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Abstract
This research aimed to assess the influence of the cohesion heterogeneity and anisotropy on the ultimate seismic and static bearing 
capacity, (qult), of a strip footing resting on c–φ soils. Most investigations have used complicated methods that were only related to the 
static loading condition. Herein, a simple innovative method was proposed to compute the qult of the strip footing via the method of limit 
equilibrium, by combining it with the approach of pseudo-static seismic loading and using the simplified Coulomb failure mechanism. 
Cohesion was assumed to be anisotropic and heterogeneous, and the anisotropy of the friction angle was neglected. A single equivalent 
coefficient, Nc(eq), was used to determine the ultimate bearing capacity. The optimal Nc(eq) was estimated using the algorithm of particle 
swarm optimization (PSO), and the findings were compared to those of earlier studies. The impact of the heterogeneous coefficient (υ) 
and anisotropy ratio (K) on the seismic and static Nc(eq) was also assessed. Overall, raising υ and reducing K increased the static and 
seismic Nc(eq). Moreover, the failure zone depth declined by increasing υ and K, while the failure zone horizontal extension decreased 
by raising υ and reducing K. The findings indicated the suitability of the proposed approach as an innovative method for assessing the 
qult of foundations placed on c–φ soils with cohesion heterogeneity and anisotropy.
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List of symbols
B0	
�Width of the footing
CAE, CEB and CKE	
�Cohesion coefficient components
Df	
�Footing depth
H	
�Failure zone depth
K	
�Anisotropy coefficient of cohesion
L	
�Horizontal extension of the failure zone
Nc(eq)	
�Equivalent single bearing capacity coefficient
Pa	
�Active lateral force

Pp	
�Passive force
PU	
�Vertical load on the footing
WA	
�Weight of AEK wedge
WB	
�Weight of BEK wedge
ci	
�Cohesion corresponding to an inclination i
cv	
�Vertical cohesion
ch	
�Horizontal cohesion
ch0	
�Horizontal cohesion coefficient in h = 0
i	
�Angle between the maximum principal stress and horizontal 
plane
kh	
�Horizontal earthquake acceleration coefficient
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kv	
�Vertical earthquake acceleration coefficient
qult	
�Ultimate bearing capacity
αA	
�Slip surface angle in the active zone
αB	
�Slip surface angle in the passive zone
γ	
�Unit weight of the soil
δ	
�Friction angle along the surface between the passive and active 
zones
φ	
�Friction angle of soil
υ	
�Heterogeneous coefficient of cohesion
λ	
�Change of the cohesion with depth

Introduction

The ultimate bearing capacity, (qult), of shallow foundations 
on isotropic and homogeneous soils has been an interesting 
research topic. A comprehensive theory was first proposed by 
Terzaghi [1], who presented non-dimensional bearing capacity 
factors to evaluate the qult which only depended on the friction 
angle. Based on Terzaghi's equation, Meyerhof [2, 3], Hansen 
[4], and Vesic [5] presented bearing capacity equations. Numer-
ous studies have focused on the seismic qult of foundations 
placed on isotropic and homogeneous soils. Various solution 
techniques, e.g., limit equilibrium, the method of slices, upper 
bound limit analysis, and the stress characteristics method, have 
also been used for this purpose. Some relevant studies include 
those by Budhu and Al-Karni [6], Richards Jr et al. [7], Dor-
mieux and Pecker [8], Soubra [8–10], Kumar and Mohan Rao 
[11], Choudhury and Rao [12], and Ghosh and Debnath [13].

Natural soil deposits are heterogeneous and anisotropic in 
terms of cohesion [14–17]. As a fundamental property of mate-
rials, anisotropy has a substantial influence on the qult. Most 
soils are anisotropic due to particles' orientation and anisotropic 
settlement [18]. Casagrande [15] proposed two kinds of ani-
sotropy, inherent and induced, and elucidated the difference 
between them. Cohesion varies with failure plane orientation 
because of soil anisotropy. In bearing capacity, besides any pre-
sumed failure surface, the direction of principal stresses changes 
from one point to another. Employing the cohesion values of 
each orientation of the failure surface can, thus, provide more 
accurate findings.

Several studies have assessed the bearing capacity of foun-
dations on clay by assuming the anisotropy and heterogeneity 

of clays. For instance, Skempton [19] examined the qult of 
foundations rested on heterogeneous clay via empirical formu-
las. Raymond [20] also studied the qult of a surface foundation 
resting on a frictionless soil by considering the circular mecha-
nism failure and presuming a linear strength variation with 
depth. By assuming the cylindrical failure surface, Sreeniva-
sulu and Ranganatham [21] explored the qult of foundations 
on heterogeneous and anisotropic clay. Menzies [22] adopted 
the limit equilibrium approach, considered a mechanism of 
circular failure, and provided a correction coefficient for the 
influence of cohesion anisotropy on the qult. Reddy and Srini-
vasan [23, 24] also assumed a mechanism of circular failure 
and studied the qult of foundations over heterogeneous and 
anisotropic clay. The impact of anisotropy and heterogeneity 
on the qult of c–φ soils, including the φ = 0 conditions of soils, 
was investigated by Reddy and Sriniuasan [25] via the upper 
bound theory and the mechanism of circular failure. Moreover, 
Chen [26] assessed the qult of a foundation placed on hetero-
geneous and anisotropic clay based on upper bound analysis 
by considering a mechanism of circular failure. Although the 
mechanism of circular failure facilitates the mathematical 
analysis, it cannot yield the best result. Davis and Christian 
[27] adopted the slip-line approach and proposed a correction 
factor based on the soil strength parameters to calculate the 
qult on anisotropic clays. Davis and Booker [28] also employed 
the characteristic line method and explored the influence of 
heterogeneous clay on the qult. By performing the upper bound 
limit analysis, Salencon [29] studied the qult of a strip founda-
tion on clay while assuming a linear change of cohesion with 
depth. Furthermore, Reddy and Rao [30] analyzed the qult of 
the strip foundation resting on heterogeneous and anisotropic 
clays using limit analysis by considering a mechanism of 
failure similar to a Prandtl-type one but with different wedge 
angles. By employing the finite-element method, Gourvenec 
and Randolph [31] studied the qult of circular and strip founda-
tions on heterogeneous clays. Al-Shamrani [32] also applied 
the upper bound approach to present the bearing capacity fac-
tors of smooth and rough foundations on clays. Al-Shamrani 
and Moghal [33] proposed a method based on the kinematical 
procedure of limit analysis to assess the qult of a strip founda-
tion on anisotropic clay. Yang and Du [34] used the method of 
discrete element to investigate the influence of heterogeneous 
and anisotropic soil on the qult of a foundation in the frame-
work of the upper bound theory. Moreover, Izadi et al. [35] 
assessed the impact of the heterogeneity of cohesion on the 
qult by employing the method of limit equilibrium. All these 
studies demonstrate that heterogeneity and anisotropy mark-
edly affect the qult of foundations on clay.

