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Abstract
This study aims to predict and model the compressive strength of self-compacting concrete (SCC) across various fly ash 
content ranges. The research utilized two approaches: hierarchical regression (HR) and artificial neural networks (ANN) for 
modeling six variables influencing the process (cement content, fly ash content, water-to-binder ratio (W/B), coarse aggregate, 
fine aggregate, and superplasticizer). The fly ash content varied from 0 to 60% of the total weight of cement. The findings 
emphasize that the compressive strength of SCC is significantly affected by all the independent variables studied, except 
for superplasticizer. The statistical evaluation using the Pearson correlation (R), determination coefficient (R2), Adjusted 
R2, Predicted R2, root mean square error (RMSE), mean square error (MSE) and mean absolute percentage error (MAPE) 
demonstrate that both ANN and HR are robust tools for predicting compressive strength of SCC. Additionally, the ANN 
and HR models show strong correlations with experimental data, with the ANN model displaying superior accuracy. As 
the performance indices showed, the ANN model had a higher predictive accuracy than HR. The ANN model had a higher 
determination coefficient (R2) of 98.51%, compared to 95.25% for HR, indicating a higher accuracy.
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Introduction

Concrete is a prevalent construction material worldwide, 
with much of the existing knowledge in concrete technology 
originating from highly developed regions [1]. Over recent 
years, special concrete types like self-compacting concrete 
(SCC) have gained popularity. SCC, which originated in 
Japan during the late 1980s, is capable of flowing under its 
self-weight. This feature permits for effortless placement of 
concrete without the need for extra consolidation in intri-
cate formwork, densely reinforced structural components, or 
areas that are difficult to reach. This not only conserves time 
and lowers overall expenses, but it also improves the work 
environment and sets the stage for automation in concrete 

construction. SCC is an innovative, consistent, and compact 
concrete when hardened, exhibiting mechanical properties 
and durability akin to conventional consolidated concrete. 
Numerous scholars have set forth principles for the composi-
tion of SCC mixtures. These include decreasing the volume 
ratio of aggregate to cementitious material, augmenting the 
volume of paste and the water-to-cement ratio (w/c), meticu-
lously managing the maximum size of coarse aggregate par-
ticles and their total volume, and making use of admixtures 
that enhance viscosity [2].

Superplasticizers are typically necessary to achieve high 
workability in SCC, while viscosity-modifying admixtures 
help eliminate segregation. However, chemical admixtures 
can be expensive, potentially increasing material costs. Off-
setting this, the use of mineral additions, known as supple-
mentary cementing materials, can improve concrete slump 
without escalating costs. These SCMs, such as fly ash, silica 
fume, blast furnace slag, or limestone filler, are by-products 
of various manufacturing processes. When used as partial 
replacements for Portland cement, they reduce the quan-
tity of cement required, thus lowering the energy and  CO2 
footprint of concrete, while also enhancing workability and 
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long-term concrete properties [3, 4]. Fly ash (FA), a residue 
from coal combustion transported by flue gases, is widely 
utilized in diverse concrete applications. Incorporating FA 
in concrete develops strength and durability depending on 
its reactivity, particle size distribution, and carbon con-
tent. Typically, FA is used to partially replace cement or 
fine aggregates, aiming to attain desired concrete proper-
ties. Studies have shown that using FA in SCC reduces the 
required superplasticizer dosage to achieve a similar slump 

flow compared to concrete made solely with Portland cement 
[5, 6].

Several studies have attempted to optimize SCC mix pro-
portions by incorporating FA, suggesting that around 30% 
cement replacement with FA results in exceptional workabil-
ity [7]. Though, due to variations in material constituents’ 
quality and quantity, coupled with different design specifica-
tions, founding a universal relationship between fly ash and 
cement ratio, plasticizer, and w/c ratio presents a challenge. 
Different properties of SCC have been predicted using AI 
and ML methods in the last few decades [8, 9]. The output 
and input variables in a data set have a nonlinear relationship 
that can be modeled with high accuracy by these algorithms. 
Engineering problems have been solved successfully using 
various ML algorithms such as support vector machines 
(SVMs), artificial neural networks (ANNs), response sur-
face method (RSM), genetic programming (GP), and others 
[8–10].

