in SAP 2000. The modal information obtained from the 
bridge was used for the pretest planning of optimal sensor 
placement strategy.

Description of the structure

The finite element model of the bridge under study was 
developed in SAP 2000. Table 1 describes the specifications 
of the structure. The Cauvery bridge is a reinforced concrete 
T beam bridge with a total length of 630 m with 15 spans, 
and each of the span acts individually as simply supported 
span. Each span of the bridge has two one-way lane with a 
span of 42 m and a width of 10.5 m. The bridge is modelled 
as a reinforced concrete bridge with four T Girders of 1.8 m 

depth and 130 mm width at 2.5 m spacing and eight number 
of cross-diaphragm of depth 1.5 m and 100 mm width. The 
bridge deck has a total thickness of 250 mm and is provided 
with 7.5 m wide carriageway. The deck and girders were 
modelled with shell and beam elements. Figure 6 shows the 
finite element model of the bridge in SAP 2000.

As the results obtained from modal analysis of the struc-
ture in SAP 2000 would be utilized for the formation of 
Fisher Information Matrix, the nodes present on the surface 
of the structure were considered. For the formation of the 
Fisher Information Matrix 6,9 and 12 Modes were consid-
ered. As the sensors cannot be placed inside the structure, 
the nodes present on the surface of the structure were chosen 
in the formation of candidate sensor set.

Optimization results

Threshold of redundancy for redundancy 
of information‑based optimization

The first step in the methodology is to decide the number 
of modes to be adopted and the redundancy value to be 
fixed in order to control the amount of information shared 
between the sensors. The value of redundancy ranges 
from 0 to 1 (0% to 100%). The value of 1 indicates that 
two sensors are orthogonal, meaning they do not share 
any information about the mode shapes. If the value of 
redundancy is kept at a high value of 1, then the algorithm 
will stop before reaching the desired number of sensors 
and a lot of degrees of freedom will be deleted from the 
final sensor set. If it is kept low, then the algorithm will 
include lot of close spaced positions in the final sensor 

Table 1  Details of the bridge

Location Cauvery River, 
Tiruchirappalli, Tamil 
Nadu

Length of each Span 42 m
Width 10.5 m
Girder Type T beam girder
Strength of Concrete 30 MPa
Completion Year 1962

Fig. 6  Finite Element Model of 
the bridge
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set which is likely to lead to sensor clustering. Hence, it 
is attempted to find the variation in the number of sensors 
with respect to the choice of number of mode shapes and 
also to adopt the value of redundancy, rather than assum-
ing a value. The algorithm used takes into account differ-
ent redundancy values and the number of mode shapes to 

be considered for identification. As from Fig. 7, it can be 
inferred that the number of sensors required drops down 
drastically at the redundancy value of 0.60 for all differ-
ent modes considered. Hence, the redundancy threshold 
has been adopted as 0.60, corresponding to 12 number 
of modes; 28 accelerometers are required to conduct the 

Fig. 7  Variation in number of sensors with number of modes and threshold redundancy

Fig. 8  Variation in determinant 
of FIM with increase in the 
number of sensors
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modal test. In the Triaxial Effective Independence method, 
the maximum value of determinant of FIM was obtained as 
7.55 ×  1027. The value of determinant was found to reduce 
considerably with the reduction in the number of modes 
and number of sensors as shown in Fig. 8. Equations 8 
and 9 approach estimation of modal coordinates as a least 
square approximation problem, which involves inversion 
of modal matrix. Also according to Eq. 3, the value of 
Triaxial Effective Independence depends on the pseudo-
inverse of the information contained in the candidate sen-
sor set ( Qc ); the efficiency of the pseudo-inverse depends 
on the condition number of the matrix Qc  . Hence, sta-
bility of matrix plays a crucial role. Therefore, condition 
number becomes an important metric. Condition number 
of the eigen matrix: condition number is defined as the 
ratio of the largest singular value to the lowest singular 

value. It measures the sensitivity of matrix operations to 
error in the input. Hence, the lower the condition number, 
the better the sensor configuration. A condition number 
close to 1 is a good indicator of the invertibility and linear 
independency among the columns of the matrix. Figure 9 
shows the variation in condition number; it is inferred 
that irrespective of the number of modes, the condition 
number for lower number of sensors is ranging from  1018 
to  103, indicating low number of sensors would produce 
an ill-conditioned matrix producing unreliable results, 
and hence, the number of sensors should be chosen such 
that the condition number stabilizes close to a value of 1, 
which would help the analyst to get reliable system iden-
tification results. In this study, the condition number was 
found to get stabilized from 3 to 1.5 when the number of 
sensors are beyond 25 for all the three modes. Mean of 

