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Abstract
The soil compaction parameters, i.e., optimum water content (OWC) and maximum dry density (MDD) are essential param-
eters used in civil engineering projects for monitoring the compaction of soils. The current practice of using laboratory testing 
to determine the OWC and MDD is time-consuming and costly. Thus, this research suggests a hybrid machine-learning solu-
tion to replace traditional soil testing for determining OWC and MDD. The novel method combines the least square support 
vector machine (LSSVM) and symbiotic organisms search (SOS) algorithm. These two computational intelligence algorithms 
work together to create an OWC and soil MDD prediction model, LSSVM–SOS. For this purpose, a large database of 13 
different soils featuring 6 influencing factors was used. Overall, experimental results show that the proposed LSSVM–SOS 
has attained the most accurate prediction of the OWC of soils (RMSE = 0.0288, MAE = 0.0199, and R2 = 0.9656) and MDD 
(RMSE = 0.0305, MAE = 0.0206, and R2 = 0.9641). These results of the proposed model are significantly better than those 
obtained from other hybrid LSSVMs constructed with particle swarm optimization, grey wolf optimizer, and slime mould 
optimization algorithms. According to the findings, the newly created LSSVM–SOS can aid geotechnical engineers in the 
design phase of civil engineering projects.

Keywords Soil compaction · Support vector machine · Artificial intelligence · Particle swarm optimization · Swarm 
intelligence

Introduction

Soil compaction is the process of pressing soil particles 
closer together by minimizing air voids while keeping 
the water content between the soil particles constant. The 
mechanical properties of soils can be improved in a variety 
of ways through compaction. Proctor [1] suggested compact-
ing the soil at the desired compaction energy with varying 
water contents. The compaction curve can thus be used to 
determine the optimum water content (OWC) and maximum 
dry density (MDD). These two compaction parameters are 
frequently utilized in geotechnical practices to maintain the 

long-term performance of different geotechnical structures, 
such as highway embankments [2, 3], railway embankments 
[4, 5], airport runways [6–8], and so on [9]. For the construc-
tion and maintenance of geotechnical structures, it is conse-
quently essential to comprehend and predict the compaction 
characteristics of various soils [9, 10].

The OWC and MDD can be determined using laboratory 
experiments and analytical methods [10]. In the laboratory, 
at least 4–5 tests must be performed to accurately define 
the compaction curve. Thus, the laboratory test is tedious 
and time-consuming [11]. In addition, veteran geotechnical 
experts and highly qualified personnel are required to con-
duct the test and attain reliable results. Hence, it is essential 
to develop intelligent data-driven algorithms for determin-
ing the OWC and MDD based on available experimental 
records [9, 10]. In the past, several prediction models were 
proposed to determine OWC and MDD of soils. The major-
ity of these models were developed using regression analy-
ses and limited data from specific soils. Wang and Yin [10] 
stated that these models produced a wide range of prediction 
accuracies, with coefficients of determination (R2) scattered 
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between 0.64 and 0.98. Furthermore, the prediction preci-
sion of these models tended to decline with a bigger data-
base [12].

In recent days, machine learning (ML) techniques have 
been used to estimate the OWC and MDD of soils in order 
to handle the issue with a larger database and greater accu-
racy. The compaction characteristics of 55 soil samples 
were predicted using artificial neural network (ANN) and 
evolutionary polynomial regression (EPR) approaches [13, 
14]. To estimate the compaction parameters for 212 samples, 
Ardakani and Kordnaeij [15] employed group method of 
data handling (GMDH) model. Kurnaz and Kaya [11] used 
GMDH, support vector machine (SVM), extreme learning 
machine (ELM), and Bayesian regularization neural network 
(BRNN) to estimate OWC and MDD of soils based on 451 
experimental results of index and standard proctor test. The 
authors used index properties of soil samples as the influenc-
ing parameters for this purpose.

According to the literature, these prediction models 
exhibited better coefficient of determination (R2) values 
(ranging from 0.90 to 0.98) than regression analysis models 
[10]. However, the soil type in these researches was limited. 
For instance, soft clay with high flexibility was not exam-
ined in some research, while fine and coarse-grained soils 
could not be linked in others. Additionally, the influencing 
variables were not entirely accounted for in these models. 
Previous researches have demonstrated that the accuracy of 
prediction can be assured for a specified soil range; never-
theless, the issue of the limited soil type and the insufficient 
consideration of soil parameters may lead to inaccuracies in 
prediction. Therefore, a high-performance soft computing 
model is required to predict the OWC and MDD of soils 
taking into account a broad variety of soil types and affect-
ing variables.

Based on the most recent research, it has been determined 
that hybrid soft computing approaches are ideally suited for 
predicting the intended output including soil compaction 
parameters, compression index, California bearing ratio, 
and so on [15–20]. In addition, as the topic of interest is 
complex, it is necessary to examine various sophisticated 
ML models in order to discover more accurate estimating 
models [21–30]. The least squares support vector machine 
(LSSVM) is an effective ML algorithm for nonlinear and 
multivariable modelling [31]. Note that, LSSVM is a regres-
sion-based ML model and has been effectively implemented 
in geotechnical engineering [31–33]. However, none of the 
prior research has used LSSVM to forecast OWC and MDD 
of soils. Therefore, the purpose of the present work is to 
address this gap in the literature.

