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Abstract
Sulfate attack is one of the severe concerns for concrete's durability in sulfate-rich soil, groundwater, and the marine environ-
ment. The ingress of dissolved sodium and (or) magnesium sulfate in concrete leads to the formation of expansive products 
such as gypsum, ettringite, brucite, and magnesium-silicate-hydrate (M–S–H), causing extensive cracking and disintegra-
tion of concrete based on the severity of the attack. The consequence of ingress of magnesium sulfate is more severe than 
sodium sulfate. The present article aims to assess the long-term behavior of a novel cement composite incorporating 80% 
class-F fly ash (F-FA) and 20% ordinary Portland cement with varying volume fractions of polypropylene fibers exposed to 
5% magnesium sulfate solution for up to two years. The compressive strength, weight, and volume changes of the specimens 
measure these effects. The mixes with higher volume fractions of PP fibers undergo a 40% reduction in compressive strength, 
6.7% weight gain, and 3.5% volume change at two years. The morphological features revealed through SEM images and EDX 
analysis find the formation of M–S–H, brucite, gypsum, ettringite traces, and unreacted F-FA. The outcomes of this study 
encourage the utilization of F-FA to a much higher volume to help reduce the carbon footprint and promote sustainability.
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Introduction

The ingress of sulfate ions significantly affects concrete's 
durability [1]. The internal source of sulfate is the raw mate-
rials used to produce concrete, and the external source of 
sulfates is the ingress of sulfate into the concrete through 
sulfate-rich soils and groundwater [2]. Both sources lead 
to the formation of expansive ettringite and induce matrix 
cracking. However, the internal sulfate attack depends on 
the temperature and slows down with time. In contrast, 
the external sulfate attack leads to more significant matrix 

deterioration with time due to the ability of sulfates to 
ingress concrete through the cracks [1–3]. In an external 
sulfate attack, the transfer of ions into concrete occurs in 
two modes: (i) ingress of sulfate into the cement matrix and 
(ii) deposition of leached calcium ions on the surface [4]. 
A combination of internal–external sulfate environments 
to assess the behavior of cast in-situ concrete reveals that 
internal sulfate attack severely damages the concrete due to 
extensive cracking that further worsens the member's condi-
tion due to the ingress of external sulfate ions [3].

Concrete exposed to marine environments experiences 
distress due to freeze–thaw cycles in the tidal zone and 
sulfate attack in the submerged area. The type and concen-
tration of the solution influence the behavior of concrete. 
5% magnesium sulfate solution damages the concrete more 
severely than 5% sodium sulfate solution [5]. A 3:1 dry–wet 
cycle ratio of sulfate exposure severely damages the con-
crete due to fatigue, causing changes in the concrete matrix 
[6]. The degradation of concrete due to chemical sulfate 
attack and physical sulfate attack is due to the mesoscopic 
pores. At an early age, i.e., within three months of exposure 
to a chemical sulfate attack, expansive products fill most 
mesoscopic pores. However, in a physical sulfate attack, the 
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expansive products occupy larger pores [7]. Ettringite forms 
both in capillary and gel pores. Crystallization of ettringite 
followed by expansion is associated with pore invasion and 
deformation [8–10].

Influence of incorporating SCMs toward resistance 
to sulfate attack

Alkali-activated concretes incorporating ground granulated 
blast furnace slag (GGBFS) and F-FA subjected to differ-
ent forms of external sulfate of varying concentration solu-
tions reveal that concretes combining GGBFS and F-FA 
offer better resistance to mass loss and length change [11]. 
F-FA's type, chemical composition, and fineness impact the 
desired characteristics of concrete at early and later ages 
[12–16]. Adding calcium hydroxide as an additive enhances 
the pozzolanic reaction of F-FA in concrete. The behavior 
of high-volume F-FA concrete depends on its fineness and 
the dosage of additives such as metakaolin and silica fume. 
Using ultra-fine F-FA improves the reactivity and proper-
ties of such concretes [17]. Combined freeze–thaw cycles 
and sulfate attack on concrete show that adding about 10% 
F-FA reduces the proportion of micro and capillary pores. 
However, excessive concentration of sodium sulfate coupled 
with high-frequency freeze–thaw cycles lead to the forma-
tion of more macro pores [18].