Fig. 9  Influence of number of 
sensors on the condition number 
of FIM matrix

Fig. 10  Variation in mean of 
estimation error with increase in 
the number of sensor
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trace of estimation error variance is a measure of success 
of modal expansion. The holistic idea of modal expansion 
is to be able to reconstruct the response of the part of the 
structure not instrumented with sensors as exactly as pos-
sible. Thus, Eq. 10 which measures the mean of trace of 
estimation error variance of the unmeasured degrees of 

freedom has been chosen as the objective function. It can 
be inferred from Fig. 10.

When the sensor number increase beyond 25, the mean of 
the trace is found to stabilize to value of 0.17 for 12 observ-
able modes, 0.19 for 9 modes, and 0.20 for 6 modes.

Information Entropy Index as specified in Eq. 15 was 
adopted as the parameter for comparing the efficiency of 

Fig. 11  Sensor layout obtained from application of Genetic Algorithm

Fig. 12  Sensor layout obtained from application of Particle Swam Optimization

Fig. 13  Sensor layout obtained from application of Triaxial Effective Independence and Redundancy Information
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sensor layout obtained from the three algorithms (GA, PSO, 
and Triaxial Effective Independence). Figures 11, 12 and 13 
show the sensor layout obtained from each of these methods. 
From the layouts obtained from GA and PSO, it can be seen 
that the sensors are clustered on the areas of highest contri-
bution to modal information. When such clustering occurs, 
the sensors would be bringing a higher proportion of mutual 
information, indicating minimum individuality in the infor-
mation from each sensor. Hence, the layout obtained from 
Triaxial Effective Independence and Redundancy Informa-
tion has been adopted for conducting the modal test of the 
bridge.

Information Entropy Index is a measure of difference in 
the uncertainty in estimation of parameters for a sensor con-
figuration with respect to a reference sensor configuration. 
Here the reference configuration is the one in which all the 
nodes are considered to be instrumented.

From Fig. 14, it can be inferred that for all number of 
observable modes, the I.E.I values follow same trend for 

number of sensors ranging from 5 to 20. However beyond 
20 number of sensors; the I.E.I Values for Triaxial Effective 
Independence were found be to lower than the conventional 
method of G.A and P.S.O by 22% to 40%. The better perfor-
mance of proposed method is due to the adoption of Sequen-
tial Sensor Placement, unlike metaheuristic methods, where 
the sensor clustering contributed to higher I.E.I. Thus, for a 
smaller number of sensors (5 to 20), the I.E.I values are the 
very high in the order  1011 to  103, indicating unidentifiability 
of modes. This phenomenon can also be related to the high 
condition number of the FIM matrix, which is an indication 
of an ill-conditioned FIM matrix, thus leading to unidentifi-
ability of modes. Thus, the given number of sensors which 
are spatially well distributed yields more information than 
the clustered distribution.

Fig. 14  Information Entropy Index for 6, 9, and 12 modes corresponding to GA, PSO, and proposed method
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Field application of optimized layout

In order to test the efficiency of the sensor layout obtained 
from Triaxial Effective Independence method, a vibration 
study was conducted on the bridge. The measurement of 
the vibrations of Cauvery bridge under prevailing condi-
tions was done with the use of equipment detailed as fol-
lows. The 8 MEMS Triaxial Industrial Accelerometers 
have a sensitivity of 330 mV/g and their frequency ranging 
from 0.025 Hz-200 Hz. Data acquisition was done using the 
NI cRIO 9040 real-time controller and NI 9234 I/O volt-
age module. The LabVIEW FPGA–based Graphical pro-
gramme was installed in cRIO for executing data acquisition 
and processing. The cRIO was capable for functioning as 
a real time and to act as a standalone controller for data 
acquisition, processing, and releasing alert protocols. Cabled 
type instrumentation was used for the field test, as detailed 
below. The Triaxial accelerometers were attached to a port-
able dynamic signal conditioning module (can function in 
stand-alone mode for 72 h) by utilizing coaxial cables with 
Bayonet Neil Concelman (BNC) connectors. The later was 
also connected to the real-time controller (NI cRIO 9040), 
as shown in Fig. 15. It was ensured by the manufacturer 
that the lengthy cables used had very minimal loss of data. 
The sampling of the signal was done at 500 samples per 
second during testing using a Butterworth Band-pass filter 