In civil engineering, these techniques have been employed 
to develop models predicting concrete properties [11]. In the 
context of SCC, researchers have utilized these techniques to 
propose predictive models. For instance, Asteris et al. [12] 
developed a back propagation neural network prediction 
model for compressive of SCC containing different min-
eral admixture. Silva and Štemberk [13] created shrinkage 
prediction models for SCC using a combination of fuzzy 
logic and genetic algorithms. Using RSM and ANN, Ofuya-
tan et al. [14] created models to estimate the compressive, 
tensile and impact strength of SCC with silica fume and 
polyethylene terephthalate waste as partial replacements 
of cement and sand. The RSM model had a good accuracy 
(R2 ≥ 0.92) for the mechanical properties. The ANN model 
performed better as it captured the data variability with a 
high R2 value (R2 > 0.93) for training, testing and validation. 
However, most of studies primarily rely on experimental 
data from their environments, limiting the generalizability 
of results. In contrast, our study compiles a comprehensive 
database from diverse data sources, including international 
literature, enabling broader applicability.

In this study, a comparison was made between a hier-
archical regression analysis and an ANN-based model to 
predict the compressive strength of SCC, considering factors 

Table 1  The parameters utilized 
in the creation of ANN and HR 
models

No. Parameters Symbol of 
parameters

Minimum Maximum Mean Deviation

1 Cement (kg/m3) C 160 670 311.04 109.88
2 Fly ash (kg/m3) F 0 330 156.59 69.02
3 Water-to-binder ratio W/B 0.26 0.87 0.432 0.118
4 Fine aggregate (kg/m3) S 478 1079 858.73 91.94
5 Coarse aggregate (kg/m3) G 590 926 802 115.72
6 Superplasticizer (kg/m3) SP 0.4 21.8 4.682 4.69
7 Compressive strength (MPa) CS 13.3 85 43.22 15.01

Data collection

HR model ANN model

Data analysis

Best modelBest model

Validating modelsValidating models

building models building models

Comparison between the best models of HR and ANN 

according to the statistical analysis error

Comparison between the best models of HR and ANN 

with the findings of other researchers

Develop the best model

Fig. 1  Flow chart of the steps of the both HR and ANN models
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like cement content, fly ash content, W/B ratio, fine aggre-
gate, coarse aggregate and superplasticizer. The evaluation 
of each method’s efficiency was based on comparing metrics 
such as the coefficient of variation (R2), root mean square 
error (RMSE), mean absolute percentage error (MAPE), 
mean square error (MSE), and Pearson correlation (R) for 
both models. Significant data was collected to construct a 
comprehensive database including various mixtures of fly 
ash SCC. Notably, this study marks the first comparison of 
HR and ANN in predicting the compressive strength of SCC 
with fly ash.

Data collection

The dataset for this study was compiled from diverse sources 
and used to train and test both the ANN and HR models. A 
total of 165 (Appendix A) distinct experimental data points 
were collected from various literature sources [15, 16]. In 
the suggested models, the data is structured into six input 
factors that comprise cement content, fly ash content, W/B 
ratio, coarse aggregate, fine aggregate and superplasticizer. 
The output parameters forecasted by both the ANN and HR 
models relate to the compressive strength of SCC. The limit 
values for the input and output factors utilized in the ANN 
and HR models are provided in Table 1

The models underwent evaluation through a process 
involving statistical analysis and comparison with other 
experimental findings. The process of feature engineering 
for the models involves common steps:

(1) Data collection Gather the raw data that will be used 
to train the model.

(2) Data cleaning Handle missing values, remove dupli-
cates, and deal with outliers. This step ensures that the 
quality of data fed into the model is good.

(3) Feature selection Identify and select the most relevant 
features to use in the model. This can reduce overfit-
ting, improve accuracy, and reduce training time.

(4) Data splitting Split the data into training, validation, 
and test sets to evaluate the performance and general-
izability of the ANN model. Figure 1 provides a more 
comprehensive overview of the study’s methodology.

