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Abstract
Among nanomaterials, nano-TiO2 has shown the potential to improve the rheological properties of asphalt binders, and 
mechanical and durability properties when used in the mixture phase. These improvements include fatigue resistance, high-
temperature performance, aging resistance, and moisture susceptibility. In addition, nano-TiO2 is known to have remarkable 
photocatalytic properties, which can lead to pollutant degradation and better air quality. Besides, nano-TiO2 has the potential 
to reduce the pavement surface temperature by reflecting the UV rays of the sun and increasing heat dissipation, which may 
lessen the urban heat island adverse effects on the environment. These interesting features of nano-TiO2 can be attributed to 
its remarkable physical and chemical structure and properties. To cast light on these different outcomes of using nano-TiO2 
in asphalt pavements, this article provides a critical review of the rheological, mechanical, durability, and environmental 
impacts of incorporating nano-TiO2 into asphalt pavements, and how the chemical properties of nano-TiO2 are related to 
these effects. This article also reviews the photocatalytic and pavement cooling performance of nano-TiO2-modified asphalt 
pavement to optimize its environmental benefits. Furthermore, the article provides a critical discussion investigating the 
challenges and potential downsides of using nano-TiO2 in asphalt pavement, offering helpful discernments for future research 
and application in the pavement industry.
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Introduction

Growing concerns regarding the climate change effect and 
other environmental troubles have led the world toward 
developing sustainable infrastructure [1, 2]. One of the 
promising development methods is incorporating nanoma-
terials into road pavement, which enhances durability and 
reduces the maintenance needs of this infrastructure [3]. 
Since road pavements are crucial for sustainability implica-
tions, researchers are exploring the application of nanoma-
terials to improve the mechanical performance and other 
properties of pavement materials like asphalt mixtures [4]. 

Among these nanomaterials, nanotitanium dioxide  (TiO2) 
has shown positive outcomes for enhancing the properties 
and performance of asphalt mixtures, which make it an eli-
gible nanomaterial for asphalt pavement applications and 
construction [4, 5].

Nano-TiO2 has also been commonly used in asphalt pave-
ment for degrading vehicle exhaust pollutants [6]. The com-
bustion of fossil fuels in vehicles releases a range of pollut-
ants, which are significant contributors to air pollution and 
raise serious concerns for global health [7, 8]. Nano-TiO2 
unique photocatalytic properties can efficiently degrade the 
pollutants onto asphalt pavement and improve air quality [9, 
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10]. Also, the lighter color of nano-TiO2 may increase the 
UV reflection and lower the pavement temperature, resulting 
in a cooler pavement surface [11]. This lower temperature 
of asphalt pavement can lead to mitigating urban heat island 
effects [12]. These environmental outcomes of nano-TiO2 
incorporation into asphalt pavement and its effects on perfor-
mance enhancement have drawn the attention of the research 
and construction field [13].

It has been previously discussed in recent related stud-
ies that nano-TiO2 can be obtained through environmentally 
harmful sulfate or chloride processes, and nano-TiO2 has 
a larger surface, smaller diameter, and lower opacity com-
pared to normal  TiO2, making it potentially advantageous 
for improving the rheological and mechanical performance 
of modified asphalt binders and mixtures [14–16]. Also, the 
photocatalytic performance of  TiO2-modified asphalt pave-
ment through different incorporation methods has been dis-
cussed in previous studies [17]. However, several gaps exist 
in this field, including studying the effects of different nano-
TiO2 polymorphs on the properties of the pavement, rheo-
logical and mechanical properties of the asphalt binder and 
mixture, aging resistance, the relationship between chemical 
modification and asphalt performance after incorporating 
nano-TiO2, factors affecting nano-TiO2-modified asphalt 
pavement photocatalytic performance, and cool pavements 
for urban heat island mitigation. Also, the comparison 
between nano-TiO2 and typical  TiO2 is missing to justify 
their applications in pavement construction.

To focus on the mentioned gaps and show a better insight, 
this study aims to give a critical review of the nano-TiO2 
application in asphalt pavement and its effect on perfor-
mance and environmental impacts. Accordingly, an intro-
duction to nano-TiO2 has been given to understand better 
its chemical characteristics and relationship with the modi-
fied asphalt performance. Then, incorporation methods 
and probable chemical interactions between asphalt binder 
and nano-TiO2 are discussed. This section is followed by 
the rheological and mechanical performance review of 

nano-TiO2-modified asphalt binder and mixture. Lastly, the 
environmental performance of using nano-TiO2 in asphalt 
pavement, including photocatalytic performance and urban 
heat island mitigation, has been evaluated to develop better 
sustainability. Figure 1 provides a visual overview of the 
topics presented in this article.

Introduction to  TiO2 and nano‑TiO2

Titanium is a light metal with a white-metallic color. Pure 
titanium is not soluble in water, but it can be dissolved in 
concentrated acids [18].  TiO2 is the most stable oxide of tita-
nium [19]. Moreover,  TiO2 elemental composition is 59.95% 
titanium and 40.05% oxygen [20]. The distinctive proper-
ties of  TiO2 can be directly attributed to its polymorphic 
form, which, in turn, is mainly dependent on the preparation 
method and post-fabrication heat treatment [21]. Titanium 
dioxide naturally exists in four polymorphic forms, includ-
ing anatase, rutile, brookite, and the most uncommon one, 
 TiO2 –B [22].

Figure 2 shows the crystal structure of  TiO2 polymorphs 
and field emission scanning electron microscopy (FE-SEM) 
image of anatase and brookite. Both rutile and anatase 
have tetragonal crystal structures, while brookite has an 
orthorhombic one [23]. Rutile is the most thermally stable 
phase, and other phases will transform to rutile by heating, 
while brookite is the least stable polymorph of  TiO2 and is 
difficult to synthesize [24]. Anatase has a higher surface area 
compared to rutile due to its more open crystal structure and 
higher number of exposed surface sites [25]. The FE-SEM 
images are used to assess the distribution and dispersal of 
different compounds and changes in the surface morphol-
ogy of the samples [26]. For nano-TiO2 samples, they show 
the presence of nanocrystalline domains in rutile and dense 
nanocrystalline at the surface of anatase, but the surface of 
rutile is relatively smoother than that of anatase [27].

Fig. 1  Schematic view of the 
subjects reviewed in this study
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Thus, it can be predicted from FE-SEM images that 
anatase can have better photocatalytic performance than 
rutile. Additionally, due to the higher surface area and 
reactivity of anatase, which can allow it to form stronger 
bonds with asphalt molecules, it may be better for improv-
ing asphalt rheological and mechanical properties. How-
ever, due to the higher thermal and chemical stability of 
rutile, the optimum proportions of nano-TiO2 polymorphs 
for optimum rheological, mechanical, and photocatalytic 
performance should be evaluated.