It is pertinent to mention here that the development of 
an LSSVM model needs the configuration of its hyperpa-
rameters, such as the regularization and kernel function 
parameters. These two factors have a substantial impact on 

the result of the learning phase and, consequently, influence 
the predictive capacity of the LSSVM-based model. It is 
not easy to provide the regularization and kernel function 
parameters since they must be sought in continuous domains 
[31]. Consequently, an infinite number of parameter sets 
exist. Thus, researchers have utilized meta-heuristic algo-
rithms (MHAs) to define parameter adjustment of LSSVM 
as an optimization problem [31]. Previous researches have 
proved the effectiveness of MHAs in simulating complicated 
phenomena in geotechnical and geological engineering.

In this work, a high-performance prediction model of 
soil compaction parameters was developed using a hybrid 
approach of LSSVM and symbiotic organisms search (SOS) 
algorithm. The results of the proposed model were compared 
with three more hybrid LSSVMs constructed with particle 
swarm optimization (PSO), grey wolf optimizer (GWO), 
and slime mould optimization (SMA) algorithms. A vast 
database of soils with diverse classifications (gravel, sand, 
silt, clay) was gathered for this purpose from the study of 
Wang and Yin [10]. For this purpose, a large database of 
various soil types was collected from a recent work by Wang 
and Yin [10]. In the said study, the authors [10] compiled 
a set of 226 soil compaction results from the literature and 
consolidated them. In the present work, the whole dataset 
of 226 soil compaction results was used for modelling the 
OWC and MDD of soils.

Methodology

Least square support vector machine

Suykens et al. [34] introduced LSSVM, a regression-based 
ML method based on the structural risk reduction principle. 
LSSVM’s learning phase is quick since it simply involves 
solving a set of linear equations. To construct a prediction 
model, the dataset can be prepared in the following form: 
D =

{
xk, yk

}
 , k = 1, 2,… ,N ; where k represents the k th data 

sample and N  is the total sample count. The goal of the 
LSSVM learning phase is to develop a mapping function 
y(x) that estimates the response variable given a collection 
of influencing factors x . Following is an illustration of an 
LSSVM model for function approximation.

where K and b represent the linear system's solution. k and 
N denote the index and total number of training samples, 
respectively; xk and xl are training and testing sets input 
patterns, respectively; K

(
xk, xl

)
 is the kernel function. The 

Radial basis function (RBF) is an extensively used kernel 
function, given by:

(1)y(x) =

N∑

k=1

�kK
(
xk, xl

)
+ b
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where � is a kernel parameter. To establish a LSSVM model, 
it is necessary to solve the following optimization problem:

where ek ∈ R represents the k th error variable; w and b are 
the two parameters that are used function approximation; 
� is the regularization constant, and ∅

(
xk
)
 is the mapping 

function. For further mathematical information regarding 
LSSVM, studies in the literature can be referred [31, 34, 35].

Brief overview of employed MHAs

In this sub-section, a brief discussion of the employed 
MHAs, i.e., PSO, GWO, SMA, and SOS is presented. As 
stated above, all these MHAs are swarm-based and have 
been extensively used by researchers in recent times.

In the year 1995, Kennedy and Eberhart [36] introduced 
PSO, inspired by the social foraging behaviour of swarm, 
like the schooling and shoaling behaviour of fish, flock-
ing behaviour of birds, etc. A review of the literature [18, 
26, 37] reveals that this algorithm has been successfully 
applied in every part of engineering and sciences in order 
to enhance the performance of conventional soft comput-
ing techniques. Generally, PSO performs the search for 
the optimal solutions through agents called swarms/parti-
cles, by deterministic and stochastic approaches. In PSO, 
N-dimensional search space with n particles, the ith par-
ticle is represented as: xi =

[
xi1, xi2, xi3,… , xiN

]
 , where 

i = 1, 2, 3,… , n ; and the velocity of this particle is repre-
sented as vi =

[
vi1, vi2, vi3,… , viN

]
 , where the fitness of each 

particle is determined by the specified objective function 
known as cost function. Each particle is influenced by its 
‘best’ position (called personal best, pbest) and the group 
‘best’ position (called global best, gbest). Also, every par-
ticle has known the position of the best individual of the 
gbest. Exploration and exploitation processes in PSO are 
determined by a number of parameters, including the iner-
tia weight, cognitive and social coefficients, and two random 
parameters. One of the advantages of particle swarm opti-
mization over other derivative-free methods is the reduced 
number of parameters to tune and constraints acceptance. 
Refer to the following research for further information [26, 
36, 37].

GWO is one of the widely used MHAs, proposed by Mir-
jalili et al. [38]. It was inspired by the social structure of grey 

(2)k
(
xk, xl

)
= exp

(

−
|
|
|
|xk − xl

|
|
|
|
2

2�2

)

(3)JP(w, e) =

{
1

2
wTw +

�

2

N∑

k=1

e2
k

}

,

(4)yk = wT�
(
xk
)
+ b + ek

wolf packs. In GWO, the hierarchical structure of the lead-
ership and hunting mechanism of grey wolves is regarded 
as an important characteristic. Each wolf pack comprises 
four sorts of grey wolves to imitate the leadership hierar-
chy: alpha ( � ), beta ( � ), delta ( � ), and omega ( � ) wolves, in 
which � and � wolves are, respectively, the most and least 
responsible wolves, whereas, � and � are, respectively, sec-
ond and third in the pack's hierarchy. Note that, � , � , and � 
wolves occasionally participate in the hunting phase, while 
� wolves encircle the prey based on the positions of the 
experienced wolves. In GWO, each feasible solution to an 
optimization problem is specified by the position of a grey 
wolf. Mathematically, a grey wolf pack is a set of possible 
solutions for where the positions of �, � and � wolves are the 
best possible solutions in each iteration, ranked from best to 
worst. Having the best estimation of a grey wolf position, �, 
� and � wolves update the position of an � wolf in the pack.