Using F-FA and nano-silica reduces pore size and 
enhances the microstructure and mechanical properties of 
the concrete [19]. However, the concretes incorporating 
nano-silica and silica fume blends exhibit brittle behavior 
[20]. Adding low volume F-FA, about 30%, reduces the pore 
diameter and aids in the densification of the matrix [21]. A 
blend of F-FA, silica fume, and nano-silica with OPC prom-
ises improved characteristics of concrete due to enhanced 
microstructure and reduced initial width of the micro-crack 
[22]. Adding 30%, F-FA reduces compressive strength and 
decreases water absorption [23].

An engineered cement composite containing varying 
ratios of F-FA to cement and a low volume of benton-
ite tested for resistance to wet/dry and sulfate solution 
reveals that an increase in F-FA to cement ratio reduces 
the resistance of the composite to sulfate solution. The 
addition of bentonite contributes to enhanced micro-
structure [24, 25]. Nano-engineered cement composite 
incorporating F-FA (30–50%) and 6% silica fume, tested 
under 5% magnesium sulfate solution, shows that add-
ing 3% silica nanoparticles improves the mechanical and 
durability performance [26]. Adopting wet grinding of 
F-FA enhances the resistance to sulfate when the levels of 
F-FA are 50% of cement in heat-cured concretes [27]. The 
recent trends reveal the utilization of alternative coarse 
and fine aggregates such as Ferro Nickel Slag (FNS), 

Recycled Coarse aggregate (RCA), and Coal Bottom Ash 
(CBA) to produce sustainable concretes to conserve natu-
ral resources [28, 29].

Influence of F‑FA and fibers in cement mortar, 
cement concrete, and cement composite 
toward sulfate attack

The issue of decalcification of C–S–H with the sulfate 
ions from external sources led to the utilization of sup-
plementary cementitious materials (SCMs) such as class 
F-FA and GGBFS [8, 11, 17, 30]. The impact of incorpo-
rating 10% F-FA, basalt, and PP fibers in concrete offers 
better resistance to sulfate attack due to pore refinement 
measured using fractal dimension [31]. A high-volume 
F-FA of about 70% in self-compacting concrete helps 
improve the resistance toward sulfate attack. The SEM 
observation of samples of concrete containing 0–40% 
F-FA reveals the formation of fibrous C–S–H, crystals 
of calcium hydroxide, and needle-like ettringite. The 
concrete with 60% F-FA does not show the presence of 
ettringite [32]. Cement composite using ternary blends 
as a binder and hybrid fibers in the form of carbon nano-
tube, polyvinyl, and PP fibers show that using metakaolin 
reduces the permeability of the cement composite sig-
nificantly. However, using PP fibers increases porosity 
and carbon nanotubes improve the behavior of cement 
composite toward magnesium sulfate solution [33].

Binary blends of F-FA and nano-silica with polyvinyl 
alcohol fibers in 1% by volume improve the mechani-
cal properties and resistance to sodium sulfate solution 
[34]. Using wheat husk ash, rice husk ash, and glass pow-
der in an F-FA-based cement composite with fibrillated 
PP fibers shows that a composite containing rice husk 
ash exhibits lesser mass loss than other mixes [35]. The 
influence of air entrainment on concrete mixes using 20% 
high calcium fly ash offers better resistance when sub-
jected to a 5% sodium sulfate solution [36]. Incorporating 
0.25% PP fibers by weight of the binder, air-cooled slag 
aggregate at 50% replacement to fine aggregate, and 45% 
F-FA as a substitute to cement in concrete offers better 
resistance to sulfate attack [37]. Microfibers of different 
lengths with lower volumes of F-FA show that 12 mm 
length and 20% combination impart better durability to 
concrete [38].

Incorporating F-FA and steel fibers in self-consolidat-
ing concrete exposed to dry–wet sulfate attack reveals that 
50% F-FA is optimum for a dense microstructure [39]. The 
hybrid steel, glass, and PP fibers improves the resistance 
toward 5% sodium sulfate solution [40]. Utilizing PP fib-
ers in concretes prone to freeze–thaw cycles and sulfate 
erosion shows that PP fibers in higher volume fractions 
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improve the concrete's capacity to resist expansion due 
to the formation of gypsum and ettringite [41]. Adding 
nano-silica and PP fiber in alkali-activated concrete offers 
poor resistance to magnesium sulfate solution by severely 
affecting the flexural and compressive strength [42]. Con-
crete incorporating F-FA, bentonite, and polyvinyl fibers 
exhibits superior resistance to wet/dry cycles coupled with 
sulfate exposure due to the ability of F-FA to reduce the 
proportion of micropores [43].