with a range between 0.2 and 30 Hz. The instrumentation 
chosen for this study includes both roving and stationary 
accelerometer. The accelerometers to measure the vibra-
tion were mounted on a mild steel plate using magnetic 
mount. The plate was fastened to the concrete surface using 
strong epoxy adhesive (3 M DP 420) to obtain good bond-
ing. The total number accelerometers needed for the study 
was 28; therefore, out of 8 accelerometers, 4 of which are 
stationary accelerometers while rover accelerometers make 
up the balance 4. Data were obtained for a time period of 
45 min. After every 45 min, the vibration data were saved 
in a TDMS file format and the same file was accessed by 
the data analysis program and the modal information was 
obtained. This method was adopted to facilitate real-time 
processing of the vibration data.

Thus, whenever there is a shortage in the availability of 
sensors, the method of roving of sensors can be adopted. 
In this method, at least two accelerometers must be kept as 
stationary and the rest can be roved to the desired number 
of points.

Criteria for evaluation

In order to assess the sensor configuration quality, the 
obtained results need to be evaluated based on certain cri-
teria. Three different criteria are considered in this study 
and they were (i) Determinant of the Fischer Information 

MEMS Industrial Accelerometer NI cRIO  9040

Front Panel of Data Acquisition 
in cRIO

Signal Conditioning 
Module

Fixation of Sensor

Fig. 15  Field Test: Data Acquisition from the bridge
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Matrix(FIM): determinant ensures the variance of the modal 
co-ordinates estimated. Thus, the higher the determinant, 
the lower will be the variance. It is a quantitative represen-
tation of the modal information carried by the sensors. (ii) 
Condition number of the eigen matrix: condition number 
is defined as the ratio of the largest singular value to the 
lowest singular value. It measures the sensitivity of matrix 
operations to error in the input. Hence, the lower the condi-
tion number, the better the sensor configuration (iii) Modal 
Assurance Criterion (MAC): MAC is a measure of correla-
tion or degree of similarity between two mode shapes or 
modal vectors. The MAC value ranges between 0 and 1; 
thus, a good configuration should have smaller off-diagonal 
elements. Therefore, as a criterion for assessment maximum 
off-diagonal terms have been used as an indicator.

where 
{
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}
 indicates the mode shapes from experiments 

and 
{
∅a
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}
 stands for the mode shapes obtained by numerical 

prediction.

Field test results

As discussed in section "Field application of optimized lay-
out", a field test was conducted to validate the efficiency of 
optimization strategy and the LabVIEW program for data 
analysis installed in cRIO for facilitating real-time moni-
toring. The experimental natural frequencies were obtained 
using Operational Modal Analysis (O.M.A). Three methods 
of O.M.A were used, namely Covariance driven Stochas-
tic Subspace Identification (Cov-SSI), Frequency Domain 
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Table 2  Modal frequencies 
obtained using FEM Analysis 
and OMA

Mode FEM analysis Modal VIEW Frequency (Hz) Damping ratio (ξ) %

frequency (Hz) Damping ratio (ξ) % LSCE FDD Cov-SSI LSCE FDD Cov-SSI

1 2.53 1.06 2.62 2.63 2.62 1.08 1.02 1.04
2 2.77 3.39 2.73 2.72 2.75 3.44 3.39 3.68
3 3.75 3.92 3.37 3.44 3.54 3.88 3.90 3.94
4 6.60 4.52 6.42 6.35 6.46 4.50 4.43 4.68
5 8.38 4.29 8.90 8.76 8.79 4.20 4.33 4.29
6 14.96 3.09 14.35 14.16 14.2 3.13 3.19 3.10

