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Abstract
Natural fibers and pozzolan have gained prominence in the development of concrete; however, there are few studies that 
have considered the combination of banana fiber and waste glass powder. In this work, 0.5%, 1.0%, and 1.5% banana fiber 
(BF) was employed as fiber reinforcement, while glass powder (GP) was used as pozzolan, partially replacing cement at 
10%, 20%, and 30%. Using the response surface method (RSM), the experimental data on the 7-, 28-, and 56-day concrete 
compressive strengths were analysed, modeled and optimized via the response surface approach. The result revealed that the 
variables played an important role on the trend of the 7-, 28-, and 56-day compressive strengths. The optimal combination of 
1.0%, 1.1%, and 1.0% banana fiber at 17.4%, 20.8%, and 21.0% GP cement replacement yielded improvements of 11.0, 22.1, 
and 27.0% over the reference concrete at 7, 28, and 56 days, respectively. The developed predictive models for compressive 
strength were affirmed to be statistically fit for future prediction.

Keywords  RSM (response surface method) · Fiber-reinforced concrete · Banana fiber · Waste glass · Cement replacement · 
Compressive strength optimization

Introduction

Concrete is a composite combination of cement, fine and 
coarse aggregates, water, and a few additives that hardens via 
a chemical reaction [1, 2]. It is used often in structural appli-
cations for the construction of buildings, bridges, walkways, 
and towering constructions. Properties, quality, and durabil-
ity of concrete are depending on mixture composition, load 
application, and temperature stability of the environment of 
application. The composition of the mixture, including the 
kind and quantity of cement, aggregates, water content, and 
additives, has a significant impact on the strength of con-
crete. These factors establish the service strengths, poros-
ity and water absorption capacity, permeability and suction 
inclinations, and densities. In addition, the kind and duration 
of curing have a significant effect on the strength and dura-
bility of concrete materials. In addition to exposure to cold 
conditions, sulfate and chloride attack, load bearing capabil-
ity is another element influencing the longevity of concrete 
for a particular application [3]. To guarantee optimal perfor-
mance while in service, concrete mixtures are meticulously 
formulated with the finest possible circumstances in mind.
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Cracks such as plastic shrinkage, expansion crack, set-
tling fractures, and autogenous cracks are common in con-
crete [4, 5]. In order to reduce the harmful impact of these 
fissures, fibers are added to the concrete mix. The fibers 
used in this procedure are both natural and synthetic [6, 7]. 
In many applications, fiber-reinforced concrete (FRC) is 
gaining a competitive edge over conventional concrete. It 
has been shown that the inclusion of fibers improves the 
mechanical characteristics of cement composite owing to the 
self-healing and fracture propagation prevention tendencies 
given by these fibers [8, 9]. Steel, polypropylene, polyester, 
carbon, nylon, and acrylic have shown their uniqueness in 
FRC development [10, 11]. Natural fibers such as banana, 
jute, pineapple, coconut basalt, hemp, and sisal are used in 
the production of fiber-reinforced concrete [12, 13]. The use 
of natural fibers into concrete has given rise to sustainable 
fiber-reinforced concrete (SFRC), which is gaining popular-
ity in structural concrete design.

A difficulty connected with the use of natural fibers in 
cement-based media is the potential for deterioration due to 
alkaline hydrolysis, which degrades the molecular chains of 
the fibers, resulting in a loss of strength. Wei and Meyer [14, 
15] propose the use of pozzolan as a method for resolving 
the deadlock.