Several studies have also assessed the impact of anisotropy 
and heterogeneity on the qult of footings placed on c–φ soils. 
Meyerhof [36], for instance, studied the qult of soils with ani-
sotropy in the friction angle. To this end, Meyerhof considered 
two extreme values of φ for the outer zones and the equivalent 
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φ for the radial shear zone. Reddy and Rao [37] investigated 
the qult of anisotropic and heterogeneous (c–φ) soil via the 
upper bound approach and graphically reported the results. 
Nakase [38] also provided a complete set of bearing capacity 
factors for rectangular footings on clays with cohesion linearly 
rising with depth. To this end, a combination of the slip cir-
cle solution for the rectangular footing and the exact plasticity 
solution for the continuous footing was employed. Pakdel et al. 
[18] examined the influence of friction angle anisotropy on the 
qult of foundations resting on a frictional soil. They adopted 
the approaches of pseudo-dynamic and pseudo-static seismic 
loading for this purpose and concluded that in both approaches, 
the qult rises with a reduction in anisotropy.

Based on the literature review, there is a dearth of studies 
into the impact of cohesion heterogeneity and anisotropy on 
the qult of foundations resting on c–φ soils. The majority of 
employed approaches are also complicated and related to the 
static loading condition. Accordingly, it is necessary to use 
a simple method with fewer and more understandable math-
ematical calculations. The dearth of documented solutions for 
the seismic bearing capacity of shallow foundations resting 
on c-phi soils with anisotropy and cohesion heterogeneity 
motivated more rigorous approaches to consider inherent soil 
properties.

For this purpose, the current study aimed to evaluate the 
impact of the cohesion heterogeneity and anisotropy on the 
seismic qult of foundations placed on c–φ soil using a simple 
technique. The method of limit equilibrium combined with 
the pseudo-static approach and the simplified Coulomb failure 
mechanism were adopted for this purpose. The mechanism 
of two-wedge failure suggested by Richards Jr et al. [7] was 
also employed. This mechanism defines an active failure zone 
under the footing and a passive failure zone adjacent to the 
active zone.

Although the pseudo-dynamic seismic loading method 
provides more accurate results than the pseudo-static seis-
mic loading method in seismic conditions, the pseudo-static 
seismic loading method has easier calculations and is more 
understandable for users. In addition, the pseudo-static seismic 
loading method to determine the seismic bearing capacity has 
been used and confirmed by various researchers [13, 39, 40].

Herein, only the effect of cohesion heterogeneity and ani-
sotropy on bearing capacity was studied, while the effect of 
friction angle anisotropy was ignored. The Mohr–Coulomb’s 
failure criterion expresses that the strength of the soil can be 
described by two parameters: friction angle φ and cohesion 
c. As for mechanical anisotropy, different studies, e.g., those 
by Duncan and Seed [41] and Mayne [42], concluded that φ 
shows merely a modest anisotropy and is independent from 
the load direction. Nevertheless, cohesion was highly depend-
ent on the stress paths and the type of the test performed to 
measure the shear strength parameters. Therefore, as this study 
aimed only to investigate the effect of cohesion heterogeneity 

and anisotropy on the seismic qult of foundations, the friction 
angle was assumed to be constant in all directions and points 
of the soil.

The bearing capacity factor was introduced as an equivalent 
coefficient, i.e., Nc(eq). Comprehensive comparisons were also 
made with the published findings. This study used the algo-
rithm of particle swarm optimization (PSO) and MATLAB 
Mathworks for optimization.

Cohesion heterogeneity and anisotropy

The varying pattern of cohesion anisotropy as reported by Casa-
grande [15], Livneh and Komornik [16], Chen [26], and Livneh 
and Greenstein [43] is depicted in Fig. 1. The change of cohesion 
with the inclination angle (i) is obtained from:

where i denotes the angle between the maximum principal 
stress and the horizontal plane, ci is the cohesion relating 
to inclination i, ch and cv represent the cohesion along the 
horizontal and vertical axes, respectively, and K indicates 
the anisotropy coefficient of cohesion or the ratio of cv/ch.

(1)ci = ch +
(
ch − cv

)
sin2 i = ch

(
1 + (K − 1) sin2 i

)

Fig. 1   Anisotropy of the cohesion

Fig. 2   Variation of cohesion with depth
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The soil is isotropic if K = 1. According to Lo [44], values of 
K vary in the range of 0.77–1.7; however, Reddy and Rao [30] 
reported this range to be 0.8–2, and Davis and Christian [27] 
reported it as 0.75–1.56. Note that although c is anisotropic, the 
anisotropy of the friction angle (ϕ) is not evident. As such, when 
discussing the anisotropy of soil in the current research, the ani-
sotropy of the friction angle of the soil was neglected. Figure 2 
displays the varying pattern of cohesion heterogeneity.

The change in cohesion with depth is assumed to be linear. 
Cohesion at depth h from the surface is defined by:

where ch0 indicates the horizontal cohesion at h = 0, and λ 
denotes the rate of cohesion growth with depth, which is 
suggested to fall in the 0.6–3 kPa/m range by Tani and Craig 
[45] and to 5 kPa/m by Wood [46].

Model definition

A foundation with the width of B0 was considered on the (c–φ) 
soil (Fig. 3). The ultimate bearing capacity was computed via the 
following formula:

(2)ch = ch0 + h

where Nc(eq) represents the equivalent single bearing capacity 
coefficient to jointly consider the contributions of cohesion, 
surcharge, and unit weight.

The failure mechanism is illustrated in Fig. 3. Here, Df, PU, and γ 
represent the footing depth, the vertical load on the footing, and the 
unit weight of the soil, respectively. Based on Fig. 3, it is assumed 
that the virtual surface of KE is a vertical retaining wall. In the failure 
stage, the active pressure caused by the weight of the AKE wedge 
and the qult is applied on this retaining wall from the left side, and the 
passive pressure caused by surcharge (q = �Df ) and the weight of 
the KBE wedge is applied to the right side. Active and passive forces 
must be equal on the virtual retaining wall to achieve equilibrium. 
The details of the calculations are given below.

Method of analysis

The assumptions for the analytical solution are as follows: (I) 
A uniform surcharge is assumed to account for the weight of 
the soil above the base of the footing; (II) all the parameters in 
the soil, except for the cohesion coefficient, are isotropic and 

(3)qult = cvNc(eq)

Fig. 3   Failure mechanism and 
wedges assumed in the present 
analysis

Fig. 4   Free body diagrams of 
the active and passive wedges
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homogeneous; (III) the failure mechanism includes an active and 
a passive wedge; and (IV) the soil is either completely dry or 
completely saturated. Note that the failure path considered herein, 
AE and EB, as a predetermined failure path, are the limitations 
of this study.

To compute the Nc(eq) , the geometry of the failure wedge is 
illustrated in Fig. 4. In this figure, φ shows the soil friction angle, 
αA and αB represent the slip surface angle in the active and passive 
zones, respectively, δ indicates the interface friction angle along 
the surface between the passive and active zones, and kh and kv 
denote the horizontal and vertical earthquake acceleration coef-
ficients, respectively.

Pa is an active lateral force, and Pp is passive force. The Nc(eq) 
is calculated by equating forces on the passive and active zones 
and utilizing the method of limit equilibrium. Pa is computed from 
Eqs. (4)–(7) by considering the active zone (Fig. 4a).

Pp is calculated from Eqs. (8)–(12) by considering the passive 
zone (Fig. 4b).