Using recycled aggregates, F-FA, and PP fibers in 
concrete subjected to magnesium sulfate solution reveals 
that concretes with 0% recycled aggregates, 6% PP fib-
ers, and 25% F-FA offer the best resistance [44]. Add-
ing nano silica, nano titanium oxide, and PP fibers to 
concrete helps to improve the resistance to freeze–thaw 
cycles and sulfate attacks due to the bridging effect of PP 
fibers, thereby improving durability by 67% [45]. Using 
cellulose fibers in concrete with varying F-FA(0–30%) 
to assess the performance under dry–wet sulfate attack 
reveals that incorporating 30% F-FA reduces the resist-
ance to sulfate solution [46]. Literature on incorporating 

fibers and SCMs to produce fiber-reinforced cement com-
posite is widely available. However, there is a lack of 
studies to understand the behavior of fiber, matrix, and 
the long-term influence of fiber–matrix interface toward 
resistance to magnesium sulfate environment [47].

Summary of literature

Extensive studies on concrete, cement composite, and mor-
tars incorporating various SCMs and fibers subjected to 
sodium and magnesium sulfate solutions of concentration 
varying between 5 and 10% for about 180 days are avail-
able with emphasis on the behavior under coupled attack 
(freeze–thaw and sulfate). However, the research on high-
volume fly ash-based composites and high-volume fractions 
of PP fibers is limited. Most articles supplement the behavior 
under aggressive environments by conducting microstruc-
ture studies. The parameters considered to assess the behav-
ior of samples subjected to sulfate exposure are compressive, 

Fig. 1  XRD results of cement, 
F-FA, and NAC cured for 3, 7, 
and 28 days [48]

Table 1  Mix proportion of 
NAC with and without fibers in 
kg/m3 [48]

Mix. no Name Cement Fly ash Water Admixture Fibers

M1 NAC 325 1300 243.75 6.5 0
M2 NAC PP 0.6 325 1300 243.75 6.5 5.52
M3 NAC PP 0.8 325 1300 243.75 6.5 7.36
M4 NAC PP 1.0 325 1300 243.75 6.5 9.2
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flexure, and splitting tensile strengths, mass loss, and micro-
structure analysis.

Scope of the present study

The article aims to assess the durability of a novel high-
volume fly ash cement composite, the no-aggregate concrete 
(NAC), incorporating about 80% F-FA and 20% OPC with 
synthetic fibers in three different proportions from 0.6 to 
1.0% toward external sulfate attack. Compressive strength, 
weight, and volume changes of 100 mm cubes immersed in 
the aggressive sulfate environment by preparing a 5% mag-
nesium sulfate solution for up to two years are measured. 
The SEM images and EDX analysis correlate the morpho-
logical findings with the experimental results that show the 

exceptional potential of NAC with fibers toward magnesium 
sulfate attack in the long term.

Materials and methods

The present work uses OPC 43 grade cement, a high vol-
ume of F-FA of about 80%, potable water, PP fibers in 
three volume fractions, and a polycarboxylic ether (PCE) 
based plasticizer to achieve a low water–binder ratio. Fig-
ure 1 presents the mineralogical characterization using 
X-ray diffraction. PP fibers of length 12 mm, diameter 
40 µm, relative density of 0.92, and tensile strength of 
800 MPa are used for producing mixes M2, M3, and M4. 
Table 1 presents the mix proportions of NAC with 0, 0.6, 
0.8, and 1.0% volume fractions of PP fibers.

Fig. 2  Research Methodology
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Fig. 3  a Polypropylene fibers used for preparing mixes M2, M3, and 
M4 b mixing process and the type of mixer for preparing the mixes, c 
sample specimen of M2 after 730 days exposure to sulfate, d expan-

sion of sample M1 subjected to sulfate solution for 730 days e sample 
specimen under compression f spalling of a layer of M1 under com-
pression after exposure to 730 days

Fig. 4  Compression test results 
of NAC mixes with and without 
PP fibers immersed in water



 Innovative Infrastructure Solutions (2023) 8:328

1 3

328 Page 6 of 13

Methods

Figure 2 presents the research methodology designed to con-
duct the experimental investigation.

