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Abstract

Among nanomaterials, nano-TiO, has shown the potential to improve the rheological properties of asphalt binders, and
mechanical and durability properties when used in the mixture phase. These improvements include fatigue resistance, high-
temperature performance, aging resistance, and moisture susceptibility. In addition, nano-TiO, is known to have remarkable
photocatalytic properties, which can lead to pollutant degradation and better air quality. Besides, nano-TiO, has the potential
to reduce the pavement surface temperature by reflecting the UV rays of the sun and increasing heat dissipation, which may
lessen the urban heat island adverse effects on the environment. These interesting features of nano-TiO, can be attributed to
its remarkable physical and chemical structure and properties. To cast light on these different outcomes of using nano-TiO,
in asphalt pavements, this article provides a critical review of the rheological, mechanical, durability, and environmental
impacts of incorporating nano-TiO, into asphalt pavements, and how the chemical properties of nano-TiO, are related to
these effects. This article also reviews the photocatalytic and pavement cooling performance of nano-TiO,-modified asphalt
pavement to optimize its environmental benefits. Furthermore, the article provides a critical discussion investigating the
challenges and potential downsides of using nano-TiO, in asphalt pavement, offering helpful discernments for future research
and application in the pavement industry.

P4 Pooyan Ayar
ayar @iust.ac.ir

School of Civil Engineering, Iran University of Science
and Technology, Tehran 16846-13114, Iran

Department of Civil Engineering, Sharif University
of Technology, Tehran, Iran

Department of Civil Engineering, Babol Noshirvani
University of Technology, Babol, Iran

@ Springer


http://orcid.org/0000-0002-9856-5995
http://crossmark.crossref.org/dialog/?doi=10.1007/s41062-024-01450-4&domain=pdf

148 Page2of27

Innovative Infrastructure Solutions (2024) 9:148

Graphical abstract

=

e High temperature performance
improvement.

e Fatigue performance
improvement.

R

e Aging characteristics
improvement.

- J

/" Increasing reflection ™\
and reducing pavement
temperature

Reflected
sunlight

» Pavement
containing
Nano-TiO,

>

® Improving the adhesion of binders )
containing Nano-TiO, and aggregates.

Bitumen ))
V~~
k\

..

Adhesive failure
Y,

Aggregate

Ultraviolet rays \
(the sunlight) @
1

/NOX

e e e
Nano-TiO,
h+ h+ h+

Water -~
molecule

Keywords Nano-TiO, - Asphalt pavement - Air pollution - Photocatalytic performance - Urban heat island - Cool pavement

Introduction

Growing concerns regarding the climate change effect and
other environmental troubles have led the world toward
developing sustainable infrastructure [1, 2]. One of the
promising development methods is incorporating nanoma-
terials into road pavement, which enhances durability and
reduces the maintenance needs of this infrastructure [3].
Since road pavements are crucial for sustainability implica-
tions, researchers are exploring the application of nanoma-
terials to improve the mechanical performance and other
properties of pavement materials like asphalt mixtures [4].
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Among these nanomaterials, nanotitanium dioxide (TiO,)
has shown positive outcomes for enhancing the properties
and performance of asphalt mixtures, which make it an eli-
gible nanomaterial for asphalt pavement applications and
construction [4, 5].

Nano-TiO, has also been commonly used in asphalt pave-
ment for degrading vehicle exhaust pollutants [6]. The com-
bustion of fossil fuels in vehicles releases a range of pollut-
ants, which are significant contributors to air pollution and
raise serious concerns for global health [7, 8]. Nano-TiO,
unique photocatalytic properties can efficiently degrade the
pollutants onto asphalt pavement and improve air quality [9,
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10]. Also, the lighter color of nano-TiO, may increase the
UV reflection and lower the pavement temperature, resulting
in a cooler pavement surface [11]. This lower temperature
of asphalt pavement can lead to mitigating urban heat island
effects [12]. These environmental outcomes of nano-TiO,
incorporation into asphalt pavement and its effects on perfor-
mance enhancement have drawn the attention of the research
and construction field [13].

It has been previously discussed in recent related stud-
ies that nano-TiO, can be obtained through environmentally
harmful sulfate or chloride processes, and nano-TiO, has
a larger surface, smaller diameter, and lower opacity com-
pared to normal TiO,, making it potentially advantageous
for improving the rheological and mechanical performance
of modified asphalt binders and mixtures [14—16]. Also, the
photocatalytic performance of TiO,-modified asphalt pave-
ment through different incorporation methods has been dis-
cussed in previous studies [17]. However, several gaps exist
in this field, including studying the effects of different nano-
TiO, polymorphs on the properties of the pavement, rheo-
logical and mechanical properties of the asphalt binder and
mixture, aging resistance, the relationship between chemical
modification and asphalt performance after incorporating
nano-TiO,, factors affecting nano-TiO,-modified asphalt
pavement photocatalytic performance, and cool pavements
for urban heat island mitigation. Also, the comparison
between nano-TiO, and typical TiO, is missing to justify
their applications in pavement construction.

To focus on the mentioned gaps and show a better insight,
this study aims to give a critical review of the nano-TiO,
application in asphalt pavement and its effect on perfor-
mance and environmental impacts. Accordingly, an intro-
duction to nano-TiO, has been given to understand better
its chemical characteristics and relationship with the modi-
fied asphalt performance. Then, incorporation methods
and probable chemical interactions between asphalt binder
and nano-TiO, are discussed. This section is followed by
the rheological and mechanical performance review of

Fig.1 Schematic view of the
subjects reviewed in this study

nano-Ti0,-modified asphalt binder and mixture. Lastly, the
environmental performance of using nano-TiO, in asphalt
pavement, including photocatalytic performance and urban
heat island mitigation, has been evaluated to develop better
sustainability. Figure 1 provides a visual overview of the
topics presented in this article.

Introduction to TiO, and nano-TiO,

Titanium is a light metal with a white-metallic color. Pure
titanium is not soluble in water, but it can be dissolved in
concentrated acids [18]. TiO, is the most stable oxide of tita-
nium [19]. Moreover, TiO, elemental composition is 59.95%
titanium and 40.05% oxygen [20]. The distinctive proper-
ties of TiO, can be directly attributed to its polymorphic
form, which, in turn, is mainly dependent on the preparation
method and post-fabrication heat treatment [21]. Titanium
dioxide naturally exists in four polymorphic forms, includ-
ing anatase, rutile, brookite, and the most uncommon one,
TiO, -B [22].

