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Abstract
Developments in material testing have brought about the invention of some durability assessment methodologies for alkali-
activated materials. This study reported advances in accelerated and long-term durability assessment and methodologies 
for alkali-activated composites (AAC). For both alkali-activated materials (AAM) and ordinary Portland cement (OPC)-
based composites, the common methods such as increased acid concentration, standard non-accelerated test, wetting and 
drying cycling, brushing were assessed. The study assessed common methods: increased acid concentration, standard non-
accelerated test, wetting and drying cycling, and brushing. The discussion also identified the limitations associated with 
the accelerated and long-term durability assessment in AAM composite. Some limitations include concrete pore solution 
concentration, precursor type, and admixture. In AAMs, pore size is within ranges > 1 μm and < 20 nm, which is an indica-
tion of insignificant porosity. Also, the compressive strength coefficient of AAM mortars was better than the cement mortar 
after 75 cycles. Finally, the study revealed the most appropriate mechanism for measuring the durability of AAM composite, 
which could be well utilized in the construction field.
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Introduction

In the construction industry of today's world, ordinary Port-
land cement (OPC) concrete has been the most widely used 
due to its versatility, cost, and outstanding properties [1]. 
However, durability concern has been one of the most criti-
cal factors for construction materials. It is dependent primar-
ily on the material’s useful life in actual service conditions, 
such as its exposure to aggressive medium [2, 3]. In a true 
sense, durability cannot be regarded as an intrinsic attribute 
of any material. Its severity lies in in-service conditions, 
which vary based on the type of exposure and duration the 

concrete is exposed. Concrete corrosion is a major end pro-
cess of concrete exposed to a severe environment. Corrosion 
of reinforced concrete leads to delamination and blemishing, 
cracking, and in the worst case, structural failure. Corrosion 
initiates in a cementitious composite due to the exposure of 
the matrix to carbon dioxide  (CO2) and chloride ingress [3, 
4]. Due to concrete making contact with the substances men-
tioned above, structural damage has become imminent, thus 
causing outrageous building repair and maintenance costs. 
The sources of chloride ions ingress in concrete include 
marine bodies, chemical contamination of concrete, using 
de-icing salts, and the use of chloride-rich additives during 
concrete production. Corrosion is more critical around the 
embedded steel in concrete. From there, it gets to a critical 
concentration, thereby resulting in the pitting corrosion of 
the steel after damaging the passive layer [5].

Despite the numerous benefits of concrete, extensive 
studies over the decades have indicated that the produc-
tion of OPC concrete accounts for a significant portion of 
the energy consumption in the construction industry. This 
energy consumption has been estimated to be about 40% of 
the world's total energy consumption [6, 7]. On the other 
hand, alkali-activated materials (AAMs) can be used as a 
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sustainable alternative to OPC materials as OPC is totally 
eliminated. AAMs are produced using a binder synthesized 
from an activator and aluminosilicate precursors to form 
a gel that hardens similarly to that of OPC [8–11]. Thus, 
AAMs are deemed to have low embodied energy and low 
embodied carbon. In addition, the precursors used in AAMs 
are mostly waste materials/by-products such as fly ash, slag, 
and silica fume [12–15]. Locally available materials such as 
laterite can also be used in the production of AAMs [16–18]. 
The use of these locally available materials and waste mate-
rials/by-products to replace OPC would also result in a 
significant reduction in the cost of construction materials 
and effective management of various waste materials. More 
improvement in the sustainability of AAMs can be achieved 
with the use of alternative activators compared to the con-
ventional ones which are sodium hydroxide and sodium sili-
cate [19–24]. Various waste and recycled materials can also 
be incorporated into AAMs as aggregate [25, 26].

Extensive studies over the years have shown that AAMs 
can exhibit similar or higher performance compared to that 
of OPC materials [27–29]. For example, AAMs made with 
slag as precursor have been found to demonstrate high dura-
bility to freeze–thawing, acid, and sulphate attacks owing to 
the absence of Portlandite and the presence of lower Ca/Si 
ratios in the C-S–H gel in its matrix structure (microstruc-
ture). OPC is deficient in the aforementioned microstructural 
features [4, 5, 8], making it susceptible to chemical attacks. 
However, low fracture toughness with quasi-brittle behav-
iour is evident in certain types of AAMs [30, 31]. However, 
compared to OPC materials, there is limited knowledge on 
accelerated tests and the long-term durability performance 
of AAMs [32].