(4)

∑

H =0 ⇒ RA sin
(

�A − �
)

− CAE cos �A
− Pa cos � +

(

PU +WA
)

kh = 0

(5)

∑

V =0 ⇒ RA cos
(

�A − �
)

+ CAE sin �A
+ CKE −

(

Pu +WA
)(

1 ± kv
)

+ Pa sin � = 0

(6)WA =
1

2
B2� tan �A

(7)

Pa =
(

Pu +WA
)

(
(

1 ± kv
)

sin
(

�A − �
)

+ kh cos
(

�A − �
)

cos
(

�A − � − �
)

)

− ch
(

1 + (K − 1) sin2 �A
)

h
(

sin
(

�A − �
)

+ cot �A cos
(

�A − �
)

cos
(

�A − � − �
)

)

− �h2
(

sin
(

�A − �
)

+ 0.5 cot �A cos
(

�A − �
)

cos
(

�A − � − �
)

)

− Kchh
sin

(

�A − �
)

cos
(

�A − � − �
)

(8)

∑

H =0 ⇒ Pp cos � − RB sin
(

�B + �
)

− CUE cos �B +
(

P +WB
)

kh = 0

(9)

∑

V =0 ⇒ RB cos
(

�B + �
)

−
(

P +WB
)(

1 ± kv
)

− Pp sin � − CUE sin �B − CKE = 0

(10)WA =
1

2
B� tan2 �A cot �B

Given that the two wedges are in equilibrium, Pp and Pa are 
equal. Thus, by equating Pp and Pa, the Nc(eq) can be calculated 
as follows:

where υ is the heterogeneous coefficient of cohesion.
The equations for b, e, a, d, and f are presented in Appendix 

1.
Equations (13), (14), and (15) show that the value of Nc(eq) 

depends on B0, c, cv, φ, ch,, kh, αB, υ, kv, K, αA, and λ. Here, all 
the parameters except αA and αB are constant. To determine the 
optimal value ofNc(eq) , the optimization procedure is conducted 
in terms of αA and αB. Figure 5 displays the flowchart of calcu-
lating the value of Nc(eq) using limit equilibrium.

Particle swarm optimization (PSO)

PSO is a stochastic population-based optimization technique 
established and developed by Kennedy and Eberhart [47]. This 
technique is influenced by the social behavior of bird flocking. The 
assumptions of this technique are as follows: (1) Consider a flock 
of birds randomly seeking food in a given region. (2) The searched 
region contains a single piece of food. (3) Although none of the 
birds are aware of the food's precise location, they are aware of its 
distance in each iteration. (4) Following the bird closest to the food 
is a successful strategy. PSO employs this scenario and applies it 
to solve optimization problems in MATLAB Mathworks.

(11)P = �Df

(
B tan �A cot �B

)

(12)

Pp =
(

P +WB
)

(
(

1 ± kv
)

sin
(

�B + �
)

− kh cos
(

�B + �
)

cos
(

�B + � + �
)

)

+ ch
(

1 + (K − 1)sin2�B
)

h
(

sin
(

�B + �
)

+ cot�B cos
(

�B + �
)

cos
(

�B + � + �
)

)

+ �h2
(

sin
(

�B + �
)

+ 0.5cot�B cos
(

�B + �
)

cos
(

�B + � + �
)

)

+ Kchh
sin

(

�B + �
)

cos
(

�B + � + �
)

(13)Nc(eq) = G
(
b

a
+

d

a

)
+

(
f

a

)
+

e

a

(14)G =

(
�B

ch

)

(15)� =

(
B

ch

)
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The PSO algorithm is appropriate for solving low-dimen-
sional problems such as that discussed in the current study. 
Candidate particles or prospective solutions fly over the subject 
search area in PSO to ensure that they find the best possible 
position. This optimal position is often described by the fitness 
function's optimum value. The position and velocity of a parti-
cle in the search space are denoted by X and V, respectively. The 
ith particle can be construed as Xi = (xi1; xi2; xi3;…; xid), and the 
velocity of the ith particle is defined by Vi = (vi1; vi2; vi3;…; vid). 
In addition, d indicates the problem's dimension. Here, Pi = (pi1; 
pi2; pi3;…; pid) and Pg = (pg1, pg2, pg3…pgd) represent the best 
prior particle of the ith particle and the index of the best particle 
in the examined population, respectively. Each particle’s posi-
tion and velocity can be estimated using Eqs. (16) and (17):

(16)Xid = Xid + Vid

Here, c1 and c2 are the acceleration coefficient or position con-
stants, rand is a random number between 0 and 1, and � denotes 
the inertia weight coefficient determined using the following 
equation:

where gn stands for generation.
Debnath and Ghosh [39, 40], Haghsheno et al. [48], and Hagh-

sheno and Arabani [49] have confirmed the efficiency of PSO for 
calculating qult.

(17)Vid = � × Vid + c1 × rand ×
(
Pid − Xid

)
+ c1 × rand ×

(
Pgd − Xid

)

(18)�(gn) = �max −

[(
�max − �min

)
NI

]
∗ gn

Fig. 5   Flowchart of the limit 
equilibrium method to estimate 
the bearing capacity of founda-
tions
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Results of solution, comparisons, 
and discussions

To validate the solution, the findings of this investigation are 
compared with the literature. In this comparison, the solutions 
reported by Reedy and Srinivasan [25] and Peck et al. [50] 
are based on the method of limit equilibrium, whereas those 
proposed by Livneh and Greenstein [43], Davis and Booker 
[28] and Davis and Christian [27] are based on the slip-line 
method. Salencon [29], Reddy and Rao [30] Reddy and Srini-
vasan [25], Al-Shamrani [32] and Yang and Du [34] have also 
applied upper bound limit analysis for this purpose. Finally, 
the solution of Al-Shamrani and Moghal [33] was achieved 
via the kinematic procedure of limit analysis. First, the results 
of this investigation are compared to those of prior research on 
homogeneous and anisotropic soil, as well as heterogeneous 
and isotropic soil for the case of φ = 0. Table 1 compares the 
values of Nc(eq) obtained from this research with those in the 
prior investigations for soil in the case of φ = 0. In this table, 
it is assumed that the soil is homogeneous and anisotropic. 
For the homogeneous and isotropic case (υ = 0 and K = 1), 
Nc(eq) = 5.656 is calculated in this paper (Table 1).

The value of Nc(eq) is slightly higher than the value derived by 
the failure mechanism of Prandtl-type (Nc=5.14) by about 10%. 
Based on Table 1, regardless of soil heterogeneity, the value of 
Nc(eq) is slightly larger than the results of Reddy and Srinivasan 
[25], Reddy and Rao [30], and Davis and Christian [27]. As for 
the values reported by Reddy and Srinivasan [25], the discrep-
ancy between the two results is about 0.6% and 1% for K = 0.8 
and K = 2, respectively. As for the results of the solution given by 
Davis and Christian [27], the difference between the two results 
declines from 8.3% at K = 0.8 to 2.2% at K = 2. Finally, as for the 
results of Reddy and Rao [30], the difference between the two 
results is 4% for K = 0.8 and rises to reach 20.5% for K = 2. Also, 
based on Table 1, it is evident that the current solution underrep-
resented bearing capacity coefficient compared to those reported 
by Al-Shamrani and Moghal [33] and Yang and Du [34]. Com-
pared to the results of Al-Shamrani and Moghal [33], the differ-
ence between the two results is about 0.50% and 5.2% for K = 0.8 
and K = 2, respectively. Besides, compared to the result obtained 
from Yang and Du [34], the difference between the two results is 

1.6–7.70% for K = 0.8 and K = 2, respectively. For practical appli-
cations, these differences are acceptable and do not significantly 
affect the predicted bearing capacity coefficient much more than 
the parameters of shear strength. Therefore, according to Table 1, 
it can be concluded that the values of Nc(eq) acquired from the 
current study have a negligible difference with those provided by 
Al-Shamrani and Moghal [33] and Reddy and Srinivasan [25]. 
The important point concluded from Table 1 is that by ignoring 
anisotropy and assuming that cohesion is equal in all directions, 
the obtained bearing capacity is significantly on the unsafe side 
for K values of greater than 1 and conservative for K values of 
smaller than 1. This means that the degree of vulnerability and 
conservatism increases when K is much more or much less than 
1. The values of Nc(eq) for heterogeneous and isotropic soil for the 
case of φ = 0 are presented in Table 2.