As a novel MHA that is based on nature, SMA [39] car-
ries out the simulation of a slime mould’s nutritional phase 
(a single-celled eukaryote). This program carries out the 
simulation of the foraging behaviour of slime moulds. Slime 
moulds search for the food sources (by sensing their odour), 
then wrap and digest them through the secretion of enzymes. 
In SMA, the theoretical description of approaching the best 
solution is a phase of iterations to yield the highest smell 
concentration. The adaptable weight of the slime mould 
guarantees swift convergence and avoids being trapped in 
local extrema. This method allows the advancing of the 
slime mould in all feasible paths towards the best solution, 
which emulates the architecture of the slime mould when 
they eat. Then, the wrapping of the food is carried out using 
contractions of the intravenous structure within the upper 
and lower bounds in the subsequent step. More bio-oscillator 
waves are created in the vein with the highest contraction 
of food, and as a result, the thickness of this vein increases 
due to the cytoplasm’s quicker flow. As a response to the 
negative and positive signals received from veins regarding 
the concentration of food, the search patterns are modified 
in SMA.

Cheng and Prayogob [40] presented the SOS algorithm. 
SOS is a simple and effective, and it leverages a population-
based search approach by directing a population of candidate 
solutions to search for potential optimum regions iteratively 
until a global optimum solution to a given objective func-
tion is discovered. However, it was originally intended for 
numerical optimization problems in a continuous solution 
space, despite undergoing numerous changes that have made 
it more resilient and adaptable to various problem spaces. 
SOS is inspired by the interplay between species that coexist 
in a single habitat and continuously struggle and compete 
for existence or growth.

The original studies of Kennedy and Eberhart [36] for 
PSO, Mirjalili et al. [38] for GWO, Li et al. [39] for SMA, 
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and Cheng and Prayogob [40] for SOS can be referred to for 
more details.

Hybrid modelling of LSSVM and OAs

In this work, four optimization algorithms (OAs) were uti-
lized to determine the LSSVM hyper-parameter. As stated 
above, γ and σ are the two hyperparameters of LSSVM. It 
is worth mentioning that adequate configuration of γ and 
σ is required for developing an effective LSSVM model, 
as these two parameters have a substantial impact on the 
model’s performance. Also note that, selecting LSSVM 
hyper-parameters all at once is a difficult operation because 
they must be searched in continuous domains, resulting in 
an endless number of paraeter sets. As a result the problem 
of LSSVM parameter tuning may be stated as an optimiza-
tion problem.

Considering the above points as a reference, PSO, GWO, 
SMA, and SOS were used to optimize the values of γ and 
σ and four hybrid LSSVM models, namely LSSVM-PSO, 
LSSVM-GWO, LSSVM-SMA, and LSSVM-SOS, were 
constructed. The following are the steps for optimizing 
LSSVM parameters: (a) initialization of LSSVM; (b) set 
kernel function; (c) set mimulus and maximum bounds of γ 
and σ; (d) data partitioning; (e) training dataset selection; (f) 
initialize MHAs; (g) set deterministic parameters of MHAs, 
such as swarm size (NS), number of iterations (imax), upper 
and lower bounds (UB and LB), and other parameters; (h) 
training of LSSVM; (i) calculate and evaluate the fitness 
value, root mean square error (RMSE); (j) check terminat-
ing criteria; (k) obtained optimum values of γ and σ; and 
(l) testing of hybrid LSSVMs. The development of hybrid 
LSSVM models is depicted in Fig. 1. Notably, in addi-
tion to the hyper-parameters of LSSVM, the deterministic 
parameters of MHAs also play a significant role in hybrid 

modelling; thus, they must be carefully calibrated during the 
optimization process.

Descriptive statistics and computational 
modelling

In order to create a high-performance prediction model of 
the OWC and MDD, a vast array of experimental results of 
soil compaction parameters from a recently published work 
by Wang and Lin [10] were compiled. The collected dataset 
contains several details including gravel content (CG), sand 
content (CS), fines content (CF), liquid limit (LL), plastic 
limit (PL), compaction energy (CE), OWC and MDD. The 
collected data consists of the following soil types: CH, CL, 
CL–ML, GC, GM, GP–GC, GW–GC, MH, ML, SC, SM, 
SP–SC, and SW–SC.

The descriptive details of the soil properties in the current 
database are presented in Table 1. In addition, the mini-
mum, mean, maximum, and range for OWC and MDD are 
tabulated in Table 2, separately for CH, CL, CL-ML, GC, 
GM, GP–GC, GW–GC, MH, ML, SC, SM, SP–SC, and 
SW-SC soils. The comparative histograms for each variable 
are displayed in Fig. 2. Note that the normalized values of 
input soil parameter, OWC, and MDD were considered for 
this purpose. To better demonstrate, the correlation analy-
sis with colour plot (based on degree of correlation, i.e., 
R-value) between input soil parameters and OWC, MDD 
are presented in Tables 3 and 4, respectively. According to 
the information presented in Tables 3 and 4, the amount of 
correlation between the parameters can be observed quickly. 
As can be seen, the contents of gravel and sand (i.e., CG and 
CS) and the CE have a negative correlation with the OWC, 
whereas CF and PL exhibit a positive correlation. In con-
trast, CF, and plasticity parameters (i.e., LL, and PL) have 
a negative correlation, but CG, CS, and CE have a positive 

initialize LSSVMSTART Set min and max 
limits of and Data partitioning

meet 
stopping 
criteria

Obtained optimized 
values of and END

Set kernel function 
for LSSVM

OAs

Set deterministic 
parameters of OA

Initialization of OA

Set particle`s upper 
and lower bound

Select training 
dataset Training LSSVM Calculate and 

evaluate fitness
Yes

No

Testing of
LSSVM

Fig. 1  Flow chart for hybrid LSSVM modelling
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correlation. Moreover, a large number of soil metrics have 
very little correlation with the OWC and MDD of soils. 
These occurrences imply that the collected dataset has a vast 
array of experimental data and can be deemed relevant for 
data-driven modelling.