Mathematical models

Hierarchical regression (HR)

Hierarchical regression Analysis is a statistical technique used 
to predict the relationship between a dependent variable (Y) 
and an independent variable (x) by employing a polynomial 
equation of nth degree. Essentially, it’s a specific application of 
multiple linear regression within the realm of machine learn-
ing. The process involves integrating polynomial terms into 
the multiple linear regression equation, effectively transform-
ing it into polynomial regression. In this methodology, the 
original features are modified into polynomial features up to 
the desired degree (2, 3, …, n), which are then utilized in a 
linear framework. This approach provides several advantages, 
including the ability to estimate the quadratic impact of the 
variables being examined and identify potential interactions 
among various variables. The standard formula for a quadratic 
polynomial model is outlined as follows [17]:

In this quadratic polynomial model, Y represents the pre-
dicted response, where α0 is the constant term (intercept), αi 
represents the linear coefficients, αij corresponds to the coef-
ficients for interactions, and αii represents the quadratic coef-
ficients. The variables  xi and  xj are used to denote the selected 
independent variables.

For predicting the compressive strength (CS) of SCC, CS 
is considered as the dependent parameter. The amounts of 
cement, fly ash, water-to-binder ratio (W/B), fine aggregate, 
coarse aggregate, and superplasticizer are regarded as inde-
pendent variables (Table 1).

To assess the significance of the model, various metrics 
were employed, including Pearson correlation (R), the deter-
mination coefficient (R2), Adj. R2, Pred. R2, root mean square 
error (RMSE), mean squared error (MSE) and mean absolute 
percentage error (MAPE). The equations of statistical error 
analysis were presented as follow [18]:

(1)Y = �0 +
∑

�iXi +
∑

�ijXiXj +
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�iiX
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)
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Fig. 2  Typical architecture of a back-propagation ANN
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where N represents the overall number of inputs, and Opred, 
Oexp and Oave represent the predicted value, target value and 
average of predicted values, respectively.

One possible approach to assessing the predictive ability 
of the model for the value out of the limitation is by using 
the predicted R2. Higher values of predicted R2 indicate bet-
ter predictive capability. If the predicted R2 is significantly 
lower than the R2, it may suggest overfitting.

Artificial neural network (ANN)

An Artificial Neural Network is a flexible assembly of 
extensively parallel structures, engineered to address com-
plex issues by leveraging the collective strength of simple 
computing units, often known as artificial neurons [19]. 
The principle of ANNs is that an interrelated network of 
straightforward processing units can understand the com-
plex relationships between input and output factors. In ANN 
modeling, there’s no requirement for prior understanding of 
the functional relations between the parameters [20], and the 
ANN methodology has been successfully applied to resolve 
reverse problems [21]. As depicted in Fig. 2, an ANN is 
consisted from an input layer, an output layer, and one or 
more hidden layers.

Each neuron functions as a processing unit, receiving one 
or multiple inputs and generating an output signal by means 
of a transfer function. Each connection is associated with a 
weight that indicates the influence on the present processing 
unit from a set of inputs or another processing unit in the 
prior layer. At the outset, linking weights and bias values are 
allocated randomly, and then they are fine-tuned according 
to the results of the training procedure.

Numerous training methods are at one’s disposal, such 
as back propagation and cascade correlation schemes. The 
back-propagation algorithm, a widely used gradient descent 
technique, was employed for minimizing the error in each 
training pattern by adjusting the weighting incrementally 
[22]. The assessment of this effectiveness, or generality, is 
done by testing the network with new data sets. A successful 
learning procedure entails choosing a suitable network setup, 
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which includes determining the number of hidden layers and 
their corresponding neurons. The function of the neurons in 
these hidden layers is to discern the connection between the 
inputs and outputs of the network [23].

Deciding on the size of the hidden layer can be complex 
and is somewhat reliant on the quantity and quality of train-
ing arrays. There’s no one-size-fits-all rule for choosing the 

Table 2  Analysis of variance for statistical HR model

No. Term Coef P value

1. Constant  − 728.3 0.000
2. SP 0.302 0.121
3. Coarse aggregate (G) 0.948 0.000
4. Fine aggregate (S) 0.1387 0.001
5. W/B 165.1 0.001
6. fly ash (F) 0.457 0.007
7. Cement (C) 0.942 0.000
8. G*G  − 0.000533 0.000
9. F*F  − 0.000346 0.009
10. C*C  − 0.000570 0.000
11. W/B*S  − 0.0864 0.011
12. F*S  − 0.000168 0.036
13. C*S  − 0.000075 0.262
14. F*W/B  − 0.0328 0.617
15. C*W/B  − 0.3983 0.000
16. C*F  − 0.000883 0.000
Statically error analysis
17. R2 95.25%
18. Adj. R2 94.77%
19. Pred. R2 94.28%
20. Difference between adjusted