100 mm cubes of NAC with 0, 0.6, 0.8, and 1.0% PP 
fibers are cured under immersion for 28 days. These spec-
imens are then exposed to the aggressive environment 
as a 5% magnesium sulfate solution for 120, 180, 270, 
360, and 730 days. The weight, volume, and compressive 
strength changes are recorded for all specimens of each 

mix after each exposure duration. Microstructural stud-
ies such as SEM images and EDX analysis of samples 
exposed to sulfate solution for 730 days are conducted to 
observe the morphological changes and the presence of 
expansive products in the matrix. Figure 3 presents the 
preparation of the specimens. The compressive strength 
of the specimens immersed in (i) water and (ii) 5% 
magnesium sulfate solution for 120, 180, 270, 360, and 
730 days is determined by loading the specimens under 
a compression testing machine of capacity 3000 kN at a 

Fig. 5  Compression test results 
of NAC mixes with and without 
PP fibers exposed to sulfate 
solution

Fig. 6  Reduction in compres-
sive strength of mixes M1, M2, 
M3 and M4
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rate as specified in IS 516:1959 [49]. The microstructure 
of samples exposed for 730 days to magnesium sulfate 
solution is studied.

Results and discussion

Compressive strength

Figures4 and 5 present the behavior of 100 mm cubes of 
NAC mixes M1, M2, M3, and M4 immersed in water and 
5% magnesium sulfate solution for 120, 180, 270, 360, and 
730 days under compression. The compression test results 
of specimens immersed in water show continuous gain in 
strength with time. Mix M1 attains an average compres-
sive strength of 70.89 MPa at 120 days and 90.63 MPa 

at 730 days. M2's strength is 70 MPa at 120 days and 
93.67 MPa at 730 days. The strength gain reduces with 
age, and there is less variation in compressive strength for 
mixes with fibers. M2 achieves the highest strength at all 
durations compared to all mixes. The strength gain follows 
a linear trend in all mixes with a high correlation value for 
R2 above 0.9. The decrease in the rate of strength gain is 
due to the crystallization of hydration products that block 
water availability for further hydration. The availability 
of F-FA as a micro filler and dispersion of fibers reduces 
the possibility of water availability for the cement grains 
for hydration.

The mixes subjected to sulfate Attack by immersion in 
5% magnesium sulfate solution show a reduction in strength 
with exposure. M1 experiences the highest loss in strength. 
Figure 5 shows the negative trend in strength gain with time. 

Fig. 7  Weight gain of mixes 
M1, M2, M3, and M4 exposed 
to sulfate environment

Fig. 8  Volume change of mixes 
M1, M2, M3, and M4 exposed 
to sulfate environment
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The mixes with fibers show lesser deterioration under sulfate 
attack as there is much less reduction in the compressive 
strength. The behavior of all mixes exposed to a sulfate envi-
ronment follows a linear trend with a high correlation value 
of R2 above 0.9. Utilization of PP fibers in higher volumes, 
i.e., 0.8 and 1.0% volume fraction, helps to hold the matrix 
intact and offers good resistance in long-term exposure to 
an aggressive sulfate environment.

Figure 6 presents the rate of reduction in compressive 
strength for the mixes exposed to sulfate solution in per-
centage. The decline in strength recorded for the mixes 
M1, M2, M3, and M4 at 120 days is 5.39%, 6.40%, 6.51%, 
and 6.90% respectively. Due to the weak fiber-matrix 
interface, the mixes with fibers experience a higher loss 
of strength at 120 days. With prolonged exposure to the 
sulfate environment, this trend reverses. While the mixes 
M2 and M1 show about 47% and 75% reduction, the M3 
and M4 mixes exhibit about 40% strength reduction, 
showing the ability of fibers to hold the matrix intact 
despite the formation of expansive products. The addition 
of fibers also offers better resistance to crack propagation 
and the ability to resist the load under compression due 
to improvement in the fiber-matrix interface with time. 

Generally, the reduction rate sharply increases with time 
for all mixes and follows a linear trend with a high cor-
relation value of R2 above 0.9.

