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Abstract
This paper deals with the dynamic analysis of dam–reservoir coupled system for different excitation. Both dam and reservoir 
are discretized by eight-node isoparametric element, and direct coupling approach has been used to simulate dam–reservoir 
coupled system. In this numerical approach, both dam and reservoir are analyzed simultaneously to get the effect of fluid–
structure interaction. Pressure for reservoir and displacement for gravity dam are considered as nodal variable. Reservoir 
is truncated at a suitable distance, and a suitable non-reflecting boundary condition is applied at this truncation surface 
of reservoir to reduce the computational time. The effects of reservoir bed slope, inclined length and the reservoir bottom 
absorption on the responses of reservoir, such as, hydrodynamic pressure and responses of dam, such as displacement, major 
and minor stresses are thoroughly observed against harmonic and seismic excitations. Viscosity of fluid is neglected, and 
fluid is assumed as compressible. The outcomes of the analysis show that the variation of absorption coefficient at reservoir 
bottom influences the hydrodynamic pressure on gravity dam. This study also shows that the effect of bed slope angle and 
inclined length has significant effect on hydrodynamic pressure as well as responses of gravity dam for dynamic excitations.

Keywords Dam–reservoir interaction · Direct coupling · Hydrodynamic pressure · Earthquake excitation · Finite element

Introduction

Concrete gravity dam is a valuable structure for civilization 
from social, economic and industrial point of view. Grav-
ity dam can restore huge amount of water for flood protec-
tion, cultivation and hydropower generation, etc. Design and 
construction of concrete gravity dam are very much impor-
tant for mankind. During analysis of gravity dam all the 
parameter should be considered for safety purpose. Effect 
of hydrodynamic pressure generated at the face of gravity 
dam due to earthquake is very much important for stabil-
ity of dam structure. Estimation of hydrodynamic pressure 
depends upon different geometrical properties of adjacent 
reservoir such as length of reservoir, height of reservoir, 
bottom slop angle and absorption effect of reservoir bottom. 
Different analytical approaches have been proposed by vari-
ous authors for calculation of hydrodynamic pressure in the 
previous literatures.

Tsai and Lee [23] proposed a new boundary integral 
equation and applied to determine the hydrodynamic pres-
sure on dam subjected to ground acceleration. The effect of 
compressibility of water was considered in their formula-
tion. Sharan [19] invented a radiation boundary condition for 
finite element analysis of dam–reservoir coupled system. He 
computed hydrodynamic pressure on vertical and inclined 
faces of dam. Ghaemian and Ghobarah [5] developed a stag-
gered solution method for dynamic analysis of dam–reser-
voir system. Their approach was found accurate as compared 
with finite element method. Gogoi and Maity [6] employed 
an effective non-reflecting boundary condition for modeling 
of infinite reservoir. They utilized finite element method and 
reservoir bottom absorption for modeling purpose. Samii and 
Lotfi [14] used coupled and decoupled modal approaches for 
analysis of dam–reservoir system. The former method has 
complications, but decoupled approach can be solved using 
standard eigenvalue solver. Both the methods were executed, 
and the results were compared for dam–reservoir system. 
Solomatine and Shrestha [21] invented a method to estimate 
model uncertainty by using machine learning techniques. 
Shahri et al. [16] established geotechnical-based method 
for analysis of liquefaction potential related to earthquake. 
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Neya and Ardeshir [10] suggested an analytical technique 
for evaluation of hydrodynamic pressure on dam. They have 
considered fluid–viscosity and reservoir bottom absorption 
effect for analysis purpose. Samii and Lotfi [15] suggested 
a boundary condition of higher order function for analy-
sis of infinite reservoir subjected to dynamic loading. They 
have included reservoir bottom absorption in their analysis. 
Tarinejad and Pirboudaghi [22] implemented legendre spec-
tral element method for study of dam–reservoir interaction 
problem. They have also used finite element method to com-
pare the results for both the method. Altunisik and Sesli [1] 
executed dynamic analysis of concrete gravity dam using 
Westergaard, Lagrange and Euler approaches. They deter-
mined displacement, principal stresses and strains for all the 
approaches and compared. Pelecanos et al. [11] executed 
a numerical study on dynamic response of concrete and 
earthen dam. They included the dam–reservoir interaction 
effect to determine the responses of dam subjected to har-
monic excitation. Manjula and Shasikaran [9] considered the 
effect of reservoir compressibility for the study of responses 
of gravity dam subjected to earthquake loading. They have 
utilized Lagrange–Lagrange approach for the finite element 
analysis of gravity dam and impounding reservoir. Wang 
et al. [24] determined hydrodynamic pressure developed on 
the face of gravity dam of different heights using Wester-
gaard correction formula. They implemented fluid–structure 
coupling model to observe the pressure at the upstream face 
of the dam structure. Sharma et al. [20] used space time 
finite element technique for earthquake analysis of dam, res-
ervoir and soil system. They have considered block iterative 
algorithm for solving the algebraic equations. Gao et al. [4] 
implemented a novel boundary condition along with finite 
element technique for dynamic analysis of dam–reservoir 
system. They assumed that semi-infinite reservoir having 
constant cross section and water compressibility, and reser-
voir bottom absorption effect has been taken for the analysis 
purpose. Saltelli et al. [13] presented a symmetric review 
of sensitivity analysis practices. Asheghi et al. [2] updated 
the neural network sediment load models by using differ-
ent sensitivity analysis methods. Rostami et al. [12] created 
a method of constrained feature selection using measure-
ment of pairwise constraints uncertainty. Haghani et al. [7] 
used extended finite element method for dynamic analysis 
of dam, reservoir and foundation system. They assessed the 
fracture growth in the dam structure due to seismic exci-
tation. Behroozi and Vaghefi [3] used mesh free numeri-
cal model for hydrodynamic analysis of dam, reservoir and 
foundation system. They have considered non-vertical face 
of gravity dam for determination of hydrodynamic pressure. 
Zhang et al. [25] evaluated seismic stability of rock slopes 