Nano-TiO2 is a form of  TiO2 with nanometer-ranged 
particle size (typically less than 100 nm) [28]. This size 
reduction leads to increased surface area and enhanced 
reactivity [29, 30]. These features result in an improve-
ment in asphalt pavement properties, including mechani-
cal and photocatalytic performance [31, 32]. However, the 
smaller particles raise concerns about the environmental 
impacts of utilizing and disposing of this material [33]. 
The focus of this study is on nano-TiO2 incorporation in 
asphalt pavement and its comparison with typical  TiO2.

Incorporating  TiO2 particles into asphalt 
materials

Application methods

The methods of nano-TiO2 application in asphalt pavement 
are critical in determining the effectiveness of the modi-
fied pavement [34]. Generally, these incorporation meth-
ods can be divided into direct mixing method (i.e., binder 
modification) and pavement surface applications (coating 
method and spraying method) [34, 35]. Figure 3 shows the 
different incorporation methods of  TiO2 and nano-TiO2 
into asphalt pavement in both laboratory and field areas. 
It should be noted that the figures for field incorporation 
methods are related to typical  TiO2, and nano-TiO2 field 
incorporations need more advanced techniques.

For the surface spraying method, pretreatment of the 
pavement surface is important for preparing the surface 
for better spraying efficiency [38, 39]. One of the most 

Fig. 2  a Crystal structures of 
 TiO2 polymorphs [25] b FE-
SEM images of anatase (A–C) 
and rutile  TiO2 (D–F) at differ-
ent magnifications [27]
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important parts of the spraying method is the solvent of 
 TiO2, which makes it possible to spray. Liquid solvents can 
directly solve the  TiO2 particles and be used as spraying 
emulsions, while solid solvents should be used with water 
for spraying [40–42]. Post-caring and treatment of the sur-
face is mainly optional and is mostly related to the case.

For the coating method, the procedures are more compli-
cated and require strong solutions to ensure the fluidity and 
dispersion of nano-TiO2 coating [43, 44]. It has been previ-
ously studied that the coating photocatalytic performance 
significantly improves with the increase of nano-TiO2 con-
tent and spraying amount up to 8% and 400 g/m2, respec-
tively, and the recommended maximum spraying amount 
is 550 g/m2 to maintain skid resistance because excessive 
dosage thickens the oil membrane, reduces skid resistance, 
and is unsafe and uneconomical [35].

However, based on the literature review, the surface 
spraying and coating methods are not well and clearly dis-
tinguished in the studies. Although in this study these two 
methods are separated, some may find these methods simi-
lar, especially in field application. However, the focus of 
this study is to evaluate the effect of nano-TiO2 addition to 
asphalt binder on the chemical, rheological, and mechani-
cal properties, as well as its environmental comparison with 
surface application of nano-TiO2 in asphalt pavement.

Chemical or physical interactions of asphalt binder 
with  TiO2 and nano‑TiO2

The addition of  TiO2 and nano-TiO2 to asphalt binders as 
modifiers may change the functional group percentages in 
the asphalt matrix. Thus, studying the chemical behavior and 
modification mechanism of incorporating these materials 

into asphalt pavements is necessary. Fourier transform 
infrared spectrum (FTIR) is a method to evaluate chemical 
changes and performance evaluation in materials, especially 
asphalt binders [45–47]. Also, it can be used to examine the 
aging phenomenon of asphalt materials, which is due to the 
chemical changes in the asphalt matrix [48].

By the addition of 1–5%  TiO2 (80% anatase, 20% rutile) 
and conducting FTIR on modified asphalt samples, it was 
indicated that increasing  TiO2 content results in increas-
ing absorbance in the wavelengths of below 700 1/cm [49]. 
Another study, in which FTIR was conducted on the UV-
aged samples of the addition of 5%  TiO2 (80% anatase, 20% 
rutile) to asphalt binder, showed more ester carboxyl func-
tional groups, which showed more progress in aging, and it 
was shown that there were some significant peaks at below 
700 1/cm wavelengths in the spectrum [39]. In another study, 
FTIR was conducted on the addition of 0.5–10% nano-TiO2 
(80% anatase, 20% rutile) to transparent asphalt samples, 
and it was shown that the peaks in the spectrum were about 
1300 1/cm and below 1000 1/cm wavelength, which shows 
an increase in aliphatic groups, and no long chains were 
observed [50].

It should be noted that the peaks beneath 1000 1/cm 
wavelength can correspond to the polyaromatic groups [47]. 
Besides, asphaltenes are polyaromatic and heavy compounds 
in oil reservoirs and asphalt binders [51]. Thus, it can be 
concluded that the peaks in the spectrums may correspond 
to more asphaltene content by the addition of  TiO2 to asphalt 
binder.

Figure 4 shows spectrums of nano-TiO2-modified bind-
ers (binder 50/70) with different nano-TiO2 content, which 
indicate no chemical alteration but more absorbance in the 
wavelengths of between 2800 and 3000, 1200 and 1600, and 

Fig. 3  Methods of incorporating 
 TiO2 and nano-TiO2 into asphalt 
samples and pavement [35–37]
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beneath 1000 1/cm. It has been indicated that differences 
at wavenumbers of 3000–4000 and 700–900 1/cm can be 
referred to asphaltenes [52]. More asphaltene content leads 
to more stiffness and elasticity of the asphalt binder and 
decreases the high-temperature susceptibility [53]. Also, 
saturate–aromatic–resin–asphaltene (SARA) analysis on the 
addition of 5%  TiO2 to asphalt binder showed an increase 
in asphaltene and resin and a reduction in aromatic content 
[39].

Findings may indicate that the  TiO2 and nano-TiO2 modi-
fication of asphalt binder is related to physical changes, and 
no new functional groups are created. However, the exact 
effect of nano-TiO2 on the rheological and mechanical prop-
erties of asphalt materials has to be examined.

Mechanical and rheological performance 
of nano‑TiO2‑modified asphalt binder 
and mixture

Fatigue resistance

Repeated vehicular loads contribute to the most common 
pavement cracking type, fatigue cracking [55]. Nano-TiO2 
can form strong interfacial bonding with the asphalt binder 
molecules, enhancing adhesion between the binder and 
aggregates [56]. This effect leads to a more durable asphalt 
pavement capable of withstanding repetitive stress and strain 
from traffic loading [57]. Table 1 reviews the fatigue resist-
ance of asphalt binders and mixtures after the addition of 
nano-TiO2. It has been indicated that in almost all cases, 
the addition of nano-TiO2 can have an enhancing influence 
on the fatigue lives of conventional binders and mixtures. 
Also, the addition of other materials like nano-SiO2, mul-
tiwalled carbon nanotube (MWCNT), and  CaCO3, along 

with nano-TiO2, can heighten the enhancement of fatigue 
life caused by this nanomaterial [58–60].

