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Abstract
The bond between steel and concrete in reinforced concrete structures is a multifaceted and intricate phenomenon that plays a 
vital role in the design and overall performance of such structures. It refers to the adhesion and mechanical interlock between 
the steel reinforcement bars and the surrounding concrete matrix. Under elevated temperatures, the bond is more complex 
under higher temperatures, yet having an accurate estimate is an important factor in design. Therefore, this paper focuses 
on using data-driven models to explore the performance of the concrete-steel bond under high temperatures using a Gene 
Expression Programming (GEP) soft computing model. The GEP models are developed to simulate the bond performance 
in order to understand the effect of high temperatures on the concrete-steel bond. The results were compared to the multi-
objective evolutionary polynomial regression analysis (MOGA-EPR) models for different input variables. The new model 
would help the designers with strength predictions of the bond in fire. The dataset used for the model was obtained from 
experiments conducted in a laboratory setting that gathered a 316-point database to investigate concrete bond strength at a 
range of temperatures and with different fibre contents. This study also investigates the impact of the different variables on 
the equation using sensitivity analysis. The results show that the GEP models are able to predict bond performance with 
different input variables accurately. This study provides a useful tool for engineers to better understand the concrete-steel 
bond behaviour under high temperatures and predict concrete-steel bond performance under high temperatures.
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Introduction

Code standards like Eurocode 2 [1] and the CEB/FIB Model 
Code 2010 [2] offer ways to assess concrete behaviour for 
structural fire design. To maintain the structural integrity 
of reinforced concrete structures, attending to bond loss 
between steel–concrete during or after high temperatures 
exposure is essential. Standards have been developed to 
evaluate the bond strength between steel reinforcement and 
concrete after high-temperature exposure, including testing 
procedures such as pull-out tests or bond-slip tests. These 
standards may also recommend using fire-resistant materials 
and protective coatings to prevent or delay thermal degra-
dation. By following these guidelines, reinforced concrete 
structures can maintain their load-carrying capacity even 
under fire conditions.

A reinforced concrete (RC) element's structural strength 
depends on the steel rebar and concrete bond strength. The 
steel–concrete bond is weakened when a reinforced concrete 
element is subjected to elevated temperatures. The leading 
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cause of this bond degradation is the weakening of the con-
crete, which causes the embedded steel rebar to bend plas-
tically [3]. The decreased concrete-steel bond can greatly 
influence how RC components behave structurally since it 
changes how tensile stress is transferred [4]. Steel corrosion 
can damage the bond between steel and concrete compo-
nents and impair their structural performance. Corrosion is 
another element that contributes substantially to the loss of 
bond strength [5].

In an attempt to uncover the key factors that affect per-
formance and then create analytical correlations to predict 
bond strength, the influence of bond exposure to higher 
temperatures has been partially addressed in the literature 
[6–9]. Meanwhile, one of the least studied topics in con-
crete research is the bond between steel and concrete at high 
temperatures [10]. Furthermore, as the temperature rises, 
the bond between the concrete and steel may deteriorate, 
reducing the load that can be transferred between the two 
components. This may ultimately cause the reinforced con-
crete structure to crumble because of the C–S–H gel dehy-
dration. Such dehydration can generate thermal spalling. To 
ensure the fire resistance of reinforced concrete structures 
and the safety of the people and property inside them, it 
is essential to understand how the bond between concrete 
and steel behaves under high temperatures [11]. Despite its 
significance, a study in this area of concrete science is still 
relatively underdeveloped.

Thermal spalling can be caused by various factors, 
including the heating rate of concrete [12], the mismatch in 
temperature and coefficients of thermal expansion between 
components [11, 13–17], and the explosive release of steam 
from the dehydration of C–S–H gel and portlandite [12], as 
well as CO2 from calcined limestone aggregate. This par-
ticularly applies in situations where limestone aggregates 
are the dominant component. The manifestation of thermal 
spalling can have catastrophic effects on reinforced concrete 
structures [18], ultimately leading to their failure and putting 
lives and property at risk.

The amount of steel fibres in the concrete mix affects the 
temperature differential because the steel fibres, spread all 
through the concrete, disseminate heat considerably more 
quickly in the concrete [7]. Consideration of a range of 
variables is necessary when assessing the concrete perfor-
mance in a structural component under elevated tempera-
tures. These factors are concrete humidity, exposure time, 
temperature, aggregate type, peak temperature, member 
size, concrete age, the chemical composition of the cement, 
water-cement ratio (w/c), and loading conditions [3].

According to the literature, the primary factors influenc-
ing concrete-steel bond strength [6–9] are the altered com-
pressive strength under elevated temperatures ( fc ), the test-
ing age of concrete (A), the concrete surface temperature at 
failure (T), thermal saturation ratio -the ratio of the duration 

of thermal saturation at the maximum target temperature to 
the minimum size of the pull-out specimen squared- (∆), the 
ratio of the length-to-diameter ( 

(

l∕d

)

 ) (i.e. the bond length 
of the embedded ribbed bar to the diameter of the bar), the 
cover-to-diameter ratio of the embedded ribbed bar to bar 
diameter ( 

(

c∕d
)

 ), and finally, when using fibres, the total vol-
ume of fibre there is overall in the concrete (V).