with spatial variability. Han et al. [8] determined seismic 
responses of utility tunnel–soil system along with and with-
out joint connections. Shahri et al. [17] presented a subsur-
face topographical modeling with the use of geospatial and 
data-driven algorithm. Zhang et al. [26] presented stability 
analysis of embankment slope with spatial variability of soil 
properties. Shahri et al. [18] invented a method for uncer-
tainty quantification of ground water table modeling using 
automated predictive deep learning approach.

Earthquake response of concrete gravity dam is essential 
for design and safety purpose of the structure. Hydrody-
namic pressure, developed on the face of gravity dam due 
to adjacent reservoir, highly influenced the response of 
dam subjected to seismic excitation. In the present work, 
hydrodynamic pressure in unbounded reservoir is deter-
mined using dam–reservoir interaction effect. Finite ele-
ment method has a distinct advantage to tackle the irregular 
geometry. Dam and reservoir geometry is simultaneously 
discretized with eight-node isoparametric element in the pre-
sent study. Displacement is considered as nodal unknown for 
dam structure. Pressure is considered as nodal variable for 
reservoir domain to overcome the problem of spurious mode 
related to displacement-based formulation for fluid medium. 
Thus, the analysis is performed following Lagrange–Euler 
approach for dam–reservoir system. Effect of surface wave 
is neglected, and reservoir bottom absorption effect is con-
sidered. The fluid is considered to be non-viscous and com-
pressible. The infinite fluid domain is truncated at a suitable 
distance to reduce the computational cost, and an effective 
radiation boundary condition is applied at the truncated face 
to get the effect of infinite reservoir domain. Newmark’s 
time integration is used to solve the dynamic equilibrium 
equation. A MATLAB code has been developed in the pre-
sent study to analyze the dam–reservoir coupled system.

Geometrical parameters of reservoir effect the hydrody-
namic pressure developed on the face of dam. In the pre-
sent study, hydrodynamic pressure is obtained considering 
the reservoir bottom as inclined for different frequencies 
of forcing function. Stresses of dam are also observed for 
different inclination of bottom slope of reservoir for har-
monic excitation. Upward slope means anticlockwise slope 
of reservoir bottom is considered as positive slope. Down-
ward slope means clockwise slope of reservoir bottom is 
considered as negative slope. Variation of inclined length 
also effects the hydrodynamic pressure. Responses of grav-
ity dam and hydrodynamic pressure are also observed for 
variation of inclined length of reservoir bottom for harmonic 
excitation. Hydrodynamic pressure also studied for variation 
of absorption coefficient of reservoir bottom. Responses of 
gravity dam and hydrodynamic pressure are observed due to 
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earthquake excitation including the dam–reservoir interac-
tion effect at the last section of the present work.