As can be seen, the value of Nc(eq) rises with the increment in 
υ, suggesting that the influence of heterogeneity on Nc(eq) becomes 
more considerable with rising υ in all estimates. Table 2 shows 
that the values of Nc(eq) derived from the current study are greater 
by no more than 10% than the values provided by Salencon [29] 
for any value of υ. When υ = 0, the present results are slightly 
smaller than Al-Shamrani [32] and Yang and Du [34], about less 
than 0.1% and 1%, respectively. However, the differences become 
15.2% and 60.4%, respectively, when υ = 10. Furthermore, the 
current solution overestimated that of Davis and Booker (1973), 
with the deviation being 9.1% for υ = 0 and it constantly increases 
to reach about 21.8% for υ = 10. It is clear from Table 2 that the 
present solution overestimates the results of Livneh and Green-
stein [43], Peck et al. [50], Reddy and Rao [30], and Reddy and 
Srinivasan [25] by 9%, 9%, 9%, and 2.4%, respectively, at υ = 0. 
When υ = 10, the present results are smaller than those of Livneh 
and Greenstein [43], Peck et al. [50], Reddy and Rao [30], and 
Reddy and Srinivasan [25] by 56.7%, 87.9%, 23.3%, and 28.4%, 
respectively. Moreover, the effect of heterogeneity on the value 
of Nc(eq) obtained by current study is less than that of Reddy and 
Srinivasan [25] for 0.5 < υ < 10 and the difference between the two 
solutions range from about 1–28.5%, for υ = 0.5 and υ = 10. So, 
according to Table 2, it can be concluded that the findings of the 
present research for heterogeneous and isotropic soil (φ = 0) have 
an acceptable agreement with the findings of the upper bound 
theory, especially the results provided by Salencon [29] and Al-
Shamrani [32], and the discrepancy between the two solutions 

Table 1   Bearing capacity 
coefficient for footing on 
anisotropic soil for the case 
of φ = 0 irrespective of the 
inhomogeneity

Reference Degree of anisotropy, K

Methods 0.8 1 1.2 1.4 1.6 1.8 2

Present study Limit equilibrium 6.324 5.565 5.164 4.780 4.472 4.126 4.000
Yang and Du [34] Limit analysis 6.426 5.712 5.235 4.985 4.461 4.444 4.284
Al-Shamrani and Moghal [33] Limit analysis 6.358 5.656 5.181 4.838 4.579 4.376 4.209
Reddy and Rao [30] Limit analysis 6.071 5.142 4.509 4.035 3.718 3.445 3.179
Davis and Christian [27] Slip-line 5.796 5.142 4.718 4.430 4.211 4.053 3.913
Reddy and Srinivasan [25] Limit equilibrium 6.288 5.520 5.005 4.636 4.357 4.139 3.964
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is considered sensible for practical purposes. From a practical 
point of view, it is crucial for the bearing capacity coefficient of 
the solution from the limit equilibrium method to be equal to the 
upper bound theory; this is because the limit equilibrium method 
is widely used by engineers, while the upper bound theory is often 
neglected as a method that yields unsafe solutions (Michalowski 
1994). One of the conceivable explanations behind the difference 
between the present result and the results provided by Livneh and 
Greenstein [43], Davis and Booker [28] and Davis and Christian 
[27], Salencon [29], Reddy and Rao [30], Reddy and Srinivasan 
[25], Al-Shamrani [32] and Yang and Du [34], Al-Shamrani and 
Moghal [33] can be due to the use of different methods and differ-
ent failure mechanisms, but the discrepancy between the findings 
of current solution and those of Reedy and Srinivasan [25] and 
Peck et al. [50] can be attributed to the different assumed failure 
mechanisms, not to the method of analysis.

The curves in Fig. 6 indicate the impact of the anisotropy and 
heterogeneity of cohesion on the value of Nc(eq) of foundation 
placed on soil (φ = 0) for the case that K is 0.8–2 and υ is 0–10.

According to Fig. 6, the value of Nc(eq) reduces with an incre-
ment in K and decreases with a decrease in υ. For a constant K, 
the increase in υ actually means a rise in λ. Therefore, it can be 
argued that with an increase in λ, the bearing capacity also rises. 
Moreover, the effect of λ on the bearing capacity increases with a 

decline of K. It is seen that the effect of anisotropy on the value of 
Nc(eq) becomes more noticeable with an increase in υ.

Table 3 compares the values of Nc(eq) for isotropic and homo-
geneous (c–φ) soils derived from the current research with those 
of the previous studies for G = 0, K = 1, and υ = 0. Here, G = 0 
means ignoring the weight of the soil and depth of footing below 

Table 2   Bearing capacity coefficient for footing on isotropic and heterogeneous soil for the case of φ = 0

υ Present study Salencon [29] Davis and 
Booker [28]

Al-Shamrani [32] Livneh and 
Greenstein 
[43]

Yang and 
Dun [34]

Peck et al. [50] Reddy and 
Rao [30]

Reddy and 
Srinivasan 
[25]

0 5.656 5.14 5.14 5.66 5.14 5.71 5.14 5.14 5.52
0.5 6.536 6.14 5.92 6.66 6.14 6.74 6.43 6.06 6.60
1 7.281 6.89 6.54 7.53 7.20 7.77 7.71 6.89 7.56
2 8.579 8.02 7.56 9.08 9.26 9.83 10.28 8.45 9.31
3 9.737 9.06 8.45 10.49 11.31 11.89 12.85 9.96 10.94
4 10.812 10.08 9.18 11.81 13.37 13.95 15.42 11.44 12.49
5 11.828 11.09 9.89 13.08 15.43 16.01 17.99 12.92 13.99
7 13.739 13.11 11.14 15.49 19.54 20.13 23.31 15.85 16.89
10 16.409 16.12 12.82 18.91 25.71 26.32 30.84 20.24 21.07

Fig. 6   Comparisons of the value of the bearing capacity factor for 
heterogeneous soil for the case of φ = 0

Table 3   Comparison of the value of the bearing capacity coefficient for G = 0, K = 1 and υ = 0

φ Present study Salencon [29] Chen [26] Reedy and 
Srinivasan [25]

Reddy and 
Rao [37]

Meyerhof [36]

δ

0 0.5φ 0.67φ 0.75φ φ

10 8.283 8.99 9.788 9.376 9.788 8.35 8.34 9.3 8.34 8
20 12.561 15.558 19.941 17.517 19.941 14.84 14.8 16 14.83 14.5
30 20.124 30.872 36.872 40.551 57.106 30.15 30.1 32 30.14 31
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the ground surface. In the current analysis, Delta (δ) is a quite 
effective parameter. Consequently, the results were evaluated for 
five cases, namely δ = 0, δ = φ/2, δ = 2φ/3, δ = 3φ/4, and δ = φ.

