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Abstract
The open literature evidently indicates that the shear capacity of reinforced concrete beams is adversely affected by the 
replacement of natural concrete aggregate by recycled concrete aggregate (RCA), and several equations for estimating the 
shear capacity were proposed. This paper provides a critical assessment of the existing prediction equations for estimating the 
shear capacity of RAC beams. The assessment is conducted utilizing Bayesian parameter estimation for comparison between 
the seventeen existing prediction models of the shear capacity of RAC beams. This robust assessment technique against false 
conclusions yields more informative and richer inferences than a mere comparison with the experimental shear capacities 
by providing a complete distribution of the mean and standard deviation of the quality of the prediction (i.e., test-to-predict 
shear values). A clear ranking of the existing prediction equations is performed based on the degree of conservatism and 
uniformity of the design provided by each of the shear strength prediction equations. This paper also directly addresses the 
significant parameters that influence the shear strength of RAC beams based on the grey correlation analysis (GCA) and 
check whether the existing prediction equations include these important parameters.

Keywords  Bayesian parameter estimation · Shear capacity · Prediction equation · Critical assessment · Grey correlation 
analysis

Introduction

The insufficiency in available spaces for concrete demolition 
wastes disposal and the exhaustion of natural resources of 
aggregate is a common concern, specifically in urban areas 
[1]. One of the promising solutions concerning this problem 
is processing these wastes through a process that involves 
removing impurities, crushing, and sieving the demoli-
tion waste to generate a new aggregate so-called recycled 
concrete aggregate. When recycled concrete aggregate is 
utilized in concrete production, with partial or complete 
replacement of natural aggregate, this concrete is denoted 

as recycled aggregate concrete. Recycling concrete waste 
is considered an effective method for waste processing that 
has many economic and environmental advantages [2]. Such 
technology is considered a major deal, especially in coun-
tries that suffer from a shortage in natural aggregate and 
landfill capacity (e.g., Japan and the Netherlands) [3–5].

Despite the large quantities of recycled aggregate in some 
countries, the majority of recycled aggregate is used pre-
dominantly as a filling for retaining walls, a pavement base, 
and non-structural concrete sections (fences, curbs, trails), 
and only small quantities are used for structural concrete 
[6]. The major reasons for this are related to the quality 
of recycled aggregate such as lower density, higher water 
absorption, and the high content of impurities (e.g., glass, 
soil, plaster) compared to natural aggregate. Large varia-
tions in these aforementioned properties are common, which 
significantly affects the performance of recycled aggregate 
concrete. To expand the usage of recycled aggregate for 
structural concrete, much research focused on classifying 
recycled aggregate by using a performance-based approach 
rather than composition only [7], which has been found to 
be a more general approach to estimate the performance of 
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recycled aggregate [7, 8]; thus, produce a structural concrete 
with predictable performance.

Although a lot of research was devoted to investigating 
the properties of recycled aggregate, its rheology, and dura-
bility characteristics, limited research was conducted on the 
behavior of recycled aggregate concrete structural members 
[9–16]. These studies are very significant because it is diffi-
cult to predict the behavior of reinforced recycled aggregate 
concrete members based only on the test results obtained 
from the material characteristics of recycled aggregate [17].

In the open literature, the shear behavior of recycled 
aggregate concrete (RAC) beams was investigated at vari-
ous levels of replacement of natural concrete aggregate. 
Knaack and Kurama [16, 18], in their experimental inves-
tigation, observed that the shear capacity of RAC beams 
was reduced by the inclusion of recycled aggregate; how-
ever, they concluded that the existing design standards 
were adequate for the design of RAC beams regardless 
of the aggregate replacement ratio due to their inherently 
conservative nature. Moreover, Arezoumandi et al. [16, 
18] conducted an experimental study to investigate the 
shear behavior of RAC beams with 100% and 50% replace-
ment ratio of natural aggregate at longitudinal reinforce-
ment ratios of 2.73%, 2.03%, and 1.27%. The load–deflec-
tion relationship and the crack pattern were very similar to 
the natural aggregate concrete (NAC) beams. The results 
also indicated that even though the shear capacity of the 
tested RAC beams was reduced compared to the corre-
sponding NAC beams, the shear capacity of RAC beams 
was located within the 95% confidence level of the shear 
capacity of the conventional NAC beams in the existing 
literature. Further, Choi et al. [19] performed an experi-
mental investigation to study the shear performance of 
RAC beams at different replacement ratios of natural 
aggregate (30%, 50%, and 100%), different longitudinal 
reinforcement ratios (0.53%, 0.81%, and 1.61%), and at 
different shear span ratio (1.5, 2.5, and 3.25). All the tested 
beams demonstrated a shear tension failure mode; how-
ever, the shear capacity of the RAC beams was observed 
to be lower than the corresponding NAC beams. Moreover, 
the results indicated that as the shear span increases the 
reduction in shear capacity in RAC beams is greater than 
the corresponding NAC beams. Once more, Choi et al. 
[19] established that existing design standards are suitable 
for the design of RAC beams due to their inherently con-
servative nature. Ignijatovic et al. [20] also investigated 
the shear behavior of RAC beams with and without shear 
reinforcement at different replacement ratios of natural 
aggregate (50% and 100), it was concluded that the exist-
ing design standards need no further modifications for 
RAC beams design. Conversely, Rahal and Alrefaei [21] 
showed by comparison with experimental results of forty-
nine RAC beams that the simplified ACI 318 [22] equation 