Figure 2 shows the crystal structure of TiO, polymorphs
and field emission scanning electron microscopy (FE-SEM)
image of anatase and brookite. Both rutile and anatase
have tetragonal crystal structures, while brookite has an
orthorhombic one [23]. Rutile is the most thermally stable
phase, and other phases will transform to rutile by heating,
while brookite is the least stable polymorph of TiO, and is
difficult to synthesize [24]. Anatase has a higher surface area
compared to rutile due to its more open crystal structure and
higher number of exposed surface sites [25]. The FE-SEM
images are used to assess the distribution and dispersal of
different compounds and changes in the surface morphol-
ogy of the samples [26]. For nano-TiO, samples, they show
the presence of nanocrystalline domains in rutile and dense
nanocrystalline at the surface of anatase, but the surface of
rutile is relatively smoother than that of anatase [27].
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Fig.2 a Crystal structures of
TiO, polymorphs [25] b FE-
SEM images of anatase (A-C)
and rutile TiO, (D-F) at differ-
ent magnifications [27]

Anatase

Rutile Brookite

Thus, it can be predicted from FE-SEM images that
anatase can have better photocatalytic performance than
rutile. Additionally, due to the higher surface area and
reactivity of anatase, which can allow it to form stronger
bonds with asphalt molecules, it may be better for improv-
ing asphalt rheological and mechanical properties. How-
ever, due to the higher thermal and chemical stability of
rutile, the optimum proportions of nano-TiO, polymorphs
for optimum rheological, mechanical, and photocatalytic
performance should be evaluated.

Nano-TiO, is a form of TiO, with nanometer-ranged
particle size (typically less than 100 nm) [28]. This size
reduction leads to increased surface area and enhanced
reactivity [29, 30]. These features result in an improve-
ment in asphalt pavement properties, including mechani-
cal and photocatalytic performance [31, 32]. However, the
smaller particles raise concerns about the environmental
impacts of utilizing and disposing of this material [33].
The focus of this study is on nano-TiO, incorporation in
asphalt pavement and its comparison with typical TiO,.
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Incorporating TiO, particles into asphalt
materials

Application methods

The methods of nano-TiO, application in asphalt pavement
are critical in determining the effectiveness of the modi-
fied pavement [34]. Generally, these incorporation meth-
ods can be divided into direct mixing method (i.e., binder
modification) and pavement surface applications (coating
method and spraying method) [34, 35]. Figure 3 shows the
different incorporation methods of TiO, and nano-TiO,
into asphalt pavement in both laboratory and field areas.
It should be noted that the figures for field incorporation
methods are related to typical TiO, and nano-TiO, field
incorporations need more advanced techniques.

For the surface spraying method, pretreatment of the
pavement surface is important for preparing the surface
for better spraying efficiency [38, 39]. One of the most
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Fig.3 Methods of incorporating g
TiO, and nano-TiO, into asphalt
samples and pavement [35-37]

TiO, and Nano-TiO, incorporation methods in asphalt pavement
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important parts of the spraying method is the solvent of
TiO,, which makes it possible to spray. Liquid solvents can
directly solve the TiO, particles and be used as spraying
emulsions, while solid solvents should be used with water
for spraying [40—42]. Post-caring and treatment of the sur-
face is mainly optional and is mostly related to the case.

For the coating method, the procedures are more compli-
cated and require strong solutions to ensure the fluidity and
dispersion of nano-TiO, coating [43, 44]. It has been previ-
ously studied that the coating photocatalytic performance
significantly improves with the increase of nano-TiO, con-
tent and spraying amount up to 8% and 400 g/m?, respec-
tively, and the recommended maximum spraying amount
is 550 g/m? to maintain skid resistance because excessive
dosage thickens the oil membrane, reduces skid resistance,
and is unsafe and uneconomical [35].

However, based on the literature review, the surface
spraying and coating methods are not well and clearly dis-
tinguished in the studies. Although in this study these two
methods are separated, some may find these methods simi-
lar, especially in field application. However, the focus of
this study is to evaluate the effect of nano-TiO, addition to
asphalt binder on the chemical, rheological, and mechani-
cal properties, as well as its environmental comparison with
surface application of nano-TiO, in asphalt pavement.

Chemical or physical interactions of asphalt binder
with TiO, and nano-TiO,

The addition of TiO, and nano-TiO, to asphalt binders as
modifiers may change the functional group percentages in
the asphalt matrix. Thus, studying the chemical behavior and
modification mechanism of incorporating these materials

into asphalt pavements is necessary. Fourier transform
infrared spectrum (FTIR) is a method to evaluate chemical
changes and performance evaluation in materials, especially
asphalt binders [45-47]. Also, it can be used to examine the
aging phenomenon of asphalt materials, which is due to the
chemical changes in the asphalt matrix [48].

By the addition of 1-5% TiO, (80% anatase, 20% rutile)
and conducting FTIR on modified asphalt samples, it was
indicated that increasing TiO, content results in increas-
ing absorbance in the wavelengths of below 700 1/cm [49].
Another study, in which FTIR was conducted on the UV-
aged samples of the addition of 5% TiO, (80% anatase, 20%
rutile) to asphalt binder, showed more ester carboxyl func-
tional groups, which showed more progress in aging, and it
was shown that there were some significant peaks at below
700 1/cm wavelengths in the spectrum [39]. In another study,
FTIR was conducted on the addition of 0.5-10% nano-TiO,
(80% anatase, 20% rutile) to transparent asphalt samples,
and it was shown that the peaks in the spectrum were about
1300 1/cm and below 1000 1/cm wavelength, which shows
an increase in aliphatic groups, and no long chains were
observed [50].

It should be noted that the peaks beneath 1000 1/cm
wavelength can correspond to the polyaromatic groups [47].
Besides, asphaltenes are polyaromatic and heavy compounds
in oil reservoirs and asphalt binders [51]. Thus, it can be
concluded that the peaks in the spectrums may correspond
to more asphaltene content by the addition of TiO, to asphalt
binder.

Figure 4 shows spectrums of nano-TiO,-modified bind-
ers (binder 50/70) with different nano-TiO, content, which
indicate no chemical alteration but more absorbance in the
wavelengths of between 2800 and 3000, 1200 and 1600, and
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Fig.4 FTIR spectrum of nano-TiO,-modified asphalt binder [54]

beneath 1000 1/cm. It has been indicated that differences
at wavenumbers of 3000—4000 and 700-900 1/cm can be
referred to asphaltenes [52]. More asphaltene content leads
to more stiffness and elasticity of the asphalt binder and
decreases the high-temperature susceptibility [53]. Also,
saturate—aromatic—resin—asphaltene (SARA) analysis on the
addition of 5% TiO, to asphalt binder showed an increase
in asphaltene and resin and a reduction in aromatic content
[39].

Findings may indicate that the TiO, and nano-TiO, modi-
fication of asphalt binder is related to physical changes, and
no new functional groups are created. However, the exact
effect of nano-TiO, on the rheological and mechanical prop-
erties of asphalt materials has to be examined.

