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Abstract
In the current study, the effect of cement kiln dust on the fresh and hardened cement mortar was investigated; chemical analysis 
of the binder was also included. Cement kiln dust (CKD) content (% by dry weight of cement) was from 0 to 100%. The fresh 
property of the cement was evaluated by flow table test, and the evaluation of hardened properties was based on the compressive 
strength, flexural strength, and stress–strain behavior of the mortar. Standard sand was used in the current study with a ratio of 
sand-to-binder (s/b) 3 and a water-to-binder ratio of 0.5. Also, cement and CKD were characterized based on microstructure tests, 
X-ray diffraction (XRD) and scanning electron microscopy, and thermogravimetric analysis to determine the weight loss of CKD 
and cement under high temperature. Three distinct models (linear regression model (LR), adaptive regression spline (MARS), and 
artificial neural network (ANN)) were utilized to generate predictive models to estimate the compressive strength of CKD-modified 
cement mortar, the current study data and 162 collected data from different research studies were used in the model development. 
The collected data were a combination of datasets with different w/b, s/b, CKD, silicon dioxide content in the binder (SiO2), cal-
cium oxide content in the binder (CaO, %), maximum size of fine aggregate (MSA, mm), and curing times of the samples (t, days). 
Additionally, the coefficient of determination (R2), scatter index, mean absolute error, and mean absolute percentage error were 
used to evaluate the effectiveness of the generated models. According to the results of experimental work, increasing CKD content 
decreased the compressive strength and flexural strength of cement mortar. Furthermore, the modeling analysis showed that the 
ANN model was better than the LR and MARS model for predicting the compressive strength of CKD-modified cement mortar.

Keywords  Cement kiln dust · Hardened properties · Stress–strain behavior · Predictive models

Introduction

Utilization of by-products of factories and some indus-
trial wastes is important in minimizing global warming 
and other serious environmental problems. Fly ash, silica 

fume, and cement kiln dust (CKD) are by-products of 
power plants, silicon industry, and cement factories. Those 
wastes could be effectively reused in concrete and mortars 
with caution and after extensive laboratory research. As a 
large amount of CKD forms in the cement plants during 
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the production process, especially in Iraq, hundreds of tons 
of CKD are accumulated in factories daily; CKD contains 
high chloride content and high alkalinity, making it diffi-
cult to be directly reinserted in cement production line [1].

According to the research studies about the utilization 
of CKD as a replacement of cement in mortar and con-
crete, the effect of CKD on the strength gain and durabil-
ity of cement mortar and concrete is negative. However, 
it is recommended to apply some modifications to CKD 
before it can be used as cement replacement; those modifi-
cations include grinding, washing, and removing chloride 
and alkalis [2, 3].

Cement mortar was produced in the literature with up 
to 50% of cement replacement with CKD to investigate 
the effect of CKD on the CS of cement and cement mortar. 
Al-Harthy et al. [4] investigated the effect of CKD on the 
compressive strength and water absorption capacity of the 
cover zone (sorptivity), which is important in studying the 
durability of cement mortar; CKD was added to concrete 
and mortar mixtures; the compressive and flexural strengths 
and toughness were studied. In addition, sorptivity and ini-
tial surface absorption tests (ISAT) were used to assess the 
absorption characteristics of several cement mortar mix-
tures containing CKD. The results showed increased water 
absorption and decreased compressive strength. A similar 
result was achieved by Najim et al. [1] when about 1/3 of the 
cement by CKD and evaluated some physical and chemical 
aspects of modified binder and produced mortar samples. 
The result of the analysis demonstrated that CKD negatively 
affected the cement mortar’s compressive strength since the 
mortar’s porosity was increased.

Different methods were implemented to reduce the nega-
tive effects of CKD. Alnahhal et al. [3] ground a CKD in 
a planetary mill. The cement was replaced by up to 20% 
of CKD nano-size. The grinding time was changed and 
finally reached 4 h. After 7, 28, and 56 days of curing, the 
compressive strengths of cement mortar formulations were 
measured. Additionally, the chemical, physical, and micro-
structure nano-sized CKD were assessed by scanning elec-
tron microscope (SEM), transmission electron microscope 
(TEM), and X-ray diffraction (XRD). The result revealed 
that using nano-size CKD increased the CS by 20% [3]. 
Another study was conducted by Kunal et al. [5] using the 
bacterial-treated cement kiln dust as partial replacement of 
Portland cement (10, 20, and 30% w/w), the normal consist-
ency, setting times, and hydration progression of modified 
cement pastes, as well as the CS of the mortar modified 
with CKD at 7, 28, and 90 days were examined. According 
to the test results, CKD up to 10% increased water consist-
ency and reduced the setting time, after that the CKD caused 
slowed hydration process and increased the setting time. In 
the later age compressive strength (90 days), the SEM test 
showed increased calcium–silicate–hydrate (C–S–H) in 10% 

bacterial-treated CKD and non-expansive and improved the 
mortar structure [5].