Subsequent to the data collection, the whole dataset was 
apportioned into two subsets: (a) a training subset including 
80% of the main dataset and (b) a testing subset containing 
the remaining dataset. Despite the fact that there is no pre-
defined criterion or set of criteria for choosing the number of 
datasets to use in a predictive model, the researchers' deci-
sion will be determined primarily by the type of problem at 
hand. Generally, a model built from a large dataset is often 
thought to be superior to one built from a small number 
of observed data points. Taking this into account, 20% of 
the primary dataset was chosen as the testing dataset. The 
steps of computational modelling in estimating the soil com-
paction parameters can be described as follows: (a) selec-
tion of the main dataset; (b) data normalization; (c) data 

partitioning and selection of training and testing subsets; 
(d) processing though MHAs; (e) computational model-
ling using LSSVM-PSO, LSSVM-GWO, LSSVM-SMA, 
and LSSVM-SOS; and (f) prediction of training and testing 
datasets. Figure 3 depicts the entire process of computational 
modelling in the form of a flow chart.

Results and discussion

This section details the results of the hybrid LSSVM mod-
els used to estimate the soil compaction parameters. As 
stated above, before the models were created, the main 
dataset was separated into training (181 samples) and test-
ing (45 samples) subsets. Note that, the same training and 
testing subsets were used to build and validate all models. 
The results of the built models were then evaluated using 
a variety of indices. On the contrary, aside from γ and 
σ, the OA deterministic parameters such as NS, imax, UB, 

Table 1  Descriptive statistics of 
the collected dataset

Parameters CG CS CF LL PL CE OWC MDD

Count 226 226 226 226 226 226 226 226
Minimum 0.00 0.00 8.60 16.00 6.10 155.00 5.30 1.09
Mean 7.47 29.45 63.09 108.73 22.00 894.07 17.51 1.75
Median 0.00 27.00 70.00 40.65 20.15 593.00 17.00 1.75
Mode 0.00 30.00 50.00 33.00 18.00 593.00 16.00 1.75
Range 67.10 89.00 91.40 592.00 42.20 2600.00 38.40 1.24
Maximum 67.10 89.00 100.00 608.00 48.30 2755.00 43.70 2.33
Standard error 0.97 1.56 2.00 10.92 0.49 48.92 0.40 0.01
Standard deviation 14.57 23.39 30.02 164.22 7.40 735.44 5.96 0.20
Variance 212.16 547.01 900.95 26,967.70 54.83 540,865.23 35.57 0.04
Kurtosis 3.48 − 0.47 − 1.25 3.26 0.75 2.27 2.86 0.98
Skewness 2.09 0.62 − 0.38 2.20 0.58 2.00 1.04 − 0.11

Table 2  Descriptive details of 
OWC and MDD for different 
soils

Soil types and 
sample numbers

OWC MDD

Minimum Mean Maximum Range Minimum Mean Maximum Range

CH (60 nos.) 12.10 23.46 43.70 31.60 1.09 1.54 1.87 0.78
CL (73 nos.) 10.20 17.14 22.00 11.80 1.62 1.77 2.04 0.42
CL-ML (1 nos.) 17.00 17.00 17.00 0.00 1.78 1.78 1.78 0.00
GC (12 nos.) 5.90 12.11 19.40 13.50 1.67 1.93 2.33 0.66
GM (2 nos.) 13.90 13.90 13.90 0.00 1.79 1.79 1.79 0.00
GP-GC (4 nos.) 6.80 8.08 9.20 2.40 2.06 2.13 2.20 0.14
GW-GC (4 nos.) 5.30 6.50 7.50 2.20 2.16 2.23 2.31 0.15
MH (4 nos.) 19.40 24.88 31.00 11.60 1.40 1.52 1.64 0.24
ML (8 nos.) 13.60 18.63 22.00 8.40 1.55 1.68 1.85 0.30
SC (45 nos.) 9.00 14.71 20.40 11.40 1.59 1.84 2.09 0.50
SM (3 nos.) 9.00 11.00 13.20 4.20 1.90 1.98 2.04 0.14
SP-SC (7 nos.) 8.80 11.69 14.50 5.70 1.83 1.93 2.06 0.23
SW-SC (3 nos.) 7.30 8.50 9.80 2.50 2.01 2.08 2.14 0.13
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LB, and other parameters play a significant role in hybrid 
modelling, therefore they were appropriately calibrated 
during the course of optimization. The details of deter-
ministic and hyper-parameters in forecasting soil compac-
tion parameters are described in the following sub-section, 
followed by a comparative analysis of results.