are generally unconservative in predicting the shear capac-
ity of RAC beams and suggested a 20% reduction to the 
shear strength estimated using the ACI equation when 
designing RAC beams. In addition, Etxeberria et al. [23, 
24], based on their experimental program, suggested that 
codes design equations should be only used for the design 
of RAC beams with a 25% replacement ratio of natural 
aggregate or less and recommended further research to 
investigate the shear behavior of RAC beams at a higher 
recycled aggregate replacement ratio. Tošić et al. [25] also 
established that the [26] shear prediction equations are 
inaccurate and imprecise in predicting the shear perfor-
mance of RAC beams with stirrups. In addition, Pradhan 
et al. [27] claimed, based on their experimental program 
and statistical analysis results, that the existing shear pre-
diction equations are inadequate for predicting the shear 
capacity of RAC beams and proposed other equations to 
predict the shear strength of RAC beams.

From these observations on the shear behavior of RAC 
beams, it may be seen that confirming the existing design 
codes are capable to predict the shear capacity of RAC 
beams still need further evaluation and more critical assess-
ment. Moreover, despite the possibility that code equations 
may offer a conservative prediction of the shear capacity of 
RAC beams, due to their inherently conservative nature, this 
degree of conservatism should be accurately quantified for 
further safety assessment and reliability of the shear design 
of RAC beams.

The assessment of existing design equations using mere 
comparison with experimental data may be susceptible to 
false conclusions due to the possibility that the collected 
data may contain accidental coincidences of erroneous data 
[28]. In this study, a Bayesian framework for assessing dif-
ferent shear prediction models of RAC beams is proposed. 
The Bayesian parameter estimation allows overcoming the 
sensitivity of any drawn conclusion from the properties 
of the collected database. Bayesian parameter estimation 
addresses the possibility of false conclusions issue by pro-
viding a complete distribution of credible values of the mean 
� , standard deviation � , and effect size of experimental-to- 
estimated capacity values.

Any design equation is required to provide a uniform 
strength prediction across the different design parameters 
(i.e., variability of the strength predictions from the experi-
mental values is as low as possible). To assess if existing 
prediction equations of shear capacity of RAC beams can 
offer a uniform design across different design parameters, 
the distribution of the plausible values of the standard devia-
tion of test-to-predict shear strength and its associated high-
est density interval (HDI) are estimated using the Bayesian 
approach. The HDI is defined as the interval of most cred-
ible values that covers 95% of the distribution. To perform 
this Bayesian assessment a comprehensive and up-to-date 
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dataset of RAC beams that failed in shear was collected and 
analyzed using Bayesian statistics.

Finally, based on the collected experimental database, a 
grey correlation analysis is performed to estimate the para-
metric sensitivity of the shear strength of RAC beams. The 
existing shear prediction equations, to describe the real shear 
behavior, should offer similar sensitivity to the different 
parameters. As a part of the assessment, it will be checked 
that the important parameters in the shear prediction are not 
ignored in the different prediction models.

Surveyed experimental database

A comprehensive literature review was performed to col-
lect data from tests conducted on RAC beams [11, 12, 15, 
16, 18, 19, 25, 27]. The beams have different features con-
cerning recycled aggregate replacement ratio (r) , maximum 
aggregate size 

(
dmax

)
 , cross section size, shear span-to-depth 

ratio (a∕d) , longitudinal reinforcement ratio (�) , shear rein-
forcement ratio (�w) , concrete compressive strength (f �

c
) , and 

longitudinal yield strength (fy) . The distribution of these 
variables as well as the experimental shear capacity values 
are shown in Fig. 1, where count indicates the number a 
certain range of a specific variable appeared in the dataset. 
The dataset consists of 276 beams that failed in shear, only 
38 beams out of the 276 beams are with stirrups (i.e., shear 
reinforcement).

The shear span-to-depth ratio a∕d in the dataset has a 
wide range extending between a minimum of 1 and a maxi-
mum of 5.1, mainly within the range ( 2 < a∕d < 4) . Most 
of the collected specimens have used reinforcing steel with 
a yield strength fy of less than 600 MPa. The compressive 
strength of concrete f ′

c
 has a range between 20 and 50 MPa. 

The dominant maximum aggregate sizes dmax in the dataset 
are 19 mm and 25 mm.

Existing shear strength prediction equations

The related literature indicated that the shear capacity of 
reinforced concrete (RC) beams is adversely affected by the 
replacement of natural aggregate by recycled aggregate [9, 
16, 18]. However, whether existing code prediction equa-
tions are suitable for estimating the shear capacity of RAC 
beams still needs further evaluation as explained earlier. In 
this regard, the existing shear prediction equations, sum-
marized in Table 1, are compared to experimental results to 
validate their suitability for use in the design of RAC beams.