Mechanical and rheological performance
of nano-TiO,-modified asphalt binder
and mixture

Fatigue resistance

Repeated vehicular loads contribute to the most common
pavement cracking type, fatigue cracking [55]. Nano-TiO,
can form strong interfacial bonding with the asphalt binder
molecules, enhancing adhesion between the binder and
aggregates [56]. This effect leads to a more durable asphalt
pavement capable of withstanding repetitive stress and strain
from traffic loading [57]. Table 1 reviews the fatigue resist-
ance of asphalt binders and mixtures after the addition of
nano-TiO,. It has been indicated that in almost all cases,
the addition of nano-TiO, can have an enhancing influence
on the fatigue lives of conventional binders and mixtures.
Also, the addition of other materials like nano-SiO,, mul-
tiwalled carbon nanotube (MWCNT), and CaCO;, along
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with nano-TiO,, can heighten the enhancement of fatigue
life caused by this nanomaterial [58—60].

High-temperature performance

Asphalt pavements are constantly exposed to high tempera-
tures, which have recently increased due to the effects of
climate change [68, 69]. Thus, it is necessary for binders
and mixtures to have great performance against rutting [70].
Incorporated in asphalt pavement, nano-TiO, can act as a
thermal barrier, reflecting a significant amount of solar radi-
ation, reducing the absorption of heat by the pavement sur-
face, and improving rutting resistance [11]. Also, nano-TiO,
high surface area and reactivity lead to increased viscosity
and stiffness of the binder at high temperatures, reducing
the potential for rutting and permanent deformation [67].
Table 2 reviews the studies related to the high-temperature
performance and rutting resistance of nano-TiO,-modified
asphalt binders and mixtures. It can be concluded that
regardless of binder type, the addition of nano-TiO, as a
modifier leads to improving rutting resistance. These results
are compatible with the results taken from the chemical
interaction of binder and nano-TiO,, which more stiffness
and asphaltene content, signs of better rutting resistance,
were concluded after examining chemical experiments.

It should also be noted that using nano-TiO, along with
other materials as binder modifiers may change the perfor-
mance of the pavement. By incorporating 1-7% nano-TiO,
and 0.4-2.8% nano-SiO, in a 60/70 binder, it was shown
that the incorporation of these nanomaterials results in a
higher complex modulus, lower phase angle, and lower per-
manent deformation [60]. In another study, a combination
of 1% organic expanded vermiculite (OEVMT) and organic
montmorillonite (OMMT) with 2% nano-TiO, resulted in
better rutting resistance for the binders [71]. Also, using
nano-TiO,/CaCOj; resulted in more rutting factor and higher
rutting resistance [59]. The incorporation of TiO, and ther-
mochromic (TC) powder met the maximum rutting depth by
conducting Asphalt Pavement Analyzer (APA) rutting test
[72]. Also, the addition of 1, 2, and 3% nano-TiO, along with
2, 4, and 6% thermoplastic polyurethane (TPU) to asphalt
binder 80/100 showed better high-temperature performance
than the base binder, and TiO, had a leading effect [73]. The
combination of TiO,, ZnO, and basalt fibers as modifiers in
asphalt binder led to better resistance to permanent deforma-
tion, and nanoparticles also could compensate for the poor
cracking resistance of the binder [74].

Low-temperature performance
Low-temperature cracking of asphalt pavement is the

main distress of these pavements in cold regions [81].
Table 3 reviews the outcome of nano-TiO, addition on
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Table 1 Fatigue resistance of nano-TiO,-modified asphalt binders and mixtures

Asphalt type Nano-TiO, dosage Experiment Result References
Binder PG 64-22 5% Linear Amplitude Sweep (LAS) (at  50% increase in N; at 2.5% strain [58]

25 °C)
Binder 3,9,15% LAS (at 20 °C) 8, 19, and 39% increase in Ny, [61]

Transparent binder Kromatis 50/70 0.5, 3, 6, 10% LAS

Binder AC-60/70 2,4,6,8%

Binder 60/70 0.3,0.6,0.9,1.2% LAS

Binder 50/70 3,4,5% LAS (at 25 °C)
Mixture (AC-60/70) 2,4,6,8%

Mixture (AC 14 surf 35/50) 3, 6% FPBF

Mixture (binder 80/100) 2,4,6,8,10%

Mixture (binder 85/100) 3, 6% ITF

Mixture (binder 60/70) 1,3,5,7% ITF

LAS (at 25 °C)

Four-point Beam Fatigue (FPBF)

Indirect Tensile Fatigue (ITF)

respectively (0% at 7.7% strain)

Except for 0.5% dosage, up to 22 [50]
and 39% decrease in Ny at 2.5 and
5% strain, respectively

61 to 364% increase in N; at 2.5% [62]
strain level. 4 to 47% at 5% strain
level

Except for the 1.2% dosage, there [63]
is a 15 to 30% increase in Ny at a
2.5% strain level. 17 to 33% at 5%
strain level

77 to 122% increase in parameter A, [54]
which shows greater resistance to
accumulated damage

Increasing the dosage of nano- [62]
materials results in a significant
increase in the fatigue life

3% dosage leads to the same fatigue [64]
resistance as a base binder, but 6%
dosage decreases it

6 to 21% increase in fatigue life by ~ [65]
increasing the dosage

Both dosages result in almost the [66]
same increase in fatigue life

Increasing the dosage of nanocon- [67]
tent leads to the mitigation of
micro-cracks and prevents their
propagation

low-temperature cracking resistance of asphalt binders
and mixtures. As it is shown, nano-TiO, addition increases
asphalt viscosity and decreases its cracking resistance.
However, all the samples met the standard requirements for
cracking resistance, which shows that this nanomodifica-
tion can provide acceptable low-temperature performance
for asphalt samples.

Aging resistance

Asphalt pavements are exposed to oxidation and environ-
mental impacts like ultraviolet (UV) rays, which result in
asphalt aging. Decrease in durability and increasing poten-
tial of cracking due to more stiffness and brittleness are the
results of asphalt aging [85]. Evaluating the aging resistance
and behavior of these nanomodified binders is necessary
for improving pavement performance. Table 4 reviews the
related studies and shows that incorporating nano-TiO, in
asphalt binders and mixtures leads to better aging resistance.
Studies have shown that the lower aging resistance has an
adverse effect on the fatigue cracking of the asphalt mixtures

[86]. Thus, better aging resistance to nano-TiO,-modified
mixtures can lead to better fatigue resistance, which is in
line with the results in the fatigue performance evaluation
section.

It should be mentioned that the increase in the amount of
TiO, nanoparticles, when used alone, has a better effect on
aging resistance than using nanoparticles along with micro-
particles [87]. Nano-TiO, particles have a higher surface
area and result in better adhesion and mechanical perfor-
mance in the mixtures, which leads to better aging resist-
ance [60]. Also, the higher surface area may lead to better
and more evenly dispersion of the particles in the binder,
but the potential agglomeration probability should also be
considered [88]. In addition, using nano-TiO, can lead to
more efficient photocatalytic and cool pavement perfor-
mance, which is discussed in the latter sections. However,
the chemical mechanism and exact difference of nano-TiO,
and micro-TiO, effects on asphalt aging are areas for further
investigation.