Typically, the hydration process in cement composites is 
accompanied by the formation of hydrated lime (Ca(OH)2), 
which accounts for 10 to 30 percent of the volume of the 
hydration products [16]. This creates an alkaline environ-
ment which is detrimental to the fibers. Reducing the con-
tent of hydrated lime in the system is advantageous for the 
durability of the fibers. Additionally, lime’s contribution to 
the strength of concrete is negligible. By means of a poz-
zolanic reaction, hydrated lime is transformed into calcium 
silicate hydrate (C–S–H) or calcium alumino silicate hydrate 
(C–A–S–H), which considerably contribute to the strength 
of cement composite. Therefore, the use of pozzolan in 
cementitious composites contributes to the decrease of alka-
line medium and the enhancement of C–S–H/C–A–S–H-
producing strength. The use of glass powder as a pozzolan in 
several investigations has shown remarkable results [17]. By 
recycling and reusing waste glass products in concrete, their 
environmental effect has been decreased and sustainability 
has been encouraged. Glass waste is non-biodegradable; 
hence, recycling into metals as reinforcement [18, 19] and 
burned ceramics [20, 21] as well as concrete is the sub-
ject of continuing study. In this research, a combination of 
banana fiber and waste glass powder is used as components 
in concrete mix in an effort to produce a more sustainable 
eco-concrete. As was previously noted, concrete mixes are 
meticulously formulated for optimal performance. In the 
majority of research, the optimal mixture was determined 
by trial and error; however, there are few studies that use an 
optimization strategy in their design.

Recently, optimization approaches have been used to 
determine the optimal blend designs. Sinkhonde et al. [22] 
used tire rubber powder as a partial substitute for coarse 
aggregate and burned brick powder as a partial replacement 
for cement. Thirteen formulas were created using central 
composite design, and cost and 28-day compressive strength 
were tested as responses. Cost reduction and compressive 
strength maximization are objectives of the simultaneous 
optimization procedure. At 5% burned clay brick powder and 
5.8% waste tire rubber powder, the optimum cost-effective 
and strength-maximizing mixture was reached. Similarly, 
Hamada et al. [23] improved the strength of a lightweight 
concrete using nano-palm oil fuel ash as a partial cement 
replacement (0, 15, 30% replacement) and palm oil clinker 
as a partial coarse aggregate replacement (0, 50, 100% 
replacement). Properties determined were ultrasonic pulse 
velocity, flexural strength, and splitting strength. The opti-
mal combination for desired simultaneous performance is 
5.23 percent nano-palm oil fuel ash replacement and 6.5 
percent palm oil clinker replacement. Guneyisi et al. [24] 
determined the optimal ratio of fly ash to metakaolin in the 
formulation of concrete mixture. In the research, fly ash 
was employed as a partial cement substitute at 10% and 
20% replacement, whereas metakaolin was used at 5% and 
10% replacement. As a function of the factors, the com-
pressive strength after 90 days, chloride permeability, water 
absorption, and sorptivity were assessed. The objective of 
optimization was to enhance compressive strength while 
minimizing other parameters. For the 90-day curing period, 
simultaneous optimization was achieved at 13.3% fly ash 
replacement of cement and 10% metakaolin replacement of 
cement.

Haque et al. [25] introduced rice husk ash as a partial 
cement replacement at 0, 15, and 30% and glass fiber (pro-
portions of 0.04, 0.06, and 0.08%) as a crack inhibitor in 
concrete using a central composite design. The 7-, 14-, and 
28-day compressive and splitting strengths were measured, 
and the best response was achieved by replacing 16.05% of 
the cement with rice husk ash and 0.08% with glass fiber. In 
addition, Ahmed et al. [26] investigated the optimization of 
waste glass and condensed milk tin fibers utilized as addi-
tions in concrete. In accordance with the response surface 
approach, the optimal mix combination of 20.436% glass 
power replacement of cement and 0.843% fiber proportion 
was achieved. Through this optimization technique, concrete 
composite has obtained the desired results. Other studies 
involving combination of natural fibers and waste glass pow-
der are included in studies [27–29].

In this work, sodium hydroxide was used to alkalize 
the fiber. Through alkalinization, lignin and hemicellu-
lose concentrations tend to decrease, fiber surface rough-
ness is enhanced, resulting in greater matrix adherence, 
and cellulose crystallinity is enhanced. Additionally, via 
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alkalinization, calcium carbonate sediments are formed 
on the surface of the fibers, filling in holes and forming a 
hydrolysis-resistant layer [30, 31]. By using this method, 
a fiber with greater structural durability is generated for 
cementitious composite [32]. In the previous studies 
reviewed in this section, none focused on the combination 
of fiber using waste glass as cement replacement in the 
cementitious composite. This is a focus of this study. The 
choice of banana fiber and glass powder in present report is 
attributed to the abundance of the materials within the pur-
view of the research. Furthermore, response surface method 
was adopted in present study to develop predictive models 
for future prediction of compressive strength at compressive 
strength at 7, 28, and 56 days after curing.