Model performance

Following the development of hybrid LSSVMs, different indi-
ces were determined to evaluate them, including R2, perfor-
mance index (PI), variance account factor (VAF), Willmott's 
index of agreement (WI), RMSE, mean absolute error (MAE), 
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Fig. 2  Comparative histogram between input and output parameters

Table 3  Correlation analysis between input soil parameters and OWC

Soil types CG CS CF LL PL CE OWC
CH − 0.1100 − 0.5837 0.5879 0.0447 0.4441 − 0.3237 1.0000
CL 0.0415 − 0.6885 0.6785 0.2183 0.7030 − 0.6492 1.0000
CL–ML – – – – – – –
GC –0.8544 0.0732 0.8555 0.3341 0.8841 − 0.6741 1.0000
GM – – – – – – –
GP–GC – – – – – − 0.9752 1.0000
GW–GC – – – – – − 0.9852 1.0000
MH − 0.7455 − 0.9083 0.9209 0.2639 − 0.0421 − 1.0000
ML 0.0423 − 0.3312 0.3178 0.6284 0.6377 − 0.3936 1.0000
SC − 0.2546 − 0.0695 0.4148 0.3472 0.7217 − 0.2966 1.0000
SM 0.9042 0.9042 − 0.9042 0.9042 0.9042 0.8498 1.0000
SP–SC − 0.7793 0.7793 0.7793 − 0.7793 − 0.7793 − 0.8675 1.0000
SW–SC – – – 0.0000 – − 0.9735 1.0000
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RMSE to observation's standard deviation ratio (RSR), and 
weighted mean absolute percentage error (WMAPE) [18, 
41–51]. Note that these indices are often used to assess any 
prediction model's generalization ability from a variety of 
angles, including correlation accuracy, related error, amount 
of variance, and so on. The expressions for these indices can 
be given by:

(5)R2 =

∑n

i=1
(yi − ymean)

2 −
∑n

i=1
(yi − ŷi)

2

∑n

i=1
(yi − ymean)

2

(6)PI = adj.R2 + 0.01 VAF − RMSE

(7)VAF(%) =

(

1 −
var(yi − ŷi)

var(yi)

)

× 100

(8)WI = 1 −

� ∑n

i=1
(yi − ŷi)

2

∑n

i=1

��
�ŷi − ymean

�
� +

�
�yi − ymean

�
�
�2

�

(9)RMSE =

√√√
√1

n

n∑

i=1

(yi − ŷi)
2

(10)MAE =
1

n

n∑

i=1

|||
(
ŷi − yi

)|||

(11)
RSR =

RMSE
�

1

n

∑n

i=1
(yi − ymean)

2

(12)WMAPE =

∑n

i=1

���
yi−ŷi

yi

���
× yi

∑n

i=1
yi

Table 4  Correlation analysis between input soil parameters and MDD.

Soil types CG CS CF LL PL CE MDD
CH 0.0900 0.4849 − 0.4881 − 0.1811 − 0.5197 0.3367 1.0000
CL − 0.0316 0.6588 − 0.6496 − 0.2213 − 0.6776 0.7099 1.0000
CL–ML – – – – – – –
GC 0.8585 − 0.2984 − 0.7224 − 0.4675 − 0.8031 0.7483 1.0000
GM – – – – – – –
GP–GC – – – – – 0.9816 1.0000
GW–GC – – – – – 0.9851 1.0000
MH 0.7068 0.9949 − 0.9992 − 0.5903 0.3942 – 1.0000
ML − 0.0491 0.6307 − 0.6086 − 0.2047 − 0.4969 0.7485 1.0000
SC 0.2061 − 0.0300 − 0.2183 − 0.6265 − 0.7379 0.1615 0.5118
SM − 0.9791 − 0.9791 0.9791 − 0.9791 − 0.9791 − 0.9496 1.0000
SP–SC 0.6540 − 0.6540 − 0.6540 0.6540 0.6540 0.9238 1.0000
SW–SC – – – 0.0000 – 0.9789 1.0000

Main Datasets

Training (80%)

Predicted
Training outputs

Testing (20%)

Computational models
(LSSVM-PSO, LSSVM-GWO, 

LSSVM-SMA, and LSSVM-SOS

Processing

Normalization
(0 to 1)START

ENDPredicted
Testing outputs

Fig. 3  Steps of computational modelling

Table 5  Ideal values of different indices

Name of different indices Abbreviation Ideal value

Coefficient of determination R2 1
Performance index PI 2
Variance account factor VAF 100
Willmott’s index of agreement WI 1
Root mean square error RMSE 0
Mean absolute error MAE 0
RMSE to observation’s standard devia-

tion ratio
RSR 0

Weighted mean absolute percentage error WMAPE 0
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where yi and ŷi are the actual and predicted ith values; n 
is the number of observations; and ymean is the average of 
actual value. It is important to note that the value of these 
indices must match their ideal value for an ideal model, 
which is provided in Table 5.

As previously stated, selecting LSSVM hyper-parameters 
and deterministic parameters of OAs is critical for develop-
ing the best model; therefore, the values of γ and σ were set 
within a pre-defined range of upper and lower bounds. In 
this work, the upper and lower bounds of γ and σ were set to 
(100 and 0.10) and (50 and 0.10), respectively. The values of 
γ and σ were generated randomly within the range of upper 
and lower limits in each iteration using the equation below.

where UB and LB are the upper and lower bounds and rand 
represents a uniformly distributed random number gener-
ated within the range of 0–1. On the other hand, to con-
struct the optimum hybrid LSSVMs, the value of NS and 
imax were set to 30 and 200, respectively. The values of c1 
and c2 , (PSO parameters) and z (SMA parameter) were set 
to 1 and 2, and 0.2, respectively. For other OAs, the values 
of exploration and exploitation constants were kept at their 

(13)� and � = rand × (UB − LB) + LB

original values. The details of LSSVM hyper-parameters and 
deterministic parameters of OAs are presented in Table 6. 
The primary dataset was partitioned into training and testing 
subsets before the model construction; the training subset 
was used to generate the hybrid models, while the testing 
subset was utilized to evaluate the predictive potential of the 
constructed LSSVM models.