Fig. 16  MAC matrix for the 
observed mode shapes
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Decomposition (FDD), and Least Square Complex Expo-
nential (LSCE). There was a good agreement between ana-
lytical and experimental results with a maximum variation 
of 10.13% for modal frequencies and 8.55% for the damp-
ing ratios, as shown in Table 2. As an additional evaluation 
criteria, MAC matrix was obtained for 6 modes observed 
and the lowest off diagonal value of 0.19. The graphical 
representation of the MAC matrix obtained using the SSI 
method is shown in Fig. 16. From the figure, it is evident that 
the diagonal values fall in the range of 0.97 to 0.99 indicat-
ing that there is a good degree of consistency between the 
mode shapes.

The lower MAC values of off diagonal elements of MAC 
matrix indicate linear independence among the mode shapes. 
Thus, it can be confirmed that the deflection shapes obtained 
from Operational Modal Analysis are mode shapes of the 
structure and not Operational Deflection Shapes (ODS). If 
the shapes were generated from ODS, there would be con-
siderable values in majority of the off-diagonal elements. 
Hence, the adopted sensor layout has contributed to detec-
tion of modal properties of the structure under study. From 
the field test, six modal frequencies were identified; the 
inability to identify other modes may be attributed to insuf-
ficient ambient excitation, as, for conducting the modal test, 
service loads were considered as the excitation force. Hence, 
during the data acquisition, the ambient loads were found to 
exciting these six modes.

Conclusions

In this study, the feasibility of sensor optimization for prac-
tical application of a bridge structure in India has been 
studied. The sensor optimization was given major empha-
sis because for a developing country like India, where the 
Structural Health Monitoring (SHM) applications on struc-
tures are still in its embryonic stage and there also exists 
paucity of funds for establishment of SHM systems. Thus, 
such situations call for optimization of sensors. The study 
also explains the method of implementing a Vibration-based 
Structural Health Monitoring system for bridges in India. 
For the optimization strategy, the modal analysis results 
obtained from finite element analysis of bridge structure in 
SAP 2000 were utilized. The mode shapes obtained were 
used for formation of the Fisher Information Matrix. Three 
methods of optimization were considered, namely Genetic 
Algorithm (GA), Particle Swam Optimization (PSO), and 
Triaxial Effective Independence (TEI). The Triaxial Effec-
tive Independence method depends on maximizing the deter-
minant of FIM matrix, thus ensuring linear independence 
among the columns of the matrix. The linear independency 
influences the accuracy of modal parameter estimation. In 
the Triaxial Effective Independence method, an addition 

feature of redundancy of information has also been adopted 
as a constraint. The constraint is utilized to avoid sensor 
clustering and to ensure spatial distribution. From the opti-
mization result based on Triaxial Effective Independence 
and redundancy of information (RI) criterion, it was inferred 
that in order to observe 12 modes, 28 accelerometers would 
be required for a redundancy value of 0.60. Additional 
parameters were measured to evaluate the efficacy of the 
number of accelerometers obtained. As the estimation of 
modal coordinates has been modelled as a least square esti-
mation problem, the invertibility of modal matrix had to 
be examined. Thus, variation in the condition number with 
increase in number of sensors was evaluated. It was found 
that when the sensor number increased beyond 25, the con-
dition number stabilized to a value of 1.5. For evaluating 
the efficacy of modal expansion, mean of trace of estima-
tion error variance of unmeasured degrees of freedom has 
been chosen, as modal expansion aims at reconstruction 
of responses of the structural elements not instrumented 
with sensors in such a way that they match with the actual 
response when subjected to excitation. Here the mean of 
trace was found to converge to 0.17 for 12 observable modes, 
0.19 for 9 modes, and 0.20 for 6 modes. Thus, the layouts 
obtained from GA, PSO, and TEI were compared on the 
basis of Information Entropy Index (IEI). The layout based 
on TEI criterion was found to result in least IEI value. Thus, 
the layout was adopted for field test. The field test was con-
ducted based on the real-time data acquisition and analysis 
software developed in LabVIEW and installed in a real-time 
controller. The modal parameters were obtained by opera-
tional modal analysis. In operational modal analysis, in ser-
vice loads are considered as excitation forces. Hence, six 
modes of vibration of structure were identified. There was a 
good agreement between analytical and experimental results 
with a maximum variation of 10.13% for modal frequencies 
and 8.55% for the damping ratios. For comparing the mode 
shapes, Modal Assurance Criteria (MAC) were employed. 
The diagonal elements were found to be in a range of 0.99 to 
0.97 and off-diagonal elements between 0.00 and 0.19, thus 
indicating linear independency.