Theoretical formulation

Formulation for gravity dam

Equation of motion of a structure subjected to external excit-
ing force can be written in finite element form as below:

Here, [M], [C] and [K] are mass, damping and stiffness 
matrix of structure, respectively. {ü} , {u̇} and {u} are nodal 
accelerations, velocity and displacement of the domain of 
structure. The structure has been discretized by two-dimen-
sional eight-node isoparametric elements. The structural 
Rayleigh damping can be expressed as below:

a´ and b´ are called proportional damping constants. The 
relation between a´, b´ and the fraction of critical damping 
at frequency ω is given by the equation below:

Damping constant a´ and b´ are determined by choosing 
the fraction of critical damping ξ1´ and ξ2´ at two different 
frequencies ω1 and ω2 and solving the equation for a´ and 
b´. So that,

Formulation for fluid domain

The state of total stress for Newtonian fluid may be defined 
by an isotropic tensor

Here, Tij is total stress, and T ′

ij is viscous stress tensor. 
Variable p is hydrodynamic pressure, and �ij is Kronecker 
delta.

If viscosity of fluid is neglected, then Eq. (5) may be writ-
ten as follows:

(1)[M]{ü} + [C]{u̇} + [K]{u} = {Fd}
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The Navier–Stokes equation of motion is given by the fol-
lowing equation:

where Bi is the body force, and ρ is the mass density of fluid. 
Now, substituting Eq. (6) in Eq. (7), we get

After neglecting the convective terms and the component of 
body forces, following equations can be obtained:

where u and v are the components of velocity along x and 
y direction.

Continuity equation in two dimensions may be expressed 
as follows:

Here, c is the acoustic wave velocity in fluid.
Differentiating Eq. (9) and Eq. (10) with respect to x and y, 

following expressions can be written:

After addition of Eq. (12) and Eq. (13), the following equa-
tion can be obtained:

Differentiating the terms of Eq. (11), the following expres-
sion can be obtained:
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Thus, from Eq. (14) to Eq. (15), following expression can 
be obtained:

Simplifying the above expression, the equation for com-
pressible fluid can be written as below:

Here, ∇2 is the Laplace operator in two dimension in 
the fluid medium. The two-dimensional geometry of the 
dam–reservoir system is shown in Fig. 1. Geometry of the 
dam–reservoir system is assumed as two-dimensional. Fluid 
is assumed as compressible and inviscid.

At the top surface of reservoir (surface I), considering 
the effect of surface wave, the boundary condition can be 
expressed as follows:

However, neglecting the effects of surface wave, the 
boundary condition at the top surface of reservoir may be 
considered as below:

Here, Hf is the depth of the reservoir.
At the interface of dam and reservoir (surface II), fluid 

pressure has to fulfill the following condition:
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(19)p
(
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Here, aeiωt is the horizontal component of the ground exci-
tation in which ω is the circular frequency of vibration, and 
i = √-1, n is the outwardly directed normal at dam–reservoir 
interface. ρ is the density of fluid.

At bed of the reservoir (surface III), including the absorp-
tion of seismic wave, pressure has to satisfy the following 
equation:

Here,

At the truncation surface of reservoir (surface IV), the 
boundary condition may be written as follows:

According to Gogoi and Maity [6], ξm is assumed as below:

If the effect of surface wave is neglected, then χ can be 
considered to be zero.

Implementing the Galarkin approach and assuming pres-
sure to be the nodal variable in the fluid medium, Eq. (17) can 
be discretized as below:

where Nij is the interpolation function for the reservoir 
domain and Ω is the region of interest. Now, using Green’s 
theorem, equation (25) may be expressed below:

Γ is the boundaries of reservoir domain. The above equation 
may be written in a matrix form as follows:
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Fig.1  Finite element model of Koyna dam and reservoir system
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Here, the subscript f, fs, fb and t presents the free surface 
of reservoir, fluid–structure interface, fluid-bed interface and 
truncation surface, respectively. For free surface, {Ff} may 
be written in finite element form as given below:

At the fluid–structure interface, if {a} is the vector of 
nodal accelerations in fluid, {Ffs} may be written as given 
below:

Here, [T] is the transformation matrix at fluid–structure 
interface, and Nd is the interpolation function of dam.