Materials and methods

Materials

Ordinary Portland cement (42.5), fine sand (0.1–4.75 mm 
size range and fineness modulus of 2.78), gravel coarse 
aggregates (4.75–16 mm size range), collected waste glass, 
and banana fiber were employed in this investigation. The 
materials were treated by washing discarded glass under run-
ning water, crushing it using a laboratory crusher, and grind-
ing it. The waste glass was further crushed using a ball mill 
for six hours, and the resulting powder was screened to − 23 
micron passing. This size of waste glass was chosen because 
to the well-established fact that glass powder smaller than 
75 microns in size is useful as a pozzolan [33]. Banana fiber 
was collected, rinsed with running water, and air-dried for 
48 h. The fiber was then treated for 30 min with 10% NaOH 
at 100 °C [32]. The next step was washing with distilled 
water, followed by oven-drying at 60 °C. As noted by Cabal-
lero et al. [34] and Gong et al. [35], the fibers were chopped 
to a length of 25 mm before being infused into the concrete 

mixture. The water-to-cement ratio was maintained at 0.35 
per the example of Panda et al. [36].

Properties of input materials

According to Table 1, the alkaline-treated fiber exhibited 
a progressive increase in cellulose content relative to the 
untreated fiber. Similarly, to the results of Reddy et al. [37] 
and Loganathan et al. [38], hemicellulose and lignin concen-
trations are lower in the treated than in the untreated.

The properties of fine sand, coarse gravel, glass powder, 
and cement are compared and contrasted in Table 2. Accord-
ing to the information that was presented, the specific gravi-
ties of fine sand, coarse gravel, glass powder, and cement, in 
that order, are as follows: 2.67, 3.40, 2.86, and 3.169. The 
amount of moisture found in fine sand and gravel has been 
measured and found to be < 5%. Cement has the highest spe-
cific area, which indicates that there is a significant potential 
for chemical interaction within the system. Cement and GP 
both are fine as determined by the fineness modulus.

The chemical components of the various types of input 
materials, including fine sand, coarse gravel, glass powder, 
and cement, are outlined in Table 3. Fine sand, coarse 
gravel, and glass powder all contain significant amounts 
of silica, but coarse gravel also contains a significant quan-
tity of alumina, whereas the amount of alumina present in 
glass powder and cement is minimal. Both fine sand and 
glass powder have a significant quantity of sodium dioxide 
(Na2O), which is a potential in increasing the alkalinity 
of the medium. The input materials may include traces of 
additional components in very low concentrations. The 
glass powder satisfies the requirements for a pozzolan 

Table 1   Chemical composition of fiber

Material Cellulose Hemicellulose Lignin Others

Raw banana fiber (%) 50.5 23.6 14.1 11.8
Modified banana fiber 

(%)
56.3 18.6 12.1 13.0

Table 2   Properties on input 
variables

Constituents Fine sand Gravel Glass powder Cement

Specific gravity 2.67 3.4 2.86 3.169
Moisture content 2.11 1.3 – –
Specific area 1542 cm2/kg 1741 cm2/kg 2784 cm2/g 3638cm2/Kg
Fineness modulus 1.99 2.7 1.59 1.33

Table 3   Chemical constituent of input materials

Constituent Fine sand Coarse gravel Glass powder Cement

SiO2 74.88 75.66 69.7 21.77
Al2O3 4.22 14.37 2.07 4.88
CaO 1.02 0.78 8.3 65.9
Fe2O3 1.62 1.88 0.25 0.03
MgO 1.14 0.08 3.11 0.63
Na2O 5.49 2.05 12.9 1.40
Others 9.27 3.53 1.86 4.29
LOI 2.36 1.65 1.81 1.10
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as laid forth by ASTM C 618 [39], since the combined 
amounts of SiO2, Al2O3, and Fe2O3 are lower than 70% of 
the total weight of the powder.

Concrete mix and curing.