The following analytical correlations have been devel-
oped by various researchers to anticipate the bond strength 
( Tb ) at elevated temperatures. At this point, it should be 
emphasized that the available literature only contains a very 
small number of high-temperature correlations:

Yang et al. [5] Tb = �
√

fc(T)

Where � can be taken as 3.5 
for T = 20 to 400 °C and as 
2.5 for T = 600 to 800 °C

(1)

Varona et al. [6] For normal strength concrete;

Tb = 0.354fc − 0.15

(2)

Varona et al. [6] For high strength concrete;

Tb = 0.393fc − 3.43

(3)

The relationships described in this context were estab-
lished using traditional regression analysis. However, the 
current Eurocode approach relies on parameters to simulate 
different bond conditions, using a simplified estimate based 
on the tensile strength of concrete. Structural engineers are 
now recognizing the value of artificial intelligence (AI) 
and machine learning (ML) advancements, which offer the 
potential for improved design guidance [19]. In civil engi-
neering disciplines like hydraulic, geotechnical, and struc-
tural engineering, these AI and ML approaches have shown 
enhanced accuracy compared to existing methods [20–30]. 
They provide new perspectives and practical solutions for 
accelerating innovations in the design and development of 
cementitious materials. By utilizing data-driven models and 
existing datasets, ML can automatically identify patterns and 
extract valuable information, accounting for the complex 
nature of concrete mixtures and their properties [31]. ML is 
being utilized as a powerful tool to establish relationships 
between processes, structures, properties, and performance. 
It aids in identifying cement hydration and concrete degrada-
tion mechanisms, assisting in concrete materials design, and 
facilitating high-throughput experimentation and computa-
tion. ML has been explored in various concrete applications, 
including cement pastes, mortars, and different types of con-
crete such as high-performance concrete, self-consolidating 
concrete, reinforced concrete, recycled aggregate concrete, 
lightweight aggregate concrete, alkali-activated concrete, 
and 3D-printed concrete [32–40].

The transformative potential of ML in concrete research 
is evident due to its capability to handle complex tasks 
autonomously. However, to fully harness the benefits of ML 
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for concrete mixture design, it is essential to understand the 
methodological limitations and establish best practices in 
this emerging computational field. Reference [41] focuses on 
the positive impacts of ML in concrete science, discussing 
its implementation, application, and interpretation of algo-
rithms. Additionally, it outlines future directions for the con-
crete community to maximize the potential of ML models.

A recent study by Al-Hamd et al. [42] addresses employ-
ing a progressive regression analysis approach to bond 
strength. This technique uses the multi-objective evolution-
ary polynomial regression analysis (MOGA-EPR) in pre-
dicting bond strength and yields a highly accurate estima-
tion. In this study, the three correlations expressly as shown 
in Table 1 (Eqs. 4 to 6) to predict bond strength (Tb) take 
into account all the essential variables and produce more 
precise correlations. When developing the correlation, its 
practicability was also taken into account. The correlations 
discussed include all the variables found in the first MOGA-
EPR correlation model (1). Then for the second and the third 
MOGA-EPR correlation models (2) and (3), respectively 
eliminating the thermal saturation ratio (∆) and the testing 
age of concrete (A), respectively (as shown in Table 2) as 
it is difficult to obtain these experimentally. Table 2 sum-
marizes the included and excluded input variables for the 
development of the models. The input variables as shown 
in Tables 1 and 2 (Eqs. 4, 5 and 6) were used in the develop-
ment of the process that predicts the correlation of the bond 
strength (Tb) in MPa are ( fc ) in MPa; (A) in days; (V); (∆); 
( l∕d ) and ( c∕d).

When it comes to Artificial Intelligence (AI) 
and Machine Learning (ML), the Gene Expression 

Programming (GEP) algorithm is an improved version of 
Genetic Programming (GP) [43], and it is used in civil 
engineering disciplines to provide more accurate pre-
dictions than existing approaches [44]. This approach 
has been proven to be successful in modelling intricate 
and nonlinear procedures [44]. This research paper takes 
advantage of GEP to develop a novel application for this 
method to the concrete-steel bond strength (Tb). Individu-
als are encoded in the form of linear chromosomes of uni-
form lengths that can be expressed as tree structures [43]. 
Mutation and recombination, which are genetic operators, 
can be implemented on the linear structure of the chromo-
somes, thereby generating legitimate and accurate struc-
tures for solutions.

This research conducted here is based on 316 previous 
tests (Varona et al. [6]). To predict the concrete-steel bond 
strength (Tb) under high temperatures, various models have 
been designed using the GEP approach, and then com-
pared with the Multi-Objective Genetic Algorithm Evo-
lutionary Polynomial Regression (MOGA-EPR) models 
developed by Al Hamad et al. [42]. Following validation 
and comparison of the different models, novel sensitivity 
studies were conducted to investigate the effect of altering 
some of the input variables without the requirement for 
more experiments.

Table 1   MOGA-EPR Correlation Equations [42]

MOGA-EPR correlation # [42] MOGA-EPR correlation equation Coefficients Equation #

MOGA-EPR Correlation model (1) T
batfailure

= a1 ×
√

c∕d ×
√

A × f
c

+ a2 × c∕d × f
c
× T

2 + a3 ×
√

l∕d ×
√

A × f
c

+ a4 ×
√

V ×
√

Δ × (c∕d) × T
2

+ a5 ×
√

l∕d ×
√

V × (c∕d) + a6

a1 = 3.59× 10−2

a2 =  − 7.5 × 10−8

a3 =  − 1.68 × 10−2

a4 =  − 3.5 × 10−6

a5 = 8.48 × 10−1

a6 = 4.047

(4)

MOGA-EPR Correlation model (2) T
batfailure

= b1 × c∕d × f
c
× T

2

+ b2 × c∕d × f
c
×
√

A + b3 × (c∕d)2 × f
c

2 ×
√

A

+ b4 ×
√

l∕d ×
√

c∕d ×
√

A × f
c
+ b5 × V × f

c
× (c∕d)2 + b6

b1 =  − 1.12 × 10−7

b2 = 2.3 × 10−2

b3 =  − 1.8 × 10−5

b4 =  − 8.7 × 10−3

b5 = 1.05 × 10−2

b6 = 2.789

(5)