High‑temperature performance

Asphalt pavements are constantly exposed to high tempera-
tures, which have recently increased due to the effects of 
climate change [68, 69]. Thus, it is necessary for binders 
and mixtures to have great performance against rutting [70]. 
Incorporated in asphalt pavement, nano-TiO2 can act as a 
thermal barrier, reflecting a significant amount of solar radi-
ation, reducing the absorption of heat by the pavement sur-
face, and improving rutting resistance [11]. Also, nano-TiO2 
high surface area and reactivity lead to increased viscosity 
and stiffness of the binder at high temperatures, reducing 
the potential for rutting and permanent deformation [67]. 
Table 2 reviews the studies related to the high-temperature 
performance and rutting resistance of nano-TiO2-modified 
asphalt binders and mixtures. It can be concluded that 
regardless of binder type, the addition of nano-TiO2 as a 
modifier leads to improving rutting resistance. These results 
are compatible with the results taken from the chemical 
interaction of binder and nano-TiO2, which more stiffness 
and asphaltene content, signs of better rutting resistance, 
were concluded after examining chemical experiments.

It should also be noted that using nano-TiO2 along with 
other materials as binder modifiers may change the perfor-
mance of the pavement. By incorporating 1–7% nano-TiO2 
and 0.4–2.8% nano-SiO2 in a 60/70 binder, it was shown 
that the incorporation of these nanomaterials results in a 
higher complex modulus, lower phase angle, and lower per-
manent deformation [60]. In another study, a combination 
of 1% organic expanded vermiculite (OEVMT) and organic 
montmorillonite (OMMT) with 2% nano-TiO2 resulted in 
better rutting resistance for the binders [71]. Also, using 
nano-TiO2/CaCO3 resulted in more rutting factor and higher 
rutting resistance [59]. The incorporation of  TiO2 and ther-
mochromic (TC) powder met the maximum rutting depth by 
conducting Asphalt Pavement Analyzer (APA) rutting test 
[72]. Also, the addition of 1, 2, and 3% nano-TiO2 along with 
2, 4, and 6% thermoplastic polyurethane (TPU) to asphalt 
binder 80/100 showed better high-temperature performance 
than the base binder, and  TiO2 had a leading effect [73]. The 
combination of  TiO2, ZnO, and basalt fibers as modifiers in 
asphalt binder led to better resistance to permanent deforma-
tion, and nanoparticles also could compensate for the poor 
cracking resistance of the binder [74].

Low‑temperature performance

Low-temperature cracking of asphalt pavement is the 
main distress of these pavements in cold regions [81]. 
Table 3 reviews the outcome of nano-TiO2 addition on 

Fig. 4  FTIR spectrum of nano-TiO2-modified asphalt binder [54]
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low-temperature cracking resistance of asphalt binders 
and mixtures. As it is shown, nano-TiO2 addition increases 
asphalt viscosity and decreases its cracking resistance. 
However, all the samples met the standard requirements for 
cracking resistance, which shows that this nanomodifica-
tion can provide acceptable low-temperature performance 
for asphalt samples.

Aging resistance

Asphalt pavements are exposed to oxidation and environ-
mental impacts like ultraviolet (UV) rays, which result in 
asphalt aging. Decrease in durability and increasing poten-
tial of cracking due to more stiffness and brittleness are the 
results of asphalt aging [85]. Evaluating the aging resistance 
and behavior of these nanomodified binders is necessary 
for improving pavement performance. Table 4 reviews the 
related studies and shows that incorporating nano-TiO2 in 
asphalt binders and mixtures leads to better aging resistance. 
Studies have shown that the lower aging resistance has an 
adverse effect on the fatigue cracking of the asphalt mixtures 

[86]. Thus, better aging resistance to nano-TiO2-modified 
mixtures can lead to better fatigue resistance, which is in 
line with the results in the fatigue performance evaluation 
section.

It should be mentioned that the increase in the amount of 
 TiO2 nanoparticles, when used alone, has a better effect on 
aging resistance than using nanoparticles along with micro-
particles [87]. Nano-TiO2 particles have a higher surface 
area and result in better adhesion and mechanical perfor-
mance in the mixtures, which leads to better aging resist-
ance [60]. Also, the higher surface area may lead to better 
and more evenly dispersion of the particles in the binder, 
but the potential agglomeration probability should also be 
considered [88]. In addition, using nano-TiO2 can lead to 
more efficient photocatalytic and cool pavement perfor-
mance, which is discussed in the latter sections. However, 
the chemical mechanism and exact difference of nano-TiO2 
and micro-TiO2 effects on asphalt aging are areas for further 
investigation.

Rather than directly mixing with asphalt binder,  TiO2 
can be used as a coating agent or surface spraying on the 

Table 1  Fatigue resistance of nano-TiO2-modified asphalt binders and mixtures

Asphalt type Nano-TiO2 dosage Experiment Result References

Binder PG 64-22 5% Linear Amplitude Sweep (LAS) (at 
25 °C)

50% increase in  Nf at 2.5% strain [58]

Binder 3, 9, 15% LAS (at 20 °C) 8, 19, and 39% increase in  Nf, 
respectively (0% at 7.7% strain)

[61]

Transparent binder Kromatis 50/70 0.5, 3, 6, 10% LAS Except for 0.5% dosage, up to 22 
and 39% decrease in  Nf at 2.5 and 
5% strain, respectively

[50]

Binder AC-60/70 2, 4, 6, 8% LAS (at 25 °C) 61 to 364% increase in  Nf at 2.5% 
strain level. 4 to 47% at 5% strain 
level

[62]

Binder 60/70 0.3, 0.6, 0.9, 1.2% LAS Except for the 1.2% dosage, there 
is a 15 to 30% increase in  Nf at a 
2.5% strain level. 17 to 33% at 5% 
strain level

[63]

Binder 50/70 3, 4, 5% LAS (at 25 °C) 77 to 122% increase in parameter A, 
which shows greater resistance to 
accumulated damage

[54]

Mixture (AC-60/70) 2, 4, 6, 8% Four-point Beam Fatigue (FPBF) Increasing the dosage of nano-
materials results in a significant 
increase in the fatigue life

[62]

Mixture (AC 14 surf 35/50) 3, 6% FPBF 3% dosage leads to the same fatigue 
resistance as a base binder, but 6% 
dosage decreases it

[64]

Mixture (binder 80/100) 2, 4, 6, 8, 10% Indirect Tensile Fatigue (ITF) 6 to 21% increase in fatigue life by 
increasing the dosage

[65]

Mixture (binder 85/100) 3, 6% ITF Both dosages result in almost the 
same increase in fatigue life

[66]

Mixture (binder 60/70) 1, 3, 5, 7% ITF Increasing the dosage of nanocon-
tent leads to the mitigation of 
micro-cracks and prevents their 
propagation

[67]
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asphalt pavement. By adding 10, 25, and 50%  TiO2 as coat-
ing agents, atomic force microscopy (AFM) results showed 
that the modified binder had a smoother surface and less 
aging process [89]. Also, using 4 g/L of nano-TiO2 as sur-
face spraying showed better aging resistance for asphalt sam-
ples [87]. It has also been indicated that nano-TiO2 can fill 
the microscopic defects in asphalt binders and lead to a more 
erosion and aging-resistant asphalt pavement surface [90].