For reference, the control mix was prepared by mixing 
cement, fine aggregate, and coarse aggregate in the weight 
ratio of 1:1:2 for an aggregate mixture of 100 kg. For the 
composite mixture, glass powder was utilized as a partial 
cement replacement at 10, 20, and 30 percent, and banana 
fiber was used to replace a portion of the fine aggregate. 
Table 4 displays the formulation of the design. Accord-
ing to the table, 10 concrete mixtures were produced. The 
concrete mixture was poured into a 150-mm prism mold 
(compressive strength test) and tempered to minimize the 
void content. After 24 h, samples of brick were taken from 
the mold and cured for 7, 28, and 56 days under a poly-
ethylene sheet.

Evaluation of compressive strength.

After each curing period, samples were collected, oven-
dried at 100 °C for six hours, and then subjected to ASTM 
C1314 compressive strength testing (2018) [40]. The uni-
versal testing equipment (Istron 3369) was used at a strain 
rate of 5 × 10–3/s and employing 1KN load. As the com-
pressive strength, the ratio of the load to failure to the 
cross-sectional area was measured. Three samples of each 
formulation were evaluated, and the average results were 
recorded. The 7-, 28-, and 56-day compressive strengths of 
the control (reference concrete) are 14.5 MPa, 20.8 MPa, 
and 23.6 MPa, respectively.

Experimental analysis by response surface method 
(RSM)

The laboratory observations’ real data were entered into the 
Design Expert 13 program for response surface analysis. 
RSM is a valid mathematical and statistical method for ana-
lyzing laboratory results involving the simultaneous inter-
action of two or more factors [41]. At a confidence level of 
95%, analysis of variance is conducted to determine whether 
the input components’ contribution to the observed results 
is substantial or insignificant. If the probability value, or 
p-value, is less than 0.05, then the effect of the input vari-
able on the response is significant. If the p-value is greater 
than 0.05, the contribution is negligible [42]. Additionally, 
RSM develops a mathematical formula for the interaction 
between the input variables [43]. These model equations 
are constructed in a way that allows them to anticipate the 
responses in relation to the input variables. RSM also pro-
vides a 3D graphic (surface plot) illustrating how the input 
factors interact and the influence on the response trend. Sim-
ilarly, the RSM is equipped with a 2D graphic that illustrates 
how modifying parameters result in a variety of response 
values for each combination of parameters. Using the RSM, 
optimization for the desired mix formulation in optimizing 
the compressive strength is attained.

Results and analysis

Two‑Factor analysis

Analysis of variance

Table 5 displays the results of the analysis of variance of 
the compressive strength of the proposed concrete. The 
effect of banana fiber on the 7-day, 28-day, and 56-day 
compressive strengths of the concrete is less than 0.05 
percent. On this basis, it may be inferred that banana fiber 

Table 4   The mix design

Run order % Glass powder replacement 
of cement

Banana fiber

0 (control) 0 0
1 10 0.5
2 20 0.5
3 30 0.5
4 10 1.0
5 20 1.0
6 30 1.0
7 10 1.5
8 20 1.5
9 30 1.5

Table 5   Analysis of variance for compressive strength

Source 7th day 28th day 56th day

A-Banana fiber 0.0003 0.0019 0.0012
B-% GPR 0.0727 0.0006 0.0004
AB 0.4664 0.7550 0.7509
A2 0.0002 0.0004 0.0002
B2 0.0181  < 0.0001  < 0.0001
Model 0.0007 0.0003 0.0002
R2 0.9867 0.9884 0.9857
R2 (adjusted) 0.9811 0.9851 0.9857
R2 (predicted) 0.9629 0.9679 0.9744
Adeq Prec 33.45 55.06 59.45
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contributed marginally to the compressive strength of the 
concrete, regardless of curing time. Regarding the curing 
durations, the table additionally displays the p-value of fac-
tor B (replacement of cement with glass powder). Substitu-
tion of glass powder for cement had no significant effect on 
7-day compressive strength (p-value > 0.05). According to 
Islam et al. [44], the effective pozzolan reaction employing 
glass powder as a cement substitute occurs after seven days; 
hence, glass powder has no significant impact on the com-
pressive strength of concrete at early ages. This work sup-
ports the claim of Islam et al. [44] as regards the marginal 
contribution of glass powder to 7-day compressive strength. 
Cross-interaction between the components AB had no effect 
on the 7-day, 28-day, and 56-day compressive strengths of 
the concrete (p-values were greater than 0.05). Contrarily, 
the square interactions between individual factors (AA and 
BB) had a significant impact on the property for all curing 
durations studied.