MOGA-EPR Correlation model (3) T
batfailure

= c1 × f
c
+ c2 ×

√

c∕d ×
√

f
c
× T

2

+ c3 ×
√

l∕d × f
c
+ c4 × l∕d ×

√

c∕d × f
c

+ c5 ×
√

V ×
√

f
c
× l∕d × (c∕d)2 + c6

c1 = 6.926 × 10−1

c2 =  − 1.21 × 10−6

c3 =  − 3.08 × 10−1

c4 = 1.5 × 10−2

c5 = 1.47 × 10−2

c6 = 6.224

(6)

Table 2   The input variables

Correlation # Included variables Excluded variables

Correlation (1) fc , A, V, Δ, l∕d and c∕d None
Correlation (2) fc , A, V , l∕d and c∕d ∆
Correlation (3) fc , V , l∕d and c∕d A and Δ
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Methodology

This paper explores the possibility of predicting the cor-
relation of bond strength (Tb) of reinforcing bars in con-
crete exposed to high temperatures using an innovative GEP 
model. It is compared to the MOGA-EPR model proposed 
by Al Hamad et al. [42]. The experimental database created 
from existing literature (Varona et al. [9]) is used to train 
and evaluate the Tb.

A flowchart (Fig. 1) is presented to illustrate the steps 
followed in this study. Beginning with the collection and 
statistical analysis of the data, the process continued with the 
grouping of the data, the development of models and GEP 
model equations, the calculation of statistical indicators, the 

analysis of the results, and the running of sensitivity studies 
to evaluate the influence of critical input variables on Tb.

Data collection and statistical analysis

Varona et al. [9] compiled a 316-point database to investi-
gate concrete bond strength at a range of temperatures and 
with different fibre contents. Using the data from their data-
base and a review of previous studies [6–9], they developed 
analytical regression correlations determined by the signifi-
cant parameters impacting the bond strength (Tb) at ambient 
or high temperatures. Varona et al.’s data [9] used in this 
work are provided in Table 3.

Data grouping

This study evaluated the performance of two Gene Expres-
sion Programming (GEP) models in comparison to a Multi-
Objective Genetic Algorithm Evolutionary Polynomial 
Regression (MOGA-EPR) model as proposed by Al Hamad 
et al. [42], for predicting bond strength (Tb). The collected 
data was divided into two sets to ensure accuracy: 80% 
for training the models and 20% for testing. The statistical 
measures pertinent to the training and testing datasets are 
presented in Tables 4 and 5.

Developing the GEP models

In this paper, GEP analysis was conducted using the Gen-
eXproTools software [45]. Firstly, chromosomes are basic 
elements: they are linear, condensed, relatively small, and 
easily modifiable through genetic methods (such as replica-
tion, mutation, recombination, and transposition). Secondly, 
the chromosomes were then presented as tree expressions; 
this is the subject of selection, and according to the fitness, 
the chromosomes are chosen to reproduce and be modified. 
During reproduction, it is the chromosomes, not the expres-
sion trees, that are modified and passed on to the next gen-
eration [46].

Fig. 1   Flowchart process for this paper methodology

Table 3   Statistical measures of 
the measured data [9]

Statistical measure/Variable Minimum Maximum Mean Standard deviation

Fibre volume fraction (V) (%) 0.00 2.00 0.15 0.45
Length to diameter (l/d) 2.00 20.83 9.74 6.04
Cover to diameter (c/d) 1.78 5.75 4.64 1.26
Age at testing (A) (days) 28.00 90.00 43.78 23.41
∆ (h/dm2) 0.33 3.00 1.82 1.04
Failure surface temperature of 

concrete (T) (°C)
20.00 825.00 347.74 250.02

fc(cube) at 20 C°(MPa) 0.38 103.60 31.74 17.76
Tb , at failure °C (MPa) 1.06 36.30 8.41 6.27
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Reproduction encompasses much more than simply rep-
licating genetic material; genetic operators are also integral 
to creating genetic diversity. Replication allows for the trans-
mission of the genome to the subsequent generation. None-
theless, replication alone does not introduce new genetic 
variation; this is only achievable through the operation of 
the other genetic operators. These operators randomly select 
the chromosomes to be changed, so in Genetic Expression 
Programming (GEP), a chromosome may be altered by one 
or more operators, or remain unaltered. Figure 2 shows the 
flowchart of GEP.

The parameters commonly used in GEP include chromo-
some length, gene set, head length, tail length, population 
size, crossover and mutation rates, and selection strategy. 
The chromosome length determines the number of genes 
in a chromosome, affecting the complexity and size of the 
evolved programs. The gene set represents the available 
genes used to construct the chromosomes, including func-
tions and terminals specific to the problem domain [43, 47].

The head length parameter determines the size of the 
main program structure within the chromosome, while the 
tail length parameter controls the size of the tail region, 
providing additional genetic material for variation. The 
population size refers to the number of individuals in each 
generation and influences the exploration of the search 
space. The crossover and mutation rates determine the prob-
abilities of genetic material exchange and random changes 

Table 4   Statistical measures of 
the training dataset

Statistical measure/Variable Minimum Maximum Mean Standard deviation

Fibre volume fraction (V) (%) 0.00 2.00 0.16 0.48
Length to diameter (l/d) 2.00 20.83 9.66 6.03
Cover to diameter (c/d) 1.78 5.75 4.58 1.28
Age at testing (A) (days) 28.00 90.00 43.64 23.39
Δ (h/dm2) 0.33 3.00 1.82 1.03
Failure surface temperature of 

concrete (T) (°C)
20.00 825.00 342.15 250.17

fc(cube) at 20 °C (MPa) 0.38 103.60 32.29 18.37
Tb , at failure °C (MPa) 1.06 36.30 8.49 6.36

Table 5   Statistical measures of 
the testing dataset

Statistical measure/Variable Minimum Maximum Mean Standard deviation

Fibre volume fraction (V) (%) 0.00 2.00 0.08 0.26
Length to diameter (l/d) 2.00 20.83 10.06 6.12
Cover to diameter (c/d) 1.78 5.75 4.86 1.13
Age at testing (A) (days) 28.00 90.00 44.37 23.63
∆ (h/dm2) 0.33 3.00 1.82 1.08
Failure surface temperature of 

concrete (T) (C°)
20.00 825.00 370.38 249.74

fc(cube) at 20 °C (MPa) 5.10 81.70 29.52 14.97
Tb , at failure °C (MPa) 1.07 29.40 8.06 5.89

Fig. 2   The flowchart of a GEP algorithm
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in individuals, respectively. Finally, the selection strategy 
determines how individuals are chosen for the next genera-
tion from the current population [43, 47].