Rather than directly mixing with asphalt binder, TiO,
can be used as a coating agent or surface spraying on the
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Table 2 Rutting resistance of nano-TiO,-modified asphalt binders and mixtures

Asphalt type Nano-TiO, dosage Experiment Results References
Binder 3,6,9,12,15% Dynamic shear rheometer (DSR), Increasing nanocontent results in bet-  [75]
Multiple stress creep resistance ter high-temperature performance
(MSCR)

Binder 60/70 1.5,3.5,5.5,9% DSR, MSCR Nano-TiO, increases the rutting resist- [76]
ance of asphalt binder

Binder PG 64-22 5% MSCR (at 64, 70, 76 °C) Increasing G*/sin (8) and decreas- [58]

DSR (at 58, 64, 70, 76 °C) ingJ,,

Binder AH-90 5% DSR G*/sin (8) increases with the addition [6]
of nanocontent but decreases with
the increase in temperature

Binder 60/70 0.3,0.6,0.9,1.2% DSR, 0.9% dosage has the most G*/sin [63]

MSCR (at 64 °C) (8) and lower J. on the nonaged

samples

Binder 60/70 2,4,6,8% MSCR (at 52 to 82 °C) J,r decreases with the increase of [62]
nanocontent

SBS-modified binder 1,2,5,10% DSR At over 76 °C, G*/sin (8) remains the [10]
same with increasing the nanocon-
tent

Binder TZ-70 4,5, 6% DSR 5% dosage shows more increase in [77]
G*/sin ()

Binder (penetration 103) 0.5,1,1.5,2,2.5% DSR (at 58 °C) G*/sin () increases with the increase [78]
of nanodosage

Mixture (SBS-modified binder) 5% Rutting test

The modified mixture has a 45% more [6]
dynamic stability index

Mixture (AC-60/70) 2,4,6,8% Wheel track Rut depth decreases with the increase  [62]
of nanocontent

Mixture (SBS and HEA binder) 2% Wheel track Using nanocontent leads to higher [79]
dynamic stability due to the high
surface volume

Mixture (SBS-modified binder) 1, 3,5, 10% Rutting test Dynamic stability increases up to 40% [80]
by increasing nanocontent to 5%

Mixture (binder 60/70) 1,3,5% Repeated Load Axial (RLA) Increasing nanocontent leads to lower [67]
deformation, strain, and temperature
susceptibility

Mixture (binder 60/70) 4% Wheel track The addition of nano-TiO, leads to [5]

lower rut depth

asphalt pavement. By adding 10, 25, and 50% TiO, as coat-
ing agents, atomic force microscopy (AFM) results showed
that the modified binder had a smoother surface and less
aging process [89]. Also, using 4 g/L of nano-TiO, as sur-
face spraying showed better aging resistance for asphalt sam-
ples [87]. It has also been indicated that nano-TiO, can fill
the microscopic defects in asphalt binders and lead to a more
erosion and aging-resistant asphalt pavement surface [90].

Moisture susceptibility

Water penetration into the pavement layers has negative
impacts on the pavement performance [96]. As mentioned
before, nano-TiO, leads to better adhesion between the
asphalt binder and aggregate particles [56]. By increasing
this adhesion, the asphalt mixture can tolerate more freeze
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and thaw cycles and shows better moisture susceptibility [97,
98]. Also, due to the higher solubility of nano-TiO, in water
than in asphalt binder, the moisture susceptibility of nano-
TiO,-modified asphalt mixtures can be ameliorated [99]. It
has also been mentioned before that using nano-TiO, can
reduce the effects of aging factors, which water penetration
may be mentioned as one, on the asphalt pavement. It should
also be mentioned that although nano-TiO, has a hydrophilic
nature, it can be modified to hydrophobic, which may be
used to enhance the moisture susceptibility of the modified
or coated pavement [100, 101].

Table 5 reviews the moisture susceptibility of nano-TiO,-
modified asphalt mixtures. It is shown that by incorporat-
ing nano-TiO, into asphalt pavement, the Tensile Strength
Ratio (TSR) of the mixtures is increased, which shows more
durability and better water stability. In another study, it was
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Table 3 Low-temperature cracking resistance of nano-TiO,-modified asphalt binders and mixtures

Asphalt type Nano-TiO, dosage  Experiment Results Reference

SBS-modified binder 5% Bending Beam Rheometer (BBR) Cracking resistance is reduced but still [6]
meets the Superpave specification
requirements

RAP binder 4,6,8,10,12, 14% BBR All the samples met the requirements for  [82]
creep stiffness and m-value

Binder PG 52-28 3,5% Modified BBR The addition of nanomaterials leads to [81]

SBS-modified PG 64E-40 higher stiffness and lower cracking
resistance

SBS-modified binder 1,2,5,10% BBR Nano-TiO, has little effect on the low- [10]
temperature crack resistance of asphalt

HEA binder 2% BBR Adding nano-TiO, powders has no sig- [79]
nificant influence on low-temperature
rheological

Properties
Sasobit/SBS-modified binder 1,3,5% BBR Nanoparticles do not significantly reduce  [83]

Mixture (SBS-modified binder) 5%

Mixture (HEA and SBS binder) 2% Three-point

bending beam

Mixture 0.9%

Pavement Performances Analysis

Semi-circular bending

the low-temperature cracking resistance
of binder

The nano-TiO,-modified mixture has a [6]
better anti-cracking ability at low tem-
peratures due to improving e and Sy

The addition of nanomaterial to the HEA  [79]
mixture leads to better-cracking resist-
ance compared to the SBS mixture

The addition of nano-TiO, leads to better  [84]

performance in cracking and fracture
mechanics

shown that the addition of 1, 3, and 5% nano-TiO, to semi-
warm asphalt mixtures can lead to more viscosity and, there-
fore, more adhesion, which leads to better moisture suscep-
tibility (about 16% enhancement). It was also found that this
modified asphalt mixture shows a minimum of 75% in terms
of Resilient Modulus Ratio (RMR) [102].

Optimum dosage

Based on the literature review, the evaluation approach of
nano-TiO, in asphalt pavement in studies can be divided
into two forms: evaluation of modified binder with binder
tests and evaluation of mixture made by the modified binder
with mixture tests. According to the results of fatigue per-
formance, the suggested optimum dosage of nano-TiO,
addition is 5% of the weight of binders for binder perfor-
mance and 3% of the weight of binder for mixture perfor-
mance, which is congruous with the results of some other
studies [66, 67]. It can be seen that the results for binders
and mixtures do not match exactly, which shows that the
binder tests are not the definitive predictive parameters for
asphalt mixture performance. For high-temperature perfor-
mance, the optimum dosage of nano-TiO, is suggested to
be 5% for both binder and mixture performance, which is
consistent with other studies [77, 80]. For low-temperature

performance, aging resistance, and moisture susceptibility,
there has not been a clear result for the optimum dosage, but
the suggested optimum dosage for other performance crite-
ria (fatigue and high-temperature performance) can meet
the minimum and improvement for these parameters, but
more research is needed to justify the application. Thus, the
literature review shows that the optimum dosage of nano-
TiO, for binder modification to improve the rheological and
mechanical performance of asphalt binder and mixture may
be around 5% of the weight of the binder. However, this
dosage can be vary in different projects due to the type of
binder, aggregates, field conditions, and more importantly,
the environmental impacts.