At the reservoir and bed interface, {Ffb} may be expressed 
as given below:

At the truncated surface, {Ft} may be expressed as given 
below:
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After writing all the term, Eq. (27) becomes as follows:

Formulation for dam–reservoir coupled system

In the present study, structure and fluid is assumed to be act 
together in a coupled way. The coupling of structure and fluid 
may be formulated in the following way.

The discrete dam equation along with damping may be 
written as follows:

The coupling term [Q] arises due to the acceleration and 
pressure at the interface of dam and reservoir and can be 
expressed as below:

where n is the direction vector of the dam–reservoir inter-
face. Ns and Nr are the shape function of dam and reservoir. 
The discretized equation of fluid may be written as below:

The systems of Eq. (44) and (46) are coupled in a second-
order differential equation form, which defines the equation 
for the coupled dam–reservoir system and can be expressed 
as below:
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To solve Eq.  (47), Newmark’s integration method is 
adopted. It has been seen that two parameters β and δ in New-
mark’s method may be varied to get the accuracy.

Validation of proposed algorithm

Present algorithm has been validated with the similar prob-
lem considered by Samii and Lotfi [14]. The time periods of 
first three modes are compared with time periods obtained 
from the literature of Samii and Lotfi [14] are shown in 
Table 1, and very close agreement has been achieved.

Numerical results

In the present paper, behavior of unbounded reservoir adja-
cent to concrete gravity dam has been studied including the 
dam–reservoir interaction. Absorption effect of reservoir 
bottom is considered. Length of the reservoir is truncated 
at a suitable distance (L/Hf = 0.5), and the non-reflecting 
boundary condition proposed by Gogoi and Maity [6] 
is applied along the truncated face. In the present paper, 
Koyna dam has been considered for numerical study. Stand-
ard eight-node isoparametric element has been considered 
for discretization of dam and reservoir geometry. Dynamic 
equilibrium equation is solved by Newmark’s integration 
technique. For convergence study, the displacement at tip 
of dam is shown in Table 2 for different mesh size of dam 
and reservoir. The results are obtained by applying harmonic 
excitation. From the convergence test, mesh size for dam is 
taken as Nh = 3 and Nv = 8 and for reservoir Nh = 4 and Nv = 8. 
Where Nh is number of divisions in horizontal direction and 
Nv is number of divisions in vertical direction (Fig. 1).

Part I

In the first part of the work, hydrodynamic pressure 
distribution at the face of dam has been determined for 

different exciting frequencies with change in bottom slope 
of reservoir (Fig. 2). Height of the reservoir is taken as 
 Hf = 103 m, and L/Hf ratio is taken as 0.5. Unit weight of 
fluid is taken as 10 kN/m3. Velocity of sound wave (c) is 
taken as 1438.7 m/s, and bottom absorption coefficient is 
considered as 0.95. For the present work, Koyna dam has 
been taken for analysis purpose. Modulus of elasticity of 
concrete for gravity dam is taken as 3.15 ×  1010 N/m2, and 
Poisson’s ratio is assumed as 0.235. Density of concrete is 
taken as 2415.816 kg/m3, and damping ratio is considered 
as 0.05. Hydrodynamic pressure at face of dam is deter-
mined by applying harmonic excitation for Tc/Hf = 4, 10 
and 100 with reservoir bottom slope (θb)  40,120 and  200. 
Upward slope, anticlockwise slope of reservoir bottom, is 
considered as positive slope. Downward slope, clockwise 
slope of reservoir bottom, is considered as negative slope.