Moisture susceptibility

Water penetration into the pavement layers has negative 
impacts on the pavement performance [96]. As mentioned 
before, nano-TiO2 leads to better adhesion between the 
asphalt binder and aggregate particles [56]. By increasing 
this adhesion, the asphalt mixture can tolerate more freeze 

and thaw cycles and shows better moisture susceptibility [97, 
98]. Also, due to the higher solubility of nano-TiO2 in water 
than in asphalt binder, the moisture susceptibility of nano-
TiO2-modified asphalt mixtures can be ameliorated [99]. It 
has also been mentioned before that using nano-TiO2 can 
reduce the effects of aging factors, which water penetration 
may be mentioned as one, on the asphalt pavement. It should 
also be mentioned that although nano-TiO2 has a hydrophilic 
nature, it can be modified to hydrophobic, which may be 
used to enhance the moisture susceptibility of the modified 
or coated pavement [100, 101].

Table 5 reviews the moisture susceptibility of nano-TiO2-
modified asphalt mixtures. It is shown that by incorporat-
ing nano-TiO2 into asphalt pavement, the Tensile Strength 
Ratio (TSR) of the mixtures is increased, which shows more 
durability and better water stability. In another study, it was 

Table 2  Rutting resistance of nano-TiO2-modified asphalt binders and mixtures

Asphalt type Nano-TiO2 dosage Experiment Results References

Binder 3, 6, 9, 12, 15% Dynamic shear rheometer (DSR), 
Multiple stress creep resistance 
(MSCR)

Increasing nanocontent results in bet-
ter high-temperature performance

[75]

Binder 60/70 1.5, 3.5, 5.5, 9% DSR, MSCR Nano-TiO2 increases the rutting resist-
ance of asphalt binder

[76]

Binder PG 64-22 5% MSCR (at 64, 70, 76 °C)
DSR (at 58, 64, 70, 76  °C)

Increasing G*/sin (δ) and decreas-
ing  Jnr

[58]

Binder AH-90 5% DSR G*/sin (δ) increases with the addition 
of nanocontent but decreases with 
the increase in temperature

[6]

Binder 60/70 0.3, 0.6, 0.9, 1.2% DSR,
MSCR (at 64 °C)

0.9% dosage has the most G*/sin 
(δ) and lower  Jnr on the nonaged 
samples

[63]

Binder 60/70 2, 4, 6, 8% MSCR (at 52 to 82 °C) Jnr decreases with the increase of 
nanocontent

[62]

SBS-modified binder 1, 2, 5, 10% DSR At over 76 °C, G*/sin (δ) remains the 
same with increasing the nanocon-
tent

[10]

Binder TZ-70 4, 5, 6% DSR 5% dosage shows more increase in 
G*/sin (δ)

[77]

Binder (penetration 103) 0.5, 1, 1.5, 2, 2.5% DSR (at 58 °C) G*/sin (δ) increases with the increase 
of nanodosage

[78]

Mixture (SBS-modified binder) 5% Rutting test The modified mixture has a 45% more 
dynamic stability index

[6]

Mixture (AC-60/70) 2, 4, 6, 8% Wheel track Rut depth decreases with the increase 
of nanocontent

[62]

Mixture (SBS and HEA binder) 2% Wheel track Using nanocontent leads to higher 
dynamic stability due to the high 
surface volume

[79]

Mixture (SBS-modified binder) 1, 3, 5, 10% Rutting test Dynamic stability increases up to 40% 
by increasing nanocontent to 5%

[80]

Mixture (binder 60/70) 1, 3, 5% Repeated Load Axial (RLA) Increasing nanocontent leads to lower 
deformation, strain, and temperature 
susceptibility

[67]

Mixture (binder 60/70) 4% Wheel track The addition of nano-TiO2 leads to 
lower rut depth

[5]
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shown that the addition of 1, 3, and 5% nano-TiO2 to semi-
warm asphalt mixtures can lead to more viscosity and, there-
fore, more adhesion, which leads to better moisture suscep-
tibility (about 16% enhancement). It was also found that this 
modified asphalt mixture shows a minimum of 75% in terms 
of Resilient Modulus Ratio (RMR) [102].

Optimum dosage

Based on the literature review, the evaluation approach of 
nano-TiO2 in asphalt pavement in studies can be divided 
into two forms: evaluation of modified binder with binder 
tests and evaluation of mixture made by the modified binder 
with mixture tests. According to the results of fatigue per-
formance, the suggested optimum dosage of nano-TiO2 
addition is 5% of the weight of binders for binder perfor-
mance and 3% of the weight of binder for mixture perfor-
mance, which is congruous with the results of some other 
studies [66, 67]. It can be seen that the results for binders 
and mixtures do not match exactly, which shows that the 
binder tests are not the definitive predictive parameters for 
asphalt mixture performance. For high-temperature perfor-
mance, the optimum dosage of nano-TiO2 is suggested to 
be 5% for both binder and mixture performance, which is 
consistent with other studies [77, 80]. For low-temperature 

performance, aging resistance, and moisture susceptibility, 
there has not been a clear result for the optimum dosage, but 
the suggested optimum dosage for other performance crite-
ria (fatigue and high-temperature performance) can meet 
the minimum and improvement for these parameters, but 
more research is needed to justify the application. Thus, the 
literature review shows that the optimum dosage of nano-
TiO2 for binder modification to improve the rheological and 
mechanical performance of asphalt binder and mixture may 
be around 5% of the weight of the binder. However, this 
dosage can be vary in different projects due to the type of 
binder, aggregates, field conditions, and more importantly, 
the environmental impacts.