Environmental impacts of incorporating
nano-TiO, into asphalt pavement

Nano-TiO,-modified asphalt pavements are credited with
many environmental benefits, such as purifying exhaust
emission, mitigating the heat island effect, and reducing haze
as well as noise [104, 105]. Therefore, the promising envi-
ronmental benefits of nano-TiO,, as well as the performance
of the asphalt pavement, should be considered to accentuate
its application. Photocatalytic performance and mitigating

@ Springer
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Table 4 Aging resistance of nano-TiO,-modified asphalt binders and mixtures

Asphalt type Nano-TiO, dosage Aging simulation tests Rheological/mechanical ~ Results References
tests
Binder SK-70# 4% Rolling Film-Thin Oven Atomic Force Microscopy The samples showed [91]
(RTFO) (AFM), FTIR smoother surfaces and a
lower aging process
Bio-modified binder 1% RTFO RTFO (mass loss ratio) Nanomodification results  [92]
(AH-70) in lower mass loss and
better aging resistance
Binder 60/70 0.3,0.6,0.9,1.2% RTFO, Pressure Aging DSR, MSCR, BBR, LAS  The modified binder [63]
Vessel (PAV) showed better aging
performance
Binder 50/70 3,4,5% RTFO FTIR, MSCR, LAS TiO, incorporation [54]
resulted in better early
aging resistance, lower
mass loss, and aging
delay
HEA binder and SMA 2,3,4% The Continuous UV DSR, BBR, Wheel track- Modification improved [79]
mixture Aging Test (CUAT), ing, Three-point flexible =~ UV aging and short-
RTFO beam term thermal-oxidation
resistance
Binder A-70 1,3,5% Homemade ultraviolet Softening point, Penetra-  Nano-TiO, can improve [93]
Radiation environment tion the anti-ultraviolet
box radiation aging proper-
ties
Binder PG 64-16 3,5, 7% RTFO, PAV, UV light DSR, RV, BBR The modification did not  [94]
accelerate the aging
process
Mixture (Binder PG 3,5,7% Exposing to environmen-  FTIR, MSCR By increasing nano-TiO,  [95]
64-22) tal conditions content, the mixture
showed better aging
resistance
Table 5 Moisture susceptibility of nano-TiO,-modified asphalt mixtures
Asphalt type Nano-TiO, dosage Experiment Results References
Mixture (Binder AH-90) 5% F-T splitting TSR value increased from 86.7 to 91.6 [6]
Mixture (Binder 60/70 and 2,4,6,8% Indirect Ten- With the increase of nano-TiO, content, the TSR value [62]
limestone steel slag aggre- sile Strength increased from 85 to 95 and from 82 to 88 for mixtures con-
gates) ars) taining limestone and steel slag aggregates, respectively
Mixture (Binder 80/100) 2,4,6,8,10% ITS A mixture with 6% nano-TiO, showed the highest TSR value [65]
(around 90)
SMA mixture (Binder 60-70) 0.3, 0.6, 0.9, 1.2% ITS The Tensile Strength Ratio (TSR) increases from 77.8 to 82.4  [103]

with the nanomodification compared to the base binder value
of 76.8

urban heat island effect, as two important benefits of using
TiO, and nano-TiO, in asphalt pavement, are evaluated in
the following sections.

Photocatalytic performance
Asphalt pavements are constantly exposed to vehicle exhaust

pollutants. A suitable method to degrade these pollutants,
which has become popular recently, is using TiO, in asphalt

@ Springer

pavements. TiO, is a semiconductor material. Accordingly,
in terms of solid-state physics, there is a large band gap
equal to 3.2 eV for the anatase phase of TiO, and 3.02 eV
for the rutile phase of TiO, between the conduction band
(vacant band) and the valence band (filled with electrons).
Due to this band gap, electrons in the valence band cannot
move to the conduction band; however, in photocatalysts,
light is the decisive factor in helping electrons to be excited
to the conduction band (photoexcitation). TiO, particles
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applied to surfaces such as roads are highly exposed to UV
rays, which contain photons. When TiO, absorbs a photon
that encompasses the energy greater than or equal to its
band gap, 3.2 eV or 3.02 eV, it will result in a process in
which electrons from the valence band can be excited to
the conduction band (e7). In other words, this process will
bring about electron-hole pairs (h*) in the valence band
[106]. Thereupon, these electrons (¢”) and holes (h*) react
with oxygen (O,) and water (H,0), respectively, to produce
active superoxide anion (O,”) and hydroxyl radical (OHY);
this is because holes and electrons are powerful oxidizing
and reducing agents in the process. Furthermore, the super-
oxide anion will react with H+ separated from the water to
generate the HO," radical. Finally, hydroxyl radical (OH")
and HO," react with organic air pollutants such as NO and
NO,, resulting in water-soluble nitric acid (HNO;), which
can be later washed away by rainwater or street sprinkling
[42, 107]. Nano-TiO, also shows promising photocatalytic
performance, which can be used for degrading pollutants
in the pavements. Figure 5 shows an illustration of the pho-
tocatalytic performance of nano-TiO, addition in asphalt
pavement.

Also, studies show that the TiO, particles can lead to CO,
reduction photocatalytic performance, as UV light on TiO,
catalysts produces separated electrons and holes, reacting
with water and CO, to form oxygen, H radicals, CO, meth-
ane, methanol, and hydrogen, which lead to better efficiency
when smaller particles are used [108]. Thus, the application

T Nano-TiO, coating |
e e S

fNano-TI0, modified
4 asphalt pavement [
e ’ ‘t Ca

A
¥,

of TiO, nanoparticles in asphalt pavement can show promis-
ing outcomes in reducing air pollution.

Several studies have scrutinized the photocatalytic per-
formance of applying TiO, and nano-TiO, in asphalt pave-
ments, which leads to pollutant degradation. Accordingly,
a brief review of the studies related to photocatalytic pave-
ments regarding the TiO, and nano-TiO, incorporation
method is presented in Tables 6, 7, and 8. It is shown that
different incorporation methods have alternative impacts on
photocatalytic performance. This may create a challenge that
whether binder modification or surface application can meet
the optimum performance and environmental criteria. Also,
it is shown that using nano-TiO, shows better photocatalytic
efficiency comparing typical TiO,. Moreover, materials like
carbon, cerium, nitrogen, lanthanum, and Fe3* are used as
doping agents and CeQ,, steel slag, montmorillonite, AL,O5,
rubber, rejuvenators, cationic surfactant, g-C;N,, polysty-
rene, activated carbon, pyrite, specularite, glass beads,
polystyrene, Fe,O5, CeO,, and WOj; are used as additives to
enhance photocatalytic performance.