The prediction models available in the ACI 318-19 
[22], Eurocode 2 [26], IS:456 (2000) [29], BS 8110 [30], 
and the proposed equation by Bazant and Yu [31, 32] only 
consider the longitudinal reinforcement ratio, shear rein-
forcement ratio, compressive strength of concrete, and 
the beam effective depth to predict the shear capacity of 
reinforced concrete (RC) beam. In addition to this, CEB-
FIP [33], the proposed equations by Zsutty [34, 35], Niwa 
et al. [36], Gastebled and May [37], Kim and Park [38], 
and Rebeiz [39] also account for the shear span-to-depth 
ratio. However, the New Zealand code [40] only consid-
ers the effect of compressive strength of concrete along 
with longitudinal reinforcement ratio. The equation pro-
posed by Arslan [41] only accounts for the compressive 
strength of concrete, the shear reinforcement ratio, and 
the shear span-to-depth ratio to predict the shear capac-
ity. The shear equations proposed by Bazant and Sun [42] 
and Bazant and Kim [43], which were derived based on 
the fracture mechanics approach, account for compressive 

Fig. 1   Distribution of the vari-
ables in the collected experi-
mental dataset
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Table 1   Summary of shear 
prediction equations from codes 
and literature

No Authors or code Equation

1 ACI 318-19

vu =

⎧
⎪
⎨
⎪
⎩

0.66(𝜌)1∕3
�

f
�

c
Av ≥ Avmin

0.66

�
2

1+
d

10

(𝜌)1∕3
�

f
�

c
Av < Avmin

⎫
⎪
⎬
⎪
⎭

+
Avfyw

svb

2 New Zealand code
vu = (0.07 + 10�)

√
f
�

c
+

Avfyw

svb

3 Eurocode 2 vu = vc + vs

vc = 0.18

(
1 +

√
200

d

)(
�fc

)1∕3

vs =
(
�w∕sv

)
zfyw cot �

4 CEB-FIP vu = vc + vs

vc = 0.15

(
1 +

√
200

d

)
(3d∕a)1∕3

(
�fc

)1∕3

vs =
(
�w∕sv

)
zfyw cot �

5 IS:456 (2000)
vu =

0.85
√
fck,cu

�√
1+5�−1

�

6�
+ 0.87

Avfyw

svb

Where � = 0.8fck,cu∕6.89�

6 BS 8110
vu =

0.79

�m
(100�)1∕3

(
400

d

)1∕4
(

f
�

c

25

)1∕3

+ 0.95
Avfyw

svb

7 Zsutty [34, 35]
vu =

{
2.21

(
f
�

c
𝜌(d∕a

)
)1∕3

(
2.5

a∕d

)
+ 𝜌wfyw a∕d < 2.5

2.21
(
f
�

c
𝜌(d∕a

)
)1∕3 + 𝜌wfyw a∕d ≥ 2.5

}

8 Bazant and Kim [43]
vu =

0.831�1∕3

1+d∕25dmax

(√
f
�

c
+ 249

√
�∕(a∕d)5

)
+ �wfyw

9 Arslan [41]
vu =

{ (
0.15f 0.5

c
+ 0.02f 0.65

c

)
(2.5∕a∕d) + 𝜌wfyw a∕d < 2.5(

0.15f 0.5
c

+ 0.02f 0.65
c

)
+ 𝜌wfyw a∕d ≥ 2.5

}

10 Russo et al. [44]
vu = 0.72

1+
√

5.08

dmax√
1+

d

25dmax

[
�0.4f �0.39

c
+ 0.5�0.83f 0.89

y

(
a

d

)−1.2−0.45a∕d
]
+ 0.17f

�0.5
c

(
�wfyw

)0.7

11 Niwa et al. [36] vu = 1.125f
�1∕3
c (�)1∕3(1∕d)1∕4(0.75 + 1.4a∕d) + �wfyw

12 Bazant and Yu [31, 32]
vu = 3.5

√
f
�

c

7�2∕3

d
+ �wfyw

13 Gastebled and May [37] vu = 0.15
37.41√

d
(3d∕a)1∕3(100�)1∕6

�
1 −

√
�
�2∕3

f �0.35
c

+ �wfyw

14 Kim and Park [38] vu = 3.5f
�1∕3
c �3∕8

�
0.4 + d∕a

��
1√

1+0.008d
+ 0.18

�
+ �wfyw

15 Pradhan et al. [27]
vc = 1.6r−0.1f 0.6

c

(
dmax

d

)0.48(
a

d

)−0.91

vsi = 1.3r−0.1f 0.6
c

(
dmax

d

)0.48(
a

d

)−0.91

vu = vc + vsi

16 Rebeiz [39]

vu =

⎧
⎪
⎨
⎪
⎩

0.4 +
�

f
�

c

𝜌d

a
(2.7 − 0.4(a∕d)) + 𝜌wfyw a∕d < 2.5

0.4 + 2.5

�
f
�

c

𝜌d

a
+ 𝜌wfyw a∕d ≥ 2.5

⎫
⎪
⎬
⎪
⎭
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strength of concrete along with longitudinal reinforcement 
ratio, the effective depth of the beam, shear reinforcement 
ratio, and shear span-to-depth ratio. The shear equation 
was proposed by Russo et al. [44] also considers the same 
parameters as Bazant and Sun [42] and Bazant and Kim 
[43] while the equation prosed by Pradhan et al. [27] con-
siders the effect of aggregate replacement ratio, concrete 
compressive strength, depth of the beam, shear span-to-
depth ratio, and maximum aggregate size.

Proposed Bayesian framework 
for assessment

Collected data are not enough for making inferences as they 
only provide sample statistics (e.g., point estimates of the 
mean � and standard deviation � of test-to-predict shear val-
ues) that are dependent on the set of the collected data that 
may contain accidental coincidences of erroneous values, 
rather than a possible set of statistics with their degree of 
credibilities (i.e., possible hypotheses) given that there is a 