Environmental impacts of incorporating 
nano‑TiO2 into asphalt pavement

Nano-TiO2-modified asphalt pavements are credited with 
many environmental benefits, such as purifying exhaust 
emission, mitigating the heat island effect, and reducing haze 
as well as noise [104, 105]. Therefore, the promising envi-
ronmental benefits of nano-TiO2, as well as the performance 
of the asphalt pavement, should be considered to accentuate 
its application. Photocatalytic performance and mitigating 

Table 3  Low-temperature cracking resistance of nano-TiO2-modified asphalt binders and mixtures

Asphalt type Nano-TiO2 dosage Experiment Results Reference

SBS-modified binder 5% Bending Beam Rheometer (BBR) Cracking resistance is reduced but still 
meets the Superpave specification 
requirements

[6]

RAP binder 4, 6, 8, 10, 12, 14% BBR All the samples met the requirements for 
creep stiffness and m-value

[82]

Binder PG 52–28
SBS-modified PG 64E-40

3, 5% Modified BBR The addition of nanomaterials leads to 
higher stiffness and lower cracking 
resistance

[81]

SBS-modified binder 1, 2, 5, 10% BBR Nano-TiO2 has little effect on the low-
temperature crack resistance of asphalt

[10]

HEA binder 2% BBR Adding nano-TiO2 powders has no sig-
nificant influence on low-temperature 
rheological

Properties

[79]

Sasobit/SBS-modified binder 1, 3, 5% BBR Nanoparticles do not significantly reduce 
the low-temperature cracking resistance 
of binder

[83]

Mixture (SBS-modified binder) 5% Pavement Performances Analysis The nano-TiO2-modified mixture has a 
better anti-cracking ability at low tem-
peratures due to improving εB and  SB

[6]

Mixture (HEA and SBS binder) 2% Three-point
bending beam

The addition of nanomaterial to the HEA 
mixture leads to better-cracking resist-
ance compared to the SBS mixture

[79]

Mixture 0.9% Semi-circular bending The addition of nano-TiO2 leads to better 
performance in cracking and fracture 
mechanics

[84]
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urban heat island effect, as two important benefits of using 
 TiO2 and nano-TiO2 in asphalt pavement, are evaluated in 
the following sections.

Photocatalytic performance

Asphalt pavements are constantly exposed to vehicle exhaust 
pollutants. A suitable method to degrade these pollutants, 
which has become popular recently, is using  TiO2 in asphalt 

pavements.  TiO2 is a semiconductor material. Accordingly, 
in terms of solid-state physics, there is a large band gap 
equal to 3.2 eV for the anatase phase of  TiO2 and 3.02 eV 
for the rutile phase of  TiO2 between the conduction band 
(vacant band) and the valence band (filled with electrons). 
Due to this band gap, electrons in the valence band cannot 
move to the conduction band; however, in photocatalysts, 
light is the decisive factor in helping electrons to be excited 
to the conduction band (photoexcitation).  TiO2 particles 

Table 4  Aging resistance of nano-TiO2-modified asphalt binders and mixtures

Asphalt type Nano-TiO2 dosage Aging simulation tests Rheological/mechanical 
tests

Results References

Binder SK-70# 4% Rolling Film-Thin Oven 
(RTFO)

Atomic Force Microscopy 
(AFM), FTIR

The samples showed 
smoother surfaces and a 
lower aging process

[91]

Bio-modified binder 
(AH-70)

1% RTFO RTFO (mass loss ratio) Nanomodification results 
in lower mass loss and 
better aging resistance

[92]

Binder 60/70 0.3, 0.6, 0.9, 1.2% RTFO, Pressure Aging 
Vessel (PAV)

DSR, MSCR, BBR, LAS The modified binder 
showed better aging 
performance

[63]

Binder 50/70 3, 4, 5% RTFO FTIR, MSCR, LAS TiO2 incorporation 
resulted in better early 
aging resistance, lower 
mass loss, and aging 
delay

[54]

HEA binder and SMA 
mixture

2, 3, 4% The Continuous UV 
Aging Test (CUAT), 
RTFO

DSR, BBR, Wheel track-
ing, Three-point flexible 
beam

Modification improved 
UV aging and short-
term thermal-oxidation 
resistance

[79]

Binder A-70 1, 3, 5% Homemade ultraviolet
Radiation environment 

box

Softening point, Penetra-
tion

Nano-TiO2 can improve 
the anti-ultraviolet 
radiation aging proper-
ties

[93]

Binder PG 64–16 3, 5, 7% RTFO, PAV, UV light DSR, RV, BBR The modification did not 
accelerate the aging 
process

[94]

Mixture (Binder PG 
64–22)

3, 5, 7% Exposing to environmen-
tal conditions

FTIR, MSCR By increasing nano-TiO2 
content, the mixture 
showed better aging 
resistance

[95]

Table 5  Moisture susceptibility of nano-TiO2-modified asphalt mixtures

Asphalt type Nano-TiO2 dosage Experiment Results References

Mixture (Binder AH-90) 5% F-T splitting TSR value increased from 86.7 to 91.6 [6]
Mixture (Binder 60/70 and 

limestone steel slag aggre-
gates)

2, 4, 6, 8% Indirect Ten-
sile Strength 
(ITS)

With the increase of nano-TiO2 content, the TSR value 
increased from 85 to 95 and from 82 to 88 for mixtures con-
taining limestone and steel slag aggregates, respectively

[62]

Mixture (Binder 80/100) 2, 4, 6, 8, 10% ITS A mixture with 6% nano-TiO2 showed the highest TSR value 
(around 90)

[65]

SMA mixture (Binder 60–70) 0.3, 0.6, 0.9, 1.2% ITS The Tensile Strength Ratio (TSR) increases from 77.8 to 82.4 
with the nanomodification compared to the base binder value 
of 76.8

[103]
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applied to surfaces such as roads are highly exposed to UV 
rays, which contain photons. When  TiO2 absorbs a photon 
that encompasses the energy greater than or equal to its 
band gap, 3.2 eV or 3.02 eV, it will result in a process in 
which electrons from the valence band can be excited to 
the conduction band  (e−). In other words, this process will 
bring about electron–hole pairs  (h+) in the valence band 
[106]. Thereupon, these electrons  (e−) and holes  (h+) react 
with oxygen  (O2) and water  (H2O), respectively, to produce 
active superoxide anion  (O2

−) and hydroxyl radical  (OH*); 
this is because holes and electrons are powerful oxidizing 
and reducing agents in the process. Furthermore, the super-
oxide anion will react with H+ separated from the water to 
generate the  HO2

* radical. Finally, hydroxyl radical  (OH*) 
and  HO2

* react with organic air pollutants such as NO and 
 NO2, resulting in water-soluble nitric acid  (HNO3), which 
can be later washed away by rainwater or street sprinkling 
[42, 107]. Nano-TiO2 also shows promising photocatalytic 
performance, which can be used for degrading pollutants 
in the pavements. Figure 5 shows an illustration of the pho-
tocatalytic performance of nano-TiO2 addition in asphalt 
pavement.

Also, studies show that the  TiO2 particles can lead to  CO2 
reduction photocatalytic performance, as UV light on  TiO2 
catalysts produces separated electrons and holes, reacting 
with water and  CO2 to form oxygen, H radicals, CO, meth-
ane, methanol, and hydrogen, which lead to better efficiency 
when smaller particles are used [108]. Thus, the application 

of  TiO2 nanoparticles in asphalt pavement can show promis-
ing outcomes in reducing air pollution.