The p-values of the models are less than 0.05, indicating 
their significance at the 95% confidence level [45]. The coef-
ficient of determination R2 is more than 0.95 for each of the 
7-, 28-, and 56-day compressive strengths. This indicates the 
precision with which the model can depict the link between 
the experimental variables and the determined responses 
with < 5% variance. The divergence between the predicted 
and adjusted R2 for compressive strength throughout the 
three periods investigated is 0.2, portraying  the models are 
adequate in representing the observed values. Equations 1, 
2, and 3 express the quadratic function for models in rela-
tion to the number of curing days. Correlation between the 
fitted model and the experimental result is determined by 
the coefficient of correlation of the models. In this report, 
the correlation coefficient is more than 0.95, inferring that 
the models adequately describe the data. Consequently, the 
models can interpret experimental data with > 95% accuracy. 
Adequate precision (Adeq. Prec.) is implemented for pre-
dicting the signal-to-noise ratio, which enables comparison 
of anticipated and experimental results within the design 

space [45]. The adequate  precision values for the compres-
sive strength investigated with the given values exceeding 
4. It demonstrates that the generated mathematical models 
(Eqs. 1, 2, and 3) for the responses are able to predict the 
responses within the design space and validates the result 
of the variance analysis in determining the relevance of the 
variable inputs. Table 3 Mathematical models for compres-
sive strength at varying ages

Surface plot

Figure 1 illustrates the surface plots of the compressive 
strength of the concrete at the various periods of curing. 
The surface plot for 7-day compressive strength is shown 
in Fig. 1a. As shown in the graph, the addition of 0.5 to 
1.0% fiber while utilizing glass powder to replace cement 
at 10 to 30% resulted in an increase in strength. As observed, 
the strength of glass powder exhibited a linear relation-
ship with no significant influence on compressive strength, 
demonstrating no appreciable change. Based on the graph 
(Fig. 1a), the addition of 1.0 to 1.5% fiber led to a drop in 
strength. Figure 1b demonstrates that the addition of 0.5 to 
1.0% fibers to a concrete mixture containing 10 to 20% glass 
powder as a cement substitute increased the 28-day com-
pressive strength. However, a drop in 28-day compressive 

(1)
CS7 = 10.4000 + 8.1000A + 0.0817B + 0.0050AB

− 3.6000A2− 0.0020B2 R2 = 0.9867

(2)

CS28 = 1.7667 + 15.9333A + 1.3683B + 0.0050AB
− 7.4000A2− 0.0320B2 R2 = 0.9884

(3)

CS56 = 4.3111 + 18.2667A + 1.3467B + 0.0050AB
− 8.4667A2− 0.0312B2 R2 = 0.9857

Fig. 1   Surface plot for compressive strength of concrete after curing periods of, a 7 days, b 28 days, and c 56 days
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strength was seen when 1.0–1.5% of the fiber was replaced 
with 20–30% cement (Fig. 1b). Equally, the addition of 0.5 
to 1.0% fibers to a concrete mixture containing 10 to 20% 
glass powder as a cement substitute provoked an increase in 
compressive strength after 28 days. In contrast, a decrease 
in 56-day compressive strength was seen when 1.0–1.5% 
of the fiber was replaced with 20–30% cement (Fig. 1c). 
The boost  in strength with fiber proportions between 0.5% 
and 1.0% is attributable to the fiber's resistance to fracture 
propagation and the matrix's improved bond strength [46]. 
Cheng et al. [47] linked the increase in compressive strength 
of fiber-reinforced concrete to the fiber's capacity to bridge 
cracks owing to a reduction in lateral expansion during com-
pressive deformation.