Artificial neural networks (ANNs) are used, aiming to 
simulate and map the development of NHL5 mortars’ char-
acteristics, such as compressive strength (CS), ratio of com-
pressive to flexural strength (CS/FL), and consistency (CO), 
for selected mortar mix parameters, namely, the binder-to-
sand ratio (b/s), the water-to-binder ratio (w/b), and the max-
imum diameter of the aggregate (MDA) for different mortar 
specimen ages (AS). To this purpose, databases were devel-
oped, integrating experimental data from the international 
literature. Experimental verification of the developed ANN 
models revealed satisfactory fitting between theoretical and 
experimental results. This research highlights the potential 
of ANNs as a tool that can assist in mortar design and/or 
optimization while mapping the development of mortar 
characteristics to reveal the influence of the different mor-
tar mix parameters on each characteristic. Furthermore, by 
combining the results of the three developed ANNs (CS, 
CO, and CS/FL), a novel approach can assist the targeted 
multi-parametric design of mortars [4–8].

In the current study, the effect of cement kiln dust on the 
mechanical and physical properties of cement mortar was 
evaluated. Then, the optimal CKD content was determined 
based on compressive strength and chemical analysis consid-
ering loss on ignition (LOI), chloride content, (Cl), sulfate 
content (SO3), and magnesium oxide content (MgO).

The main objectives of this investigation could be sum-
marized in the following points:

	 (i).	 Determining optimal CKD content by EN standard 
based on compressive strength and chemical compo-
sition of the binder.

	 (ii).	 Find out the effect of CKD on fresh and hardened 
properties of cement mortar, such as flow ability, 
compressive and flexural strengths, and stress–strain 
behavior of cement mortar.

	(iii).	 Finding the best model to predict the CS of CKD-
modified cement mortar as considering w/b, s/b, 
CKD (%), SiO2 (%), CaO (%), the maximum aggre-
gate size (MAS, mm), and age of the samples (t, 
days).

	(iv).	 Finding the relationship between compressive and 
flexural strengths.

Materials and methods

Figure 1 shows the flowchart of experimental work and mod-
eling of the current study; the investigations started with 
the laboratory work on evaluating the effect of CKD on 
fresh and hardened properties of cement mortar, and then, 
over 160 data were collected from the literature to develop 
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predictive models. Finally, the result of the experimental 
work was used in the model development as testing data.

Materials

In the current study, CEM I/42.5 R cement was used, which 
was provided by the Gasin Cement Factory in Sulaimani, Iraq 
(35°41′46.6″N 45°12′43.0″ E). Additionally, the cement kiln 
dust (CKD) was from the Al-Kubaisa Cement Plant in Anbar, 
Iraq (33°41′07.5″N 42°30′41.7″ E). The chemical composition 
of the cement and CKD is shown in Fig. 2. Standard sand was 
used as a fine aggregate typically composed of silica. It was 
prepared in the factory according to EN 196–1 and prepack-
aged into plastic bags of 1350 g; tap water with pH of 7.2 was 
used.

Fig. 1   The flowchart of the current study

Fig. 2   Chemical composition OPC and CKD
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Materials characterization

X‑ray diffraction (XRD)

The XRD test determined the mineralogical composition of 
the cement and cement kiln dust. A container 3-mm high 
was filled with a sample in a powder form, then an X-ray 
wave at an angle of 2θ from 0 to 90° was sent to the sample, 
and then the radiation received by the device; the intensity 
of the wave in each degree was measured. In addition to the 
measured 2θ values, the intensity values were used to recog-
nize the peaks using the powder diffraction database [6–9].

Scanning electron microscopy (SEM)

This study uses SEM to compare cement and cement kiln 
dust according to their morphology since SEM is one of the 
most effective methods for inspecting the morphology of 
cementitious materials. Numerous improvements have been 
made since the first invention of scanning electron micros-
copy (SEM). This method uses backscattered electrons 
(BSEs) to image a sample. SEMs are commonly used today 
because of their relatively low cost [10–12].

Thermogravimetric analysis (TGA)

Thermogravimetric analysis (TGA) is used to measure the 
weight loss of a sample over a specified temperature range 
with a balance. The weight of the sample is precisely and 
continuously measured while held inside the TGA device. In 
this study, PerkinElmer STA 6000 was used for the TGA test 
of cement and cement kiln dust; the sample was placed in the 
holder for 1 min at 40 ℃; then, the sample temperature was 
raised at a speed of 20℃/min from 40 to 900 ℃ [9, 13–16].

Normal consistency and setting times (EN 196‑3)

Normal consistency is the amount of required water for 
cement to allow the plunger of the Vicat apparatus to pen-
etrate a cement paste that was mixed according to the stand-
ard EN 196–3 [17] to a definite length. The cement paste 
was mixed and prepared inside the vacate mold after deter-
mining the required water for normal consistency of cement 
modified with CKD; then, the setting times were determined, 
according to the mentioned standard, the prepared cement 
paste inside the mold was returned to the moist cabinet after 
each reading of setting time (Fig. 3).

Blain fineness (EN 196–6)

The Blain fineness is the test that measures the surface area 
of the cement particles, according to EN 196–6 [18]. The 
Blain apparatus measured the fineness values of the cement 

and cement modified with CKD. Firstly, the density of the 
samples was determined using the pycnometer method, and 
then, the Blain fineness was determined.