certain set of observed data. For example, a simple compari-
son between the experimental values of shear capacity of 
RAC beams (vtest) and the values provided by different code 
prediction equations, as shown in Fig. 2. Result in one set 

of sample statistics (e.g., � and � ) for each comparison that 
is sensitive to the collected dataset; thus, the risk of change 
of these values are high when using different datasets (in 
sample size or values). This risk of change may cause some 
uncertainty about the correct conclusions. As an alternative, 
Bayesian parameter estimation can provide complete distri-
butions of parameters (i.e., distributions of sample statistics) 
that indicate the relative credibility of each possible value; 
thus, it is more general and robust to false alarm situations 
(i.e., arriving at false conclusions). The robustness comes 
from the adaptive nature of the credibility values as new data 
are observed; however, the set of the possible parameters is 
less likely to change to alter the conclusions. In other words, 
Bayesian parameter estimation provides us with possible 
parameters in which their credibilities are the only thing at 
risk to change with new observations.

In this study, a set of values of tested-to-predicted shear 
strength of RAC beams have been observed. For assess-
ment, it is essential to quantify the difference between the 
typical shear capacities (i.e., measured in the test) and 
the predicted values. To reach a more robust assessment, 
Bayesian parameter estimation is performed. Bayesian 
parameter estimation is a superlative technique to estimate 
the data parameters (e.g., � and � ) and assess the uncer-
tainty of the estimates.

Fig. 2   A simple comparison 
between experimental and dif-
ferent codes prediction results. 
vACI , vEur, and vNew are the shear 
capacity predicted by the ACI 
318-18, Eurocode 2, and the 
New Zealand code, respectively

No Authors or code Equation

17 Bazant and Sun [42]
vu = 0.54�1∕3

1+
√

5.08

dmax√
1+

d

25dmax

(√
f
�

c
+ 249.2

√
�∕(a∕d)5

)
+ �wfyw

Where vu = the ultimate shear strength (MPa), f ′
c
 = the compressive strength of concrete cylinder (MPa), 

fck,cu = the compressive strength of concrete cube (MPa), � = longitudinal reinforcement ratio, dmax = maxi-
mum aggregate size (mm), 

a∕d =

 shear span-to-depth ratio, fy = yield strength of longitudinal reinforcement 
(MPa), fyw = yield strength of shear reinforcement (MPa), d = effective depth of the beam (mm), b = width 
of the beam (mm), Av = area of shear reinforcement (mm2), Avmin = minimum area of shear reinforcement 
(mm2),�w = shear reinforcement ratio, sv = spacing of shear reinforcement (mm), � = inclination of shear 
cracks, �m = partial safety factor for shear capacity without shear reinforcement = 1.25, z = lever arm = 0.9d, 
vsi = this term is only included with the existence of stirrups otherwise it is equal to zero, and r = recycled 
aggregate replacement ratio

Table 1   (continued)
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The test-to-predict shear strengths of RAC beams (i.e., 
Vtest∕Vpred) are modeled as log-normal random variables. 
Thus, the natural logarithms of these values xi are normally 
distributed, and the Bayesian method developed for normally 
distributed random variables can then be used. In Bayesian 
statistics, the parameters are considered as random variables 
in which their probability distributions can be updated as 
new data is observed. The method for updating the joint 
probability distribution of the parameters � and �2 based on 
the observed data is

where f ′′
(
�, �2|�

)
 and f ′

(
�, �2

)
 are the posterior and prior 

density function of the parameters, respectively. The symbol 
∝ stands for that the terms are proportional (i.e., equal up to 
a product with a constant). L

(
�, �2|�

)
 are the likelihood of 

parameters according to the observed data represented by a 
vector �. The likelihood term can be written as the product 
of the probability densities of each of the n observed data 
points xi and it depends on the value of the parameters � 
and �2:

The prior probability distribution can either be modeled to 
consist of prior knowledge regarding the distribution of the 
parameters, or it could be noninformative, this means that 
the posterior distribution only is a function of the data. In 
this study, the approach is to choose a prior distribution that 
is noninformative for the mean and variance values. This 
approach is selected because a very wide range of the mean 
and standard deviation of test-to-predict shear strength of 
RAC beams is assumed. A similar approach was used by 
Caspeele and Taerwe [45] for concrete structures and Mül-
ler and Graubner [46] for masonry structures. Here, it is 
sought to assign broad priors to the parameters relative to the 
observed data, so that priors have a small influence on the 
posteriors. On lie of this, a normal distribution is assigned to 
the parameter �  with a mean M that is equal to the average 
of the data m , and a standard deviation S that is equal to a 
large multiple (e.g., 1000) of the standard deviation of the 
observed data s,

(1)f ��
(
�, �2|�

)
∝ L

(
�, �2|�

)
.f �
(
�, �2

)

(2)

L
�
�, �2��

�
=

n�

i=1

f (xi��, �2) =

n�

i=1

1
√
2��2

exp

�
−

�
xi − �

�2

2�2

�

(3)f �(�) = N
(
M, S2

)

(4)M =
1

n

n∑

i=1

xi

(5)s2 =
1000

n − 1

n∑

i=1

(
xi − m

)2

(6)S = 1000 × s

Fig. 3   Model structure for data described by a log-normal distribu-
tion. ∼= distributed as

Collect data

Define a description model of the data (likelihood)

Specify priors for the parameters of the likelihood

Calculate posteriors

Interpret the posterior distributions

Validate that the model is an appropriate description of the data

Fig. 4   Bayesian framework for assessment
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N
(
M, S2

)
 refer to a normal distribution with a mean M 

and variance S2. This way, the prior of the mean is assured 
of being vague. Similarly, a uniform prior on � is assigned 
with an upper bound H that is a large multiple of the stand-
ard deviation of the data and a lower bound L that is a small 
fraction of the standard deviation of the data.

U(L,H) represent a uniform distribution with a lower bound 
L and an upper bound H . Again, this means that the prior on 
� is vague relative to the data. Figure 3 illustrates the model 
structure of the Bayesian estimation adopted here. At the top of 
the diagram, the priors for the parameters ( � and �) are shown. 
The sampling distribution of the data was described by a log-
normal distribution as recommended in related literature as a 
viable description of the model error (i.e., the distribution of 
Vtest∕Vpred ) [47], this description will be validated at the end 
of the assessment. The joint density function of the prior (i.e., 
f ′
(
�, �2

)
 ) is assumed to be the product of f �(�) and f �(�) (i.e., 

independent parameters assumption),

(7)f �(�) = U(L,H)

(8)L = 0.1 × s

(9)U = 1000 × s

(10)f �
(
�, �2

)
= f �(�).f �(�)

Although the analytical solution of Eq.  (1) may be 
reached, the exact analytical solutions will be abandoned, 
and instead, the Markov chain Monte Carlo (MCMC) 
method to estimate the posteriors will be used. MCMC 
algorithms create samples from probability distributions 
(i.e., priors and likelihood), and these samples are used 
to compute the posteriors by Eq. (1). The innovation of 
MCMC algorithms, along with fast computers, and soft-
ware for automatically generating samples for complex 
models, allowed Bayesian statistics to gain practical use 
[25]. Assessment is performed by interpreting the gener-
ated posterior distributions. The final step of the assess-
ment requires validating that the sampling distribution 
(likelihood) specified in the previous step is a good rep-
resentation of the data. Figure 4 summarizes the steps of 
the Bayesian assessment framework.

Posterior distributions

Performing the MCMC algorithm [48] to approximate the 
posteriors using the Bayes’ rule, priors, and likelihood 
described earlier results in the posterior distribution of � and 
� for each code comparison as shown in Fig. 5. The posteri-
ors related to the comparison of the other existing prediction 
models proposed by different authors to the experimental 
results are shown in Fig. 1A. From Fig. 5, it can be observed 
that each code has a varying degree of conservatism in 

Fig. 5   Posterior distributions for 
assessment of different codes
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estimating the shear capacity of RAC beams. This degree 
of conservatism can be seen in the mean and the effect size 
distribution of Vtest∕Vpred . When the HDI of the mean distri-
bution falls within the region that is greater than one, as in 
the case of all the codes except the New Zealand code (see 
Fig. 5), this means that the prediction equation offers some 
conservatism in the prediction on average. The effect size 
distribution represents the standardized difference meas-
ured in a unit of standard deviation. The effect size can offer 

another metric to indicate the degree of conservatism in the 
mean prediction. However, for safety or reliability analysis, 
both the mean and standard deviation of the model error 
(i.e., Vtest∕Vpred) controls the final conservatism score of the 
prediction equation. The most plausible values of � and � 
that can be used in reliability analysis are illustrated by the 
HDI interval of each distribution.