Several experiments involving the use of natural fibers 
into concrete and mortar formulations have produced con-
tradictory results. In their experiment, Ademati et al. [40] 
noticed a gradual increase in compressive strength between 
0.5 and 1.5% banana fiber intake. The inclusion of jute fib-
ers in the range of 0.1 to 0.4% by weight was observed to 
increase the compressive strength of concrete mixes by 
Gupta et al. [48]. When applied between 0.1 and 0.3 wt%, 
the fiber displayed a 6.5–12.4% appreciation  in compressive 
strength compared to the reference mixture. According to 
Syed et al. [49], a coir fiber content between 0.6 and 1.2% 
increases the compressive strength of the produced compos-
ite. Azevedo et al. [50], who added Curaua fiber in mortar 
at 1, 2, and 3 wt%, also mention the enhancement of the 
compressive strength of cement composites in the presence 
of natural fibers even as Islam and Ahmed [51] realized that 
inclusion of 0.25, 0.5, 0.75, and 1.00 wt% of jute fiber into 
a cement composite improved its strength.

In Fig. 1a and b stand for banana fiber and percentage 
glass powder replacement of cement respectively.

Bheel et al. [52] relate the decrease in strength between 
0.5% and 1.5% fiber to the larger voids associated with natu-
ral fibers. Natural fibers are known to have surface poros-
ity; consequently, when the quantity of natural fibers in a 
concrete mixture increases, the fiber micropores increase, 
resulting in a decrease in compaction and strength. In addi-
tion to fiber agglomeration leading to stress concentration 
[32], fiber agglomeration at a fiber content of 1.0–1.5 wt% in 
the concrete mix contributes to the loss of strength.

The increase in strength with 10–20% cement replace-
ment by glass powder is attributed to the pozzolan capability 
of the powder. Glass powder consists mostly of silica and 
alumina and undergoes pozzolanic reaction with hydrated 
lime  in the presence of water to produce calcium silicate 
hydrate and/or calcium aluminate hydrate, which considera-
bly contributed to the enhancement of compressive strength.

In accordance with our findings, Sakale et al. [53] used 
glass powder as a partial cement replacement in the propor-
tions of 10, 20, 30, and 40% in concrete, achieving a 20.9% 

increase in compressive strength at 20% cement replace-
ment. Similarly, Olofinnade et al. [54] proved that replacing 
20% of the cement with glass powder increased the strength 
of the concrete to its maximum. Ayegbokiki et al. [55] and 
Zanwar and Patil [56] observed a probable increase in peak 
strength at 20% replacement. The accomplishment depends 
on the pozzolanic potential inherent in the glass powder 
used.

In Fig. 1b, c, cement substitution over 20% resulted 
in a decrease in strength owing to an increase in silica 
and alumina content (produced from glass powder). High 
levels of glass powder in concrete have been observed to 
reduce the workability of the mixture, leading to segre-
gation [57]. In addition, the larger volume percentage of 
fiber and glass powder reduces the blend's workability, 
resulting in segregation. The result is nonuniformity and 
unequal dispersion of additives, resulting in weakened 
matrix bonds. According to Ahmad et al. [58], a greater 
fraction of glass power results in a greater alkali–silicate 
reaction (ASR) based on  the presence of excess silica 
content that did not undergo pozzolanic reaction. This 
increases the possibility that an alkaline–silica reaction 
(ASR) will result in ASR expansion which is detrimental 
to the compressive strengths.

In the research, the 7-day, 28-day, and 56-day maximum 
compressive strengths are 15.7, 24.6, and 27.5 MPa, pro-
viding 8.3, 18.3, and 14.2% over the reference mixtures, 
respectively. The surface plots analyzed in the present report 
demonstrated that the compressive strength depends on the 
interplay of the two input factors.

Contour plot

Figure  2a, b, and c's contour plots for compressive 
strength of the concrete reveal that varied combinations 
of the input factors (banana fiber and glass powder) pro-
duced a range of compressive strength values [59]. In the 
majority of report on contour plots, the optimal response 
area and variable combination are the focal point [59, 
60]. A, B, and C correspond to the zones in the figures 
for maximizing the compressive strength of the concrete 
after 7, 28, and 56 days of curing. Based on the graph, 
optimal 7-day compressive strength in the range of 15.5 
to 16.0 MPa may be achieved by including 0.8 to 1.48% 
banana fiber and 10 to 30% glass powder into the concrete 
mix. Optimizing compressive strength at 28 days is in the 
range of 24 to 26 MPa with the addition of 0.7 to 1.47% 
banana fiber in the presence of glass power at 15.6 to 27.4 
percent cement replacement. Lastly, the range 26–30 MPa 
for 56-day compressive strength is achievable between 
0.7% and 1.4% banana fiber in the presence of glass pow-
der at 16.4% to 27.1% cement replacement.
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Optimal values