AAMs are mostly assessed using the conventional meth-
ods available for OPC materials. However, the use of these 
methods for AAMs could be ineffective as the composition 
of AAMs differs from that of OPC materials. As the degra-
dation process of construction materials such as OPC occurs 
with time, various accelerated tests have been devised to 
evaluate the long-term durability of the performance within 
a short period of time. However, there is limited avail-
ability of these accelerated tests to evaluate the long-term 
performance of AAMs. Thus, this paper aims to provide a 
comprehensive overview of the advances in the durability 
assessment of AAMs. Special attention is paid to method-
ologies and procedures of durability tests involving AAM 
composites. While not all alkali-activated materials systems 
are covered in this study, leading industrial products used as 
AAMs are considered. A lower water requirement and suit-
able rheological properties are the new generation AMMs 
systems[33]. Durability issues emanate in the composites 
due to chloride and carbon dioxide infiltration around the 
embedded reinforcement bars, freeze–thawing and sul-
phate attacks on pastes, and finally, efflorescence and acid 

resistance issues. Thus, this study renders detailed durability 
performances of AAMS and special consideration to testing 
methodologies and reveals the potential challenges of the 
processes involved.

Methodology

This study focuses various durability issues in alkali-acti-
vated materials and drawing comparisons among the vari-
ous methods of assessing the durability of the materials, in 
terms of accelerated and long-term durability techniques. 
The study also explored several durability assessment tech-
niques that may be applied to AAMs, and the study also 
emphasizes the resistance of AAM in aggressive medium 
and compared to the OPC-based composites. Figure 1 pre-
sents the various stages on this study. 

Several features are measured in concrete or cementitious 
materials to ascertain their durability. AAMs' most applica-
ble durability properties are porosity and permeability, chlo-
ride, carbonation and corrosion, sulphate and acid attacks, 
efflorescence, and fire resistance assessment.

Permeability and porosity

The deleterious substances (sulphates and chlorides), 
through mass transport mechanisms, are distributed in cap-
illary pores in the AAM composite[34]. Reports indicate 
that pore size in AAM composite is within ranges > 1 μm 
and < 20 nm, thus implying that insignificant porosity occurs 
in the size range. Notwithstanding, this range is small com-
pared to that of a similar grade of OPC (unimodal pore size 
distribution of 10–100 nm). A mercury intrusion porosim-
etry (MIP) device is used to assess porosity in composites. 
However, there is limited information about the use of MIP 
for AAM composite. Thus, it is clear that variation in the 
pore size distribution of AAMs relative to OPC concrete has 
a somewhat significant influence on the durability properties 

Fig. 1  Flow chart of the stages of this research



Innovative Infrastructure Solutions (2022) 7: 291 

1 3

Page 3 of 11 291

of AAMs compared to the former [1]. The activation process 
and activator type also contribute to the pore distribution 
in AAMs. For instance, AAMs activated with potassium 
exhibit a minimal pore diameter than sodium-based acti-
vators. Provis and Deventer[35] show that sorptivity fea-
tures in AAMs are comparable in range to the OPC-based 
composites. In practice, lower mixing water and silica-rich 
activator aid reduction in capillary sorptivity AAMs. The 
aggregate-paste zone in the AAM composite is less porous 
and stronger than the normal concrete. The main backing to 
the better pore structure in AAMs is traceable to the chemi-
cal interaction between alkali binder and aggregate particles.

Chloride, carbonation, and corrosion

Chloride ingress in AAM is not well pronounced like in 
normal concrete, mainly due to pore's efficient pore struc-
tures and fluidity. More reliable performance of cementi-
tious composite in terms of resistance to chloride ingress 
can be measured using older Nordtest [36, 37] and BS EN 
12,390–11 [38]. The test methods utilize powder samples 
for determining soluble (water and acid) chlorides. The 
actions of pore fluid in AAM composite require more in-
depth investigation into the chemistry of the materials. Stud-
ies [39–41] have shown that AAM composite demonstrates 
higher chloride resistance potential than the same grade of 
OPC concrete.

The pore fluid in AAM is affected by the nature and type 
of precursors and activators. The former also influences 
the electrolyte for the steel corrosion process and protec-
tion. While in the normal concrete, chloride concentration 
at threshold levels is seen at the steel interface, which also 
initiates the corrosion process, the AAM composite is dif-
ferent. The products of hydration for the precursor utilized 
and limited calcium hydroxide Ca(OH)2 buffers delay cor-
rosion of steel in AAM composites. The differences in the 
resistance to chloride attack and initiation of corrosion in 
normal concrete and AAM composite render the accelerated 
durability tests method and the service life prediction models 
of conventional concrete unsuitable for AAM concrete.