Several studies have scrutinized the photocatalytic per-
formance of applying  TiO2 and nano-TiO2 in asphalt pave-
ments, which leads to pollutant degradation. Accordingly, 
a brief review of the studies related to photocatalytic pave-
ments regarding the  TiO2 and nano-TiO2 incorporation 
method is presented in Tables 6, 7, and 8. It is shown that 
different incorporation methods have alternative impacts on 
photocatalytic performance. This may create a challenge that 
whether binder modification or surface application can meet 
the optimum performance and environmental criteria. Also, 
it is shown that using nano-TiO2 shows better photocatalytic 
efficiency comparing typical  TiO2. Moreover, materials like 
carbon, cerium, nitrogen, lanthanum, and  Fe3+ are used as 
doping agents and  CeO2, steel slag, montmorillonite,  AL2O3, 
rubber, rejuvenators, cationic surfactant, g-C3N4, polysty-
rene, activated carbon, pyrite, specularite, glass beads, 
polystyrene,  Fe2O3,  CeO2, and  WO3 are used as additives to 
enhance photocatalytic performance.

However, the optimum proportion and dosage of nano-
TiO2 for the photocatalytic performance of asphalt pave-
ment needs more research. For micro-surfacing applications, 
research indicated that the optimum dosage could be 11% of 
the weight of the binder, showing 40%  NOx absorption, as 
well as acceptable performance [109].

There are several factors that affect the degradation effi-
ciency of the pavements, which are shown in Table 9. It 

Fig. 5  A schematic view of the photocatalytic performance of incorporating nano-TiO2 into asphalt pavement
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should be noted that the reasons for better photocatalytic 
performance of anatase compared to other  TiO2 polymorphs 
can be as follows: larger band gap, differences in direct and 
indirect band gap, and better excitons mobility [134].

Also, studies have shown that the smaller  TiO2 particles 
can lead to better photocatalytic efficiency. In nano-TiO2 
epoxy emulsified asphalt mixture, the NO-degradation rate 
is increased from nearly 40% to 70% when particle size is 
reduced from 10–15 to 5 nm, but the change in  CO2 degrada-
tion is not significant [116]. For  CO2 reduction, laboratory 
studies have shown the optimum nano-TiO2 particle size can 
be 14 nm, but using larger or smaller particle sizes than 14 
nm can decrease the  CO2 reduction [108]. The controversial 
results may be due to the difference in nano-TiO2 samples in 
the laboratory. It should be noted that although particle size 
reduction can be effective on photocatalytic performance, 
other parameters like surface area, voids, band gap energy, 
and other physical characteristics should also be considered 
because they can have more influence on photocatalytic effi-
ciency [135]. Thus, the optimum particle size of nano-TiO2 
is an area of further investigation.

All in all, by considering these factors and using an 
appropriate dosage of materials, the highest efficiency and 
better photocatalytic performance can be achieved.

Urban heat island mitigation (cool pavement)

There has been a drastic increase in the world population in 
recent years, resulting in new megacities and existing ones 
becoming more populated. This has led to the emergence of 
the urban heat island (UHI) phenomenon, where anthropo-
genic heat, the blockage effect against urban ventilation, and 
the implementation of artificial materials result in warmer 
climatic conditions [139, 140]. Figure 6 shows the schematic 
view of UHI.

Cool pavements have been introduced for their capability 
of reducing the pavement surface temperature and mitigat-
ing UHI, and they have been categorized into three types: 
reflective, evaporative, and heat-storage-modified pavements 
[141, 142]. Reflective technologies such as reflective coat-
ing, light-colored pavements, and thermochromic materi-
als are considered suitable strategies to reduce the negative 
effects of UHI on roads [143, 144]. Also, nanomodifications 
have been proposed for lowering the pavement temperature 
and mitigating UHI effects [145, 146]. Accordingly,  TiO2 
particles can help reduce the UHI effect in urban areas, as 
they increase the reflectivity and reduce the temperature of 
materials, including asphalt coatings [147, 148]. Figure 7 
shows the beneficial effects of using nano-TiO2 in asphalt 
pavement regarding pavement cooling.

The mechanism behind pavement cooling by nano-TiO2 
particles can be attributed to higher reflectivity and bet-
ter thermal conductivity. On the one hand,  TiO2 particles Ta
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absorb light at wavelengths of 275–405 nm and reflect 
light due to their high refractive index (n = 2.6142 at 
wavelength = 587.6 nm), which allows them to be used 
in sunscreens and photography applications, as well as 
pavement coatings for cool pavements [149, 150]. On the 
other hand,  TiO2 particles have, on average, a higher ther-
mal conductivity than the typical asphalt mixtures [151, 
152]. This may lead to better thermal conductivity of nano-
TiO2-modified asphalt pavement. However, the majority 
of studies have focused on the reflective properties, and 
the thermal conductivity may need further investigation.

A study showed 4–5 °C temperature reduction for 
asphalt samples and 8–10 °C for binders at the top surface 
of pigment-modified samples. Also, pigmented mixtures 
take 25–30% less time to cool down, proving their greater 
efficiency in heat dissipation. Moreover, red and white 
pigment-modified asphalt mixtures exhibit decreased rut 
depth of 35% and 15%, respectively, as compared to typi-
cal asphalt mixtures [151].

Furthermore, a study found that the improved ther-
mal behavior of the nanomodified asphalt material could 
be ascribed to physical modifications that resulted in 
smoother and lighter-colored surfaces, leading to lower 
daily surface temperatures and a reduction of the UHI 
impact of the asphalt [153].

Also, a study found that the green coating with 15% 
titanium dioxide and 10% floating beads had the best 
cooling performance, and higher dosages of the coating 
resulted in better cooling effects [154]. Additionally, by 
adding 1% TC powder and 3% nano-TiO2 as the funda-
ments of the thermochromic asphalt mixture, it was found 
that this addition leads to a reduction in surface tempera-
ture of up to 15 °C [72].

In another study, it was concluded that the use of nano-
TiO2 in asphalt can potentially increase its albedo and 
reduce pavement temperatures to address the UHI effect. 
However, micro-TiO2 may have better reflectance than 
nano-TiO2 and nano-ZnO [155]. Also, it was found that 
using 5–30%  TiO2 quantum dots in asphalt coatings can 
lead to a 12–17% increase in solar reflectivity compared 
to 3% for conventional samples [156].