As can be seen from the table, the values of Nc(eq) provided 
by the current research are close to those of other results for the 
case δ = 0.5φ. As can be seen, the present result overestimates the 
results of Salnecon (1974), Chen (1975), Reddy and Rao [37], and 
Meyerhof [36] by 7.7%, 7.8%, 7.8%, and 12.4% at δ = 0.5φ and 
φ = 10, respectively, while being smaller than the result of Reedy 
and Srinivasan [25]. By increasing the φ to 30°, the difference in 
the present results with others greatly declines and reaches about 
0–2.5%. In general, the discrepancies in the results can be due to 

the differences in the analysis method, optimization approaches, 
and embedded assumptions. Figure 7 compares the value of ani-
sotropic and homogeneity bearing capacity coefficient for c–φ 
soils obtained from the current research with those of Reddy and 
Srinivasan [25] and Reddy and Rao [37] for G = 0, δ = φ/2, and 
δ = 2φ/3. As can be seen from Fig. 7, the value of Nc(eq) increases 
with a decrease in K. Moreover, the values of Nc(eq) in the current 
research are very close to the results of these researchers at δ = φ/2.

By considering the weight of the soil and depth of foundation 
below ground surface, G > 0, Fig. 8 compares the results provided 
by the current study with those of Reddy and Srinivasan [25] and 
Reddy and Rao [37]. According to Fig. 8, four cases are examined:

Fig. 7   Comparison of values of Nc(eq) value for G = 0, a υ = 0, b υ = 0.4, and c υ = 1.2
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	 i.	 K = 0.8 and δ = 0.5φ: For φ = 10°, the present results are 
a little more than those of Reddy and Srinivasan [25] 
and Reddy and Rao [37], with the maximum deviation 

3.8% and 2.6%, respectively. When φ = 20°, the differ-
ence between the current results and the results of Reddy 
and Srinivasan [25] is very small (i.e., 0.8%). However, 
by increasing ϕ to 30°, the result provided by Reddy and 
Srinivasan [25] is greater than those of the present study by 
12.8% for υ = 0 and consistently decrease to reach about 0% 
for υ = 1.6. The results of Reddy and Rao [37] for φ = 20° 
and 30° are more than the present results by 9% and 12.8%, 
respectively.

	 ii.	 K = 0.8 and δ = 2φ/3: Fig. 8 shows that the current solution 
overestimated that of Reddy and Rao [37] by 5.1%, 4.4%, 
and 1.5% for φ = 10, φ = 20°, and φ = 30°, respectively. 
Moreover, the present findings are more than the results 
provided by Reddy and Srinivasan [25] about 6.5% and 
9.5% for φ = 10° and φ = 20°, respectively. For φ = 30°, 
this difference for the present result and that of Reddy and 

Fig. 8   Comparison of values of Nc(eq) value for G/K = 4 and a φ = 10°, b φ = 20°, and c φ = 30°

Table 4   Isotropic and 
homogeneous Nc(eq) for static 
condition,

φ δ K = 1 and υ = 0

G

0.5 2

0 0 5.906 6.656
10 0.5φ 9.901 12.590
20 0.5φ 18.458 26.892
30 0.5φ 40.603 68.703

2φ/3 48.789 83.445
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Srinivasan [25] is 6% for υ = 0.4 and increases up to 21% 
for υ = 1.6.

	 iii.	 K = 2 and δ = 0.5φ: Fig. 8 illustrates that the Nc(eq) obtained 
in this study is less than those of Reddy and Srinivasan 
[25] and Reddy and Rao [37]. When υ = 0, the difference 
between the findings of this research and those of Reddy 

and Srinivasan [25] for φ = 10°, 20°, and 30° is about 0.1%, 
0.8%, and 7.5%, respectively. By increasing υ to 1.6, the 
difference increases by 9.2%, 2.3%, and 15%, respectively. 
The difference between the results provided by Reddy and 
Rao [37] and the present study is about 0.5%, 5.3%, and 
16.4% for φ = 10°, 20°, and 30°, respectively. Moreover, 

Table 5   Isotropic and 
homogeneous Nc(eq) for seismic 
condition,

φ δ G kh = 0.10 kh = 0.20 kh = 0.30

kv = 0 kv = 0.5kh kv = kh kv = 0 kv = 0.5kh kv = kh kv = 0 kv = 0.5kh kv = kh

0 0 0.5 4.999 4.809 4.633 4.121 3.896 3.690 3.271 3.134 2.976
2 5.423 5.246 5.082 4.299 4.110 3.936 3.202 3.207 3.092

10 0.5φ 0.5 8.235 7.943 7.673 6.738 6.397 6.085 5.391 5.161 4.917
2 9.958 9.705 9.471 7.728 7.500 7.283 5.859 5.803 5.576

20 0.5φ 0.5 14.958 14.485 14.046 12.025 11.504 11.027 9.554 9.223 8.872
2 20.608 20.242 19.903 15.624 15.419 15.219 11.681 11.345 10.673

30 0.5φ 0.5 31.725 30.881 30.098 24.800 23.996 23.249 19.341 18.968 18.532
2 50.631 50.137 49.674 37.265 37.002 36.603 27.312 25.744 23.500

2φ/3 0.5 37.771 36.791 35.880 29.228 28.341 27.511 22.531 22.205 21.776
2 60.734 60.197 59.693 44.100 43.636 42.981 31.840 29.753 26.809

Table 6   Anisotropic and 
heterogeneous versus isotropic 
and homogeneous bearing 
capacity coefficient for static 
condition

φ δ υ K

0.8 1 2

G

0.5 2 0.5 2 0.5 2

0 0 0 1.124 1.138 1.000 1.000 0.698 0.676
0.5 1.325 1.317 1.149 1.139 0.761 0.731
1 1.490 1.463 1.275 1.244 0.821 0.785
2 1.771 1.714 1.495 1.439 0.938 0.743

10 0.5φ 0 1.133 1.163 1.000 1.000 0.632 0.661
0.5 1.374 1.343 1.187 1.144 0.789 0.728
1 1.587 1.509 1.358 1.275 0.871 0.792
2 1.977 1.816 1.665 1.519 1.025 0.913

20 0.5φ 0 1.152 1.183 1.000 1.000 0.678 0.625
0.5 1.431 1.365 1.221 1.145 0.787 0.697
1 1.689 1.539 1.427 1.284 0.891 0.766
2 2.178 1.874 1.916 1.552 1.088 0.901

30 0.5φ 0 1.176 1.206 1.000 1.000 0.638 0.585
0.5 1.491 1.384 1.252 1.143 0.765 0.656
1 1.790 1.558 1.491 1.282 0.886 0.726
2 2.369 1.900 1.954 1.551 1.120 0.864

2φ/3 0 1.185 1.212 1.000 1.000 0.622 0.573
0.5 1.552 1.383 1.244 1.137 0.744 0.642
1 1.782 1.550 1.478 1.259 0.862 0.710
2 2.346 1.880 1.930 1.535 1.091 0.842
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when υ = 1.6, the difference becomes 10.7%, 14.9%, and 
23.7%, respectively.

	 iv.	 K = 2 and δ = 2φ/3: According to Fig. 8, when φ = 10° and υ 
is in the low range (0 < υ < 0.4), the values of Nc(eq) obtained 
by the current research are more than those of Reddy and 
Srinivasan [25] and Reddy and Reddy and Rao [37] by 3% 
and 1.5%, respectively. In comparison, for 0.8 < υ < 1.6, the 
results provided by Reddy and Srinivasan [25] and Reddy 
and Rao [37] are more than those reported in the present 
result by 6.8% and 8.4%, respectively. By increasing fric-
tion angle to 20°, the results of this study increase more 
than those of Reddy and Srinivasan [25] by 7.5% for υ = 0 
and 5.5% for υ = 1.6. Besides, when φ = 30°, this differ-
ence reaches a maximum of 10.9%. When φ = 20° and 30°, 
the results obtained from Reddy and Rao [37] are more 
than that of the current results. When, υ = 0, the difference 
between the two results is 0.1% and when υ reaches 1.6, the 
difference becomes no more than 8.8%.