Figure 3 presents the distribution of pressure coef-
ficient (Cp = p/ρaHf) at the face of dam for Tc/Hf = 4, 
10 and 100, respectively, for positive slope (θb) of 

Table 1  Comparison of time periods of first three modes of the dam–
reservoir system

Mode no Time period (sec.) of pre-
sent study

Time period (sec.) 
of Samii and Lotfi

1 0.360174 0.395773
2 0.322581 0.305988
3 0.227817 0.214293

Table 2  Convergence test for meshing of dam and reservoir

Mesh size for dam
Nh x Nv

Mesh size for reservoir
Nh x Nv

Displacement at 
tip of dam (m)

2 × 6 2 × 6 0.00303
3 × 6 3 × 6 0.00304
3 × 6 4 × 6 0.00305
3 × 8 4 × 8 0.00355
3 × 8 5 × 8 0.00355

Fig. 2  Dam–reservoir system
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reservoir bottom as +  40, +  120 and +  200. Figure  4 
shows the time history plot of pressure coefficient at 
heel of dam for Tc/Hf = 4,10 and 100, respectively for 
negative slope (θb) of reservoir bottom.

Figure 5a presents the time history plot of major 
principal stress, and Fig. 5b presents the time history 
plot of minor principal stress at heel of dam for positive 
slope angle of reservoir bottom. Figure 6a displays the 
time history plot of major principal stress, and Fig. 6b 
displays the time history plot of minor principal stress 
at heel of dam for negative slope angle of reservoir 
bottom.

Part II

In this portion of work, distribution of pressure coefficient 
at the face of dam has been observed for different values of 
inclined length (Li) of reservoir bottom (Fig. 7) including 
dam–reservoir interaction effect.

Height of the reservoir is considered as 103 m, and 
L/Hf ratio is taken as 0.5. Density of water (ρ), veloc-
ity of sound waves (c) in water and bottom absorption 
coefficient are taken as considered in the Part I. For the 
present work, Koyna dam has been taken for analysis 
purpose. Modulus of elasticity of concrete, density of 
concrete, Poisson’s ratio and damping ratio is taken as 
considered in Part I.

Hydrodynamic pressure at face of dam has been deter-
mined by applying harmonic excitation for different 
value of inclined length of reservoir (Li = 0.25L, 0.5L, 
0.75L) with positive slope angle (+  40, +  120, +  200) and 
negative slope angle (−  40, −  120, −  200) of reservoir 
bottom. Figure 8 presents the coefficient of hydrody-
namic pressure distribution at the face of dam for dif-
ferent values of positive slope angle of reservoir bottom 
as +  40, +  120 and +  200, respectively, with different val-
ues of inclined length of reservoir as Li = 0.25 L, 0.5L 
and 0.75L. Similarly, Fig. 9 presents the coefficient of 
hydrodynamic pressure distribution at the face of dam 
for different values of negative slope angle of reservoir 
bottom as −  40, −  120 and −  200, respectively, with dif-
ferent values of inclined length of reservoir as Li = 0.25L, 
0.5L and 0.75L.

Figure 10a presents the time history plot of major 
principal stress, and Fig. 10b presents the time history 

Fig. 3  Distribution of pressure coefficient at face of dam for a Tc/
Hf = 4, b Tc/Hf = 10 and c Tc/Hf = 100 for positive bottom slope

▸
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plot of minor principal stress at heel of dam for positive 
slope angle +  200 at reservoir bottom. Figure 11a dis-
plays the time history plot of major principal stress, and 
Fig. 11b displays the time history plot of minor principal 
stress at heel of dam for negative slope angle −  200 at 
reservoir bottom.

Part III

In this part of work, hydrodynamic pressure at heel of 
dam has been determined for different values of absorp-
tion coefficient of reservoir with inclined bottom surface 
including the dam–reservoir interaction. The dam and 
reservoir geometry and their properties are taken as same 
as considered in Part II. In this part, L/Hf ratio is taken 
as 0.5 and Li is considered as 0.5L. Hydrodynamic pres-
sure coefficients at heel of dam are determined for posi-
tive slope angle (+  40, +  120, +  200) of reservoir bottom. 
Pressure coefficients are observed for different values of 
absorption coefficient of reservoir bottom such as alfa 
(α) = 0, 0.5 and 1 for all the values of bottom slope angle 
due to application of harmonic excitation.

Figure 12 presents the hydrodynamic pressure coefficient 
at heal of dam with different values of absorption coefficient 
for positive slope angles at reservoir bottom as +  40, +  120 
and +  200, respectively.