Compressive and flexural strengths (EN 196–1)

Compressive strength and flexural strength tests were 
applied according to EN 196-1 [19] to determine the effect 
of the cement kiln dust; the hydraulic compression testing 
machine is used, which is suitable for testing cementitious 
material with a maximum capacity of 500 kN. It is worth 
mentioning that the calibration of the machine, up to 90% 
of its capacity, resulted in a 1-kN error. The flexural and 
compressive strength test loading rate was 50 ± 10 and 
2400 ± 200 N/s, respectively. Figure 4 shows the placement 
of the samples under flexural and compressive strength tests.

Stress–strain behavior of cement mortar modified 
with CKD

In this study, the stress–strain behavior of the cement mortar 
modified with 0, 10, and 20% of CKD was investigated, a 
cylindrical sample of size 70 × 140 mm was used, and the 
s/b and w/b were 3 and 0.5, respectively. The samples were 
tested at 2, 7, and 28 days.
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Data collection

A total of 162 data were collected from the literature, 
and the current study’s results were compared with the 
collected and then used to generate reliable models for 
estimating the compressive strength of CKD-modified 
cement-based mortar. Various cement mortar mix propor-
tions were included in the database, with different curing 
times, the maximum diameter of aggregate, and various 
binder chemical compositions (CKD cement). The mar-
ginal plot of the target and predictor with their histogram 
is shown in Fig. 5; these figures show the variation of CS 
with each independent variable (inputs) and the minimum 
and maximum values of each. Additionally, the histogram 
of compressive strength of cement mortar modified with 
CKD is shown in Fig. 6. The matrix of correlation coef-
ficient between dependent and independent variables is 
shown in Fig. 7; those correlation values are small and 
indicate that each input parameter cannot be used inde-
pendently to predict the compressive strength of CKD-
modified cement mortar; therefore, in the current study, 
different models were used to forecast the compressive 
strength. The collected data were statistically analyzed 
based on mean, standard deviation (St. Dev), variance 
(Var), kurtosis (Ku), skewness (Skew), and minimum 
with maximum value; the results of the analysis are pre-
sented in Fig. 8.

Model development

In the process of developing the predictive models, two main 
chemical parameters (SiO2 and CaO) contents were consid-
ered; these two amounts were determined from SiO2 and CaO 
of cement and CKD using the following equations:

where
CementSiO2

 and CKDSiO2
 are silicon dioxide content (%) in 

the cement and cement kiln dust, respectively.
CementCaO and CKDCaO are calcium oxide content (%) in 

the cement and cement kiln dust, respectively.
CKD is the cement kiln dust content (%).

Linear regression model (LR)

For developing this model, a linear relationship between the 
dependent variable and independent variables was assumed; 
the formula of LR mode is shown in Eq. (3).

(1)

SiO2(%) =
CementSiO2

(100 − CKD)

100
+ CKDSiO2

×
CKD

100

(2)

CaO(%) =
CementCaO (100 − CKD)

100
+ CKDCaO ×

CKD

100

Fig. 4   Placement of the samples 
under a flexural test and b com-
pressive test
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Fig. 5   Marginal plot for compressive strength versus a w/b, b s/b, c CKD, d SiO2, e CaO, f MDA, and g t
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where CS is compressive strength, and a to h are model 
parameters.

(3)
CS = a

(w
b

)

+ b
( s
b

)

+ c(CKD) + d
(

SiO2
)

+ e(CaO) + f (MSA) + g(t) + h

Multi‑adaptive regression spline (MARS)

In the current study, the MARS model was used in gener-
ating the predictive models. The MARS was first invented 
by Friedman [20] as a nonlinear regression model. A two-
step procedure is used to implement MARS to build mod-
els. The basis function (BF) is repeatedly added in the 
first stage (forward phase) of the MARS model creation 
process to reduce the sum of square error (residual error). 
In order to address the issue of overfitting and generalize 
the model to new data, the model is reduced, and unneeded 
terms are deleted in the second stage (backward phase) 
[21]. The response function is shown in Eq. 

where x, n, and e are the predictors, number of predictors, 
and error, respectively.

BFs are employed in the MARS algorithm for approxi-
mating functions, which represent the splines; piecewise-
linear and piecewise-cubic are the two types of spline. The 
piecewise-linear, which was used in the current study to 
develop the MARS model, is explained in Eq. (5).

The BFs are linearly combined in the MARS model, 
which is expressed as follows:

(4)y = f (x1,… , xn) + e

(5)BF = max (0, x − t)

{
x − t

0

ifx ≥ t

otherwise
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Fig. 6   The histogram of 
compressive strength of CKD-
modified cement mortar from 
1 to 360 days with Weibull 
distribution function
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where N is the total number of datasets, β0 and βk are the 
coefficients (intercept value and other weight values), and γk 
(x) consists of one or more spline functions (basis functions).

Artificial neural network (ANN model)

Artificial neural network (ANN) is a machine learning system 
that analyzes information similar to the human brain. ANN is 
successfully employed in several engineering applications to 
overcome problems and expectations [22–24]. Input, hidden, 
and output layers are three layers that exist in ANN; these lay-
ers are interconnected with biases and weights. In the current 
study, using a feed-forward backpropagation, ANN structure 
was used. Mortar mixture compositions are w/b, s/b, CKD, 
SiO2, CaO, MAD, and t as predictors and CS as an objective 
value. The log-sigmoid activation function was used for the 
hidden layer, and the pure linear activation function was used 
for the output layer. Equation 7 shows a typical calculation of 
output in a single node.

where n is the number of predictors, xj is the input number 
j, and bias is the error for the current node.