Therefore, according to Fig. 8 and aforementioned explana-
tions, when the impact of anisotropy and heterogeneity on the 
value of Nc(eq) of c–φ soils are examined for ϕ = 10–20°, it is 
better to use the δ = 0.5φ. By increasing the friction angle to 

30°, the results obtained using the δ = 0.5φ are conservative. 
Given the difference between the results of this research and 
the results of Reddy and Srinivasan [25] and Reddy and Rao 
[37], it can be concluded that the solution proposed in this 
research yields acceptable results.

In general, based on the explanations provided based on 
Tables 1, 2, and 3 and Figs. 7 and 8, and the comparison of the 
results of this and other studies conducted in three conditions (soil 
(φ = 0) with cohesion homogeneity and anisotropy, soil (φ = 0) 
with cohesion heterogeneity and isotropy, and (c–φ) soil with 
cohesion heterogeneity and anisotropy), it can be concluded that 
the method and failure mechanism used in this study provide a 
reliable method for calculating the bearing capacity of shallow 
foundations located on all three conditions.

Parametric Study

The isotropic and homogeneous Nc(eq) for the static and seismic 
conditions are presented in Tables 4 and 5, respectively. It is 
clear from these Tables that as G grows, so does the value of 
Nc(eq) . This is because the soil weight rather than the cohesion 
is the main source of the value of Nc(eq) [26]. Tables 6, 7, and 8 

Table 7   Anisotropic and 
heterogeneous versus isotropic 
and homogeneous bearing 
capacity coefficient for seismic 
condition and φ = 0

φ G K υ kh = 0.10 kh = 0.20 kh = 0.30

kv = 0 kv = 0.5kh kv = kh kv = 0 kv = 0.5kh kv = kh kv = 0 kv = 0.5kh kv = kh

0 0.5 0.8 0 1.142 1.141 1.141 1.168 1.164 1.159 1.208 1.191 1.180
0.5 1.292 1.293 1.230 1.265 1.270 1.273 1.250 1.254 1.259
1 1.409 1.413 1.416 1.334 1.347 1.357 1.277 1.292 1.312
2 1.598 1.606 1.612 1.427 1.457 1.482 1.331 1.347 1.377

1 0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.5 1.106 1.108 1.110 1.062 1.070 1.076 1.022 1.034 1.047
1 1.193 1.196 1.199 1.107 1.122 1.135 1.044 1.056 1.079
2 1.334 1.341 1.348 1.168 1.198 1.222 1.087 1.100 1.125

2 0 0.652 0.654 0.656 0.586 0.599 0.609 0.545 0.551 0.564
0.5 0.688 0.691 0.694 0.598 0.614 0.628 0.556 0.563 0.575
1 0.720 0.724 0.728 0.610 0.630 0.643 0.567 0.574 0.586
2 0.774 0.781 0.787 0.633 0.651 0.668 0.589 0.596 0.609

2 0.8 0 1.155 1.154 1.154 1.180 1.176 1.173 1.255 1.202 1.193
0.5 1.290 1.291 1.292 1.268 1.272 1.275 1.292 1.258 1.263
1 1.396 1.398 1.400 1.328 1.339 1.349 1.320 1.287 1.305
2 1.564 1.569 1.574 1.404 1.431 1.452 1.376 1.341 1.360

1 0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.5 1.096 1.097 1.098 1.056 1.063 1.068 1.054 1.028 1.040
1 1.174 1.176 1.178 1.094 1.108 1.119 1.076 1.049 1.064
2 1.300 1.305 1.309 1.145 1.169 1.190 1.121 1.092 1.107

2 0 0.633 0.635 0.636 0.570 0.582 0.590 0.556 0.542 0.549
0.5 0.666 0.668 0.670 0.582 0.594 0.606 0.568 0.553 0.560
1 0.694 0.697 0.700 0.593 0.606 0.618 0.581 0.564 0.571
2 0.743 0.747 1.735 0.616 0.629 0.642 0.603 0.586 0.593



Innovative Infrastructure Solutions (2023) 8:127	

1 3

Page 13 of 20  127

give the ratio of the anisotropic and heterogeneous Nc(eq) to the 
isotropic and homogeneous Nc(eq) in order to study the effect of 
υ and K on the static and seismic Nc(eq).

The anisotropic and homogeneous Nc(eq) are obtained by using 
the values of Tables 4 or 5 and multiplying them by the values of 

Tables 6 or 7 and 8. It is noteworthy that Tables 7 and 8 are pre-
sented for φ = 0° and 10° and the results for other friction angles, 
φ = 20° and 30°, are presented in Tables 10, 11 and 12 in Appendix 
2. Ranges of various parameters are as follows:

Table 8   Anisotropic and 
heterogeneous versus isotropic 
and homogeneous bearing 
capacity coefficient for seismic 
condition, φ = 10 and δ = 0.5φ 

φ G K υ kh = 0.10 kh = 0.20 kh = 0.30

kv = 0 kv = 0.5kh kv = kh kv = 0 kv = 0.5kh kv = kh kv = 0 kv = 0.5kh kv = kh

10 0.5 0.8 0 1.143 1.143 1.142 1.156 1.154 1.153 1.175 1.168 1.163
0.5 1.337 1.339 1.340 1.303 1.309 1.313 1.274 1.285 1.293
1 1.506 1.509 1.505 1.428 1.440 1.450 1.354 1.360 1.401
2 1.809 1.814 1.819 1.642 1.669 1.691 1.480 1.505 1.488

1 0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.5 1.150 1.150 1.151 1.110 1.117 1.121 1.071 1.085 1.096
1 1.281 1.284 1.285 1.206 1.218 1.228 1.129 1.170 1.166
2 1.520 1.525 1.529 1.372 1.395 1.416 1.222 1.229 1.214

2 0 0.680 0.680 0.681 0.649 0.654 0.658 0.622 0.615 0.608
0.5 0.746 0.748 0.749 0.688 0.703 0.709 0.626 0.628 0.620
1 0.808 0.810 0.812 0.735 0.747 0.757 0.646 0.640 0.632
2 0.923 0.927 0.930 0.810 0.829 0.844 0.678 0.665 0.657

2 0.8 0 1.166 1.167 1.168 1.176 1.176 1.176 1.192 1.187 1.215
0.5 1.317 1.317 1.317 1.294 1.297 1.299 1.273 1.268 1.253
1 1.452 1.453 1.452 1.397 1.404 1.408 1.338 1.314 1.280
2 1.700 1.700 1.699 1.577 1.593 1.603 1.442 1.375 1.333