Symbolic regression or function finding stands out as a 
significant application of GEP parameters. Its objective is 
to discover an expression that performs effectively across 
all fitness cases, allowing for a permissible error from the 
correct value. In certain mathematical scenarios, it proves 
advantageous to use small relative or absolute errors in order 
to reveal highly optimal solutions. However, if the selection 
range is excessively narrow, populations evolve slowly and 
encounter difficulties in finding the correct solution. On the 
other hand, if the selection range is overly broad, numerous 
solutions with maximum fitness may emerge, but they are 
likely to be far from satisfactory solutions [43, 47].

Another parameter to consider is the mutation rate. Muta-
tions have the potential to occur at any position within the 
chromosome. Nonetheless, it is crucial to maintain the 
structural organization of the chromosomes. In the head sec-
tion, any symbol can be transformed into another symbol, 
whether it is a function or a terminal. Conversely, in the 
tail section, only terminals can change into other terminals. 
Adhering to these guidelines ensures the preservation of 
the chromosomes' structural integrity, guaranteeing that all 
newly generated individuals resulting from mutations are 
valid programs that maintain structural accuracy. Typically, 
a mutation rate equivalent to two-point mutations per chro-
mosome is commonly utilized [43, 47].

These parameters are typically set by the user based on 
the specific problem domain, the complexity of the task, 
and the available computational resources. Proper parameter 
tuning is crucial to achieving good performance and efficient 
convergence in GEP. Different combinations of parameter 
values can have a significant impact on the search process 
and the quality of the evolved solutions. Therefore, experi-
mentation and fine-tuning of parameters are often necessary 
to obtain optimal results.

In this paper, six GEP models were established, with two 
models that compared each of the MOGA-EPR correlation 
equations. The input variables relevant to the correlations 
have been discussed in Sect. “Introduction” and Table 2. 
Two different GEP models were developed for each cor-
relation criterion, one using the fundamental operations 
(+ , − , × and /) and the other including the square root func-
tion. Both models were then pitted against the MOGA-EPR 
models to identify the most accurate one.

Correlation (1) models

In these correlation models, all of the input variables ( fc , 
A, V, Δ, l∕d andc∕d ) are listed in Table 2 and have been 

included in the correlation model equations to predict the 
Tb values.

Tables 6 and 7 report the main setting parameters and 
the developed equations of the GEP models. In Table 6, the 
changing of head sizes and/or a number of gene values is 
to get the most accurate and higher precise equations and 
models.

Correlation (2) models

In these correlation models, the five input parameters ( fc , A, 
V, l∕d and c∕d ) are used in the equations shown in Table 2 
to calculate the Tb values.

Tables 8 and 9 report the main setting parameters and the 
developed equations of the GEP models.

Correlation (3) models

In t correlation models, the input variables ( fc , V, l∕d and 
c∕d ) are included in the model equations for predicting the 
Tb values as mentioned in Table 2.

Tables 10 and 11 report the main setting parameters and 
the developed equations of the GEP models.

In the following section, the statistical metrics for the 
various models will be calculated and discussed, and the 
findings from the models will be contrasted.

Statistical indicators and measurements

Utilizing statistical measures, including mean absolute error 
(MAE), root mean square error (RMSE), mean (μ), and coef-
ficient of determination (R2), the effectiveness of the new and 
old analytical techniques was evaluated (Eqs. 13–16). Multiple 
earlier studies have employed this similar accuracy assessment 
technique [48–52]. The MAE and RMSE values identify the 
lower means as the ideal match. The optimal value for the 

Table 6   The main setting parameters and adjustments of GEP models 
for Correlation (1)

GEP parameter Setting of parameters

Model (1) Model (2)

Number of chromosomes 30 30
Head size 9 10
Number of genes 5 5
Function set  + , − , × and /  + , − , × , / and √
Fitness function RMSE RMSE
Mutation rate 0.00138 0.00138
Inversion rate 0.00546 0.00546
Gene transposition rate 0.00277 0.00277
Random chromosomes 0.0026 0.0026
Gene recombination rate 0.00277 0.00277
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parameter μ is 1.0; values below this suggest a general under-
prediction of the bond strength, and values above imply a gen-
eral overprediction.

(13)MAE =
1

n

n
∑

1

|

|

|

Tb,p − Tb,m
|

|

|

(14)RMSE =

√

√

√

√

1

n

n
∑

1

(

Tb,p − Tb,m
)2

(15)Mean(�) =
1

n

n
∑

1

(

Tb,p

Tb,m

)

Table 7   GEP models equations for Correlation (1)

Model # Predicted Tb equation Coefficients Equation #

Model (1)
T
batfailure

=
(2c∕d)+d1+fc+Δ

l∕d−V
+

(d2+l∕d)l∕d+T+d3
f
c
+l∕d−(A×l∕d)

+ c∕d + d4 + 1 +
V×(c∕d−Δ+d5)

Δ
+

f
c

(((d6×d7)−
Δ

T
)−T)×c∕d

d1 =  − 4.02133388560114
d2 =  − 9.83520004882961
d3 =  − 11.3166343688427
d4 =  − 2.0533661915952
d5 = 0.490860314807632
d6 =  − 1.95675110452493
d7 =  − 7.4492222178347

