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Abstract
In practice, it is very common to estimate the strength of concrete by destructive or by partial non-destructive testing on 
concrete. However, it is a very challenging task to estimate the correct value of the strength of concrete or cement as it is 
depending on various factors. The present research work is focussed on the impact of zinc oxide (ZnO) nano-particles on the 
compressive strength of the cement mortar. To investigate the modified compressive strength of the mortar incorporated with 
ZnO nano-particles, four different types of mixes were prepared with 0%, 0.25%, 0.5%, and 0.75% of the ZnO nanoparticle 
by the weight cement, respectively. Experimental results show the enhancement in compressive strength up to 0.5%, later on, 
strength is slightly decreased. By considering the experimental results of cement strength, three different models are proposed 
to predict the strength of cement mortar as analysis of covariance (ANCOVA), neural network (NN), and principal component 
regression (PCR). These models also validate the results of experimentation by showing the optimum results at 0.5% of the 
addition of ZnO nano-particles. These models are trained and tested in excel programming for thirty-six standard cement 
specimens. At the end of the work, each model is compared with others. Out of three models, the NN model can predict 
the reliable results for the compressive strength. However, the PCR model is in second place after the NN model though its 
value of R2 is lesser than the ANCOVA model. PCR gives less residue as compared to ANCOVA. For the prediction of the 
strength of mortar, ANCOVA is not so significant as compared to the other two models due to the residuals of ANCOVA 
models are the largest value, though its R2 value is more than the PCR model.

Keywords  Compressive strength · Nano-particles · Analysis of covariance · Neural network model · Principal component 
regression

Introduction

Cement is one of the most often used materials by humans, 
and the compressive strength of structural concrete is deter-
mined by the concrete’s numerous constituents. It is also 
one of the most important components that provide con-
crete its strength. The strength of the cement determines the 
concrete’s performance. Standard specimens were created 
and cured at various days for the curing in the laboratory 

to test the strength of cement. Some concrete factors, such 
as cement, aggregates, water-cement ratio, curing period, 
have an impact on the strength of the concrete. The vari-
ous regression [1, 2] approaches are used to calculate the 
strength of cement using known procedures. The trend of 
evaluating cement strength using models that are only based 
on data has been expanding over the last few years. Many 
researchers are currently considering various approaches to 
estimate cement and concrete strength, such as artificial neu-
ral networks (ANN)) [3–5], principal component regression 
[6–8], fuzzy logic [9, 10], and machine learning methods 
[11].

Many researchers have looked at estimating the par-
ticular properties of concrete. Using design of experiment 
analysis, Salem Alsanusi and Loubna Bentaher evaluated 
the compressive strength of concrete [12]. Moutassem et al. 
[13] anticipated theoretical and phenomenological mod-
els for predicting concrete qualities. ANN is also used to 
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investigate displacement in a concrete reinforced building 
[14]. Joseph Mwati Marangu researched the use of machine 
learning (support vector machine) to estimate the strength 
of concrete [15].

Hamid Eskandari-Naddaf et al. [16] used an artificial neu-
ral network (ANN) to forecast the compressive strength of 
mortar mixtures with various cement strength classes. With 
improvements in cement class, ANN exhibits an improve-
ment in mortar compressive strength. Because cement is 
made up of random, complicated, multi-scale composites, 
predicting its elastic characteristics is difficult. Finite ele-
ment approaches, in combination with knowledge of indi-
vidual phase modulus and a cement paste microstructure 
development model, are utilised by Haecker [17] to quan-
titatively predict elastic modulus as a function of degree of 
hydration as determined by loss on ignition. For degrees 
of hydration of 50% or greater, and for a range of water 
cement ratios, comparisons between model predictions and 
experimental results are good. Kavita Verma et al. [18] offer 
a finite element model for cement strength prediction. They 
also utilise the ANN to forecast the strength of cement mor-
tar in various sorts of environmental conditions, confirming 
that the ANN model’s prediction is the best. The amount of 
sodium chloride, chemical admixtures, and cement grade 
all have an impact on the compressive strength of cement 
mortar. As a result, Hamid Eskandari et al. [19] devised an 
artificial neural network model to estimate the compressive 
strength of mortar for various cement grades and sodium 
chloride (NaCl) percentages. Additionally, Shaqadan et al. 
[20] proposed the Relevance Vector Machine (RVM) and 
Random Forest (RF) models, and the study found that RVM 
predicts cement mortar strength better than RF. The ANN, 
correct orthogonal decomposition, and regression analysis 
models were compared to the created mathematical model 
by Kisan Bidkar et al. [21]. Akbar Ghanbari et al. [22] 
employ micromechanical parametric models to estimate 
the plastic viscosity of self-compacting steel fibre reinforced 
concrete (SCFRC) based on the observed plastic viscosity 
of the mixture. The study of Naresh Kumar Nagwani et al. 
[23] utilizes the cluster regression approach to estimate the 
concrete’s compressive strength. Clustering and regression 
together will guarantee that the dependent and independent 
variables’ curves are more accurately fitted. Huaicheng Chen 
et al. [24] deploy a support vector machine (SVM) model to 
estimate the compressive strength of mortars subjected to 
sulphate assault. The possibility of utilising artificial neural 
networks (ANNs) modelling to forecast the characteristics 
of self-compacting concrete (SCC) incorporating fly ash as 
a cement substitute is investigated by Omar Belalia Douma 
et al. [25].

The current investigation is focussed on the estimation 
and comparision of the strength of cement mortar incorpo-
rated with nano ZnO particles by using different types of 

models such as analysis of covariance (ANCOVA), artificial 
neural network (ANN), and principal component regression 
(PCR). The outline of the research work is shown in Fig. 1c.