Equation 8 illustrates the procedure of ANN calculation for 
a single hidden layer.

(6)f (x) = �0 +

N∑
k=1

�k�k(x)

(7)Output = f

(
n∑
j=1

wjxj + bias

)

Beta is a weighted sum of inputs plus bias and nodes from 
Node1 to Noden, and threshold is the bias of the output layer.

Predicting the stress–strain curve of CKD‑modified cement 
mortar

Vipulanandan p–q model was used to predict the 
stress–strain curve, as shown in Eq. (9) [25]. Moreover, the 
result of the Vipulanandan p–q model was compared to the 
beta model [26]; the formula of the beta model is shown in 
Eq. (10). These models are useful for determining the modu-
lus of elasticity and total toughness of the samples.

where σ, σu, ε, and εu are predicted compressive stress, maxi-
mum stress, strain at the desired point, and maximum strain 
corresponding to maximum stress, p, q, and β are model 
parameters.

Relationship between compressive strength and flexural 
strength

The relationship between compressive and flexural strengths 
is useful since it will be time-saving and cost-effective. In 
the current study, the Vipulanandan correlation model, as 
used by Mohammed [25], was employed as illustrated in 
Eq. (11).

where CS and FS are compressive and flexural strength, a 
and b are model parameters.

(8a)
� = w1

(w
b

)

+ w2

( s
b

)

+ w3(CKD) + w4
(

SiO2
)

+ w5(CaO) + w6(MDA) + w7(t) + b

(8b)

CS =
Node1

1 + e−�1
+

Node2

1 + e−�2
+⋯ +

Noden

1 + e−�n
+ Threshold

(9)� =

⎛⎜⎜⎜⎝

�

�u

q + (1 − p − q)
�

�

�u

�
+ p

�
�

�u

� p+q

p

⎞⎟⎟⎟⎠
⋅ �u

(10)� =

⎛⎜⎜⎜⎝

� ⋅

�
�

�u

�

� − 1 +
�

�

�u

��

⎞⎟⎟⎟⎠
⋅ �u

(11)FS or CS =
FS or CS

a + b(FS or CS)

Fig. 7   Correlation coefficient between dependent and independent 
variables
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Fig. 8   Summary of statistical 
analysis of input variables
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Measuring the performance of the generated models

Coefficient of determination (R2), scatter index (SI), 
mean absolute error (MAE), and mean absolute percent-
age error (MAPE) were implemented to assess the per-
formance of the generated models for predicting the com-
prsive strength of CKD-modified cement mortar. These 
statistical assessment tools were calculated as illustrated 
in Eqns. (12–15).

where yf and ya represent forecasted and actual compressive 
strengths; yf  and ya denote mean of predicted and measured 
compressive strengths; and n states the relevant dataset’s 
total data. The greatest value for R2 is 1; the higher the R2, 
the higher the model performance will be. Additionally, 
model performance is rated as excellent, good, fair, and bad 
if SI < 0.1, 0.1 < SI < 0.2, 0.2 < SI < 0.3, and SI > 0.3, respec-
tively [27].

Analysis of the results

Results of microstructure tests

XRD

The results of XRD of cement and CKD showed that the 
cement is mainly composed of five main compounds, 
which are tricalcium silicate (C3S), dicalcium silicate 
(C2S), tricalcium aluminate (C3A), and tetracalcium alu-
minoferrite (C4AF). In addition, the CKD mainly contains 
calcite and quartz, as shown in Fig. 9.

(12)R2 =

⎛⎜⎜⎜⎜⎜⎝

∑n

i=1

�
yfi − yfi

��
yai − yai

�
��∑n

i=1

�
yfi − yfi

�2
��∑n

i=1

�
yai − yai

�2�

⎞⎟⎟⎟⎟⎟⎠

2

(13)SI =
RMSE

MCS
× 100

(14)MAE =

∑n

i=1

�
yfi − yai

�2
n

(15)MAPE =

∑n

i=q

(yfi−yai)
yai

× 100

n

SEM

The SEM test image for the used CKD and the cement is 
displayed in Fig. 10. As the result shows, the cement kiln 
dust particles are irregular in shape and finer than OPC 
particles. Therefore, it causes a higher water requirement 
for normal consistency.

TGA​

TGA test was performed on the CKD and OPC powders 
separately; the result is presented in Fig. 11. The percentage 
of the weight loss is summarized in Fig. 11, as can be seen 
from the result; CKD had a higher weight loss compared to 
the OPC sample; when the temperature increased from 120 
to 900 ℃ of heating temperature since the CKD is mainly 
composed of calcite and decomposed at the temperature of 
400–500 ℃ [28]. Carbonation of the CKD sample caused the 
formation of calcite during the storage condition. Overall, 
the percentage of weight loss for CKD and OPC samples 
was 17.2 and 3.4% of their weight after they were heated 
from 40 to 900 ℃, respectively.