(7)

Model (2)
T
batfailure

= V +
�

(A×c∕d)+A−e1

(2c∕d+A−l∕d
+ e2

+
c∕d

�

e2−
�

V×l∕d

Δ

��

×e2

+
(2A−l∕d−T)×

√

2f
c

l∕d×A1.5
+ e3 +

�

(V+e4)
(l∕d+e5)

× f
c
× c∕d

e1 =  − 2.82162236396374
e2 = 3.15728608325765
e3 =  − 7.44591314471175
e4 = 5.85987746785495
e5 =  − 0.248122964310291

(8)

Table 8   The main setting parameters and adjustments of GEP models 
for Correlation (2)

GEP parameter Setting of parameters

Model (3) Model (4)

Number of chromosomes 30 30
Head size 9 9
Number of genes 4 5
Function set  + , − , × and /  + , − , × , / and √
Fitness function RMSE RMSE
Mutation rate 0.00138 0.00138
Inversion rate 0.00546 0.00546
Gene transposition rate 0.00277 0.00277
Random chromosomes 0.0026 0.0026
Gene recombination rate 0.00277 0.00277

Table 9   GEP models equations for Correlation (2)

Model # Predicted Tb equation Coefficients Equation #

Model (3) T
batfailure

= ((c∕d − f1 −
c∕d×(f2−A)

T
) × V) + (

f3×c∕d

T
−

l∕d−f
c

f4+l∕d
− f5)

+
f
c

(

c∕d×(T−A)

f6+f7

)

+V
+ c∕d +

c∕d
(

c∕d×A

T

)

+V−f
c

f1 = 1.31835418556042
f2 = 14.369181508319
f3 = 14.6889216995212
f4 = 0.133214111144357
f5 = 1.24768634441483
f6 = 1.95134120236163
f7 =  − 0.015062690634106

(9)

Model (4)
Tbatfailure = c∕d + (

(g1−V−
fc

c∕d
)

A−T
) + g2 + (V × (

(g3×V)−(g4×g5)+A

g6
))

+ g7 + (
(g8+

fc

g7
)

(A×V)+g9−T
) +

fc

l∕d
+

c∕d
√

T×
√

g10

+ g11 − V0.125

g1 = -7.04458754234443
g2 =  − 6.13703152280304
g3 = -11.8357151889437
g4 = 8.90229224524674
g5 = 0.0439399194616535
g6 = 6.12652730320557
g7 = 7.01989888605853
g8 = 0.871456941078571
g9 = 0.343772233305734
g10 = 0.0499310267595848
g11 =  − 4.52339457380902

(10)
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In Eqs. (13)–(16), the term 'n' stands for the amount of 
data points taken into account when assessing the bond 
strength ( Tb ), with ' Tb,p ' representing the predicted bond 
strength, and ' Tb,m ' denoting the measured bond strength.

Results

Correlation (1) results

Table 12 and Fig. 3 demonstrate the calculation of the mean 
absolute error (MAE), root mean squared error (RMSE), 

(16)

R2 =

⎛

⎜

⎜

⎜

⎝

∑n

i=1
(Tb,p − Tb,paverage)(Tb,m − Tb,maverage

)

�

∑n

i=1
(Tb,p − Tb,paverage)

2 ∑n

i=1
(Tb,m − Tb,maverage

)2

⎞

⎟

⎟

⎟

⎠

2Table 10   The main setting parameters and adjustments of GEP mod-
els for Correlation (3)

GEP parameter Setting of parameters

Model (5) Model (6)

Number of chromosomes 30 30
Head size 10 9
Number of genes 6 6
Function set  + , − , × and /  + , − , × , / and √
Fitness function RMSE RMSE
Mutation rate 0.00138 0.00138
Inversion rate 0.00546 0.00546
Gene transposition rate 0.00277 0.00277
Random chromosomes 0.0026 0.0026
Gene recombination rate 0.00277 0.00277

Table 11   GEP models equations for Correlation (3)

Model # Predicted Tb equation Coefficients Equation #

Model (5)
T
batfailure

= c∕d + h1 + (
h2

h3

×
V

T
× (T − l∕d)) +

(c∕d+f
c
−

fc

c∕d
)×(

c∕d

l∕d
+c∕d)

(c∕d×l∕d)−V−h4

+ 2h5 + (
c∕d2×V

T
× (c∕d + h6)) +

T

(h7+l∕d)×(h8−V)×(h9×c∕d
2)
+

h10−T−2c∕d

h11−c∕d−c∕d
2

h1 = 6.72220138634907
h2 =  − 9.83733063127537
h3 =  − 8.96069493697928
h4 = 2.36795561174352
h5 = -3.31615874279132
h6 =  − 9.81580553605762
h7 =  − 3.49237127774238
h8 =  − 8.07519140742794
h9 =  − 3.64402905362102
h10 = 9.94811416994824
h11 = 210.77762807679

(11)

Model (6)
T
batfailure

= i1 + i2 +
(V×i3)+c∕d

T
+

f
c
+l∕d

√

l∕d+
l∕d

c∕d
−

l∕d

i4

+ c∕d + T
0.25 +

V+i5

l∕d
− i6

2 +
c∕d×i7

V−T
+

i7−l∕d

i7+T
+
√

V + i8 + i9

−
�

V

l∕d+i10
+
√

V × ((V2 × i11) + c∕d − i12 − i13)

i1 =  − 8.66739483341553
i2 = 6.78827639161741
i3 = 11.0884557268852
i4 =  − 2.6891296133704
i5 = 7.06379962700155
i6 = 2.84970681621856
i7 =  − 13.2372635780051
i8 = 8.70957760019792
i9 = 1.34619806244417
i10 =  − 3.31755092909635
i11 =  − 4.72811151789992
i12 =  − 9.98118039223781
i13 =  − 8.65689695633331

(12)