In terms of carbonation resistance, AAM containing 
blast furnace slag or a blend with metakaolin has exhibited 
a higher carbonation rate than the normal concrete, owing to 
insufficient Ca(OH)2 as a hydration product. Similarly, the 
study by Puertas et al. [42] and Bakharev et al. [43] where 
sodium hydroxide and sodium silicate were used to activate 
slag indicated that such AAMs undergo faster carbonation 
compared to that of OPC materials. The rapid degradation 
of these AAMs as a result of the faster carbonation is detri-
mental to both the mechanical and durability performance 
of the materials [44, 45]. However, the faster degradation of 
AAMs due to carbonation could result from the accelerated 
test used, which does not represent the in-service conditions. 

Thus, it is imminent and critical to devise tests that can be 
used to assess the long-term durability of AAMs accurately. 
Nevertheless, the carbonation resistance of AAMs is greatly 
influenced by the type of precursor and activator used. A 
comprehensive study carried out by Bernal et al. [46] indi-
cated that the incorporation of metakaolin as a precursor in 
the synthesis of AAMs would increase its vulnerability to 
carbonation. The method used to evaluate the carbonation 
resistance of the AAMs is an acceleration test that involves 
exposing the AAM samples to carbon dioxide concentra-
tions of 3% at a relative humidity and temperature of 65% 
and 2 °C, respectively. In the same study, it was found that 
the carbonation rate increased with lower silica modulus for 
AAMs made with solely sole slag as the precursor.

Meanwhile, carbonation can be mitigated by selecting an 
appropriate mix design, type, and activator concentration. 
Moreover, it is also opined that higher binder concentration 
could improve carbonation resistance in AAM. However, 
future studies may need to explore why the accelerated car-
bonation tests in the AAM composite contradict that of the 
performance of OPC concrete and vary from the long-term 
exposure of the composite.

It should be noted that the standard phenolphthalein car-
bonation test at a rate of under 1 mm/year using RILEM 
TC 224[35] is unsuitable for AAM composite, as this was 
designed only for OPC concrete based on its chemistry and 
hydration of Ca(OH)2. Thus, there is a need for more in-
depth investigations and probably the use of other novel 
alternative methods to apply the test to AAM composites. 
In addition, there is also the effect of carbonation shrinkage 
in the cementitious composite. The concept of carbonation 
shrinkage in new materials such as AAM based has not been 
adequately reported in the literature, and this needs in-depth 
studies. It is currently not clear what is the accelerated cor-
relation data with the natural condition. This issue has per-
sisted because of the variation of the process of diffusing 
 CO2 and pore fluid chemical composition to OPC with a 
greater concentration of Ca(OH)2. The concentration of CO2 
in the environment affects the carbonation rate to a large 
extent in AAM composite, and according to researchers [35, 
47, 48], both the pore fluid carbonation and gel degradation 
rates are modified at a higher CO2 exposure of composite.

Efflorescence

One of the issues with certain types of AAMs is efflo-
rescence [49]. Three main factors: high pore fluid alkali 
concentration, AAM porous microstructure, and Na weak 
binding of sodium (Na) in the aluminosilicate gel struc-
ture contribute to efflorescence in AAM composites [50, 
51]. However, the rate or extent of efflorescence is influ-
enced by the type of alkali metal, reaction conditions, 
and reactivity of the precursors [52, 53]. Thus, excess 
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sodium oxide not involved in the AAM synthesis could 
result in efflorescence [54]. Efflorescence can be seen 
as a whitish material formed on the surfaces of AAMs, 
which is formed due to the reaction between the excess 
sodium oxide and atmospheric carbon dioxide. The whit-
ish material has been reported to be composed of hydrous 
alkali carbonate  (Na2CO3.7H2O) [52, 54]. However, the 
amount of structural  H2O formed in the alkali carbonate 
is dependent on the humidity and temperature and the 
AAMs are subjected to [55]. The mechanism involved 
in the formation of efflorescence can be summarized as 
shown in Eqs. 1 and 2 [56]. In contrast to the carbona-
tion method discussed earlier, the products formed due 
to efflorescence are visible to the human eyes and may 
not deteriorate the AAM performance but may alter its 
aesthetic features [54].

Efflorescence in AAMs can be reduced or eliminated 
using various methods such as use of alternative acti-
vator to replace sodium hydroxide. Several studies have 
utilized potassium hydroxide as an alternative to sodium 
hydroxide in order to reduce efflorescence in AAMs [54, 
57]. The study by Najafi Kani et al. [58] also indicated 
that the alkali leaching in AAMs can be correlated with 
the occurrence of efflorescence. The study found out that 
for AAMs with lower amount of alkali leaching, there 
was lower amount of efflorescence occurrence. It was 
also recommended that efflorescence in AAMs can be 
reduced with the use of hydrothermal curing or the incor-
poration of admixtures rich in alumina. The presence of 
additional alumina in the AAMs due to the incorporation 
of admixtures would reduce alkali mobility and enhance 
crosslinking [58]. Slag which is a precursor can also be 
incorporated into fly ash-based AAMs to reduce efflores-
cence. However, the mechanism in which slag can reduce 
efflorescence is more related to its ability to reduce the 
permeability of the AAMs, thereby inhibiting alkali 
leaching [58].