1 0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.5 1.117 1.117 1.116 1.090 1.093 1.095 1.058 1.045 1.022
1 1.224 1.223 1.222 1.169 1.176 1.180 1.106 1.076 1.043
2 1.419 1.419 1.418 1.310 1.324 1.333 1.183 1.122 1.086

2 0 0.645 0.644 0.643 0.621 0.623 0.624 0.582 0.558 0.539
0.5 0.699 0.698 0.696 0.659 0.663 0.666 0.601 0.569 0.550
1 0.749 0.748 0.747 0.694 0.701 0.705 0.617 0.580 0.561
2 0.844 0.843 0.842 0.758 0.769 0.777 0.643 0.602 0.583

Table 9   Active and passive 
angle variations and calculates 
the depth of failure zone for 
soils in the case of φ = 0

K υ Present study Izadi et al. [35]

αA αB h αA αB h

0.80 0.00 30.97 38.33 1.20 – – –
0.50 23.47 37.89 0.87 – – –
1.00 19.56 37.65 0.71 – – –
2.00 15.01 37.36 0.54 – – –

1.00 0.00 27.33 35.26 1.03 27.33 35.26 1.03
0.50 21.51 35.26 0.79 21.51 35.26 0.79
1.00 18.17 35.26 0.66 18.17 35.26 0.66
2.00 14.10 35.26 0.50 14.10 35.26 0.50

2.00 0.00 17.20 26.57 0.62 – – –
0.50 14.75 27.15 0.53 – – –
1.00 12.97 27.57 0.46 – – –
2.00 10.42 28.18 0.37 – – –
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Fig. 9   The variation of a the active and passive angles and b the depth of failure zone c the horizontal extension of failure zone for (c–φ) soils 
with heterogeneous coefficient for various anisotropy ratio

Fig. 10   Schematic demonstra-
tion of failure mechanism for 
different values of a anisotropy 
ratio and b heterogeneous coef-
ficient
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According to Table 6, the value of Nc(eq) increases with 
increasing υ and decreasing K. Comparing the results for 
K = 0.8 with K = 1 and 2 reveals that the value of Nc(eq) obtained 
by K = 0.8 is about 12–35% more than K = 1 and 61–133% more 
than K = 2. Hence, this discrepancy demonstrates that K signifi-
cantly affects the value of Nc(eq).

Furthermore, Table 6 shows that the effect of heterogeneity 
and anisotropy on the value of Nc(eq) rises with an enhancement 
in the friction angle.

The same result can be obtained by comparing the results 
of Tables 7 and 8 for seismic conditions. Similar to the static 
condition, a rise in υ and a reduction in K have increased the 
seismic bearing capacity.

Table 9 displays the failure zone depth (h) and the active and 
passive wedge angles for the soils in the case of φ = 0 in the one 
case of the seismic condition (kh = 0.1 and kv = 0.5kh) and com-
pares them with the findings of Izadi et al. [35]. Table 9 indicates 
the complete matching of the results of the two studies. According 
to Table 9, failure zone depth reduces with an enhancement in υ. 
This result is consistent with physical principles because, by an 
increase in this coefficient, failure occurs in the weaker upper por-
tion [32]. From Table 9, it is clear that the angle of active wedge 
has a descending trend by raising the value of υ. The angle of 
passive wedge is constant for isotropic and heterogeneous soil. In 
comparison, when K = 0.8 and 2, the passive wedge angle changes 
with increasing ν are less than 6%. According to the above expla-
nations and the calculations of the failure zone depth presented 
in Table 9 for B = 2, it can be found that the passive vertex comes 
closer to the edge of the footing. In other words, the mechanism 
of narrow failure is formed below the foundation.

Figure 9 depicts the variation of the active and passive angles, 
the failure zone depth, and the horizontal extension of the fail-
ure zone with υ for different K values. Here, it is presumed that 
φ = 10°, G = 2, B = 2, Df/B = 0.5, kh = 0.1, and kV = 0.5 kh. Note that 
if the soil is partially saturated, all the equations used will change, 
and thus, all the values of h, L αA, and αB will differ from what 
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� = 30 ↔ � = 0.5�, and 2�∕3
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Df
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= 0.5

k
h
= 0.1, 0.2, and 0.3 k

v
= 0, 0.5 k

h
, and k

h

was determined in this study. This issue was studied by Nouzari 
et al. [51].

To clarify the impact of υ on the passive and active angles, the 
values of υ are considered from 0 to 20. The active angles decrease 
as υ and K increase, as seen in Fig. 9a. The passive angles also 
decrease with increasing K but its changes with the increase in υ 
are very slight for each anisotropy ratio. For example, for K = 0.8, 
it increases with a very gentle gradient while for K = 1 and 2, it 
decreases with a very gentle gradient.

Figure 9b demonstrates that an increment in υ and K causes 
a decrease in the failure zone depth. It means that in c–φ soil 
similar clay soils, a shallower failure zone occurs by rising the 
values of υ and K. With an increment in υ, the increase rate in 
the failure zone depth becomes gradually smaller. Moreover, 
between υ and K, the former has a higher impact on the failure 
zone depth. From Fig. 9b, it is inferred that as the value of υ 
obtains larger, the impact of K on the failure zone depth almost 
vanishes, especially for υ > 10. Figure 9c indicates that the 
horizontal extension of the failure zone, L (shown in Fig. 10), 
decreases with an increase in υ and a decrease in K. In order to 
better comprehend the influence of υ and K on the position of 
the failure surface, Fig. 10 depicts the failure surfaces for two 
heterogeneous and anisotropic conditions.

Based on Fig. 10, with an increase in υ, the horizontal 
extension of the failure zone and the depth of the failure zone 
decrease. Since the results showed that increasing υ raises 
Nc(eq) , it can be concluded that due to increasing Nc(eq) , the 
horizontal extension of the failure zone and the depth of the 
failure zone decrease.

Future research directions

The pseudo-static seismic loading method and Coulomb's 
simple failure mechanism for homogenous and isotropic soil 
under seismic loading conditions were used and confirmed 
in the previous studies. The effect of cohesion heterogeneity 
and anisotropy on the soil's bearing capacity (c–φ) in static 
conditions was also investigated in previous research. Herein, 
using the pseudo-static seismic loading method and Coleman's 
simple failure mechanism, the effect of cohesion heterogene-
ity and anisotropy on static and seismic bearing capacity was 
evaluated, compared with the results of previous investiga-
tions, and confirmed. However, for more certainty, it is recom-
mended that studies use laboratory and field tests to validate 
these results and those of previous research. It is also suggested 
that future studies evaluate the effect of cohesion heterogeneity 
and anisotropy using pseudo-dynamic seismic loading, which 
can provide better results for seismic conditions. Investigating 
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the effect of earthquake acceleration coefficients on the bearing 
capacity of soil (c–φ) with cohesion heterogeneity and anisot-
ropy using methods such as limit analysis and slip-line can 
enable a more accurate investigation and comparison of the 
results. Furthermore, investigating the effects of the combina-
tion of friction angle anisotropy and cohesion heterogeneity 
and anisotropy on the bearing capacity of foundations is an 
important topic for future research. A similar simple model 
should also be proposed for the bearing capacity of founda-
tions for partially saturated soils using the method and model 
used in this research.