Tables 7 and 8 show the predictive outcomes of the 
constructed hybrid LSSVMs for predicting soil OWC and 
MDD, respectively. Herein, the performance of the mod-
els in predicting the training, testing, and total outputs is 
presented. It should be emphasized that the performance 
of each model with the training subset was utilized to 
describe the goodness of fit of the constructed models, 
whilst the testing dataset was used to assess their generali-
zation capabilities. Based on the experimental results, the 
proposed LSSVM-SOS attained the highest  R2 and lowest 
RMSE values in OWC and MDD prediction. The proposed 
LSSVM-SOS achieved the highest accuracy in the train-
ing phase, with R2 = 0.9783 and RMSE = 0.0231 in OWC 
prediction and R2 = 0.9793 and RMSE = 0.0233 in MDD 
prediction. These matrices were found to have R2 = 0.9160 
and RMSE = 0.0450 in OWC prediction and R2 = 0.9092 
and RMSE = 0.0498 in MDD prediction during the testing 

Table 6  Details of different 
parametric for hybrid LSSVMs

Parameters LSSVM-PSO LSSVM-GWO LSSVM-SMA LSSVM-SOS

NS 30 30 30 30
imax 200 200 200 200
wmax – – – –
wmin – – – –
c1, c2 1,2 – – –
z (Parameter of SMA) – – 0.20 –
UB, LB for � 100, 0.10 100, 0.10 100, 0.10 100, 0.10
UB, LB for � 50, 0.10 50, 0.10 50, 0.10 50, 0.10
UB, LB for OAs  + 1, − 1  + 1, − 1  + 1, − 1  + 1, − 1

Table 7  Performance indices 
for OWC prediction

Phases Models R2 PI VAF WI RMSE MAE RSR WMAPE

Training LSSVM–PSO 0.9752 1.9238 97.4530 0.9935 0.0250 0.0185 0.1578 0.0579
LSSVM–GWO 0.9767 1.9286 97.6648 0.9942 0.0240 0.0170 0.1511 0.0533
LSSVM–SMA 0.8498 1.6135 83.2951 0.9478 0.0641 0.0467 0.4042 0.1455
LSSVM–SOS 0.9783 1.9328 97.8277 0.9946 0.0231 0.0166 0.1457 0.0521

Testing LSSVM–PSO 0.8593 1.6376 85.7572 0.9599 0.0571 0.0387 0.3878 0.1218
LSSVM–GWO 0.8807 1.6829 87.4669 0.9663 0.0537 0.0384 0.3648 0.1209
LSSVM–SMA 0.8935 1.7073 88.1480 0.9637 0.0508 0.0386 0.3454 0.1218
LSSVM–SOS 0.9160 1.7697 91.2000 0.9766 0.0450 0.0332 0.3058 0.1047

Total LSSVM–PSO 0.9525 1.8697 95.2388 0.9877 0.0339 0.0225 0.2164 0.0706
LSSVM–GWO 0.9573 1.8812 95.7228 0.9892 0.0322 0.0212 0.2051 0.0668
LSSVM–SMA 0.8574 1.6333 84.1551 0.9510 0.0617 0.0451 0.3936 0.1408
LSSVM–SOS 0.9656 1.9014 96.5587 0.9914 0.0288 0.0199 0.1839 0.0625



Innovative Infrastructure Solutions (2023) 8:2 

1 3

Page 9 of 15 2

phase. Overall, the developed LSSVM-SOS predicts the 
OWC and MDD of soils with 96.56% and 96.41% accuracy 
(in terms of R2 value), respectively. These results show 
that the proposed LSSVM-SOS has high predictive per-
formance in both instances. However, in the testing phase, 
the predictive precision of the developed LSSVM–SMA 
and LSSVM–PSO were determined to be the second-best 

models with R2 = 0.8935 and R2 = 0.8823 for OWC and 
MDD prediction, respectively.

To better demonstrate, illustrations of actual and esti-
mated values of OWC and MDD are presented in Figs. 4, 
5, 6 and 7, respectively. Herein, the scatterplots of the best 
two prediction models are presented. In the training phase 
of OWC prediction, the LSSVM-SOS (R2 = 0.9783) and 

Table 8  Performance indices 
for MDD prediction

Phases Models R2 PI VAF WI RMSE MAE RSR WMAPE

Training LSSVM–PSO 0.8675 1.6701 86.6347 0.9627 0.0592 0.0478 0.3617 0.0884
LSSVM–GWO 0.9785 1.9324 97.8425 0.9946 0.0238 0.0160 0.1453 0.0300
LSSVM–SMA 0.8602 1.6516 85.7342 0.9591 0.0611 0.0497 0.3736 0.0918
LSSVM–SOS 0.9793 1.9346 97.9266 0.9948 0.0233 0.0160 0.1424 0.0300

Testing LSSVM–PSO 0.8823 1.6904 87.9713 0.9688 0.0531 0.0425 0.3470 0.0793
LSSVM–GWO 0.8667 1.6390 85.2733 0.9629 0.0593 0.0441 0.3880 0.0823
LSSVM–SMA 0.8754 1.6766 87.4953 0.9664 0.0541 0.0432 0.3537 0.0806
LSSVM–SOS 0.9092 1.7410 89.6058 0.9746 0.0498 0.0389 0.3258 0.0726