Besides providing parameters for the model error required 
by reliability and safety analysis of different prediction 

Fig. 5   (continued)
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equations, Bayesian estimation can be used to indicate the 
degree of uniformity in the design across different design 
parameters offered by prediction equations. The degree of uni-
formity can be estimated by two values: the range of the plau-
sible mean values (i.e., the range of the HDI of the mean dis-
tribution), and the values of the plausible � values. The large 
range of plausible mean values indicates that the observed 
data cannot give strong evidence that the bias (i.e., � ) in the 
estimation is toward a single value. Thus, the mean esti-
mate has high estimation uncertainty which may indicate a 
possible nonuniform design offered by the prediction equa-
tion. High values of plausible � values suggest that the quality 
of prediction varies with different designs; thus, the prediction 
equation doesn't satisfy the uniform design requirement.

Moreover, the posteriors can be used for comparing dif-
ferent prediction equations. For example, comparing the 
posteriors of the New Zealand code and the CEP-FIP code, 
one will observe that the CEP-FIP offers a more uniform and 
conservative design in contrast with the New Zealand code.

Posteriors predictive check

The last step of the assessment requires checking if the 
posterior predictions can imitate the data with reasonable 
accuracy. If not, another model structure of the data should 
be described. This process is called “posterior predictive 
check”. There is no unique way for verifying that the model 
predictions systematically or meaningfully mimic the data 
because there are many ways to measure the systematic vari-
ation of the actual data from its predictions. One approach 
is to plot the histogram of the actual data (i.e., collected 
Vtest∕Vpred data) against distributions of the predicted data 
from the model structure (see Fig. 3). First, random samples 
of the parameters � and � are generated from their posterior 
distributions and plugged into the data model (here it is the 
log-normal distribution) to generate different log-normal 
distributions. This is done a large number of times to create 
representative distributions of the data model. The results of 
this simulation are illustrated in Fig. 6 for three code predic-
tions, and the rest of the results were not shown in this study 
for brevity. By visual inspection of the results illustrated in 
Fig. 6, the actual data appears to be well-described by the 
log-normal distribution; thus, no need to change the model 

of the data. The inspection of other prediction equations 
yielded the same conclusion.

Grey correlation analysis

To estimate the parametric sensitivity of the shear capacity 
of RAC beams, the grey correlation analysis (GCA) was 
performed in this study. The goal here is to determine the 
significant parameters that influence the shear strength of 
RAC beams (i.e., highly correlated with shear strength); 
thus, should be considered in modeling the shear behavior 
of RAC beams. As a part of the assessment, the existing pre-
diction equations will be checked whether it includes these 
important parameters.

GCA is a method to decide whether parameters are cor-
related and to determine their degree of correlation [49]. 
The GCA is conducted here between the shear capacity 
(called main factor or main array) and the design param-
eters of the RAC beams (called sub-factors or sub-arrays) 
to determine the important parameters in the model 
development of the shear capacity of RAC beams. The 
detailed calculation requires assigning the shear strength 
values to a sequence denoted as the reference sequence 
(X0 = {X0(1),X0(2),… ,X0(n)}) while the critical RAC 
beam parameters including concrete strength, recycled 
aggregate content, yield strength of longitudinal reinforce-
ment, beam effective depth, shear span-to-depth ratio, and 
maximum aggregate size are considered as the comparative 
sequences, (Xi = {Xi(1),Xi(2),… ,Xi(n)}, i = 1, 2,… ,m) . 
Then, the reference sequence and the comparative sequences 
are normalized to the same scale to reduce the influence of 
the numerical variations and parametric dimensions of the 
original sequences. The normalization of each value in the 
sequence is conducted as follows:

The grey relational coefficient �i between the reference 
sequence and the comparative sequence i can be calculated 
as follows:

(11)Yi(k) =
Xi(k)

1

n

∑n

k=1
Xi(k)

Fig. 6   Posterior predictions 
with the data for different codes
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where � is a coefficient, a value of 0.5 is often used [49], and:

To estimate the degree of correlation, the grey relational 
grade �i is used:

The higher the relational grade, the greater the correla-
tion between the comparative sequence and the reference 
sequence. Figure 7 shows the grey relational grade between 

(12)�i = �
[
Y0(k), Yi(k)

]
=

[
Δmin + �Δmax

]
[
Δ0i(k) + �Δmax

]

(13)Δ0i(k) =
||Y0(k) − Yi(k)

||

(14)Δmax = max
i

(
max
k

||Y0(k) − Yi(k)
||
)

(15)Δmin = min
i

(
min
k

||Y0(k) − Yi(k)
||
)

(16)�i = �
[
Y0(k), Yi(k)

]
=

1

n

n∑

k=1

�
[
Y0(k), Yi(k)

]

the shear strength of RAC beams and the varying design 
parameters.