Conclusions

This study presented an innovative way to examine the impact 
of the anisotropy and heterogeneity of cohesion on the ultimate 
bearing capacity of a footing placed on (c–φ) soils. The main 
results of this research are as follows:

•	 Employing the method of limit equilibrium, combining it 
with the pseudo-static seismic loading condition, and using 
the simplified Coulomb failure mechanism can yield an effi-
cient method to determine the effect of cohesion heterogene-
ity and anisotropy on the qult.

•	 When the soil is homogeneous and anisotropic for the case 
of φ = 0, the results of the current investigation are close to 
those of Reddy and Srinivasan [25] and Al-Shamrani and 
Moghal [33] with a difference of less than 1% and 5.5%, 
respectively.

•	 When the soil is heterogeneous and isotropic for the case of 
φ = 0, the current results are close to those of Salencon [29] 
and Al-Shamrani [32] with a difference of less than 10% and 
15.2%, respectively.

•	 The delta (δ) is highly influential on the anisotropic and het-
erogeneous Nc(eq).

•	 The value of Nc(eq) for isotropic and homogeneous (c–φ) soils 
obtained from the current study is very close to the results of 
Reddy and Srinivasan [25] and Reddy and Rao [37] in δ = φ/2.

•	 When the soil is heterogeneous and anisotropic, the friction 
angle is 10 and 20° and δ = φ/2, the current results are close 
to those of Reddy and Srinivasan [25] and Reddy and Rao 
[37]. Therefore, these situations were recognized as the best 
scenario. Furthermore, by increasing the friction angle to 30°, 
the present results become more conservative than those of 
other studies.

•	 Under static and seismic conditions, increasing υ and decreas-
ing K enhance the value of Nc(eq) . Furthermore, when seismic 
stress is applied, the value of Nc(eq) declines.

•	 With increasing the friction angle, the impact of υ and K on 
the value of Nc(eq) rises.

•	 The failure zone depth and the horizontal extension of the 
failure zone are reduced with an increment in υ and K .

Appendix 1: Analytical Functions of Eq. (13)

Appendix 2: Tables to determine 
the effect of nonhomogeneous coefficient 
and anisotropy ratio on static and seismic 
bearing capacity coefficient

See Tables 10, 11 and 12.
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Table 10   Anisotropic and 
heterogeneous versus isotropic 
and homogeneous bearing 
capacity coefficient for seismic 
condition, φ = 20° and δ = 0.5φ 

φ G K υ kh = 0.10 kh = 0.20 kh = 0.30

kv = 0 kv = 0.5kh kv = kh kv = 0 kv = 0.5kh kv = kh kv = 0 kv = 0.5kh kv = kh

20 0.5 0.8 0 1.155 1.156 1.156 1.161 1.160 1.161 1.169 1.167 1.166
0.5 1.392 1.393 1.393 1.355 1.360 1.397 1.321 1.332 1.341
1 1.609 1.610 1.611 1.531 1.541 1.549 1.455 1.481 1.499
2 2.016 2.018 2.019 1.856 1.877 1.893 1.699 1.723 1.662

1 0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.5 1.187 1.187 1.187 1.152 1.157 1.160 1.117 1.129 1.137
1 1.360 1.360 1.360 1.291 1.300 1.306 1.223 1.246 1.252
2 1.684 1.686 1.687 1.549 1.568 1.581 1.416 1.432 1.374

2 0 0.669 0.669 0.668 0.657 0.657 0.658 0.638 0.644 0.647
0.5 0.760 0.760 0.759 0.729 0.732 0.734 0.691 0.704 0.696
1 0.846 0.846 0.846 0.797 0.803 0.806 0.741 0.755 0.725
2 1.009 1.010 1.010 0.925 0.936 0.943 0.834 0.834 0.777

2 0.8 0 1.183 1.185 1.184 1.186 1.187 1.189 1.190 1.191 1.197
0.5 1.345 1.344 1.343 1.325 1.326 1.326 1.304 1.295 1.279
1 1.499 1.496 1.493 1.456 1.456 1.455 1.409 1.359 1.351
2 1.792 1.786 1.780 1.702 1.704 1.702 1.603 1.557 1.474

1 0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.5 1.129 1.127 1.125 1.110 1.110 1.109 1.089 1.080 1.062
1 1.251 1.248 1.245 1.272 1.214 1.212 1.172 1.154 1.117
2 1.486 1.480 1.474 1.411 1.412 1.409 1.326 1.287 1.213

2 0 0.623 0.621 0.619 0.617 0.615 0.604 0.606 0.601 0.585
0.5 0.686 0.683 0.681 0.671 0.668 0.665 0.648 0.637 0.611
1 0.748 0.744 0.740 0.722 0.720 0.716 0.688 0.672 0.634
2 0.865 0.860 0.855 0.820 0.819 0.815 0.763 0.735 0.675
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Table 11   Anisotropic and 
heterogeneous versus isotropic 
and homogeneous bearing 
capacity coefficient for seismic 
condition, φ = 30° and δ = 0.5φ 

φ G K υ kh = 0.10 kh = 0.20 kh = 0.30

kv = 0 kv = 0.5kh kv = kh kv = 0 kv = 0.5kh kv = kh kv = 0 kv = 0.5kh kv = kh

30 0.5 0.8 0 1.176 1.177 1.178 1.177 1.178 1.180 1.180 1.180 1.182
0.5 1.452 1.451 1.450 1.212 1.417 1.419 1.378 1.388 1.391
1 1.712 1.710 1.709 1.636 1.642 1.645 1.562 1.576 1.539
2 2.212 2.209 2.206 2.060 2.071 2.078 1.911 1.901 1.814

1 0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.5 1.220 1.219 1.218 1.189 1.190 1.191 1.157 1.165 1.167
1 1.428 14.347 1.425 1.366 1.370 1.372 1.304 1.316 1.284
2 1.829 1.826 1.822 1.705 1.714 1.718 1.583 1.576 1.503

2 0 0.637 0.636 0.634 0.634 0.632 0.630 0.628 0.628 0.626
0.5 0.747 0.745 0.744 0.728 0.727 0.726 0.706 0.709 0.706
1 0.852 0.850 0.848 0.817 0.817 0.817 0.779 0.786 0.764
2 1.054 1.064 1.049 0.988 0.991 1.023 0.919 0.916 0.872

2 0.8 0 1.204 1.205 1.206 1.203 1.201 1.198 1.203 1.200 1.198
0.5 1.368 1.366 1.303 1.352 1.353 1.353 1.335 1.330 1.318
1 1.528 1.523 1.517 1.496 1.500 1.502 1.462 1.454 1.431
2 1.841 1.829 1.817 1.776 1.785 1.789 1.706 1.691 1.644

1 0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.5 1.132 0.730 1.126 1.119 1.122 1.124 1.105 1.104 1.095
1 1.260 1.254 1.249 1.235 1.241 1.243 1.207 1.203 1.185
2 1.510 1.499 1.489 1.459 1.465 1.473 1.402 1.392 1.355

2 0 0.587 0.585 0.583 0.589 0.592 0.597 0.589 0.593 0.595
0.5 0.653 0.650 0.647 0.649 0.651 3.386 0.641 0.644 0.641
1 0.718 0.713 0.708 0.707 0.708 0.711 0.662 0.694 0.685
2 0.844 0.836 0.829 0.820 0.820 0.835 0.791 0.789 0.770
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