However, the optimum proportion and dosage of nano-
TiO, for the photocatalytic performance of asphalt pave-
ment needs more research. For micro-surfacing applications,
research indicated that the optimum dosage could be 11% of
the weight of the binder, showing 40% NO, absorption, as
well as acceptable performance [109].

There are several factors that affect the degradation effi-
ciency of the pavements, which are shown in Table 9. It

Fig.5 A schematic view of the photocatalytic performance of incorporating nano-TiO, into asphalt pavement

@ Springer
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8 should be noted that the reasons for better photocatalytic
5 _ _ performance of anatase compared to other TiO, polymorphs
ﬁ & § can be as follows: larger band gap, differences in direct and
indirect band gap, and better excitons mobility [134].
B E] S w 5 = Also, studies have shown that the smaller TiO, particles
g = é 8 s 2 ©° : 2 ; 1 1 1
5o 8 > E o % sg g = 3 can lead to better photocatalytic efficiency. In nano-TiO,
g = = . . .
;E)D %;;ai %2 g Qx% :, i 2 § epoxy emulsified asphalt mixture, the NO-degradation rate
- —_— Q .. . . .
=g29T gz % £E°§5 £ s S is increased from nearly 40% to 70% when particle size is
L.EZ .= = = .
E=52 5 3 BR3gS F E Z reduced from 10-15 to 5 nm, but the change in CO, degrada-
% E 2y E CE E E E; g % S S,% tion is not significant [116]. For CO, reduction, laboratory
8825 2223 %3E% studies have shown the optimum nano-TiO, particle size can
E52852 ZELE 28389 . P 2 Par
s EE23 E ER i 5. 3 S E 2 be 14 nm, but using larger or smaller particle sizes than 14
= - D Q . :
Z, %"JQF: § 2 E Qa: g é g§2° § 2 %E‘ e nm can decrease the CO, reduction [108]. The controversial
= TP9Eo 23 925322 results may be due to the difference in nano-TiO, samples in
g SESefaE STES 825 Y 2 p
£ GUREEEU zAOLOOES S the laboratory. It should be noted that although particle size

reduction can be effective on photocatalytic performance,
other parameters like surface area, voids, band gap energy,
and other physical characteristics should also be considered
because they can have more influence on photocatalytic effi-
ciency [135]. Thus, the optimum particle size of nano-TiO,

1)

=]

=

o

Q

=

20

5

2z 9 is an area of further investigation.

N < All in all, by considering these factors and using an
s B 5] . . . .

g fz_" E appropriate dosage of materials, the highest efficiency and
?g :g % § better photocatalytic performance can be achieved.

SE| ¢ g Urban heat island mitigation (cool pavement)

= 2

2 S There has been a drastic increase in the world population in
iy % recent years, resulting in new megacities and existing ones
Q § ) becoming more populated. This has led to the emergence of
) E

the urban heat island (UHI) phenomenon, where anthropo-
genic heat, the blockage effect against urban ventilation, and
the implementation of artificial materials result in warmer
climatic conditions [139, 140]. Figure 6 shows the schematic
view of UHIL.

Cool pavements have been introduced for their capability
of reducing the pavement surface temperature and mitigat-
ing UHI, and they have been categorized into three types:
reflective, evaporative, and heat-storage-modified pavements
[141, 142]. Reflective technologies such as reflective coat-
ing, light-colored pavements, and thermochromic materi-
als are considered suitable strategies to reduce the negative
effects of UHI on roads [143, 144]. Also, nanomodifications
have been proposed for lowering the pavement temperature
and mitigating UHI effects [145, 146]. Accordingly, TiO,
particles can help reduce the UHI effect in urban areas, as
they increase the reflectivity and reduce the temperature of
materials, including asphalt coatings [147, 148]. Figure 7
shows the beneficial effects of using nano-TiO, in asphalt
pavement regarding pavement cooling.

The mechanism behind pavement cooling by nano-TiO,
particles can be attributed to higher reflectivity and bet-
ter thermal conductivity. On the one hand, TiO, particles

Field study in USA, Laboratory experi-

Level of Investigation
Field study in the USA
ment

Table 7 (continued)
Asphalt Materials

Asphalt mixture
Asphalt mixture
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Table 8 (continued)

18

References

TiO, Phase/Dosage by weight/Doping  Findings
agent or additives

TiO, type

Level of investigation

Asphalt materials

Springer

[132]

The TiO, waterborne epoxy resin fog seal

Nano-TiO, Nano-P25

Laboratory experiment

waterborne epoxy resin fog seal

was very effective in decomposing NO

pollutants from automobile exhaust.
When the content of TiO, increased

(B%, 5%, 1%, 10%, 13%)

from 3 to 13%, the decompose ratio also

increased from 80 to 86.6%
The spray method had great advantages due [133]

Nano-TiO, Nano-P25

Polymer-modified asphalt mixture Laboratory experiment

to its high photocatalytic efficiency and

its performance on the asphalt structure.
This method reduced the application cost

as well

[104]

Nano-TiO, was capable of purifying vehi-

Nano-TiO, Anatase

Laboratory experiment, Field study in

Asphalt mixture

cle emission pollutants in the actual traf-

China

fic environments because its degradation
rate ranged from 6 to 12% in the actual
outdoor road traffic environments

absorb light at wavelengths of 275-405 nm and reflect
light due to their high refractive index (n=2.6142 at
wavelength =587.6 nm), which allows them to be used
in sunscreens and photography applications, as well as
pavement coatings for cool pavements [149, 150]. On the
other hand, TiO, particles have, on average, a higher ther-
mal conductivity than the typical asphalt mixtures [151,
152]. This may lead to better thermal conductivity of nano-
TiO,-modified asphalt pavement. However, the majority
of studies have focused on the reflective properties, and
the thermal conductivity may need further investigation.

A study showed 4-5 °C temperature reduction for
asphalt samples and 8—10 °C for binders at the top surface
of pigment-modified samples. Also, pigmented mixtures
take 25-30% less time to cool down, proving their greater
efficiency in heat dissipation. Moreover, red and white
pigment-modified asphalt mixtures exhibit decreased rut
depth of 35% and 15%, respectively, as compared to typi-
cal asphalt mixtures [151].

Furthermore, a study found that the improved ther-
mal behavior of the nanomodified asphalt material could
be ascribed to physical modifications that resulted in
smoother and lighter-colored surfaces, leading to lower
daily surface temperatures and a reduction of the UHI
impact of the asphalt [153].

Also, a study found that the green coating with 15%
titanium dioxide and 10% floating beads had the best
cooling performance, and higher dosages of the coating
resulted in better cooling effects [154]. Additionally, by
adding 1% TC powder and 3% nano-TiO, as the funda-
ments of the thermochromic asphalt mixture, it was found
that this addition leads to a reduction in surface tempera-
ture of up to 15 °C [72].