R2 and Predicted R2
0.49%

21. F-value 199.18
22. Model P value 0.000

Fig. 3  Normal probability plot of residuals for compressive strength 
of HR model
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number of neurons in the hidden layer. The neuron count 
in an ANN should be appropriate for precise modeling of 
the particular problem, however also limited to promote the 
network’s ability to generalize. Past research has tried to 
connect the number of neurons to the input and output varia-
bles, as well as the training patterns [23]. Nonetheless, these 
rules cannot be universally applied [24]. Some researchers 
have proposed an upper bound for the necessary number 
of neurons in the hidden layer, suggesting it should be one 
more than twice the number of input points; however, even 
this rule does not guarantee optimal generalization of the 
network.

In order to develop a robust back propagation network, 
it’s often beneficial to perform a parametric analysis by 
adjusting the number of neurons in the hidden layer and 
assessing the subsequent stability of the ANN. The con-
struction of ANN typically involves two or three key stages, 
often known as ‘training,’ ‘validation,’ and ‘testing.’ During 
the training phase, the network is exposed to training data 
and modifications are made based on the errors observed. 
Both input and desired output data are used to fine-tune the 
ANN’s output and reduce discrepancies.Validation is used 
to assess the ANN ability to generalize and to stop training 
when generalization improvements stop. Testing does not 
influence training but provides an independent evaluation of 
ANN performance through and after training [25].

The statistical significance of the ANN model was 
assessed using several measures, including the R2, adj. R2, 
pred. R2, Pearson R, MSE, MAPE and RMSE. Moreover, 
it’s crucial to verify the predictive capability of the proposed 
ANN and HR models for the compressive strength of SCC, 
using new data derived from extra experimental findings 
provided by other researchers, which were not included in 
the training data.

Results and discussion

Derivative HR statistical model

The modeling process consisted of two primary stages: ini-
tially identifying an appropriate model and subsequently 
checking its efficacy. The process commenced by employ-
ing a second-order polynomial model, as depicted in Eq. (1). 
Following this, parameters with P-values exceeding 0.05 
were systematically removed, refining the model itera-
tively until only significant parameters (P < 0.05) remained 
[26–28].

The initial analysis emphasized the relationship between 
compressive strength and six independent variables (cement 
C, fly ash F, water-binder-ratio W/B, fine aggregate S, coarse 
aggregate G, superplasticizer SP). Numerous trials were 

Fig. 4  The architecture of the 
(6-7-1) ANN
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adopted to investigate the impact of the number of terms 
and the span of exponents on the predictive accuracy of the 
model.

Subsequently, the most optimal model derived from mul-
tivariable HR regression was presented in Eq. (6), encom-
passing the six independent variables. After establishing this 
model, the subsequent step involved evaluating its adequacy 
through residual plots [29, 30]. Using the gathered experi-
mental data, a second-order polynomial model was formu-
lated, following Eq. (1). The regression model fitting the 
response is expressed in Eq. (6).

(6)

CS = −728.3 + 0.302 SP + 0.9480 G
+ 0.1387 S + 165.1 W∕B + 0.457F + 0.942 C
− 0.000533 G ∗ G − 0.000346 F ∗ F
− 0.000570 C ∗ C − 0.0864 S ∗ W∕B
+ 0.000168 S ∗ F − 0.000075 S ∗ C
− 0.0328 W∕B ∗ F − 0.3983 W∕B ∗ C
− 0.000883 F ∗ C

The model described by Eq. (6) reveals that all the inde-
pendent variables investigated significantly influenced 
compressive strength, except for superplasticizer. Notably, 
cement and fly ash had a primary impact on compressive 
strength, appearing in multiple terms within the deriva-
tive model. Table 2 further substantiates the significance 
of the linear terms of cement and fly ash for compressive 
strength, as indicated by their P-values being below 0.05%. 
The interaction among most variables significantly impacted 
the response within Eq. (6).

To ensure the efficiency of the model, the residuals plot 
should display a structureless pattern. The normal plot of 
residuals for the response, illustrated in Fig. 3, exhibits resid-
uals closely aligning with a straight line, implying a normal 
scattering of errors. This suggests that the terms incorpo-
rated in the model hold significance.