In obtaining the optimum combination mix for strength 
optimization at 7-, 28-, and 56-day curing of the concrete, 
the responses were set at maximum in the numerical opti-
mization, while the same level of importance was main-
tained as effected in [60]. The best combination predicted 
for optimum compressive strength for the respective curing 
periods is 1.01068% banana fiber and 17.3952% cement 
replacement for 7-day curing period, 1.0875% banana fiber 
and 20.75% cement replacement for 28-day curing period, 
and 1.0375% banana fiber and 21.75% cement replacement 
for 56-day curing period. The predicted strength values 
are 15.8599, 25.0703, and 28.8083 MPa for 7-, 28-, and 
56-day curing periods, respectively (see optimization ramp 
in Fig. 3). In confirming the predicted combination and 
values, experimentation was carried out at proportions of 
1.0% banana fiber and 17.4% cement replacement for 7-day 
curing period, 1.1% banana fiber and 20.8% cement replace-
ment for 28-day curing period, and 1.0% banana fiber and 
21.8% cement replacement for 56-day curing period. Three 
samples were prepared for each mix and tested for com-
pressive strength. Values of 16.1, 25.4, and 29.9 MPa were 
obtained for the respective days, and the variation between 
the experimental values and the predicted values in each 
case is less than 5%. By this therefore, the best combination 
for optimum strength values is 1.0% banana fiber at 17.4% 
cement replacement, 1.1% banana fiber at 20.8% cement 
replacement, and 1.0% banana fiber at 21.8% cement 
replacement for 7-, 28-, and 56-day periods, respectively. 
Equally, the developed models are certified fit to predict the 
strength values at the respective days within the confine of 
the experimental conditions. In comparison with the refer-
ence concrete, the optimized concrete samples yielded 11.0, 
22.1, and 27.0% over the reference mix at the respective 
curing periods.

Validation of models

The discrepancy between the anticipated values (by 
the model equations) and the actual values is shown in 
Table 6 (as obtained in experiment). The variance values 
are less than 5% for each run order and for all curing peri-
ods, indicating that the models are well suited for fore-
casting compressive strength for the various days (with a 
confidence level of 95%).

AV and PV are defined as actual and predicted values, 
respectively.

Conclusion

In this investigation, glass powder was used to partially 
replace cement at replacement rates of 10, 20, and 30%, 
while banana fiber was added at replacement rates of 0.5, 
1.0, and 1.5% for fine aggregate. For modeling and optimi-
zation objectives, 7-day, 28-day, and 56-day compressive 
strength was evaluated, and experimental data were sub-
jected to response surface analysis. The following conclu-
sions were arrived at:

1.	 The analysis of variance revealed that fiber had a sub-
stantial impact on compressive strength for all curing 
durations, whereas the contribution of glass powder was 
negligible after 7 days of curing but significant after 28 
and 56 days.

2.	 The constructed mathematical models were consid-
ered suitable for predicting compressive strength, 
while the surface plots illustrated the responses' 
dependence on the manner in which the two input 
variables interacted.

3.	 The optimal combination for optimal strength values is 
1.0% banana fiber at 17.4% cement replacement, 1.1% 

Fig. 2   Contour plot for the compressive strength at curing ages of, a 7 days, b 28 days, and c 56 days
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banana fiber at 20.8% cement replacement, and 1.0% 
banana fiber at 21.0% cement replacement for 7-, 28-, 
and 56-day periods, respectively.

Conclusively, response surface method is capable of opti-
mizing the process variables and modeling the responses for 
future prediction. Future research may involve the use of 
other forms of pozzolan and other natural fibers.

Fig. 3   Optimization plot for compressive strength at curing periods of, a 7 days, b 28 days, and c 56 days
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