Part IV

In this portion of work, hydrodynamic pressure distributions 
at the face of dam have been determined for earthquake exci-
tation with change in bottom slope (negative and positive) 
of reservoir including dam–reservoir interaction. Height of 
the reservoir is considered as 84.75 m, and L/Hf ratio is 

Fig. 4  Time history plot of pressure coefficient at heel of dam for a 
Tc/H = 4, b Tc/H = 10 and c Tc/H = 100 for negative bottom slope

Fig. 5  Time history plot of a major principal stress and b minor principal stress at heel of dam for positive slope angle of reservoir bottom
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taken as 0.5, inclined length Li = 0.5L and absorption coef-
ficient of reservoir bottom as 0.95. Effect of surface wave 
is considered. For this work, Koyna dam has been taken for 
analysis purpose. The dam and reservoir geometry and their 
properties are taken as considered in Part II. Analysis has 
been carried out by applying north–south component of El-
Centro earthquake excitation. The amplitude of the excita-
tion is equal to the gravitational acceleration ‘g’.

Figure 13 shows Hydrodynamic pressure at face of dam 
for (a) positive and (b) negative bottom slope for earthquake. 
Figure 14a, b shows the time history of major principal 
stress and minor principal stress, respectively, at heel of 
dam for positive bottom slope for earthquake. Figure 15 pre-
sents major and minor principal stress plot of dam for base 

angle +  40 and +  200. Figure 16 displays major and minor 
principal stress plot of dam for base angle −  40 and −  200. 
From these figures, differences of stresses have been seen 
for change in slope of reservoir bed for both negative and 
positive.

Discussion

From Part I of the present work, it has been clear that 
pressure at heel of dam increases with increase in posi-
tive slope of reservoir bed for all values of exciting fre-
quencies. Pressure is higher at heel of dam for Tc/Hf = 4 
compare to other frequencies for all positive bottom slope 
angles. From Part I, it is established that pressure at heel 
of dam decreases with increase in negative slope of reser-
voir bottom for all values of exciting frequencies.

From the Part I, it is also clear that maximum value 
of major and minor principal stresses at heel of dam 
increase with increase in positive slope angle of reser-
voir and decrease with increase in negative slope angle of 
reservoir bottom. From second part of the present work, 
it is observed that pressure at heel of dam increases with 
increase in inclined length (Li) of reservoir for positive 
slope angle. The difference of pressure at heel of dam 
increases with increase in value of slope angle (posi-
tive) at reservoir bottom. From Part II of present work, 
it is observed that pressure at heel of dam decreases with 
increase in inclined length (Li) of reservoir for negative 
slope angle. Here, also, the difference of pressure at heel 
of dam increases with increase in value of slope angle 
(negative) at reservoir bottom. From Part II, it is also 
observed that value of major and minor principal stresses 

Fig. 6  Time history plot of a major principal stress and b minor principal stress at heel of dam for negative slope angle of reservoir bottom

Fig. 7  Dam and reservoir with inclined length
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Fig. 8  Distribution of pressure coefficient at face of dam at for bot-
tom slope a + 4 degree, b + 12 degree and c + 20 degree

Fig.9  Distribution of pressure coefficient at face of dam at for bottom 
slope a -4 degree, b -12 degree and c -20 degree
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at heel of dam increases with increase in inclined length 
for positive slope angle of reservoir bottom and decreases 
with increase in inclined length for negative slope angle of 
reservoir bottom. From Part III, it is observed that hydro-
dynamic pressure coefficient at heel of dam is minimum 
for alfa (α) = 0 for all values of slope angles. Pressure coef-
ficient is maximum for alfa (α) = 1 for all values of slope 
angles. So, it can be stated that pressure will increase at 
heel of dam if the absorption coefficient is increased for 
any values of slope angles. But the difference of pressure 

is high between alfa = 0 to 0.5, and the difference of pres-
sure is comparatively small between alfa = 0.5 to 1. From 
Part –IV, it is observed that maximum pressure occurred 
for higher value of positive slope angle of reservoir bottom 
and it is also observed that maximum peak occurred for 
lower value of negative slope angle of reservoir bottom. It 
is also observed that maximum stress occurred at higher 
value of positive slope angle of base of reservoir.