Currently, there exists no explicit test method for eval-
uating the efflorescence of AAMs. Most assessments are 
carried out using visual assessment or ASTM D7072 or 
the efflorescence assessment of latex-coated substrates 
[59, 60]. Optical microscopic image of efflorescence 
formation on AAMs is presented in Fig. 2, while Fig. 3 
shows formation of efflorescence on some AAMs cap-
tured by a digital camera [56]. The study by Weng et al. 
[60] also indicated that image analysis can be used to 

(1)CO
2(g) + 20H−

(aq)
→ CO2−

3(aq)
+ H

2
O

(2)2Na+
(aq)

+ CO2−

3(aq)
+ 7H

2
O → Na

2
CO

3
.7H

2
Os

assess efflorescence. Figure 4 shows the use of image 
analysis in the quantification of efflorescence amount.

Freeze–thaw resistance

In OPC concrete, the physical properties of materials like 
matrix strength, pore saturation, voids, and pore structure 
affect the freeze–thaw resistance of the concrete. In the 
case of OPC concrete, there is no significant contribution 
of hydration product composition to durability. Although it 
has not been established by research, the factors mentioned 
above will also affect freeze–thaw resistance in AAM com-
posites. In blast furnace slag-based AAM, owing to its high 
ionic concentration, pore fluid in the matrix can freeze at 
a temperature below − 50 °C. Thus, it effectively improves 
freeze–thaw resistance. Moreover, AAM composites are also 
known to have appreciable resistance to frost and frost-salt 
attacks. This is also the case for the in-service state of the 
AAM structures, which is far better than the same grade of 

Fig. 2  Optical micrograph showing formation of efflorescence on 
AAMs with time a 24 h b 7 days [56]



Innovative Infrastructure Solutions (2022) 7: 291 

1 3

Page 5 of 11 291

OPC concrete [61]. AAM composite is also not severely 
affected by freezing and thawing early age.

In contrast, a report showed that AAM composite demon-
strated the same poor mix of OPC concrete [62]. According 
to the authors, AAM composite lacks Portlandite and ettrin-
gite minerals which should control the higher free water in 
the matrix pores. With the presence of the crystal phases, 
freeing of pore-free waters will be prevented. Freeze–thaw 

techniques as provided by standards should be appropri-
ate for testing AAM composite. However, further attention 
may be paid to procuring and presaturation requirements of 
specimens.

Fig. 3  Digital image showing 
formation of efflorescence on 
some AAMs [56]

Fig. 4  Use of image analysis in the detection and quantification of efflorescence [60]
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Sulphate and acid resistance

The chemical actions of hydration products in OPC concrete 
can make it susceptible to sulphate attack [64]. Eventually, 
there is the disintegration of concrete by expansive ettringite 
or the formation of gypsum. However, this is not the case 
with low-calcium-based AAM, which exhibits better resist-
ance to sulphate solution. In addition, using precursors like 
fly ash, a low calcium material reduces hydration products 
in AAM composite, making it free from expansive ettringite 
C-S–H that could cause damage [65]. Thus, limitations in 
hydration products ettringite formation make AAM compos-
ite somewhat superior to OPC concrete in acid resistance.

The experimental findings of fly ash-based AAM com-
posite resistance to sulphate attack are presented in Fig. 5. 
Variation of ion concentration and pH has been presented. 
The dissolution of AAM silica-rich content or unreacted 
activator is considered to have yielded the Si discovered in 
the sulphate solution. There was an increase in Ca concen-
tration, which implies a poor sulphate attack resistance of 
calcium-rich hydrates ( C-(A)-S–H gel and C-S–H gel)than 
the N-A-S–H gel. A related study indicated that the Ca dis-
solution could be attributed to ion exchange or reaction with 
Na2SO4 [63]. The studies above also agree with Zheng et al. 
[64], who revealed that the resistance of AAM mortars to 

sodium sulphate is better than OPC mortar under dry–wet 
cycling. The compressive strength coefficient of AAM mor-
tars was better than the cement mortar after 75 cycles.