Weight gain and volume change

When subjected to a sulfate environment, the mixes with 
PP fibers show weight gain with time. Figure 7 presents 
the data for weight change observed in specimens for vari-
ous exposure durations to magnesium sulfate solution. Mix 
M1 shows 0.41% weight gain at 120 days and 6.54% at 
730 days. The values recorded for mixes M2, M3, and M4 
are 0.26, 0.27, and 0.28%, respectively, indicating less vari-
ation at 120 days. With prolonged exposure to the sulfate 
environment, the mixes with fibers show higher weight gain. 
M4 gains the highest weight of 6.7% among all mixes at 
730 days. All mixes follow a linear pattern, with an R2 value 
above 0.8. Mix M2 has the best correlation with an R2 value 
close to 1, followed by mix M1.

Figure 8 presents the volume change exhibited by the 
mixes exposed to sulfate solution for various durations. The 
specimens show no expansion or cracks at 120 days. M1 
indicates a steady rise in volume change with 3.03%, 3.37%, 

Fig. 9  Deformation of specimen 
at various duration a deforma-
tion of sample M1 at 180 days 
b deformation of sample M1 at 
360 days c deformation of sam-
ple M1 at 730 days d deforma-
tion of sample M4 at 730 days
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and 3.87% at 180, 270, and 360 days under sulfate exposure. 
In contrast, the mixes M2, M3, and M4 do not experience 
volume change till 270 days of exposure. However, at 360 
and 730 days of exposure, M2, M3, and M4 experience a 
volume change of about 3.03–3.65%. About 8.8% volume 
change is observed at 730 days for mix M1 and is the highest 
among the mixes at 730 days.

Figures 9a, b, and c depict the physical deterioration of 
mix M1 at 180, 360, and 730 days respectively. M1 exposed 
to sulfate solution for 180 days exhibits chipped corners and 
slight cracks at the edges. The mixes with fibers do not show 
such disintegration. At 360 days, the deterioration of mix 
M1 due to the formation of expansive products is prominent 
in the form of wide cracks propagating throughout the speci-
men and affecting the composition of the matrix of M1, as 
shown in Fig. 9b. At 730 days, the sample shows extreme 

distress due to the corrosive products such as M–S–H and 
brucite, leading to the formation of large cracks, chipping 
of sides, losing homogeneity in appearance and cohesivity 
of the matrix, in turn contributing to spalling of the face of 
the specimen as shown in Fig. 9c. Contrary to mix M1, at 
730 days, mix M4 shows slight cracks continuing from bot-
tom to top along the sides with slight chipping at the edges, 
as presented in Fig. 9d.

Figures 10a and b present the failure pattern of M1 
at 180 and 360 days under compression. The core of the 
specimen is intact, and the failure happens due to the 
spalling of the surface layers of the sample, denoting the 
inability of the sulfate ions to ingress into the core of the 
test specimen due to homogeneous and cohesive matrix 
and the ability of high-volume F-FA to reduce the pore 
size. The spalling is higher for M1 exposed to sulfate 

Fig. 10  Failure pattern of 
specimens at various dura-
tion a failure of sample M1 at 
180 days b Failure of sample 
M1 at 360 days c Failure of 
samples M1, M2, M3, and M4 
at 730 days
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Fig. 11  Morphology of mix a M1 b M2 c M3 and d M4 after 730 days exposure to magnesium sulfate solution

Fig. 12  EDX spectrum of mix M1 after 730 days exposure to sulfate environment
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solution for 360 days, indicating the higher deteriorating 
effect of magnesium sulfate on the composition of the 
matrix without fibers, as shown in Fig. 10b. Figure 10c 
shows the failure pattern of M1, M2, M3, and M4 under 
compression after 730 days of exposure to magnesium 
sulfate solution. The mixes with fibers do not display the 
signs of spalling despite cracks at the surface before test-
ing and hence have a better ability to resist compression. 
The presence of fibers and their distribution help to hold 
the matrix intact by arresting the crack propagation and, 
in turn, reduces the width of the cracks in the mixes with 
fibers, i.e., M2, M3, and M4. The specimens with fibers 
do not lose cohesiveness despite prolonged exposure to 
the aggressive sulfate environment.

These observations indicate that mix M1 is highly sus-
ceptible to sulfate attack as the ability to hold the matrix 
intact is severely affected at 730 days despite using high-
volume F-FA. The addition of PP fibers helps achieve 
discontinuity of capillary pores by acting as a barrier due 
to the distribution in the matrix. When used in higher 
volume fractions of about 0.8 and 1.0%, it prevents the 
disintegration of the matrix despite the formation of 
expansive products.