It should be noted that although nano-TiO2 can be effec-
tive in mitigating UHI effects, more research is needed 
to clarify and justify its application. The effect on  TiO2 
particle size and incorporation method in pavement cool-
ing efficiency, the improvement of reflectivity and thermal 
conductivity of nano-TiO2-modified asphalt pavement by 
the addition of other reflective and conductive materials, 
and the optimum proportions on nano-TiO2 particles need 
to be examined to reach better pavement cooling and in 
result, better sustainability.
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Table 9  Factors affecting the photocatalytic performance of asphalt pavements

Factor Effect References

TiO2 phase Anatase has better photocatalytic performance than rutile [17, 112, 134]
Size and number of  TiO2 particles Smaller size and larger number of particles may lead to better degradation perfor-

mance, but other parameters like surface area, voids, and band gap energy should 
also be considered

[114, 116]

Doping methods for preparing  TiO2 The doping methods at the level of preparing the nano-TiO2-modified asphalt can 
enhance the photocatalytic performance

[122, 136]

Incorporation method The spraying method has more advantages than the other methods [41, 133, 137, 138]
Additives Additives such as steel slag could be helpful in the degradation performance (only in 

short-term conditions)
[110, 114]

UV light The increase in UV light intensity improves photocatalytic performance [111, 125, 126]
Weather conditions High relative humidity can decrease the photocatalytic performance [41, 125]
Experiment duration More duration leads to more degradation [116, 124]

Fig. 6  Urban heat island profile

Fig. 7  Using nano-TiO2 in 
asphalt pavement for cool pave-
ments
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Critical discussion and potential downsides

This literature review has focused on the application 
of nano-TiO2 in asphalt pavement and its effects on the 
pavement performance. Regarding the application meth-
ods, direct mixing, surface spraying, and coating can be 
used to apply the nano-TiO2 particles in asphalt pavement. 
The literature review has shown that by using nano-TiO2 
as an asphalt binder modifier, the high-temperature per-
formance, fatigue resistance, aging resistance, and mois-
ture susceptibility of the modified binder and mixture are 
improved. Also, nano-TiO2 can lead to pollutant degrada-
tion by photocatalytic performance and urban heat island 
mitigation by cool pavement performance. However, there 
are challenges that need to be critically examined to inves-
tigate the viability and potential downsides of using nano-
TiO2 in asphalt pavement.

Although studies have shown improvements in rheo-
logical and mechanical properties of asphalt pavement by 
using nano-TiO2, the usage of nano-TiO2 is expected to 
also improve the photocatalytic and cool pavement per-
formance in order to reach better sustainability. Thus, the 
selection of nano-TiO2 optimum incorporation method 
(binder modification, surface application, or a combina-
tion of both) is a challenge, leading to future investiga-
tion. Also, due to the lack of related studies, there need to 
be research regarding the optimization in mixing (mixing 
speed, temperature, and time) and spraying (dosage and 
procedures) and the optimum dosage of nano-TiO2 for 
maintaining performance criteria, environmental impacts, 
and long-term performance of the modified asphalt 
mixture.

Also, the fracture mechanics of the nano-TiO2-modi-
fied asphalt mixtures should be considered. As mentioned 
before, nano-TiO2 can lead to better rutting and fatigue 
resistance but has a low impact on the low-temperature 
cracking resistance. Thus, in order to clarify the fracture 
mechanics of the modified pavement, studying mode I, 
mode II, and mixed mode I/II is recommended. Related 
studies have shown that by 0.9% addition of nano-TiO2, the 
fracture mechanics of the asphalt mixture in both vertical 
and angular cracks are improved, and the toughness of the 
mixture is increased [84].

Additionally, the effect on skid resistance of asphalt 
pavement after nano-TiO2 addition is an area of concern. 
Accordingly, it has been indicated that with the increase 
of spraying and coating amount of nano-TiO2, there is a 
significant reduction in skid resistance (in terms of reduc-
tion in the textural depth and friction coefficient), which 
can lead to lower driving safety and higher accident rate 
(halving the skid resistance leads to doubling the accident 
rate) [35, 44, 157]. For controlling the skid resistance, 

different amounts of nano-TiO2 have been proposed, from 
350 to 550 g/m2, to control the textural depth from 0.55 to 
1.4 mm, respectively [35, 44]. Therefore, there needs to 
be more research on the skid resistance of asphalt pave-
ments modified with nano-TiO2, mainly due to the differ-
ent standards for textural depth and the effect of charac-
teristics of nano-TiO2 particles and the mixture properties 
on the skid resistance.

The field applications of nano-TiO2 in asphalt pavement 
construction introduce practical challenges. The photocata-
lytic efficiency and properties of nano-TiO2 field applica-
tions have been discussed before, but some challenges still 
remain. Using N-doped nano-TiO2 on a selected field road 
to evaluate its durability when used as photocatalytic coating 
has shown that the photocatalytic coating can maintain its 
performance for approximately 13 months, which is caused 
by affecting and removal of the coating due to the traffic 
and rain [122]. In another field study in Germany, the  TiO2 
particles were applied on an epoxy resin layer, which was 
coated on a selected test road, and the sample was cored and 
extracted from the pavement and then tested, which showed 
remarkable photocatalytic performance [131].

Although the field results demonstrate appropriate photo-
catalytic performance, the field conditions, including severe 
traffic loading repetitions and runoff due to rain, can affect 
the photocatalytic efficiency and pavement life span. The 
abrasion caused by traffic loadings can remove the modi-
fied layer form; the pavement surface can impair its per-
formance. Also, the rehabilitation and surface treatment of 
the pavement are affected by the nano-TiO2 coating, which 
may be removed from the surface and lose its photocatalytic 
efficiency due to these proceedings. Another concern regard-
ing nano-TiO2 particles is their probable aggregation chance 
due to their smaller size, which can cause larger particles 
and lower surface area. Achieving uniform dispersion and 
ensuring the stability of nano-TiO2 particles throughout the 
asphalt mixture can be significantly important for better per-
formance. These challenges can affect both the laboratory 
and field application, especially the field application due to 
the lower possible controls on the variables.

In addition, due to its smaller particle size, nano-TiO2 
can cause oxidative stress, DNA damage, and genotoxic-
ity in living organisms, ultimately leading to a decrease in 
growth and reproduction, as well as affecting the micro-
bial communities in soil and water, adversely affecting 
the overall health of the ecosystem [158]. The recom-
mended exposure limits for fine  TiO2 (including pigmen-
tary  TiO2) are 2.4 mg/m3 by the US National Institute for 
Occupational Safety and Health (NIOSH) and 0.3 mg/
m3 for ultrafine  TiO2 (including nano-TiO2) for up to 10 
h per day during a 40-h work week, as a time-weighted 
average (TWA) concentration [159]. Due to these lim-
its, care should be taken when using nano-TiO2 in both 
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laboratory and field experiments to avoid its harmful 
effects, especially when workers use it in asphalt pave-
ment construction.