The significance of the model was assessed using the F 
test and P-value. The P-values for the model were below 
0.05, underscoring their significance. Typically, a model is 
considered significant if the F value is higher [31]. As shown 
in Table 2, the F value of 199.18 emphasizes the model’s 
substantial significance.

Table 3  Training parameters of (6-7-1) ANN

Parameter Value

Training algorithm Levenberg–Marquardt algorithm
Number of hidden layers 1; 2
Number of neurons per hidden 

layer
1–30

Training goal 0
Epochs 1000
Performance functions MSE; RMSE
Hidden layers activation function Hyperbolic tangent sigmoid
Transfer functions Hyperbolic tangent sigmoid

Table 4  Final values of weights 
and bias of the (6-7-1) ANN 
model

iw{1,1}—Weight to layer 1 from input 1(Weight matrix 1) b{1}—Bias 
to layer 1 
(Weight vec-
tor 1)

[− 1.1246 0.24562  − 3.318  − 3.3203  − 0.096463 1.4877; [4.3348;
0.93421 0.17504  − 1.5406 0.99145  − 0.79537  − 1.3757;  − 1.0468;
2.7772  − 3.1259  − 0.92321 2.6508  − 0.83352 0.47695; 0.3175;

 − 1.9313  − 1.1375  − 1.0786  − 0.39878  − 0.20483  − 1.42;  − 1.8306;
2.954  − 0.1202  − 1.3571 1.9111  − 0.036802 0.076187;  − 0.21;
5.9347 8.5414 8.1762 8.0606  − 5.5303  − 2.8943;  − 2.7053;

 − 0.25051 0.66952 2.5754  − 1.7783 0.73305 1.6311] 1.3208;]
lw{2,1}—Weight to layer (Bias vector) b{2}—Bias to 

layer 2 (Out 
scalar bais)

 [− 4.2667  − 0.62216  − 0.76551 1.6497  − 0.25615  − 2.0131] [2.0921-]

Table 5  Evaluation of the proposed models

Type of statistical function Model

(6-7-1) ANN HR

Pearson R 99.254% 97.595%
R2 98.51% 95.25%
Adj. R2,% 98.51% 94.77%
Pred. R2,% 98.48% 94.28%
RMSE 1.83 3.26
MAPE 3.69 7.06
MSE 3.35 10.63
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The accuracy of the statistical models can be confirmed 
by analyzing the variance proportions (R2), making sure that 
the discrepancy between the adjusted R2 and the pred. R2 is 
less than 20% [32]. In this study, the model demonstrated a 
notably high determination coefficient, R2, at 95.25%, signi-
fying that only 4.75% of the variation couldn’t be accounted 
for this model. This underscores the robust statistical signifi-
cance of the model and its suitable fit, suggesting a signifi-
cant relation between the actual values and those predicted 
by the model.

Table 2 further confirms that the difference between the 
adjusted R2 and predicted R2 was less than 20%, validat-
ing the model’s practicality for response. Additionally, the 
adjusted R2 values closely aligned with the R2, suggesting 
the absence of unnecessary terms in the model. All the 
P-values in Table 2, established through ANOVA, demon-
strated that the lack of fit had an insignificant relationship 
with pure error.

Artificial neural network ANN

In this study, the MATLAB program’s ANN toolbox 
(nftool) was utilized for the necessary computations. A 
feed-forward network with one hidden layer was trained 

using a back-propagation training algorithm with the Lev-
enberg–Marquardt back propagation algorithm.

If the trust-region algorithm failed to provide a satis-
factory fit and suitably limit the coefficients, the Leven-
berg–Marquardt algorithm was selected [33]. As it is pre-
sented in Fig. 4, the transfer functions are the hyperbolic 
tangent sigmoid for both hidden and output layer.

The training, validation, and testing sets for an ANN can 
have different percentages depending on the project or data 
size. A common way is to use 70% for training, 15% for vali-
dation, and 15% for testing [34]. The aim is to have enough 
data in the training set to build a good model, enough data 
in the validation set to adjust hyperparameters and select 
the best model during training, and enough data in the test 
set to measure the final model’s performance [35]. These 
percentages are not fixed and can be changed based on fac-
tors such as the total data amount and the model complexity 
[34, 35]. For instance, if there are a lot of data, you might 
use a smaller percentage for training and give more to the 
validation and test sets. On the other hand, with less data, 
you might need a larger training set to prevent underfitting 
[34]. In this study, 91 out of 131 specimens (70% of the total 
data) were used to train the ANN model in this set. To check 
the reliability of the results, 20 out of 131 specimens (15% 
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Fig. 5  Experimental versus predicted values for compressive strength 
a (6-7-1) ANN model and b HR model

Fig. 6  Time series plots for experimental and predicted CS for the 
two models a ANN (6-7-1) model and b HR model
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of the total data) were used for validation. The remaining 
20 specimens (15% of the total data) were used for testing.