Conclusion

A numerical procedure using finite element has been pre-
sented for dynamic analysis of dam–reservoir coupled sys-
tem. Both the domains are coupled and analyzed as a single 

Fig. 10  Time history plot of a major, b minor principal stress at heel 
of dam for slope angle + 20 degree

Fig. 11  Time history plot of a major, b minor principal stress at heel 
of dam for slope angle -20 degree
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system to get the responses of dam–reservoir coupled system 
subjected to dynamic excitation. The advantage of current 
method is that the present method is state forward, and it 
gives the responses of the coupled system directly.

Fig. 12  Hydrodynamic pressure coefficient at heel of dam for bottom slope angle as a +  40, b +  120 and c + 20.0

Fig. 13  Hydrodynamic pressure at face of dam for a positive and b 
negative bottom slope for El-Centro earthquake

Fig. 14  Time history of a major and b minor principal stress at heel 
of dam for positive bottom slope for El-Centro earthquake
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Geometrical parameters of reservoir have impact on 
behavior of concrete gravity dam. Slope of reservoir 
bed, inclined length of reservoir and bottom absorp-
tion coefficient are the important factors governing the 
hydrodynamic pressure as well as responses of gravity 
dam. From the present analysis, it has been clear that 
hydrodynamic pressure and stresses of gravity dam are 
increased with increase in slope angles for positive slope 
of reservoir bottom. Pressure coefficient and stresses of 
dam are decreased with increase in slope angles for nega-
tive slope of reservoir bottom. Inclined length of reser-
voir also influences pressure coefficient and stresses of 
dam. Numerical results show that if the inclined length 

of reservoir is increased, hydrodynamic pressure coef-
ficient and stresses of gravity dam are also increased 
for positive slope angle of reservoir base. Pressure coef-
ficient and stresses of dam are decreased with increase 
in inclined length of reservoir for negative bottom slope. 
Hydrodynamic pressure is increased with increase in 
reservoir bottom coefficient. The rate of increment is 
high up to 0.5, and the rate of increment is low beyond 
0.5. Thus, reservoir parameters have influence on the 
hydrodynamic pressure and stresses of dam. Earthquake 
responses of dam–reservoir coupled system would be 
more accurate for addition of effect of soil foundation 
within the analysis.

Fig. 15  a Major principal stress and b Minor Principal stress plot of dam for base angle +  40 and c Major principal stress and d Minor Principal 
stress plot of dam for base angle +  200 for earthquake



 Innovative Infrastructure Solutions (2023) 8:44

1 3

44 Page 14 of 15

Declarations 

Conflict of interest The authors declare no confict of interest.

References

Altunisik AC, Sesli H (2015) Dynamic response of concrete gravity 
dams using different water modeling approaches: Westergaard, 
Lagrange and Euler. Comput Concr 16(3):429–448

Asheghi R, Hosseini SA, Saneie M, Shahri AA (2020) Updating 
the neural network sediment load models using different sen-
sitivity analysis methods: a regional application. J Hydrodyn 
20(3):562–577

Behroozi AM, Vaghefi M (2020) Radial basis function differential 
quadrature for hydrodynamic pressure on dams with arbitrary 
reservoir and face shapes affected by earthquake. J Appl Fluid 
Mech 13(6):1759–1768

Gao Y, Jin F, Xu Y (2019) Transient analysis of dam–reservoir inter-
action using a high-order doubly asymptotic open boundary. J 
Eng Mech 145(1):0401811991

Gogoi I, Maity D (2006) A non-reflecting boundary condition for 
the finite element modeling of infinite reservoir with layered 
sediment. Adv Water Resour 29:1515–1527

Ghaemian M, Ghobarah A (1998) Staggered solution schemes for 
dam-reservoir interaction. J Fluids Struct 12:933–948

Haghania M, Neyaa BN, Ahmadib MT, Amiria JV (2020) Com-
bining XFEM and time integration by α-method for seismic 
analysis of dam-foundation-reservoir. Theoret Appl Fract Mech 
109:102752

Han L, Liu H, Zhang WG, Ding X, Chen Z, Feng L, Wang Z (2021) 
Seismic behaviors of utility tunnel-soil system: with and with-
out joint connections. Underground Space 7(5):798–811