Table 12   Statistical measures of the testing and training datasets for Correlation (1)

Statistical indicators Training data Testing data

MOGA-EPR cor-
relation (1)

GEP model (1) GEP model (2) MOGA-EPR cor-
relation (1)

GEP model (1) GEP model (2)

MAE (MPa) 1.48 1.69 1.63 1.63 1.70 1.61
RMSE (MPa) 2.42 2.62 2.75 2.62 2.55 2.44
Mean (μ) 1.10 1.09 1.08 1.17 1.16 1.12
R2 0.86 0.83 0.81 0.80 0.81 0.83
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mean (μ), and coefficient of determination (R2) for the pre-
diction of bond strength ( Tb ), compared to the measured 
Tb for the training and testing datasets for each correlation 
model of the MOGA-EPR and GEP techniques based on the 
statistical indicators and measurements in Eqs. (13)–(16). 
The results from Table 9 and Fig. 3 for correlation (1) mod-
els indicate:

•	 MAE for GEP models (1) and (2) from training datasets 
is between 1.63 and 1.69, and from testing datasets, it is 
between 1.61 and 1.70.

•	 RMSE from training datasets ranges from 2.62 to 2.75, 
and RMSE from testing datasets ranges from 2.44 to 
2.55.

•	 The mean of the datasets from training datasets is 
between 1.08 and 1.09, and from testing datasets is 
between 1.12 and 1.16.

•	 R2 scores from both training and testing datasets are 
between 0.81 and 0.83.

The comparison of the MOGA-EPR statistical indicators 
to the ones calculated by the GEP technique for the training 
and testing datasets from Table 12 and Fig. 3 is promising 
and relatively consistent. The MOGA-EPR model has the 
most impressive R2 for the training dataset when compared 
to the two GEP models, with the GEP model (1) having a 

higher R2 than the GEP model (2). Additionally, for the test-
ing datasets, the GEP model (2) has a higher R2 than both 
MOGA-EPS and the GEP model (1). MOGA-EPR also has 
the lowest MAE and RMSE values of all the models, and the 
mean values are all close to 1.

Table 13 and Fig. 4 compare the statistical indicators of 
correlation between the MOGA-EPR and GEP models for 
all datasets. It is evident that the GEP model (1) is more 
proximate to the MOGA-EPR model than the GEP model 
(2). Additionally, the MOGA-EPR model demonstrates a 
greater degree of accuracy in its correlation with R2 in pre-
dicting the Tb than the GEP models. Despite this fact, the 
GEP models produce results that are quite similar to those 
of the MOGA-ERP.

Fig. 3   The Statistical indicators of the developed models for both datasets for Correlation (1)

Table 13   Statistical measures of all datasets for Correlation (1)

Statistical 
measure/
Approach

MOGA-EPR 
Correlation (1)

GEP model (1) GEP model (2)

MAE (MPa) 1.51 1.69 1.63
RMSE (MPa) 2.46 2.60 2.69
Mean (μ) 1.11 1.10 1.09
R2 0.85 0.83 0.82
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As shown in Table 14, the GEP-developed models for 
correlation (1) appear to have accurately predicted the meas-
ured Tb. Most of the predictions made by these models are 
close to the perfect fit line and remain within the ± 30% 
error margin. This implies that the models have performed 
adequately.

Correlation (2) Results

For Correlation (2), thermal saturation ratio, (∆) is excluded 
in developing the models, due to the difficulty to measure 
this factor expectantly [42].

Table 15 and Fig. 5 present a comparison of the mean 
absolute error (MAE), root mean squared error (RMSE), 
mean (μ), and coefficient of determination (R2) for the pre-
diction of bond strength (Tb) using the MOGA-EPR and 
GEP techniques for both the training and testing datasets of 
the correlation (2) models. The analysis of the correlation 
models in this table and figure indicates that the GEP mod-
els (3) and (4) yielded MAE values between 1.60 and 1.65 
from the training datasets, and from the testing datasets, the 
MAE values are between 1.76 and 1.79. The RMSE from the 
training datasets ranged from 2.54 to 2.56, and the RMSE 
testing datasets ranged from 2.94 to 3.09. The mean of the 
datasets from the training datasets is 1.09, and the mean of 
the datasets from testing datasets is between 1.15 and 1.17. 

The R2 score from the training datasets is 0.84, and from the 
testing datasets, it is between 0.72 and 0.75.

Comparing Table 16 and Fig. 6, it is clear that the GEP 
models are close to the MOGA-EPR model in terms of sta-
tistical indicators of correlation. Nevertheless, the MOGA-
EPR model shows more precision in its correlation with the 
R2 value when predicting Tb than the GEP models. Even 
though the GEP models are slightly less accurate than the 
MOGA-EPR model, their results are still relatively close to 
those of the MOGA-ERP.

The GEP-created models for Correlation (2) seem to have 
accurately estimated the measured Tb, similar to Correlation 
(1) demonstrated in Table 17. Most of the models' predic-
tions fall close to the exact fit line and are within the ± 30% 
error limit. This implies that the models have worked 
satisfactorily.

Correlation (3) results

The models developed for Correlation (3) exclude the ther-
mal saturation ratio (∆) and the total overall volume of fibre 
overall in the concrete (V) because it is challenging to meas-
ure these factors accurately [42]. Table 18 and Fig. 7 dem-
onstrate a comparison of the mean absolute error (MAE), 
root mean squared error (RMSE), mean (μ) and coefficient 
of determination (R2) for the prediction of bond strength 

Fig. 4   The Statistical indicators of the MOGA-EPR and developed models for all datasets for Correlation (1)



Innovative Infrastructure Solutions (2023) 8:218	

1 3

Page 11 of 19  218

(Tb) using the MOGA-EPR and GEP techniques for both 
the training and testing datasets of correlation (3) models. 
The results of this comparison show that the GEP models 
(5) and (6) yielded MAE values from the training datasets 
between 1.51 and 1.82, and the testing datasets between 1.61 
and 1.78. The RMSE from the training datasets is in the 
range of 2.40 to 2.88 and from the testing datasets between 
2.71 to 2.99. The mean of the datasets from the training 
datasets is between 1.05 and 1.12, and from the testing data-
sets between 1.10 and 1.14. The R2 scores from the training 
datasets are in the range of 0.86 to 0.80 and from the testing 
datasets between 0.74 and 0.79.