Total LSSVM–PSO 0.8690 1.6762 86.8770 0.9640 0.0580 0.0467 0.3585 0.0866
LSSVM–GWO 0.9554 1.8753 95.5111 0.9888 0.0340 0.0216 0.2100 0.0405
LSSVM–SMA 0.8621 1.6590 86.0551 0.9607 0.0598 0.0484 0.3696 0.0896
LSSVM–SOS 0.9641 1.8964 96.3822 0.9910 0.0305 0.0206 0.1885 0.0385

Fig. 4  Scatter plot for OWC 
prediction in the training phase 
(for best two models)
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Fig. 5  Scatter plot for OWC 
prediction in the testing phase 
(for best two models)
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LSSVM–GWO (R2 = 0.9767) models were found to be the 
top two models, while the LSSVM–SOS (R2 = 0.9160) and 
LSSVM–SMA (R2 = 0.8935) were determined to be the best 
in the testing phase. On the contrary, the LSSVM–GWO 
(R2 = 0.9785) and LSSVM–PSO (R2 = 0.8823) were deter-
mined to be the second-best MDD prediction models 
throughout the training and testing stages, respectively.

It is crucial to note that a data-driven model is insufficient 
without a visual depiction of results. Visualizations facilitate 
the detection of trends, correlation, and outliers in a dataset 
that are more easily comprehended. Visual depictions are 
useful for seeing trends in data without having to sift through 
the granular details. Thus, a graphical depiction of the gen-
erated models’ outcomes in the form of a Taylor diagram 
and accuracy matrix is also presented. These diagrams are 
incredibly helpful for evaluating a model’s overall correct-
ness comprehensively.

Note that, an accuracy matrix [50] is a heat map matrix 
which is used to quantify the amount of accuracy attained 
by a model in terms of different performance criteria. Using 
this matrix, one can quickly assess the amount of accu-
racy achieved by a model without examining the values 
of each index. As specified earlier, several indices must be 

established to examine the preciseness of a model from vari-
ous perspectives; however, interpreting findings by studying 
the values of each index is time-consuming and requires 
extensive observations. Thus, the accuracy matrix is highly 
beneficial for the rapid evaluation of results. The accuracy 
matrix for the generated models for OWC and MDD predic-
tion is depicted in Figs. 8 and 9. Here, the performance of 
the models on the training (TR), testing (TS), and total (TL) 
datasets is provided. It can be seen from the accuracy matrix 
that the suggested LSSVM-SOS is the best prediction model 
in both scenarios.

Alternately, the Taylor diagram [52] is a 2-D mathemati-
cal diagram used to offer a brief evaluation of a model’s 
precision. In terms of the coefficient of correlation, ratio 
of standard deviations, and RMSE, it describes the rela-
tionships between the estimated and real observations. In 
a Taylor diagram, a point represents a model. For an ideal 
model, the position of the point should agree with the refer-
ence point (Ref). Figures 10 and 11 depict the Taylor dia-
grams for the hybrid LSSVMs created for OWC and MDD 
prediction. Herein, the models` outcomes are reported for 
the training and testing subsets. As can be observed, the 
LSSVM-SOS is the most precise model (as the green marker 

Fig. 6  Scatter plot for MDD 
prediction in the training phase 
(for best two models)
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Fig. 7  Scatter plot for MDD 
prediction in the testing phase 
(for best two models)
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LSSVM-
PSO (TR)

LSSVM-
GWO (TR)

LSSVM-
SMA (TR)

LSSVM-
SOS (TR)

LSSVM-
PSO (TS)

LSSVM-
GWO (Ts)

LSSVM-
SMA (TS)

LSSVM-
SOS (TS)

LSSVM-
PSO (TL)

LSSVM-
GWO (TL)

LSSVM-
SMA (TL)

LSSVM-
SOS (TL)

R2 98 98 85 98 86 88 89 92 95 96 86 97 99

PI 96 96 81 97 82 84 85 88 93 94 82 95

VAF 97 98 83 98 86 87 88 91 95 96 84 97

WI 99 99 95 99 96 97 96 98 99 99 95 99 91

RMSE 97 98 94 98 94 95 95 96 97 97 94 97

MAE 98 98 95 98 96 96 96 97 98 98 95 98

RSR 84 85 60 85 61 64 65 69 78 79 61 82

WMAPE 94 95 85 95 88 88 88 90 93 93 86 94 60

Fig. 8  Accuracy matrix for OWC prediction

LSSVM-
PSO (TR)

LSSVM-
GWO (TR)

LSSVM-
SMA (TR)

LSSVM-
SOS (TR)

LSSVM-
PSO (TS)

LSSVM-
GWO (Ts)

LSSVM-
SMA (TS)

LSSVM-
SOS (TS)

LSSVM-
PSO (TL)

LSSVM-
GWO (TL)

LSSVM-
SMA (TL)

LSSVM-
SOS (TL)

R2 87 98 86 98 88 87 88 91 87 96 86 96 99

PI 84 97 83 97 85 82 84 87 84 94 83 95

VAF 87 98 86 98 88 85 87 90 87 96 86 96

WI 96 99 96 99 97 96 97 97 96 99 96 99 90

RMSE 94 98 94 98 95 94 95 95 94 97 94 97

MAE 95 98 95 98 96 96 96 96 95 98 95 98

RSR 64 85 63 86 65 61 65 67 64 79 63 81

WMAPE 91 97 91 97 92 92 92 93 91 96 91 96 61

Fig. 9  Accuracy matrix for MDD prediction

Fig. 10  Taylor diagram for OWC prediction: a training and b testing
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appears closest to the ‘Ref’ point)) in both phases of OWC 
and MDD prediction.