Acknowledgements This research work has received financial grant 
from Science Engineering Research Board (SERB) under category 
IMPRINT IIC, National Instruments—Bangalore, VI Solutions Pvt. 
Ltd—Bangalore, and Optithought Pvt. Ltd—Chennai.

Authors contribution AS took part in methodology development, 
LabVIEW, and MATLAB programming, field test, data collection 
and analysis, writing. NR involved in writing, review and editing. GG 
took part in writing, technical reviewing, methodology development, 
and editing.

Availability of data and materials Data and information are provided 
based on reasonable request.



Innovative Infrastructure Solutions (2024) 9:188 Page 17 of 17 188

Declarations 

Conflict of interest The authors would like to declare that there is no 
competing interest in the results and data of this investigative research 
study.

Ethical approval This article does not contain any studies with human 
participants or animals performed by any of the authors.

Informed consent For this type of study, no informed consent is 
required.

References

 1. Rainieri C, Fabbrocino G (2014) Operational modal analy-
sis of civil engineering structures, an introduction and guide 
for applications. Springer, New York. https:// doi. org/ 10. 1007/ 
978-1- 4939- 0767-0

 2. Kammer DC (2005) Sensor set expansion for modal vibration test-
ing. Mech Syst Sig Proces 19:700–713. https:// doi. org/ 10. 1016/j. 
ymssp. 2004. 06. 003

 3. Nieminen V, Sopanen J (2023) Optimal Sensor Placement for tri-
axial accelerometers for modal expansion. Mech Syst Sig Process 
184:1–21. https:// doi. org/ 10. 1016/j. ymssp. 2022. 109581

 4. Shah P, Udwadia FE (1978) A methodology for optimal sen-
sor location for identification of dynamic systems. J Appl Mech 
45:188–196

 5. Udwadia FE (1994) Methodology for optimal sensor locations 
for parametric identification in dynamic systems. J Eng Mech 
120(2):368–390

 6. Papadimitriou C (2004) Optimal sensor placement for parametric 
identification of structural systems. J Sound Vib 278:923–947. 
https:// doi. org/ 10. 1016/j. jsv. 2003. 10. 063

 7. Papadopolous M, Garcia E (1998) Sensor placement methodolo-
gies for dynamic testing. AIAA J 36:256–263

 8. Meo M, Zumpano G (2005) On the optimal sensor placement 
technique for a bridge structure. Eng Struct 27:1488–1497. https:// 
doi. org/ 10. 1016/j. engst ruct. 2005. 03. 015

 9. Ghung T, Moore D (1993) On-orbit sensor placement and system 
identification of space station with limited instrumentation. Pro-
ceedings of 11th International Modal Analysis Conference

 10. Li DS, Li HN, Fritzen CP (2009) A note on fast computation 
of effective independence through QR downdating for sensor 

placement. Mech Syst Sig Proces 23:1160–1168. https:// doi. org/ 
10. 1016/j. ymssp. 2008. 09. 007

 11. Vincenzil L, Simonini L (2017) Influence of model errors in opti-
mal sensor placement. J Sound Vib 389:119–133. https:// doi. org/ 
10. 1016/j. jsv. 2016. 10. 033

 12. Jaya MM, Ceravolo R, Fragonara LZ, Matta E (2020) An opti-
mal sensor placement strategy for reliable expansion of mode 
shapes under measurement noise and modelling error. J Sound 
Vib 487:1–23. https:// doi. org/ 10. 1016/j. ymssp. 2011. 05. 019

 13. Zhang CD, Xu YL (2016) Optimal multi-type sensor placement 
for response and excitation reconstruction. J Sound Vib 360:112–
128. https:// doi. org/ 10. 1016/j. jsv. 2020. 115511