In another study, it was concluded that the use of nano-
TiO, in asphalt can potentially increase its albedo and
reduce pavement temperatures to address the UHI effect.
However, micro-TiO, may have better reflectance than
nano-TiO, and nano-ZnO [155]. Also, it was found that
using 5-30% TiO, quantum dots in asphalt coatings can
lead to a 12-17% increase in solar reflectivity compared
to 3% for conventional samples [156].

It should be noted that although nano-TiO, can be effec-
tive in mitigating UHI effects, more research is needed
to clarify and justify its application. The effect on TiO,
particle size and incorporation method in pavement cool-
ing efficiency, the improvement of reflectivity and thermal
conductivity of nano-TiO,-modified asphalt pavement by
the addition of other reflective and conductive materials,
and the optimum proportions on nano-TiO, particles need
to be examined to reach better pavement cooling and in
result, better sustainability.
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Table 9 Factors affecting the photocatalytic performance of asphalt pavements

Factor Effect References
TiO, phase Anatase has better photocatalytic performance than rutile [17, 112, 134]
Size and number of TiO, particles ~ Smaller size and larger number of particles may lead to better degradation perfor- [114, 116]

mance, but other parameters like surface area, voids, and band gap energy should
also be considered

Doping methods for preparing TiO, The doping methods at the level of preparing the nano-TiO,-modified asphalt can [122, 136]
enhance the photocatalytic performance

Incorporation method The spraying method has more advantages than the other methods [41, 133, 137, 138]

Additives Additives such as steel slag could be helpful in the degradation performance (only in ~ [110, 114]
short-term conditions)

UV light The increase in UV light intensity improves photocatalytic performance [111, 125, 126]

Weather conditions High relative humidity can decrease the photocatalytic performance [41, 125]

Experiment duration More duration leads to more degradation [116, 124]
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Fig.6 Urban heat island profile

Fig.7 Using nano-TiO, in
asphalt pavement for cool pave-
ments
Reflected
sunlight
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Critical discussion and potential downsides

This literature review has focused on the application
of nano-TiO, in asphalt pavement and its effects on the
pavement performance. Regarding the application meth-
ods, direct mixing, surface spraying, and coating can be
used to apply the nano-TiO, particles in asphalt pavement.
The literature review has shown that by using nano-TiO,
as an asphalt binder modifier, the high-temperature per-
formance, fatigue resistance, aging resistance, and mois-
ture susceptibility of the modified binder and mixture are
improved. Also, nano-TiO, can lead to pollutant degrada-
tion by photocatalytic performance and urban heat island
mitigation by cool pavement performance. However, there
are challenges that need to be critically examined to inves-
tigate the viability and potential downsides of using nano-
TiO, in asphalt pavement.

Although studies have shown improvements in rheo-
logical and mechanical properties of asphalt pavement by
using nano-TiO,, the usage of nano-TiO, is expected to
also improve the photocatalytic and cool pavement per-
formance in order to reach better sustainability. Thus, the
selection of nano-TiO, optimum incorporation method
(binder modification, surface application, or a combina-
tion of both) is a challenge, leading to future investiga-
tion. Also, due to the lack of related studies, there need to
be research regarding the optimization in mixing (mixing
speed, temperature, and time) and spraying (dosage and
procedures) and the optimum dosage of nano-TiO, for
maintaining performance criteria, environmental impacts,
and long-term performance of the modified asphalt
mixture.

Also, the fracture mechanics of the nano-TiO,-modi-
fied asphalt mixtures should be considered. As mentioned
before, nano-TiO, can lead to better rutting and fatigue
resistance but has a low impact on the low-temperature
cracking resistance. Thus, in order to clarify the fracture
mechanics of the modified pavement, studying mode I,
mode II, and mixed mode I/II is recommended. Related
studies have shown that by 0.9% addition of nano-TiO,, the
fracture mechanics of the asphalt mixture in both vertical
and angular cracks are improved, and the toughness of the
mixture is increased [84].

Additionally, the effect on skid resistance of asphalt
pavement after nano-TiO, addition is an area of concern.
Accordingly, it has been indicated that with the increase
of spraying and coating amount of nano-TiO,, there is a
significant reduction in skid resistance (in terms of reduc-
tion in the textural depth and friction coefficient), which
can lead to lower driving safety and higher accident rate
(halving the skid resistance leads to doubling the accident
rate) [35, 44, 157]. For controlling the skid resistance,

@ Springer

different amounts of nano-TiO, have been proposed, from
350 to 550 g/m?, to control the textural depth from 0.55 to
1.4 mm, respectively [35, 44]. Therefore, there needs to
be more research on the skid resistance of asphalt pave-
ments modified with nano-TiO,, mainly due to the differ-
ent standards for textural depth and the effect of charac-
teristics of nano-TiO, particles and the mixture properties
on the skid resistance.

The field applications of nano-TiO, in asphalt pavement
construction introduce practical challenges. The photocata-
lytic efficiency and properties of nano-TiO, field applica-
tions have been discussed before, but some challenges still
remain. Using N-doped nano-TiO, on a selected field road
to evaluate its durability when used as photocatalytic coating
has shown that the photocatalytic coating can maintain its
performance for approximately 13 months, which is caused
by affecting and removal of the coating due to the traffic
and rain [122]. In another field study in Germany, the TiO,
particles were applied on an epoxy resin layer, which was
coated on a selected test road, and the sample was cored and
extracted from the pavement and then tested, which showed
remarkable photocatalytic performance [131].

Although the field results demonstrate appropriate photo-
catalytic performance, the field conditions, including severe
traffic loading repetitions and runoff due to rain, can affect
the photocatalytic efficiency and pavement life span. The
abrasion caused by traffic loadings can remove the modi-
fied layer form; the pavement surface can impair its per-
formance. Also, the rehabilitation and surface treatment of
the pavement are affected by the nano-TiO, coating, which
may be removed from the surface and lose its photocatalytic
efficiency due to these proceedings. Another concern regard-
ing nano-TiO, particles is their probable aggregation chance
due to their smaller size, which can cause larger particles
and lower surface area. Achieving uniform dispersion and
ensuring the stability of nano-TiO, particles throughout the
asphalt mixture can be significantly important for better per-
formance. These challenges can affect both the laboratory
and field application, especially the field application due to
the lower possible controls on the variables.

In addition, due to its smaller particle size, nano-TiO,
can cause oxidative stress, DNA damage, and genotoxic-
ity in living organisms, ultimately leading to a decrease in
growth and reproduction, as well as affecting the micro-
bial communities in soil and water, adversely affecting
the overall health of the ecosystem [158]. The recom-
mended exposure limits for fine TiO, (including pigmen-
tary TiO,) are 2.4 mg/m’ by the US National Institute for
Occupational Safety and Health (NIOSH) and 0.3 mg/
m? for ultrafine TiO, (including nano-TiO,) for up to 10
h per day during a 40-h work week, as a time-weighted
average (TWA) concentration [159]. Due to these lim-
its, care should be taken when using nano-TiO, in both
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laboratory and field experiments to avoid its harmful
effects, especially when workers use it in asphalt pave-
ment construction.