Initial and final setting times

First, the normal consistency of the modified pastes was 
determined, and then, the normal consistency was used to 
prepare cement pastes to determine setting times. The result 
shows that the setting times of CKD-modified increased up 
to 40% replacement, increasing CKD decreased the setting 
time. The coarseness of the CKD particles caused the need 
for higher water addition to the paste to meet the normal 
consistency, as shown in Fig. 12; the excess water inside the 
paste caused the slowdown of the cement hydration process. 
Therefore, the setting time increased, and after 40% replace-
ment, the setting time decreased with increasing the CKD 
content (Fig. 12). It was noticed during trial and error for 
normal consistency for the CKD-only sample, the sample 
temperature reached 30 ℃ after just 10 min from mixing 
the paste and the addition of water (initial temperature was 
20 ℃). It is possibly caused by the loss of water inside the 
paste and decreased setting time.

Blain fineness of cement and cement kiln dust

In this study, the Blain fineness for both cement and CKD 
was determined using the Blain air permeability apparatus, 
and the density of cement and CKD was measured by the 
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pycnometer method; the result for density and Blain fine-
ness values is shown in Fig. 13. The fineness of the CKD 
and cement was 2602 and 3738 cm2/g, respectively. When 
the fineness is high, it accelerates the hydration and strength 
gain rate since fineness greatly affects cement hydra-
tion [29]. Figure 12 shows that the fineness of the binder 

decreases when the CKD content increases. Fineness is one 
of the reasons CKD causes a decrease in the ultimate com-
pressive strength of cement mortar; for CKD with higher 
fineness, the compressive strength is increased as for CKD 
nano-size [30].

Fig. 9   Result of XRD test for a 
OPC and b CKD
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Chemical analysis of the CKD‑modified cement

Figure 14 shows the chemical analysis of the cement 
incorporated with up to 100% of CKD. Based on the 
required values by EN 197–1 for maximum loss on igni-
tion (LOI), maximum chloride content (Cl) content, 
maximum sulfate content (SO3), and maximum magne-
sium oxide content (MgO), the maximum CKD content 
is limited to 16%. It was experimentally validated when 
15% of cement was replaced with CKD; the compressive 
strength was maintained at the required strength at 2 and 
28 days; for safety, the optimal CKD content was limited 
to 15%. Therefore, the CKD could be mixed with cement 
below 15%.

Flow ability of CKD‑modified cement mortar

In this study, the flow of CKD-modified mortar was tested 
according to ASTM C1437 [31]; four mortar mixes with 0, 
5, 10, and 20% CKD were prepared and tested by the flow 
table apparatus; the mold was filled with two layers and 
tamped 20 times for each layer; the top of the mold was 
leveled with a straight edge; then, the mold was raised, and 
the flow table was rotated 25 times off in 15 s. Equation 16 
was used to determine the flow value.

The result showed that the flow of the mortar decreased 
by 11% when CKD replaced 20% of the cement (Fig. 15); 
the mortar flow decreased due to the irregular shape of 
the CKD particles and its coarseness, as shown in Fig. 10 
from the SEM test.

(16)Flow (%) =

d1+d2+d3+d4

4
− 100

100
× 100

Hardened properties of cement mortar modified 
with CKD

Compressive strength

Figure 16a shows the result of the compressive strength 
of the CKD-modified cement mortar at 2, 7, and 28 days 
of curing; the compressive strength of cement mortar 
decreased with increasing CKD value. The decreased flow 
ability of the mortar caused the improper filling of the 
mold and resulted in lowered density and higher void ratio, 
as shown in Fig. 17. For CEM I/42.5 R, the maximum 
CKD content was restricted between 10 and 20% since 
the compressive strength at 28 days should be greater than 
42.5 MPa.

Flexural strength

In the current study, before performing the compressive 
strength tests, the samples’ flexural strength (FS) was 
measured, as displayed in Fig. 16b. The figure shows that 
CKD also caused a decrease in the flexural strength of the 
cement mortar. The current study used flexural strength to 
determine the relationship between CS and FS.

Predictive models

LR model

The developed LR model is shown in Eq.  (9), and the 
scatter plot between measured and predicted compres-
sive strengths is shown in Fig. 18a. The ± 40% error lines 
are shown in the figure, indicating that the predicted CS 
to measured CS is between 0.8 and 1.4, and the perfor-
mance of LR model is poor with high RMSE and low 
R2. The model parameters show that s/b affects the com-
pressive more than another input parameter. The R2 and 
RMSE were 0.565 and 8.938 for training and 0.615 and 
8.272 MPa for testing datasets (Table 1).

 
R2 = 0.565 and RMSE = 8.938 MPa.

(17)

CS = −14.370(w∕b) + 20.468(s∕b) − 0.592(CKD) − 0.909
(
SiO2

)
− 1.423(CaO) − 1.431(MSA) + 0.087(t) + 95.761

Cement particles 

CKD particles 

(a) (b)

Fig. 10   SEM of a OPC and b CKD
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Fig. 11   Result of TGA test for 
CKD and OPC powder from 
400 to 900°C
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MARS model

Figure 18b shows the relationship between actual and pre-
dicted compressive using the MARS model. The formula 
of the MARS model is presented in Eq. (10); the model 
basis functions can be obtained from Table 2; the detail 

of the MARS model is presented in Table 3. The R2 and 
RMSE were 0.953 and 2.945 for training and 0.846 and 
5.131 MPa for testing dataset. The error line displayed on 
the graph is nearly all the data laid between 75 and 125% 
for the measured to actual compressive ratio.