From Fig.  7, it can be observed that the correlation 
grade varies with the design parameters. In case the full 
dataset of RAC beams is used in the GCA, the ranking of 
influential parameters based on the correlation grade is as 
follows: dmax > d > 𝜌 > f

�

c
> r, a∕d . Thus, for the predic-

tion equations that specify one shear equation for beams 
without regard to the value of a∕d or Av (e.g., CEB-FIP 
prediction equation), these influential parameters should 
be included in the model development of shear capacity. 
In the case of RAC beams without shear reinforcement or 
with Av < Avmin , the ranking of the parameters is as fol-
lows: d > dmax > 𝜌 > fy > f

′

c
> r . This ranking is surprising 

as fy correlation grade exceeded the one for f ′
c
 . This could 

be explained by the properties of the collected dataset as 
most beams have a low concrete strength and limited fy val-
ues. Extending the dataset to cover a wide range of concrete 
strength and steel yield strength may increase the correlation 
grade of f ′

c
 . Therefore, here f ′

c
 will be considered an influ-

ential parameter despite the correlation grade. Another sur-
prising observation from the GCA results is the correlation 
grade of d in the case of RAC beams with or without shear 
reinforcement as the GCA results indicate that the influence 
of d on the shear capacity is the same regardless of shear 
reinforcement. This opposed what the ACI 318-19 predic-
tion equation suggests as it only includes the parameter d for 
the case of Av < Avmin. For the case a∕d < 2.5 , it can be seen 
that more correlation grade is given to f ′

c
 than � , conversely 

when a∕d ≥ 2.5 a more correlation grade is given to � com-
pared to f ′

c
.  This phenomenon has been observed in previous 

research [50] that indicated that steel shear contribution was 
more effective for beams with high a∕d ratios than for deeper 
beams with a∕d < 2.5 . This could be explained by the fact 
that slender beams with high a∕d ratios mostly exhibit an 
S-shaped critical diagonal crack prior to shear failure, result-
ing from the more apparent effect of normal stress resulting 
by flexural moment [51–56] from which it is well under-
stood in the literature [57] that steel reinforcement ratio � 
has the highest influence on the flexural resistance. From 
Fig. 7a–e, it can be seen that aggregate replacement ratio 
r% , as observed in previous literature [15, 19, 20], does not 
significantly contribute to shear strength prediction. How-
ever, this conclusion is based on the GCA of the dataset with 
a wide range of replacement ratios r%. Performing GCA to 
the subset of the data with r% greater than 25% results in 
the correlation grades as shown in Fig. 7f. From Fig. 7f, 
it is indicated that r% has a significant contribution to the 
shear prediction at high values of the replacement ratios. 
This could justify the recommendation of Etxeberria et al.
[23, 24] to limit the use of codes design equations for the 
design of RAC beams with a 25% replacement ratio of natu-
ral aggregate or less.

Fig. 7   Grey correlation grade matrix of RAC beams with different 
conditions
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Results and discussion

Based on the Bayesian estimation results a ranking score is 
given to each of the seventeen prediction equations. These 
scores are based on the degree of conservatism, and uni-
formity of the design offered by the different prediction 
equations. To account for the effect of both the mean bias 
and standard deviation of the model error on the safety of 

the prediction equation, the conservatism score was com-
puted as the value of the mean of the bias (i.e., mean of �) 
subtracted from the median of � (i.e., the median of � − � ). 
The uniformity in the design score is measured as the 95th 
percentile of � as the value of � expresses the variability of 
the prediction equation from the experimental results. For 
example, the comparison between the ACI 318-19 and the 
New Zealand code (see Fig. 8) show that the value of the 

Fig. 8   Comparison between the shear prediction equations of the ACI318-19 and the New Zealand code a mean comparison, and b standard 
deviation comparison

Table 2   Comparison between different prediction equations

No. Authors or code Conservatism 
score (rank out 
of/17)

Uniformity in the 
design score (rank out 
of/17)

Safety factors compared 
to NAC beams (need to be 
revised?)

Does it Include the top 
important parameters (based 
on GCA)?

1 ACI 318-19 9 8 No No
2 New Zealand code 15 9 Yes No
3 Eurocode 2 10 5 Yes No
4 CEB-FIP 5 6 No No
5 IS:456 (2000) 4 12 No No
6 BS 8110 2 11 No No
7 Zsutty [34, 35] 13 3 Yes No
8 Bazant and Kim [43] 6 4 No Yes
9 Arslan [41] 7 10 No No
10 Russo et al. [44] 17 17 Yes Yes
11 Niwa et al. [36] 12 15 Yes No
12 Bazant and Yu [31, 32] 1 14 No No
13 Gastebled and May [37] 3 13 No No
14 Kim and Park [38] 11 1 No No
15 Pradhan et al. [27] 8 16 Yes No
16 Rebeiz [39] 16 2 Yes No
17 Bazant and Sun [42] 14 7 No Yes
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median of � − � for the ACI 318-19 code is higher than 
that for the New Zealand code which implies that the ACI 
318-19 shear prediction equation provides more conserva-
tive predictions. Another observation, the value of the 95th 
percentile of � for the ACI 318-19 is lower than that for 
the New Zealand code which indicates that the ACI 318-19 
provides more uniform predictions of shear capacity (i.e., 
less variability from the experimental values).