Fire resistance

RILEM reports [35] have shown that AAM composites 
possess high-temperature resistance due to low-calcium 
content.. In the structure, the internal pressure build-up is 
prevented via amorphous gel, thus enhancing the fire resist-
ance. In this case, spalling or splitting of the concrete, which 
is the norm in OPC concrete, is prevented.

Fireplug and furnace tests for AAM composites have pro-
duced good insulation services [36]. There is variation in the 
fire resistance of AAM composite, depending on the type of 
precursor. For instance, fly ash-based AAM produces bet-
ter fire resistance than a metakaolin precursor, as reported 
by researchers [12]. The researchers attributed such varia-
tion of pore distribution to be responsible for permeating 
steams from the structures. However, the fire resistance of 
the metakaolin-based AAM may be enhanced by blending 
metakaolin with blast furnace slag [35]].

Alkali–silica reaction

Like cancer in humans, alkali–silica reaction (ASR) involves 
overtime deleterious swelling in concrete caused by reaction 
of reactive amorphous silica in aggregates and the highly 
alkaline cement paste. It should be noted that the amorphous 
silica is non-crystalline.

As a result of the chemical reaction, aggregates expand, 
and thus leading to the development of soluble and viscous 
gel of sodium silicate  (Na2SiO3 · n  H2O). Subsequently, 
there is an increase in volume due to the swelling of the 
hygroscopic gel when absorbing water.

Thus, pressure is exerted in the siliceous aggregate due 
to the expansion, resulting in the spalling and eventually 
strength loss in concrete. Moreover, due to ASR, concrete 
cracking can occur and lead to critical structural failures.

The ASR-induced expansion has been compared in OPC 
and alkali-activated material [69]. In OPC, the alkalis con-
tent (Na2Oeq% < 0.6%) is limited, which helps mitigate the 
ASR in the OPC mixture. The typical mechanism for crack-
ing induced by ASR is illustrated in Fig. 6. Three stages are 
involved.

In Fig. 6, it is shown how the dissolution of poorly crys-
tallized silica in aggregates occurs, the generation of silica 
ions following the continuous attack by the silanol groups, 
and finally, there is the precipitation and polycondensation 
of silica ions by the cations in concrete’s pore solution.

Fig. 5  pH and ion concentration of fly ash-based AAM in 5% 
Na2SO4 solution (adapted from Džunuzović et al. [65][65])
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Accelerated and long‑term durability assessment 
and methodologies

With the advancements seen in research activities over 
the years, several innovative methods have been utilized 
to assess the durability properties of AAM and OPC com-
posites. In Table 1, several test methods and details have 
been presented. Strategies adopted include wet and drying 
cycling, brushing, in situ, and continuous immersion. Also, 
the duration of testing varied from hours to those extended 
to several weeks.

Summary and future perspective

The focus of the current study is on critiquing the various 
durability issues in alkali-activated materials and more 
so comparing the various methods of assessing the dura-
bility of the materials, in terms of accelerated and long-
term durability procedures. AAMs have been continuously 
developed with innovative materials such as slag, fly ash 
and metakaolin, but, durability phenomenon in AAM has 
not been overly explored. The study has pointed out sev-
eral durability assessment techniques and the significant 
resistance of AAM in aggressive medium than the OPC-
based composites. For the future research, there is a need 
to develop advanced characterization methods for reaction 
products or precursors—databases are required that provide 
the accurate description and thermodynamic prediction 
processes during the formation of gel in most low-calcium 
AAM composite. Also, the transport mechanism influences 

the durability performance of composite; hence, there is a 
need framework for understanding the transport mechanism 
in an AAM-based mixture. The future studies should also 
dwell on development of sustainable and durable composites 
using AAM in 3-D printed concrete, many more.

Conclusions

This study reported advances in accelerated and long-term 
durability assessment and methodologies for alkali-activated 
composites. The following conclusions were drawn from the 
study:

 (i)  Reports from several investigations generally showed 
that AAMs have satisfactory durability performances 
in aggressive mediums, such as sulphate, acid, fire, 
and freeze and thawing. Moreover, the pore solution 
chemistry and microscale reactions and precursors 
influence the durability performance of AAMs.

 (ii)  On a general note, the well-known methods of test-
ing long-term durability performances of AAMs 
(mostly for slag, fly ash, or their blends) are the 
same for OPC concrete. Although, inaccurate results 
may be obtained due to the chemistry and structure 
variations of the binders and OPC. Factors such as 
admixture dosage, pH, detection technique, and con-
crete pore solution affect the repeatability and repro-
ducibility of accelerated carbonation and finding the 
critical chloride threshold level in CPT.

Fig. 6  The typical mechanism 
for induced cracking in ASR 
system [70]
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