Fig. 12   Result of normal 
consistency and setting times 
of cement and CKD-modified 
cement a normal consistency 
and b setting time test

Fig. 13   Result of Blain fineness 
of OPC and CKD
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R2 = 0.953 and RMSE = 2.945 MPa.

ANN model

The relationship between the measured and predicted com-
pressive strengths of the ANN model is shown in Fig. 18c; 
Fig.  19 shows the optimal ANN structure, which was 
selected using trial and error based on the mean squared 
error; the R2 and RMSE for the ANN model were 2.68 MPa 

(18)

CS = 25.1 + 41.3 ∗ BF1 + 6.15 ∗ BF2 + 37.8 ∗ BF3 − 14.6 ∗ BF4

− 0.0363 ∗ BF5 − 0.484 ∗ BF6 − 290 ∗ BF7 − 441 ∗ BF8 + 15.6 ∗ BF9

− 1.65 ∗ BF10 − 0.122 ∗ BF11 − 101 ∗ BF12 − 0.0613 ∗ BF13

− 0.188 ∗ BF14 − 55.7 ∗ BF15 − 0.125 ∗ BF16 + 1.54 ∗ BF17

+ 7.05 ∗ BF18 + 1.23e + 03 ∗ BF19 − 1.92e + 05 ∗ BF20

and 0.962 for training and 3.765 MPa and 0.918 for the test-
ing dataset, respectively. The result also showed that the 
ANN model performance is better than the LR and MARS 
models. The information about the required weight and 
biases of the layer and layer weights for generated ANN 
model calculation is provided in the below matrices. The 
error line of ± 20% error also indicates that the ratio of pre-
dicted/measured compressive strength is between 0.8 and 
1.2.

Fig. 14   Chemical analysis and 
loss on ignition of CKD-modi-
fied cement
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R2 = 0.962 and RMSE = 4.3 MPa.

Stress–strain behavior of cement mortar modified with CKD

The relationship between stress and strain and the result for 
the Vipulanandan p–q model and beta models are shown 
in Figs. 20, 21, and 22. The results showed that the mortar 
became more ductile at 2 days with increasing CKD value, 
the ductility decreased as the age of the sample increased the 

(19)

|||||||||||||||

−0.134 0.208 −0.026 0.291 −0.543 0.133 5.474 6.350425

0.221 −0.335 −0.597 0.924 −1.931 −2.402 −0.877 −0.55334

−0.050 −0.303 −0.945 0.730 1.431 −1.788 −0.821 −1.3365

−0.698 0.477 −1.024 0.553 −1.182 −0.502 −0.045 −0.41634

−0.042 1.295 1.835 −0.733 3.068 0.980 0.113 0.044731

−1.318 1.072 −1.784 −1.333 −1.576 0.684 2.195 1.451993

3.443 −0.585 −0.339 −0.569 0.231 0.347 −0.111 3.073413

|||||||||||||||

×

||||||||||||||||||

w∕c

s∕b

CKD

SiO2

CaO
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t

b

||||||||||||||||||

=

|||||||||||||||

�1
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�3

�4

�5

�6

�7

|||||||||||||||
|||||||||||||||

Node 1

Node 2

Node 3

Node 4

Node 5

Node 6

Node 7

|||||||||||||||

=

|||||||||||||||

1.483

0.377

0.150

1.004

0.737

0.203

1.309

|||||||||||||||
CS =

Node1

1 + e−�1
+

Node2

1 + e−�2
+

Node3

1 + e−�3
+⋯ +

Node7

1 + e−�7
− 2.237

result of the model parameters, and the assessment tools are 
summarized in Tables 4 and 5.

The ultimate strain of the mortar and ultimate strain 
increased with increasing CKD percentage at 2 days of cur-
ing; however, at later ages (7 days and 28 days), the mortar’s 
strain capacity and compressive strength decreased.

Relationship between compressive and flexural strengths 
of CKD‑modified cement mortar

The relationship between the compressive strength and flex-
ural strength of cement mortar and CKD-modified cement 
mortar was determined by the Vipulanandan correlation 
model, as shown in Fig. 23. The results show that the flexural 

strength increases when the compressive strength increases, 
additionally, as displayed their relationship is nonlinear.

Evaluation of the developed models for predicting 
the compressive strength of cement mortar 
modified with CKD

Figure 24 shows the evaluation of the generated models 
based on SI, MAE, and MAPE. The SI of the ANN model 
is smaller than the SI value of LR model by 70, 63, and 

Fig. 15   Flow of mortar modified with CKD
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54% in the training, validation, and testing, respectively, 
while it is smaller than SI of the MARS model by 9, 30, and 
27%. According to the MAE value, the ANN model is better 
than the LR and MARS models, with MAE of 1.968, 2.671, 
and 3.119 in the training, validation, and testing phases. 