Morphological investigation

The subsequent section presents the microstructural stud-
ies in the form of SEM images and EDX analysis of mixes 
M1, M2, M3, and M4 subjected to sulfate attack for up to 
730 days. Figure 11a displays the formation of brucite, mag-
nesium silicate hydrate (M–S–H), calcium silicate hydrate 
(C–S–H), and many empty spherical pockets due to the con-
sumption of  SiO2 to form M–S–H. The decalcification of 
C–S–H and the exchange reaction to replace calcium ions 
with magnesium leads to the loss of cohesivity of the matrix 
[11, 30, 50]. The absence of unreacted F-FA in the matrix 
also complements the formation of calcium sulfoaluminates.

The SEM observations for mixes with fibers show the 
presence of gypsum, ettringite, brucite, M–S–H, and 
C–S–H, as depicted in Figs. 11b, c, and d, respectively. The 
prominent observation in the mixes with fibers is the pres-
ence of unreacted F-FA particles, i.e.,  SiO2, unlike M1. The 
matrix is cohesive in the mixes containing fibers, and the 
ability of unreacted F-FA particles to act as micro filler is 
validated. The dispersion of PP fibers and the availability of 

F-FA also act as a barrier to the ingress of the sulfate solu-
tion, enhancing the microstructure of the mixes M2, M3, 
and M4 [6, 41, 46, 51]. The presence of cracks is noticed in 
all the mixes irrespective of the addition of the fibers due to 
M–S–H and brucite causing the disintegration of the binder 
matrix. The formation of gypsum and ettringite aggravates 
the deterioration process due to the larger volume of these 
products, causing stress leading to expansion, cracking, and 
loss of strength.

Figure 12 presents the EDX spectrum of M1. It shows 
calcium, magnesium, aluminate, sulfate, and silicate as the 
chief elemental composition. Table 2 presents the ratios of 
chief oxides based on the atomic weight % obtained from 
the EDX. The ratio of Ca/Si is 1.26 and 1.20 for mix M1 
and M2, respectively. The ratio reduces to 0.57 and 0.73 
for mixes M3 and M4. For the Ca/Al ratio, a similar trend 
follows. The higher Ca/Si ratio indicates a reduction in the 
strength for M1 and M2, and a lower Ca/Si ratio indicates 
higher compressive strength for mixes M3 and M4. The Al/
Si ratio for mixes ranges from 0.49 to 0.60, which supple-
ments the reason for reduced strength with prolonged expo-
sure to the sulfate environment.

Conclusions

This article presents the long-term durability of a novel 
cementitious composite with a high-volume fraction of 
PP fibers and F-FA under an aggressive sulfate environ-
ment. The key indicators used to evaluate the performance 
of mixes are changes in compressive strength, weight and 
volume, and microstructure characteristics. The important 
findings from this study are:

• The mix M1, after prolonged exposure to magnesium sul-
fate, performs poorly under compressive loads due to the 
spalling of the outer layers of the sample. However, the 
mixes with fibers show better results under compression 
due to the ability of fibers to disperse in the matrix and 
hold the matrix intact despite the formation of expansive 
products.

• NAC without fibers is highly susceptible to deteriora-
tion under sulfate exposure. A higher volume fraction 
of PP fibers, i.e., 0.8 and 1.0%, significantly improves 

Table 2  Ratios of chief oxides 
in the mixes after exposure 
to the sulfate environment for 
730 days

Mix type CaO SiO2 Al2O3 Ca/Si Ca/Al Al/Si

M1 9.57 7.58 3.86 1.26 2.48 0.51
M2 6.84 5.69 3.4 1.20 2.01 0.60
M3 6.87 12.09 5.89 0.57 1.17 0.49
M4 8.81 12.07 7.06 0.73 1.25 0.58
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the resistance to sulfate attack due to higher residual 
strength.

• The fiber-matrix interface improves with time, leading to 
weight gain in mixes with 0.8 and 1.0% volume fraction 
PP fibers. The volume change is insignificant in these 
mixes despite prolonged exposure to the sulfate environ-
ment.

• The microstructure of mixes with fibers is generally 
cohesive, with unreacted F-FA acting as a micro filler.

These observations show that NAC with a higher volume 
fraction of PP fibers has immense potential to resist external 
sulfate attack and can be a choice for applications in environ-
ments with excess sulfate content.
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