 14. Kulla J (2019) Bayesian virtual sensing in structural dynamics. 
Mech Syst Sig Proces 115:479–513. https:// doi. org/ 10. 1016/j. 
ymssp. 2018. 06. 010

 15. Stephan C (2012) Sensor placement for modal identification. 
Mech Syst Sig Proces 27:461–470. https:// doi. org/ 10. 1016/j. 
ymssp. 2011. 07. 022

 16. Kim T, Youn B, Oh H (2018) Development of a stochastic effec-
tive independence (SEFI) method for optimal sensor placement 
under uncertainty. Mech Syst Sig Proces 111:615–627. https:// doi. 
org/ 10. 1016/j. ymssp. 2018. 04. 010

 17. Papadimitriou C, Lombaert G (2012) The effect of prediction error 
correlation on optimal sensor placement in structural dynamics. 
Mech Syst Sig Proces 28:105–127. https:// doi. org/ 10. 1016/j. 
ymssp. 2011. 05. 019

 18. Ngoc TH, Khatir S, De Roeck G, Nguyen-Ngoc L, Wahab MA 
(2018) Model updating for Nam O bridge using particle swarm 
optimization algorithm and genetic algorithm. Sensors 18:1–20. 
https:// doi. org/ 10. 3390/ s1812 4131

 19. Lenticchia E, Ceravolo R, Antonaci P (2018) Sensor placement 
strategies for the seismic monitoring of complex vaulted struc-
ture of the modern architectural heritage. Shock Vib 2018:1–14. 
https:// doi. org/ 10. 1155/ 2018/ 37396 90

 20. McCall J (2005) Genetic algorithms for modelling and optimisa-
tion. J Comput Appl Math 184:205–222. https:// doi. org/ 10. 1016/j. 
cam. 2004. 07. 034

 21. Eberhart R, Kennedy J (1995) A new optimizer using particle 
swarm theory. In: Proceedings of the Sixth International Sympo-
sium, Nagoya, Japan, pp 39–43

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.

https://doi.org/10.1007/978-1-4939-0767-0
https://doi.org/10.1007/978-1-4939-0767-0
https://doi.org/10.1016/j.ymssp.2004.06.003
https://doi.org/10.1016/j.ymssp.2004.06.003
https://doi.org/10.1016/j.ymssp.2022.109581
https://doi.org/10.1016/j.jsv.2003.10.063
https://doi.org/10.1016/j.engstruct.2005.03.015
https://doi.org/10.1016/j.engstruct.2005.03.015
https://doi.org/10.1016/j.ymssp.2008.09.007
https://doi.org/10.1016/j.ymssp.2008.09.007
https://doi.org/10.1016/j.jsv.2016.10.033
https://doi.org/10.1016/j.jsv.2016.10.033
https://doi.org/10.1016/j.ymssp.2011.05.019
https://doi.org/10.1016/j.jsv.2020.115511
https://doi.org/10.1016/j.ymssp.2018.06.010
https://doi.org/10.1016/j.ymssp.2018.06.010
https://doi.org/10.1016/j.ymssp.2011.07.022
https://doi.org/10.1016/j.ymssp.2011.07.022
https://doi.org/10.1016/j.ymssp.2018.04.010
https://doi.org/10.1016/j.ymssp.2018.04.010
https://doi.org/10.1016/j.ymssp.2011.05.019
https://doi.org/10.1016/j.ymssp.2011.05.019
https://doi.org/10.3390/s18124131
https://doi.org/10.1155/2018/3739690
https://doi.org/10.1016/j.cam.2004.07.034
https://doi.org/10.1016/j.cam.2004.07.034

	Multiple criteria-based sensor optimization for Structural Health Monitoring of civil engineering structures
	Abstract
	Introduction
	Theoretical background of Triaxial Effective Independence method
	Implementation of Optimization

	Metaheuristic algorithms (Genetic Algorithm and Particle Swarm Optimization)
	Genetic Algorithm
	Particle Swarm Optimization

	Performance evaluation of the optimization method
	Description of the structure

	Optimization results
	Threshold of redundancy for redundancy of information-based optimization

	Field application of optimized layout
	Criteria for evaluation
	Field test results

	Conclusions
	Acknowledgements 
	References