Moreover, the ANN model has a lower average absolute per-
centage error; the value indicates that the model predictions 
range between 11 and 14%. Overall, ANN l is an effective 
way to generate a predictive model since it has a lower error.

Fig. 16   Results of a compres-
sive strength and b flexural 
strength
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Fig. 17   Photograph of the tested 
CKD-modified mortar samples 
with 0, 30, and 50% cement 
replacement

Table 1   Summary of collected data from the literature for developing the models

Ref Total 
data

w/b s/b CKD (%) Cement SiO2 
(CKD SiO2) 
(%)

Cement CaO 
(CKD CaO) 
(%)

Maximum 
aggregate 
(sand) size 
MAS (mm)

Curing time, t (days) Compressive 
strength, CS 
(MPa)

[1] 12 0.4 3 0–30 20.98 (18.88) 64.02 (60.52) 0.85 3, 7, and 28 19–51.2
[4] 5 0.64–0.76 3.8 0–30 20.6 (15.8) 62.5 (63.8) 6.3 28 23–31
[32] 35 0.4 2.5 0–30 24.56 (16.52) 65.21 (57.23) 3.35 1, 2, 3, 7, 14, 21, 28, 

56, and 90
3.9–27.5

[33] 20 0.5 2.75 0–45 21.3 (13.16) 61.61 (41.9) 2 2, 7, 28, 90, and 270 12.3–64.1
[34] 24 0.48–0.60 2.75 0–10 21.06 (13.37) 64 (42.99) 0.85 3, 7, 28, and 96 11.6–51.6
[5] 12 0.34–0.38 3 0–30 23.61 (13.17) 65.57 (55.78) 4.75 7, 28, and 91 10.7–33
[35] 21 0.45 2.75 0–30 20 (15.53) 64.6 (49.96) 10 3, 7, and 28 6.6–39.1
[36] 14 0.5 3 0–50 21.25 (15) 63.49 (39.4) 10 7 and 28 11–39
[37] 9 0.48 2.75 0–20 20.9 (22.46) 62.77 (54.64) 9.5 28, 120, and 360 26.9–32.2
[38] 15 0.5 3 0–20 20.37 (20.87) 62.02 (64.46) 4 7, 28, and 90 33.1–47.3
Current 

study
41 0.4, 0.5 and 

0.6
3 0–100 17.37 (9.61) 64.96 (56.62) 2 2, 7, 28, 90, and 150 11.8–65.3

Remarks 203 Ranged from 
0.34 to 
0.76

Ranged 
between 
2.5 and 
3.8

From 0 to 
100%

Varied 
between 
17.37 and 
24.56%

Varied from 
61.66 to 
65.57%

Varied from 
0.6 to 
10 mm

1–360 days 3.9–
65.3 MPa
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Fig. 18   Variation between 
measured and forecasted com-
pressive strengths using a LR, b 
MARS, and c ANN models
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Limitations of the proposed models

	 i.	 Data Quality and Quantity: The effectiveness of soft 
computing models heavily relies on the quality and 
quantity of the input data. If the data used for train-
ing and testing the models are noisy, incomplete, or 
biased, it can negatively impact the model’s perfor-
mance and generalizability.

	 ii.	 Overfitting and Underfitting: Like any machine learn-
ing models, soft computing models can suffer from 

overfitting (capturing noise in the data) or underfitting 
(failing to capture the underlying patterns). Achiev-
ing the right balance between model complexity and 
generalization is crucial.

	 iii.	 Parameter Tuning: Soft computing models often have 
several parameters that must be tuned to achieve opti-
mal performance. Incorrect parameter settings can 
lead to suboptimal results or increased computation 
time.

	 iv.	 Interpretability: Some soft computing techniques, 
such as neural networks, can be considered “black 
box” models, meaning that it is challenging to inter-
pret why a particular decision was made. This lack of 
interpretability can be a limitation, especially in criti-
cal applications where explanations are necessary.

Conclusions

The provided text outlines the conclusions of a study that 
focused on determining the optimal content of cement kiln 
dust for use in producing cement mortar and concrete. The 
study conducted experimental work and predictive mod-
eling to assess the effects of incorporating cement kiln dust 
(CKD) into cement-based materials. Here’s a breakdown of 
the main findings:

1.	 The study found that cement kiln dust-modified cement 
mortar exhibited lower compressive and flexural 

Table 2   MARS model training detail

Basis functions type Piecewise-linear

Number of BFs (intercept is included) 21
Maximum interactions 3
MSE train (MPa) 8.671
MSE validation (MPa) 25.5
MSE test (MPa) 26.324
Generalized cross-validation (GCV) 25.909

Table 3   Summary of basis functions for the MARS model

BF Basis function

0 (intercept)
1 max(0,2 − x4)
2 max(0, x2 − 2)
3 max(0,2 − x2)
4 max(0, x6 − 7) * max(0, x2 − 2.75)
5 max(0,7 − x6) * max(0, x2 − 2.75)
6 max(0,7 − x6) * max(0,2.75 − x2)
7 BF1 * x1
8 BF2 * max(0,20 − x3)
9 BF8 * x1
10 max(0, x6 − 14)
11 max(0,14 − x6)
12 BF9 * x1
13 max(0,10 − x3)
14 max(0, x3 − 10) * max(0, x4 − 2)
15 BF1 * max(0, x3 − 20)
16 BF1 * max(0,20 − x3)
17 BF2 * max(0, x4 − 0.6)
18 BF11 * max(0,10 − x3)
19 BF10 * max(0,10 − x3)
20 max(0, x6 − 7) * max(0, x4 − 2)
21 max(0, x6 − 2)
22 max(0, x3 − 20)