The reflective properties of nano-TiO2-modified asphalt 
pavement are an area of both benefits and challenges. Stud-
ies have shown that by doubling the luminance of the pave-
ment, the night to day accidents will decrease by 19% [160]. 
Although more luminance of asphalt pavement, especially 
during the night and in the tunnels, can lead to more safety 
and fewer accidents, the extra luminance and sun glare can 
result in more crashes [161]. Also, by reducing the texture 
depth of the asphalt pavement, the accident rate increases 
[162]. Because nano-TiO2 addition can affect the micro- 
and macro-texture as well as the pavement surface color 
and reflectance, the side effects of the nano-TiO2 reflective 
pavement need to be considered.

Contaminants leaching from asphalt pavements are an 
environmentally important concern [163]. Studies have 
indicated that nanoparticles can leach out and potentially 
contaminate water bodies or soil, raising concerns about 
the long-term environmental impacts [164]. For nano-TiO2-
modified asphalt pavement, there have not been adequate 
studies regarding the leaching characteristics. These pave-
ments have different and unique leaching characteristics as 
they have nanomodified asphalt binder and its interactions 
with water infiltrating (the solubility of nano-TiO2 in water) 
and other additives, as well as nanosurface coatings which 
is affected by runoff water. Therefore, the leaching potential 
of nano-TiO2 particles from the asphalt pavement into the 
environment is an important area for further investigation.

Another important point is that although this study has 
focused on the application of  TiO2 particles in asphalt pave-
ment, the usage of nanomaterials in concrete pavements has 
also been regarded. It has been shown that by using different 
nanomaterials, the performance and properties of the con-
crete mixture are improved [165, 166]. This can draw atten-
tion to the usage of nano-TiO2-modified composite pave-
ments and lead to further investigations for construction.

Also, for better sustainability approach, the environ-
mental and economical assessment of nano-TiO2-modified 
asphalt pavement should be considered. Two main tools for 
this approach can be defined as life cycle assessment (LCA) 
and life cycle cost analysis (LCCA). Although nano-TiO2 
has shown photocatalytic performance, which can lead to 
lower  NOx and  CO2 pollution (lower acidification and global 
warming potential in LCA), the initial process of nano-TiO2 
production can produce too much pollutants. Thus, the life 
cycle emission and pollution degradation of these pavements 
should be considered. For economic analysis, the initial cost 
of the nanomaterials can affect the life cycle cost of the pave-
ment, which makes it very crucial to be examined. Also, the 
maintenance of these modified pavements is a challenge in 
performance, environment, and economic perspectives.

All in all, the application of nano-TiO2 in asphalt pave-
ment can show improvement in both performance and envi-
ronmental aspects. But considering both benefits and chal-
lenges can lead to a better understanding of the potential 
advantages and disadvantages of nano-TiO2-modified asphalt 
pavement. This approach requires a multicriteria decision 
making for researchers and pavement constructors. Thus, 
a comprehensive understanding of these critical aspects is 
necessary to assess the viability and sustainability of imple-
menting nano-TiO2 in asphalt pavement construction.

Conclusions and future research directions

This article presents an overview of the research in the field 
of incorporating nano-TiO2 in asphalt pavement, emphasiz-
ing the chemical, rheological, mechanical, and environmen-
tal properties and effects. This article also aims to investigate 
and determine the possible chemical interactions, optimum 
dosage for nano-TiO2, and factors affecting its performance 
by giving in-depth explanations. Below is a summary of 
some of the most important conclusions deducted from this 
review study:

1. Chemical analysis shows that nano-TiO2 mainly consists 
of anatase and rutile polymorphs. FE-SEM images show 
that the rutile surface is smoother than anatase, which, 
along with differences in band gaps and better excitons 
mobility, may lead to better photocatalytic performance 
of anatase. Also, higher surface area and reactivity of 
anatase, which can lead to stronger bonds with asphalt 
molecules, may result in better rheological and mechani-
cal properties.

2. FTIR spectrum shows that modification of asphalt binder 
with nano-TiO2 may belong to physical reactions, and no 
chemical alteration is observed. FTIR and SARA analy-
sis may show more stiffness and viscosity of the asphalt 
binder.

3. Rheological and mechanical assessment of nano-TiO2-
modified asphalt binder and mixture may show higher 
rutting and fatigue resistance due to more viscosity and 
stiffness. However, low-temperature cracking resist-
ance may be weakened after modification but still meets 
the minimum criteria. Also, the long- and short-term 
aging resistance of nano-TiO2-modified asphalt can be 
enhanced. The optimum dosage for nano-TiO2 in rheo-
logical and mechanical performance is variable due to 
different conditions, but it can be suggested to be 5% of 
the weight of the binder to improve the characteristics 
of binders and mixtures.

4. The photocatalytic performance of nano-TiO2 in asphalt 
pavement shows improvements, but it depends on many 
factors, including nano-TiO2 phase, size and num-
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ber of  TiO2 particles, a doping method for preparing 
nano-TiO2, incorporation method, additives, UV light, 
weather conditions, and experiment duration. By opti-
mizing these conditions, better efficiency for pollution 
degradation can be obtained.

5. Cool pavements have been introduced to mitigate the 
urban heat island effects on the environment by differ-
ent mechanisms. Incorporating nano-TiO2 into asphalt 
pavement can lead to higher reflectivity, lower surface 
temperature, and less time to cool down, which could 
mitigate the urban heat island effects.

Moreover, it is recommended that researchers focus on 
the points listed below for their future works.

1. Evaluating the different performance and effects of 
anatase and rutile nano-TiO2, as well as their particle 
size, for better rheological, mechanical, and photocata-
lytic performance of nano-TiO2-modified pavement.

2. Conducting more chemical tests on the modification of 
asphalt binder with nano-TiO2 to acquire a better under-
standing of the possible reactions and predict the binder 
and mixture performance and aging resistance, as well 
as the possible dispersion conditions.

3. Optimum methods, proportions, and dosage of nano-
TiO2 incorporation in asphalt pavement for maintaining 
both the performance and environmental benefits.

4. Better evaluation of nano-TiO2-modified asphalt mix-
ture to highlight the possibility and performance of its 
utilization in future roads and, especially the long-term 
performance, skid resistance, and abrasion possibility.

5. Exploring the potential for using nano-TiO2 to enhance 
the sustainability of asphalt pavement by conducting 
LCA and LCCA. However, efforts have been made 
to clarify this part, but no related results were found 
[167]. Key parameters for LCA may include raw mate-
rial extraction, manufacturing, application, and dis-
posal, focusing on environmental impacts. For LCCA, 
parameters encompass initial costs, maintenance, energy 
use, and long-term performance, evaluating economic 
aspects. A holistic view of the environmental and eco-
nomic implications can be obtained by integrating these 
two methods.

6. Leaching characteristics of nano-TiO2-modified asphalt 
pavements for clarifying the potential contaminants and 
their effects on the environment and human health.
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