Manjula VK, Sashikiran BK (2017) The effect of reservoir compress-
ibility on the earthquake performance of gravity dams. Int J Adv 
Mech Civ Eng 4(5):57–62

Neya BN, Ardeshir MA (2013) An analytical solution for hydro-
dynamic pressure on dams considering the viscosity and wave 
Absorption of the reservoir. Arab J Sci Eng 38:2023–2033

Pelecanos L, Kontoe S, Zdravkovic L (2016) Dam–reservoir inter-
action effects on the elastic dynamic response of concrete and 
earth dams. Soil Dyn Earthq Eng 82:138–141

Rostami M, Berahmand K, Forouzandeh S (2020) A novel method 
of constrained feature selection by the measurement of pairwise 
constraints uncertainty. J Big Data 7(83):1–21

Fig. 16  a Major principal stress and b Minor Principal stress plot of dam for base angle −  40 and c Major principal stress and d Minor Principal 
stress plot of dam for base angle −  200 for earthquake



Innovative Infrastructure Solutions (2023) 8:44 

1 3

Page 15 of 15 44

Sammi A, Lotfi V (2007) Comparison of coupled and decoupled 
modal approaches in seismic analysis of concrete gravity dams 
in time domain. Finite Elem Anal Des 43:1003–1012

Solomatine DP, Shrestha DL (2009) A novel method to estimate 
model uncertainty using machine learning techniques. Water 
Resour Res 45:W00B11

Sammi A, Lotfi V (2013) A high-order based boundary condition for 
dynamic analysis of infinite reservoirs. Comput Struct 120:65–76

Sharan SK (1992) Efficient finite element analysis of hydrodynamic 
pressure on dams. Comput Struct 42(5):713–723

Sharma V, Fujisawa K, Murakami A (2019) Space-time finite element 
procedure with block-iterative algorithm for dam-reservoir-soil 
interaction during earthquake loading. Int J Numer Methods Eng 
120:263–282

Saltelli A, Aleksankina K, Becker W, Fennell P, Ferretti F, Holst N, 
Li S, Wu Q (2019) Why so many published sensitivity analyses 
are false: a symmetric review of sensitivity analysis practices. 
Environmental Modeling and Software 114:29–39

Shahri AA, Esfandiyari B, Rajablou R (2010) A proposed geotechnical-
based method for evaluation of liquefaction potential analysis sub-
jected to earthquake provocations (case study Korzan earth dam, 
Hamedan province, Iran). Arab J Geosci 5:555–564

Shahri AA, Kheiri A, Hamzeh A (2021) Subsurface topographical 
modeling using geospatial data driven algorithm. ISPRS Int. J. 
Geo-Inf. 10(5):341

Shahri AA, Shan C, Larsson S (2022) A novel approach to uncertainty 
quantification in groundwater table modeling by automated pre-
dictive deep learning. Nat Resour Res 31:1351–1373

Tarinejad T, Pirboudaghi S (2014) Legendre spectral element method 
for seismic analysis of dam-reservoir interaction. Int J Civ Eng 
13(2):148–159

Tsai CS, Lee GC (1989) Hydrodynamic pressure on gravity dams sub-
jected to ground motions. J Eng Mech 115:598–617

Wang M, Chen J, Wu L, Song B (2018) Hydrodynamic pressure on 
gravity dams with different heights and the Westergaard correction 
formula. Int J Geomech 18(10):04018134

Zhang WG, Meng FS, Chen FY, Liu HL (2021) Effects of spatial vari-
ability of weak layer and seismic randomness on rock slope stabil-
ity and reliability analysis. Soil Dyn Eng 146:106735

Zhang WG, Wu JH, Gu X, Han L, Wang L (2022) Probabilistic sta-
bility analysis of embankment slopes considering the spatial 
variability of soil properties and seismic randomness. J Mt Sci 
19(5):1464–1474

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.


	Finite element-based direct coupling approach for dynamic analysis of dam–reservoir system
	Abstract
	Introduction
	Theoretical formulation
	Formulation for gravity dam
	Formulation for fluid domain
	Formulation for dam–reservoir coupled system

	Validation of proposed algorithm
	Numerical results
	Part I
	Part II
	Part III
	Part IV


	Discussion
	Conclusion
	References