The number of neurons in the hidden layer was ascer-
tained by training various ANN with varying numbers of 
neurons and matching the forecast outcomes with the antici-
pated response. The ideal number of hidden neurons was 
found to be 7 for a single hidden layer of the (6-7-1) ANN, 
as depicted in Fig. 4. Table 3 summarizes the parameters 
used for ANN training.

The ANN models’ predictions were not affected by 
the number of neurons in the input layer or the input data 
expressions in practical scenarios, according to the ANN 
models analysis. However, the results contradicted the com-
mon belief and showed that the lowest standard deviation 
values were obtained by normalizing within the [min–max] 
range. The ANN models were trained for epochs ranging 
from 6 to 20. Training usually stops before reaching the 
maximum number of epochs to avoid overfitting the data. 
This improves the network’s generalization. Training also 
stops if the cross-validation results do not improve beyond 
a certain tolerance. This shows that the advanced multilayer 
feed-forward neural network models can predict the com-
pressive strength with high accuracy and low computational 
effort. It is important to know that the optimal architecture 
of a neural network model provided by the authors may not 
be very helpful to other researchers and engineers in practice 
without the specific values of the ANN weights. However, 
if the suggested ANN structure also includes the specific 

numerical values of the weights, it can be very useful. This 
allows the ANN model to be easily implemented in an MS-
Excel file, making it accessible to anyone interested in mod-
eling. Therefore, Table 4 shows the final weights for both 
hidden layers and bias. By using the properties specified in 
Table 1 and applying the assigned weights and bias values 
across the layers of an ANN according to Fig. 4, it is pos-
sible to estimate the expected compressive strength.

Remarkably high Pearson R-values of 0.99374, 0.98507, 
0.99386, and 0.99254 were attained for training, validation, 
testing, and overall, respectively.

The calculation of CS using (6-7-1) ANN is less com-
mon compared to HR analysis due to the advantages of HR, 
including not requiring specialized software, generating 
easily interpretable regression constants, and assessing the 
importance of various input factors.

Validation and comparison of HR and (6‑7‑1) ANN 
models by

Statistical analysis error

In this study, both HR and ANN models were employed 
to predict the compressive strength of SCC incorporating 
fly ash. The correlation between the experimental and com-
puted values was used to validate the effectiveness of these 
mathematical models. The high correlation confirmed that 
the mathematical models accurately reflected the predicted 

Table 6  Comparison of (6-7-1) 
ANN and HR models with other 
researcher’s results

N References Fly ash % Compressive strength, MPa

Experimental (6-7-1) ANN E% HR E%

1. Leung et al. [37] 10 61 62.89 3.11 59.02 3.25
2. 20 54.4 59.55 9.48 59.13 8.74
3. 30 52.6 55.51 5.54 58.67 11.54
4. Naik, et al. [38] 0 60 67.48 12.48 69.27 15.44
5. 35 62 68.72 10.85 61.04 1.55
6. 45 60 68.62 14.37 66.86 11.43
7. Zhu and Bartos [39] 0 68.5 57.71 15.75 56.83 17.04
8. 20 71.3 64.93 8.93 66.67 6.49
9. 30 49.9 50.94 2.08 55.53 11.27
10. Liu [5] 0 73.3 69.81 4.74 71.99 1.78
11. 20 69.7 61.12 12.31 63.19 9.33
12. 40 58.5 54.27 7.21 53.26 8.95
13. 60 37.2 44.69 20.16 41.84 12.48
14. Kazim et al. [18] 25 53.5 57.56 7.59 59.61 11.42
15. 30 55 61.69 12.16 60.14 9.34
16. 35 58 61.43 5.91 59.95 3.37
17. 40 59 60.15 1.96 59.74 1.25
18. Dinakar, et al. [36] 10 79 74.07 6.23 82.54 4.53
19. 30 88.1 71.88 18.41 76.67 12.93
20. 50 60.8 68.50 12.67 68.49 12.59
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results. The statistical analysis in Table 5 showed the high-
quality predictions made by both HR and (6-7-1) ANN mod-
els. However, the (6-7-1) ANN model had a clear advantage 
in data fitting and estimation capabilities over HR. The (6-7-
1) ANN model had a higher determination coefficient (R2) 
of 98.51%, compared to 95.25% for HR, indicating a higher 
accuracy. The statistical analysis in Table 5 supported the 
accuracy and quality of predictions obtained by both HR 
and (6-7-1) ANN models. The actual and predicted values 
of compressive strength for both models were plotted in 
Fig. 5a, b. It was observed that the deviations of the residu-
als were notably smaller and more regular for (6-7-1) ANN 
compared to HR. The HR model exhibited higher variation 
than the ANN model as presented in Fig. 6a, b. It’s important 
to note that while HR provides a regression equation for pre-
diction and demonstrates the effects of experimental param-
eters and their interactions on the response, ANN offers flex-
ibility in adapting to any experimental plan to construct the 
model. The ANN allows for incorporating new experimental 
data, contributing to a reliable and adaptable model. Thus, 
interpreting the compressive strength of SCC data through 
an ANN architecture is more rational and consistent.