Based on Table 19 and Fig. 8, the GEP model (5) demon-
strates a greater degree of accuracy in its correlation with R2 
in predicting the Tb than the MOGA-EPR model (3).

Similar to Correlations (1 and 2), the GEP-created mod-
els for Correlation (3) seem to have accurately estimated 
the measured Tb as demonstrated in Table 20. Most of the 
models' predictions fall close to the exact fit line and are 
within the ± 30% error limit. This implies that the models 
have worked satisfactorily.

Table 14   Relationship between measured and predicted Tb in MPa using the GEP-developed models for the training and testing datasets for Cor-
relation (1)

GEP model # Training dataset Testing dataset

Model (1)

  
Model (2)

  

Table 15   Statistical measures of the testing and training datasets for Correlation (2)

Statistical indicators Training data Testing data

MOGA-EPR Cor-
relation (2)

GEP model (3) GEP model (4) MOGA-EPR cor-
relation (2)

GEP model (3) GEP model (4)

MAE (MPa) 1.54 1.60 1.65 1.70 1.79 1.76
RMSE (MPa) 2.39 2.56 2.54 2.51 3.09 2.94
Mean (μ) 1.06 1.09 1.09 1.13 1.17 1.15
R2 0.86 0.84 0.84 0.82 0.72 0.75
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Sensitivity studies

After analysing the Tb values from different models in the 
previous sections, the MOGA-EPR and GEP model (5) were 
chosen to perform additional sensitivity studies for correla-
tions (1) and (3) respectively. The two models were picked 
because of their simplicity and higher R2 values, thus, they 
could be used to conduct a sensitivity analysis of the param-
eters influencing Tb. These studies will show how changing 
the values of the input variables impacts Tb.

This paper has already presented more accurate predic-
tion models. Because ∆ and A are hard to measure in real-
life experiments, the models are beneficial in predicting the 

effect of changing these factors on Tb without needing to 
measure them experimentally. Consequently, Figs. 9a, b ana-
lyse the effect of altering these factors on Tb.

In Fig. 9a, it can be seen that as the thermal saturation ratio 
(∆) increases, the bond between steel rebar and concrete (Tb) 
decreases. This trend can be due to thermally induced stress. 
When the thermal saturation ratio is increased, the steel rebar 
can expand more due to the increased heat, which creates 
more tension in the bond between the steel rebar and con-
crete. This tension can lead to a decrease in the bond strength 
between the two materials, thus decreasing the Tb value.

As shown in Fig. 9b, this study examines the effect of 
changing the Age of Testing (A) on the Concrete-Steel Bond 
Performance under High Temperatures. The result shows 
that there is an increasing relation between A and bond 
performance–meaning that as A increases, the bond perfor-
mance also increases.

Increasing the age of testing (A) on the concrete-steel 
bond performance under high temperatures increases the 
bond performance because aging increases the bond strength 
between the concrete and steel due to the formation of addi-
tional strong chemical bonds between the concrete and steel. 
Aging also increases the porosity of the concrete, which 
increases the surface area available for bond formation. The 

Fig. 5   The Statistical indicators of the developed models for both datasets for Correlation (2)

Table 16   Statistical measures of all datasets for Correlation (1)

Statistical 
measure/
Approach

MOGA-EPR 
correlation (2)

GEP model (3) GEP model (4)

MAE (MPa) 1.57 1.64 1.67
RMSE (MPa) 2.41 2.67 2.62
Mean (μ) 1.07 1.11 1.10
R2 0.85 0.82 0.82
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Fig. 6   The Statistical indicators of the MOGA-EPR and developed models for all datasets for Correlation (2)

Table 17   Relationship between measured and predicted Tb in MPa using the GEP-developed models for the training and testing datasets for Cor-
relation (2)

GEP model # Training dataset Testing dataset

Model (3)

  
Model (4)

  



	 Innovative Infrastructure Solutions (2023) 8:218

1 3

218  Page 14 of 19

increased porosity also increases the amount of water and 
other liquids that can be absorbed by the concrete, which 
in turn increases the bond strength. Additionally, aging 
increases the compressive strength of the concrete, which 
further increases the bond strength.

As shown in Fig. 9c, the effect of the failure surface 
temperature of concrete (T) on the bond between steel 
rebar and concrete (Tb) is studied, and it can be seen 
that as the temperature increases, the Tb decreases. This 
result corroborates the findings of reference [3], which 

Table 18   Statistical measures of the testing and training datasets for Correlation (3)

Statistical indicators Training data Testing data

MOGA-EPR 
Correlation (3)

GEP Model (5) GEP Model (6) MOGA-EPR 
Correlation (3)

GEP Model (5) GEP Model (6)

MAE (MPa) 1.89 1.51 1.82 1.71 1.61 1.78
RMSE (MPa) 2.80 2.40 2.88 2.78 2.71 2.99
Mean (μ) 1.07 1.05 1.12 1.12 1.10 1.14
R2 0.81 0.86 0.80 0.77 0.79 0.74

Fig. 7   The Statistical indicators of the developed models for both datasets for Correlation (3)

Table 19   Statistical measures of all datasets for Correlation (3)

Statistical 
measure/
Approach

MOGA-EPR 
correlation (3)

GEP model (5) GEP model (6)

MAE (MPa) 1.86 1.53 1.81
RMSE (MPa) 2.80 2.47 2.90
Mean (μ) 1.08 1.06 1.12
R2 0.80 0.84 0.79
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suggests that when exposed to high temperatures, the bond 
between the two materials is significantly weakened due to 
the reduced strength of the concrete and potential plastic 
deformation of the embedded steel rebar. This bond degra-
dation can have a major impact on the structural integrity 
of an RC component.