Fig. 19   ANN structure used in the current study
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Fig. 20   Typical stress–strain 
curve for cement mortar at a 
2 days, b 7 days, and c 28 days 
of curing
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Fig. 21   Typical stress–strain 
curve for cement mortar 
modified with 10% of CKD at a 
2 days, b 7 days, and c 28 days 
of curing
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Fig. 22   Typical stress–strain 
curve for cement mortar 20% of 
CKD at a 2 days, b 7 days, and 
c 28 days of curing
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strengths than traditional cement mortar. This suggests 
that the inclusion of CKD had a weakening effect on the 
mechanical properties of the mortar.

2.	 Through chemical analysis and assessments of com-
pressive strength at different curing durations (2 and 
28 days), the study established that the optimal content 

of cement kiln dust in the modified cement should be 
limited to 15%. This suggests that higher proportions of 
CKD could have adverse effects on strength.

3.	 The presence of cement kiln dust led to decreased flow 
ability of the mortar. This reduction in flow ability con-
tributed to a decrease in the compressive strength of the 

Table 4   Vipulanandan p–q 
model parameters for typical 
stress–strain curve of cement-
based mortar modified with 
CKD

Parameters CKD (%)

0 10 20

Curing time (days)

2 7 28 2 7 28 2 7 28

σu 20.149 29.236 38.262 16.102 28.100 37.512 14.908 26.625 32.913
εu 0.392 0.446 0.488 0.446 0.443 0.429 0.506 0.420 0.425
q 1.105 1.028 0.910 0.593 0.921 0.992 0.687 0.889 1.058
p 0.278 0.204 0.115 0.191 0.208 0.068 0.274 0.130 0.083
Standard error 0.825 0.701 0.000 0.560 0.240 0.287 0.323 0.149 0.265
Coefficient of 

determination 
(R2)

0.981 0.994 1.000 0.987 0.999 0.999 0.995 1.000 0.999

Parameter standard deviations
 σu 0.355 0.318 0.000 0.252 0.117 0.221 0.147 0.091 0.153
 εu 0.005 0.004 0.000 0.010 0.002 0.001 0.006 0.001 0.001
 q 0.099 0.048 0.000 0.049 0.017 0.012 0.039 0.010 0.015
 p 0.049 0.027 0.000 0.032 0.012 0.009 0.030 0.008 0.007

Table 5   Beta model parameters for typical stress–strain curve of cement-based mortar modified with CKD

Parameters CKD (%)

0 10 20

Curing time (days)

2 7 28 2 7 28 2 7 28

β 5.942 7.656 9.530 3.492 6.293 20.156 3.435 8.206 20.064
εu 0.401 0.458 0.489 0.426 0.450 0.431 0.503 0.420 0.432
σu 19.527 29.104 38.306 16.219 28.090 37.666 14.946 26.650 32.941
Standard error 0.947 0.812 0.063 0.592 0.320 0.343 0.319 0.150 0.449
Coefficient of determination (r2) 0.975 0.992 1.000 0.985 0.999 0.999 0.995 1.000 0.998
Correlation coefficient (r) 0.987 0.996 1.000 0.992 0.999 1.000 0.998 1.000 0.999
Parameter standard deviations
 β 0.341 0.461 0.082 0.126 0.176 2.673 0.070 0.259 2.144
 εu 0.005 0.004 0.000 0.007 0.001 0.001 0.004 0.001 0.002
 σu 0.329 0.351 0.025 0.256 0.153 0.275 0.129 0.089 0.245
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modified mortar. This observation underscores the inter-
play between flow properties and strength.

4.	 The study developed predictive models to estimate the 
compressive strength of cement kiln dust-modified 
cement mortar. The results indicated that an artificial 
neural network (ANN) model outperformed linear 
regression (LR) and multivariate adaptive regression 
splines (MARS) models in predicting compressive 
strength.

5.	 The Vipulanandan p–q and β models accurately predict 
the stress–strain behavior of CKD-modified cement 
mortar. These models effectively captured the material 
behavior despite the relatively low strength.

6.	 According to the study’s findings on stress–strain 
behavior, the incorporation of cement kiln dust led to 
an increase in the ductility of cement mortar after 2 days 
of curing. This suggests that CKD could improve the 
material’s deformability without fracturing.

7.	 In summary, this study emphasized the importance of 
optimizing the content of cement kiln dust when using 
it as a cement replacement in mortar and concrete. The 
research combined experimental investigations with 
predictive modeling to provide insights into the effects 
of CKD on various material properties. These findings 
contribute to understanding how cement kiln dust can 
be effectively utilized in construction materials.

Fig. 23   Relationship between 
flexural and compressive 
strengths of CKD-modified 
cement mortar
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