The reflective properties of nano-TiO,-modified asphalt
pavement are an area of both benefits and challenges. Stud-
ies have shown that by doubling the luminance of the pave-
ment, the night to day accidents will decrease by 19% [160].
Although more luminance of asphalt pavement, especially
during the night and in the tunnels, can lead to more safety
and fewer accidents, the extra luminance and sun glare can
result in more crashes [161]. Also, by reducing the texture
depth of the asphalt pavement, the accident rate increases
[162]. Because nano-TiO, addition can affect the micro-
and macro-texture as well as the pavement surface color
and reflectance, the side effects of the nano-TiO, reflective
pavement need to be considered.

Contaminants leaching from asphalt pavements are an
environmentally important concern [163]. Studies have
indicated that nanoparticles can leach out and potentially
contaminate water bodies or soil, raising concerns about
the long-term environmental impacts [164]. For nano-TiO,-
modified asphalt pavement, there have not been adequate
studies regarding the leaching characteristics. These pave-
ments have different and unique leaching characteristics as
they have nanomodified asphalt binder and its interactions
with water infiltrating (the solubility of nano-TiO, in water)
and other additives, as well as nanosurface coatings which
is affected by runoff water. Therefore, the leaching potential
of nano-TiO, particles from the asphalt pavement into the
environment is an important area for further investigation.

Another important point is that although this study has
focused on the application of TiO, particles in asphalt pave-
ment, the usage of nanomaterials in concrete pavements has
also been regarded. It has been shown that by using different
nanomaterials, the performance and properties of the con-
crete mixture are improved [165, 166]. This can draw atten-
tion to the usage of nano-TiO,-modified composite pave-
ments and lead to further investigations for construction.

Also, for better sustainability approach, the environ-
mental and economical assessment of nano-TiO,-modified
asphalt pavement should be considered. Two main tools for
this approach can be defined as life cycle assessment (LCA)
and life cycle cost analysis (LCCA). Although nano-TiO,
has shown photocatalytic performance, which can lead to
lower NO, and CO, pollution (lower acidification and global
warming potential in LCA), the initial process of nano-TiO,
production can produce too much pollutants. Thus, the life
cycle emission and pollution degradation of these pavements
should be considered. For economic analysis, the initial cost
of the nanomaterials can affect the life cycle cost of the pave-
ment, which makes it very crucial to be examined. Also, the
maintenance of these modified pavements is a challenge in
performance, environment, and economic perspectives.

All in all, the application of nano-TiO, in asphalt pave-
ment can show improvement in both performance and envi-
ronmental aspects. But considering both benefits and chal-
lenges can lead to a better understanding of the potential
advantages and disadvantages of nano-TiO,-modified asphalt
pavement. This approach requires a multicriteria decision
making for researchers and pavement constructors. Thus,
a comprehensive understanding of these critical aspects is
necessary to assess the viability and sustainability of imple-
menting nano-TiO, in asphalt pavement construction.

Conclusions and future research directions

This article presents an overview of the research in the field
of incorporating nano-TiO, in asphalt pavement, emphasiz-
ing the chemical, rheological, mechanical, and environmen-
tal properties and effects. This article also aims to investigate
and determine the possible chemical interactions, optimum
dosage for nano-TiO,, and factors affecting its performance
by giving in-depth explanations. Below is a summary of
some of the most important conclusions deducted from this
review study:

1. Chemical analysis shows that nano-TiO, mainly consists
of anatase and rutile polymorphs. FE-SEM images show
that the rutile surface is smoother than anatase, which,
along with differences in band gaps and better excitons
mobility, may lead to better photocatalytic performance
of anatase. Also, higher surface area and reactivity of
anatase, which can lead to stronger bonds with asphalt
molecules, may result in better rheological and mechani-
cal properties.

2. FTIR spectrum shows that modification of asphalt binder
with nano-TiO, may belong to physical reactions, and no
chemical alteration is observed. FTIR and SARA analy-
sis may show more stiffness and viscosity of the asphalt
binder.

3. Rheological and mechanical assessment of nano-TiO,-
modified asphalt binder and mixture may show higher
rutting and fatigue resistance due to more viscosity and
stiffness. However, low-temperature cracking resist-
ance may be weakened after modification but still meets
the minimum criteria. Also, the long- and short-term
aging resistance of nano-TiO,-modified asphalt can be
enhanced. The optimum dosage for nano-TiO, in rheo-
logical and mechanical performance is variable due to
different conditions, but it can be suggested to be 5% of
the weight of the binder to improve the characteristics
of binders and mixtures.

4. The photocatalytic performance of nano-TiO, in asphalt
pavement shows improvements, but it depends on many
factors, including nano-TiO, phase, size and num-
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ber of TiO, particles, a doping method for preparing
nano-TiO,, incorporation method, additives, UV light,
weather conditions, and experiment duration. By opti-
mizing these conditions, better efficiency for pollution
degradation can be obtained.

5. Cool pavements have been introduced to mitigate the
urban heat island effects on the environment by differ-
ent mechanisms. Incorporating nano-TiO, into asphalt
pavement can lead to higher reflectivity, lower surface
temperature, and less time to cool down, which could
mitigate the urban heat island effects.

Moreover, it is recommended that researchers focus on
the points listed below for their future works.

1. Evaluating the different performance and effects of
anatase and rutile nano-TiO,, as well as their particle
size, for better rheological, mechanical, and photocata-
lytic performance of nano-TiO,-modified pavement.

2. Conducting more chemical tests on the modification of
asphalt binder with nano-TiO, to acquire a better under-
standing of the possible reactions and predict the binder
and mixture performance and aging resistance, as well
as the possible dispersion conditions.

3. Optimum methods, proportions, and dosage of nano-
TiO, incorporation in asphalt pavement for maintaining
both the performance and environmental benefits.

4. Better evaluation of nano-TiO,-modified asphalt mix-
ture to highlight the possibility and performance of its
utilization in future roads and, especially the long-term
performance, skid resistance, and abrasion possibility.

5. Exploring the potential for using nano-TiO, to enhance
the sustainability of asphalt pavement by conducting
LCA and LCCA. However, efforts have been made
to clarify this part, but no related results were found
[167]. Key parameters for LCA may include raw mate-
rial extraction, manufacturing, application, and dis-
posal, focusing on environmental impacts. For LCCA,
parameters encompass initial costs, maintenance, energy
use, and long-term performance, evaluating economic
aspects. A holistic view of the environmental and eco-
nomic implications can be obtained by integrating these
two methods.

6. Leaching characteristics of nano-TiO,-modified asphalt
pavements for clarifying the potential contaminants and
their effects on the environment and human health.
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