Discussion of results

In the previous sub-section, the predictive performance of 
the hybrid LSSVMs in forecasting the OWC and MDD of 
soils is given and reviewed. As mentioned above, many 
performance indices were calculated to analyse the per-
formance and generalization ability of the constructed 
hybrid LSSVMs, including LSSVM–PSO, LSSVM–GWO, 
LSSVM–SMA, and LSSVM–SOS. All proposed LSSVM 
models suitably forecast the indented output, i.e., OWC and 
MDD of soils, according to experimental findings. Specifi-
cally, the proposed LSSVM-SOS attained the maximum 
precision in both the training and testing phases; however, 
the LSSVM–SMA and LSSVM–PSO were determined to 
be the second-best models for OWC and MDD prediction, 
respectively.

Nonetheless, the overall accuracy of the developed 
hybrid LSSVMs was assessed through OBJ criterion. 
Notably, the OBJ criterion is quite beneficial for determin-
ing the overall performance of a data-driven model [53, 
54]. The OBJ takes into account R2 and MAE values of the 

training and testing data, and the mathematical expression 
is given by [53]:

where NTR and NTS are the number of samples for the train-
ing and testing subsets, respectively; NTL is the total num-
ber of samples; MAETR and MAETS are the MAE index for 
the training and testing subsets, respectively; and R2

TR
 and 

R2
TS

 are the R2 index for the training and testing subsets, 
respectively.

The values of these indices along with the OBJ value 
are presented in Table 9. All created hybrid LSSVMs 
were ranked and listed in the table based on the OBJ 
value. For OWC prediction, the respective OBJ values 
for LSSVM–PSO, LSSVM–GWO, LSSVM–SMA, and 
LSSVM–SOS are 0.0293, 0.0278, 0.0503, and 0.0247. 
For MDD prediction, the OBJ values for these models are 
0.0523, 0.0301, 0.0544, and 0.0269, respectively. These 
values show that LSSVM-SOS has the lowest OBJ, and 
therefore, it is the best model from this viewpoint. To 
better illustrate, Fig. 12 depicts a bar plot of OBJ values 

(14)

OBJ =

(
NTR − NTS

NTL

)

×

(
MAETR

R2
TR

)

+

(
2 × NTR

NTL

)

×

(
MAETS

R2
Ts

)

Fig. 11  Taylor diagram for MDD prediction: a training and b testing

Table 9  Evaluation of OBj 
criterion

Output Models MAE (TR) MAE (TS) R2 (TR) R2 (TS) OBJ Rank

OWC LSSVM–PSO 0.0185 0.0387 0.9752 0.8593 0.0293 3
LSSVM–GWO 0.0170 0.0384 0.9767 0.8807 0.0278 2
LSSVM–SMA 0.0467 0.0386 0.8498 0.8935 0.0503 4
LSSVM–SOS 0.0166 0.0332 0.9783 0.9160 0.0247 1

MDD LSSVM–PSO 0.0478 0.0425 0.8675 0.8823 0.0523 3
LSSVM–GWO 0.0160 0.0441 0.9785 0.8667 0.0301 2
LSSVM–SMA 0.0497 0.0432 0.8602 0.8754 0.0544 4
LSSVM–SOS 0.0160 0.0389 0.9793 0.9092 0.0269 1
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for each hybrid LSSVM constructed for OWC and MDD 
prediction.

Summary and conclusion

The present work proposes a high-performance hybrid 
model to replace the conventional laboratory tests of soil 
compaction. In this work, four hybrid LSSVM models, 
including LSSVM-PSO, LSSVM-GWO, LSSVM-SMA, 
and LSSVM-SOS, were used to build a prediction model 
for soil compaction parameters, namely OWC and MDD. 
Based on the experimental results, the following conclusions 
can be drawn:

(a) The proposed LSSVM–SOS was found to be the best 
model among the created hybrid LSSVM models in 
terms of R2 and RMSE criteria, with R2 = 0.9656 and 
RMSE = 0.0288 for OWC prediction and R2 = 0.9641 
and RMSE = 0.0305 for MDD prediction.

(b) The overall performance of the developed LSSVM–
SOS shows that it can be utilized as an alternate tool to 
estimate soil compaction parameters to aid geotechni-
cal engineers in the design phase of civil engineering 
projects.

(c) The main advantages of the proposed LSSVM–SOS 
model include: (1) use of real-life datasets; (2) 13 dif-
ferent soil types were considered; (3) higher prediction 
accuracy in the testing phase; (4) high degree of reli-
ability; and (5) optimized values of � and � were used.

(d) However, the restricted search space of the OAs and the 
need for many runs can be seen as drawbacks of this 
work. Therefore, in order to broaden the application of 
hybrid LSSVMs for forecasting the required output in 
other engineering fields, additional research should be 
undertaken.

(e) The future direction of this work may include: (1) a 
detailed assessment of the accuracy of other hybrid 

models, via actual data from various areas of geotech-
nical engineering; (2) evaluation of the LSSVM–SOS 
model’s superiority over other hybrid LSSVM models; 
and (3) implementation of advanced and enhanced of 
meta-heuristic algorithms for a comparative assessment 
of different hybrid LSSVM models.

Nevertheless, as far as the authors are aware, this work 
shows for the first time the application of hybrid LSSVM 
models built using swarm intelligence approaches for fore-
casting the soil compaction parameters.
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