Conclusions

This research investigated the influence of elevated tem-
peratures on the bond strength between concrete and steel 
(Tb) utilizing the GEP data-driven model. Six correlations 
to predict the bond strength were generated using the GEP 
approach and examined against the literature. A sensitiv-
ity analysis was executed to evaluate the effect of varying 
parameters on the bond strength. Based on the limitations 
of this study, the following conclusions can be made:

•	 Table  21 summarises the most accurate prediction 
equations for each correlation model. And shows that:

•	 For Correlation (1), the MOGA-EPR model has a 
higher R2 of 0.85, compared to GEP models 1 and 2, 
which are 0.83 and 0.82, respectively.

•	 For Correlation (2), the MOGA-EPR model has a 
higher R2 of 0.85, compared to the GEP models which 
is 0.82.

•	 For Correlation (3), the GEP model (5) has a higher R2 of 
0.84, compared to the MOGA-EPR model which is 0.8.

This indicates that all variables are incorporated in the 
Correlation (1) models to achieve the optimal fit, but 
it should be noted that the Correlations (2) and (3) 
models remain valid.

•	 The sensitivity study examined the influence of chang-
ing the ratio of the period of thermal saturation at the 
maximum desired temperature to the minimal size of the 
extracted sample (∆), age of testing (A), and failure sur-
face temperature of concrete (T) on the bond between the 
concrete and steel (Tb). The results of the analysis were 
summarized as:

Fig. 8   The Statistical indicators of the MOGA-EPR and developed models for all datasets for Correlation (3)
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•	 The bond between steel rebar and concrete (Tb) decreases 
as its thermal saturation ratio ∆ increases.

•	 Increasing concrete age (A) leads to a higher bond 
between steel rebar and concrete (Tb).

•	 The steel rebar and concrete (Tb) bond decreases with a 
temperature rise.

This research provides insights into how concrete-steel 
bond performance is affected by the Age of Testing under 
high temperatures. This knowledge can be beneficial in the 
creation of further studies and the making of design deci-
sions in the future.

As a future work, it would be beneficial to explore and 
optimize the value of the number of chromosomes and use 
different setting parameters in GEP models, considering the 
limitations observed in this paper. Currently, a fixed number 

of chromosomes and setting parameters are utilized, but it is 
essential to acknowledge that increasing the number of chro-
mosomes can potentially lead to heightened computational 
complexity and longer computation durations. Additionally, 
a larger population size might be necessary to maintain a 
satisfactory level of diversity. Therefore, it is crucial to strike 
a balance between exploration and exploitation while deter-
mining the appropriate number of chromosomes, taking into 
account the demand for diversity, available computational 
resources, and the complexity of the problem. To address 
this, future research should conduct a more comprehen-
sive analysis to investigate and optimize the value of this 
parameter. By doing so, the effect of these parameters on 
the accuracy and reliability of the research outcomes can be 
studied, thereby enhancing the understanding and applica-
tion of GEP models.

Table 20   Relationship between measured and predicted Tb in MPa using the GEP-developed models for the training and testing datasets for Cor-
relation (3)

GEP 
model 
#

Training dataset Testing dataset

Model 
(5)

  
Model 

(6)
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Fig. 9   Sensitivity Studies on the Tb

Table 21   The most accurate models for the different correlations

Correlation # Model # Predicted Tb equation Coefficients Equation #

(1) MOGA-EPR Correla-
tion (1)

T
batfailure

= a1 ×
√

c∕d ×
√

A × f
c

+ a2 × c∕d × f
c
× T

2 + a3 ×
√

l∕d ×
√

A × f
c

+ a4 ×
√

V ×
√

Δ × (c∕d) × T
2

+ a5 ×
√

l∕d ×
√

V × (c∕d) + a6

a1 = 3.59× 10−2

a2 =  − 7.5 × 10−8

a3 =  − 1.68 × 10−2

a4 =  − 3.5 × 10−6

a5 = 8.48 × 10−1

a6 = 4.047

(4)

(2) MOGA-EPR Correla-
tion (2)

T
batfailure

= b1 × c∕d × f
c
× T

2

+ b2 × c∕d × f
c
×
√

A + b3 × (c∕d)2 × f
c

2 ×
√

A

+ b4 ×
√

l∕d ×
√

c∕d ×
√

A × f
c

+ b5 × V × f
c
× (c∕d)2 + b6

b1 =  − 1.12 × 10−7

b2 = 2.3 × 10−2

b3 =  − 1.8 × 10−5

b4 =  − 8.7 × 10−3

b5 = 1.05 × 10−2

b6 = 2.789

(5)

(3) Model (5)
T
batfailure

= c∕d + h1 + (
h2

h3

×
V

T
× (T − l∕d))

+
(c∕d+f

c
−

fc

c∕d
)×(

c∕d

l∕d
+c∕d)

(c∕d×l∕d)−V−h4
+ 2h5 + (

c∕d2×V

T
× (c∕d + h6))

+
T

(h7+l∕d)×(h8−V)×(h9×c∕d
2)
+

h10−T−2c∕d

h11−c∕d−c∕d
2

h1 = 6.72220138634907
h2 =  − 9.83733063127537
h3 =  − 8.96069493697928
h4 = 2.36795561174352
h5 =  − 3.31615874279132
h6 =  − 9.81580553605762
h7 =  − 3.49237127774238
h8 =  − 8.07519140742794
h9 =  − 3.64402905362102
h10 = 9.94811416994824
h11 = 210.77762807679

(11)
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