Comparison with the findings of other researchers

The effectiveness of the trained (6-7-1) ANN and HR mod-
els is determined by their capacity to extrapolate predic-
tions from the training data and to handle new, unfamiliar 
data effectively in the range of input factors used during 
training. Thus, it was crucial to validate the capability of 
the proposed (6-7-1) ANN and HR models to predict SCC 
compressive strength for new data attained from further 
results from other researchers. The models were repre-
sented with a total of 20 unseen records and were tasked 
with predicting SCC compressive strength for each set of 
values within the six prominent factors [5, 18, 36–39]. 
Table 6 presents a comparison among the values computed 
by the proposed models and the new data records used for 
validation. This accurately depicts the calculated relative 
error in each calculation, as defined by Eq. (4).

where Oexp is the experimental output and Opred is the output 
estimated by the ANN and HR models.

The evaluation of the (6-7-1) ANN model and the HR 
models were expressed through the total relative error. 
This measurement demonstrates that employing the sug-
gested models enables accurate prediction of the 28-day 
compressive strength of SCC with varying proportions of 
fly ash.

(4)E(%) = ABS

(
Oexp − Opred

Oexp

)
× 100

Limitations

The ANN model can be used when the experimental values 
for (cement, fly ash, W/B, fine aggregate, coarse aggregate 
and SP) tests are available to the researcher or practitioner. It 
is important to note that the HR and ANN models can only 
give reliable predictions within the parameter values range 
shown in Table 1. If the parameter values are outside this 
range, the prediction may not be trustworthy.

Conclusions

In the current study, an analysis was carried out to examine 
the impact of modifying the quantities of cement, fly ash, 
water-to-binder ratio, fine aggregate, coarse aggregate, and 
superplasticizer on the compressive strength of self-com-
pacting concrete. The hierarchical regression and artificial 
neural network models were utilized to assess and predict 
the compressive strength, drawing upon experimental data 
from prior literature.

Key conclusions from this study include:

• Both ANN and HR models, built on prior experimental 
outcomes, proved to be effective and efficient in forecasting 
compressive strength. Leveraging these models allowed us 
to gather valuable insights with fewer trial mixtures.

• In terms of predictive accuracy, the tested ANN mod-
els outperformed HR, as evidenced by superior per-
formance indices. The comparison highlighted that 
ANN models yielded a high Pearson R, approaching 1 
(0.99254). The results underscored ANN’s efficacy in 
predicting compressive strength for SCC with diverse 
fly ash proportions. However, to enhance the ANN 
model’s versatility, a more extensive and diverse train-
ing database would be beneficial.

• The utilization of ANN for compressive strength predic-
tion is less common compared to HR, primarily because 
the latter offers advantages such as not requiring spe-
cific software, producing easily applicable regression 
constants, and evaluating the importance of different 
input factors. However, employing ANN for predicting 
compressive strength in SCC at 28 days is particularly 
advantageous when dealing with nonlinear functional 
relationships, where traditional methods may fall short.

Appendix A: Experimental database 
of self‑compacting concrete

See Table 7.
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