Comparing the mean bias (i.e., � of Vtest∕Vpred) and � of 
RAC beams with NAC beams (the bias and variability of 
shear capacity of NAC beams were evaluated using the data 
from [47]), one could observe whether safety factors of RAC 
beams are adequate. Safety factors refer to resistance factors 
or partial safety factors included in the design equations to 
provide a safe prediction (i.e., that ensure that the predic-
tion can attain the required reliability level) for design pur-
poses. For example, the ACI 318-19 uses a resistance factor 
of 0.75 for the shear design equation. A lower mean bias 
and higher � of RAC beams than NAC beams could sug-
gest that the required target reliability level cannot be met. 
In Table 2, the results of this comparison are summarized 
by affirming if safety factors for shear should be revised or 
not. Lastly, Table 2 summarizes the GCA results by verify-
ing if all important parameters are included in the model 
development.

In Table 2, the higher the rank the greater the conserva-
tism and uniformity in design degree. Picking the predic-
tion equation with the best uniformity in design score and 
including all important parameters will be the best choice. 
The conservatism degree can be calibrated using safety 
factors for design; thus, does not represent as significant 
as the uniformity and correlation score. An unexpected 
observation from Table 2 is the ranks of the prediction 
equation by Russo et al. [44] which includes all important 
parameters; however, it has the worst performance com-
pared to the other models concerning uniformity score. 
This could be explained by the equation format where it 
seems that it does not correlate well with the data. All 
codes except the New Zealand code and Eurocode code 
can safely be used for estimating the shear capacity of 
RAC beams using the same safety factors as NAC beams. 
This could be a result of the inherently conservative nature 
of most codes.

Advantages and disadvantages of each prediction 
model

In terms of uniformity of the design, Kim and Park [38] 
and Rebeiz [39] shear prediction models provide the most 
uniform design of RAC beams in comparison to the other 
investigated models. However, Rebeiz's [39] shear predic-
tion model may require new safety factors than the one used 

for NAC beams this is due to the low possible biases (i.e., 
� of of Vtest∕Vpred) provided by this model (see Fig. 1A). 
Moreover, based on the analysis results, Bazant and Yu [31, 
32] shear prediction model showed the most conservative 
prediction of the shear capacity of RAC beams and a low 
uniformity score compared to the other models. Therefore, 
Bazant and Yu's [31, 32] shear prediction model may not be 
the best model to be used for shear capacity prediction of 
RAC beams. The other prediction models provide conserva-
tivism and uniformity levels that fall between the aforemen-
tioned models.

Concerning codes’ shear prediction equations, Eurocode 
2 and CEB-FIP provide the most uniform design of the RAC 
beams compared to the other codes, and the least uniform 
design is provided by the IS:456 (2000) and BS 8110 codes. 
Moreover, the New Zealand code showed the least conserva-
tive predictions of the shear capacity of RAC beams com-
pared to the other codes which explain the need to revise the 
safety factors for this code when used for the design of RAC 
beams. Further, none of the codes’ equations seem to include 
all the influential parameters for the prediction of the shear 
capacity of RAC beams.

Conclusions

This paper presents a comprehensive advanced assessment 
of different shear prediction models for RAC beams. The 
assessment study was conducted using Bayesian parameter 
estimation and GCA analysis. The following remarks can 
be pointed out:

•	 Different prediction models have varying performances 
in estimating the shear strength of RAC beams. This per-
formance was computed by the posterior distribution of 
the mean, standard deviation, and effect size of test-to-
predict values. The performance metrics were based on 
a proposed conservatism and uniformity in the design 
score. These scores were used for ranking the existing 
prediction equations in terms of conservatism and uni-
formity in the design. This ranking could serve as a tool 
to express a preference for some of the equations.

•	 The comparison between the bias and variability of the 
RAC beams and NAC beams revealed that some of the 
safety factors (i.e., resistance factor or partial safety fac-
tors used for the design of NAC beams) for some existing 
shear models (e.g., The New Zealand code shear design 
equation) need to be revised to ensure that the required 
target reliability can be met for the shear design of RAC 
beams.

•	 The GCA analysis showed that the correlation grade var-
ies with design parameters. The most influential param-
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Fig. 9   Posterior distributions for 
assessment of different existing 
shear models

eters that are required to be considered in the model 
development fluctuate depending on the conditions the 
prediction equations cover. For example, at a∕d < 2.5 
the correlation grade of f ′

c
 is larger than � , conversely 

when a∕d ≥ 2.5 a more correlation grade is given to � 
compared to f ′

c
. For RAC beams with a high aggregate 

replacement ratio r the correlation grade for r increases 
significantly which implies that r is an influential param-
eter for the shear prediction of RAC beams with a high 

replacement ratio. Relying on the GCA analysis results, 
it was able to verify whether the influential parameters 
are included in the model development for each of the 
considered existing prediction equations.

Appendix

See Fig.  9.
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Fig. 9   (continued)
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Fig. 9   (continued)
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