Materials and methods

Materials

Cement: Pozzolana Portland Cement confirming to IS 
1489:1991 [26] is used in this investigation. Table 1(a) and 
Table 1(b) show the chemical and physical properties of 
cement, respectively.

Fine aggregate: Locally available fine aggregate in the river 
is used for the experimentation, it is confirming to IS 383: 
1970 [27] with Zone II utilizes for the experimentation. The 
properties of cement and fine aggregate shown in Table 1(c).

Zinc oxide (ZnO) nano-particles: Zinc ash or zinc oxide is 
a by-product of the coating industry, which occurs as a fine 
powder and grey in colour. Figure 1a shows an average par-
ticle size of ZnO is 50 nm and a density of 263 kg/cm3. The 
Chemical composition of the ZnO nano-particles is shown 
in Table 1(d).

Characterisation of Zno particles: XRD figure of ZnO nano-
particles given in Fig. 1b. The XRD peaks show the materi-
als in the nano-scale series. From these peak intensity, width 
and position, full width at half maximum data (FWHM) 
can be determine. The peaks situated at 30.88°, 33.539°, 
35.364°, 46.659°, 55.718°, 61.988°, 67.076°, 68.213°.

where λ = wavelength, β = full width at half maximum 
(FWHM)of diffraction peak. The average practical size is 
48.69 nm at an angle 35.36°, it is calculated as Scherrer 
Equation. The widening of XRD peaks shows the pres-
ence of nanoscale particles in the materials. XRD pattern 
analysis may be used to identify peak intensity, location, 
and breadth-full width at half maximum data. SEM pictures 
demonstrate the formation of ZnO nano-particles. SEM con-
firms the approximately spherical form, and most particles 
have some faceting. The selected region electron diffraction 
pattern confirms nano-crystals preferred orientation over 
conventional crystals [29, 30]. SEM images, which reveal 
the formation of ZnO particles, also confirm the hexagonal 
plane.

D = (0.9 × �)∕(� × cos �) Scherrer equation [28],
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Methods

Experiments start with the preparation of 4 types of mixes. 
In these mixes, the amount of addition of ZnO nano-particles 
varies from 0%, 0.25%, 0.5% and 0.75% by weight of the 
cement. The mix proportions and its details are shown in 
Table 2. The compressive strength of cement mortar was 
checked as per IS 4031 (part 6) [31].

The outline of the research work is shown in Fig. 1c. After 
testing the specimens of all mixes, three types of models 
were prepared for the prediction of the strength of cement. 
Table 3(a) shows the input parameters for the various models 

and Table 3(b) shows the characteristics of specimens after 
casting. At the end of the work, results of all models were 
compared with each other and find out the best model fit for 
further experimentation. The predicted values from models 
and experimental values were calculated. The residuals of each 
model were again compared and based on this, the best-fitted 
model was customized for this work.

(a) SEM image of ZnO (b) X-RD image of ZnO

(c) Outline of research work

(d) Nano ZnO
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Models

Analysis of covariance (ANCOVA)

ANCOVA is used for the assessment of the main effect of 
categorical variables on the main (dependent) variables. It 
is also used for limiting the effect of continuous variables 
on the dependent variables. ANCOVA is blended with lin-
ear regression (LR) and analysis of variance (ANOVA) as 
the same type of dependent variables is there, so the model 
alters linearly and the hypothesis becomes identical. If p 
is the number of quantitative variables, and q the number 
of factors (the qualitative variables including the interac-
tions between qualitative variables), the ANCOVA model 
is written as [32]:

where yi is the value observed for the dependent variable 
for observation i, xij is the value taken by quantitative vari-
able j for observation i, k(i,j) is the index of the category of 
factor j for observation i and �i is the error of the model. By 
ANCOVA, here we wanted to determine the compressive 
strength. Use of this model to predict compressive strength 
as the dependent variable and zinc ash, cement to zinc ash 
ratio, water to cement ratio as quantitative variables, and 
curing days as qualitative variables as the portion of multiple 
linear models.

Compressive strength = Function (zinc ash, cement to 
zinc ash ratio, water to cement ratio and curing days).

Neural network (NN)

Due to the strength, the user-friendly approach and the elas-
ticity of Neural Network model is widely preferred model 
for the prediction. This is most useful under the multifaced 
circumstances. Radial basis function (RBF) [33, 34] and 
multilayer perceptron (MLP) [35, 36] applications are used 

(1)yi = �0 +

p
∑

j=1

�jxij +

q
∑

j=1

�k(i,j),j + �i

Table 1   (a) Chemical and physical properties of the cement (b) properties of fine aggregates (c) chemical composistion of zinc oxide (%)

Cement Notation % Mass

(a) Chemical composition of cement
Calcium oxide Cao (C) 65%
Silicon dioxide SiO2 (S) 21%
Aluminium oxide Al2O3(A) 5%
Ferric oxide Fe2O3(F) 2%
Sulfer trioxide SO3 (S̅) 2

(b) Physical properties of cement

Specific gravity: 3.15
Fineness (%): 0.89
Consistency (%): 32
Initial setting TIME (IST) Min: 143
Final setting time (FST) Min: 205
Soundness (mm): 0.6

(c) Properties of fine aggregates

Fineness modulus (%) 3.46
Specific gravity 2.71
Bulk density (kg/m3) 1549
Water absorption (%) 0.22

(d) Chemical composistion of zinc oxide (%)

Zinc Fe Pb Cd Cu Mg Sn Al

63 0.66 0.24 0.0011 0.08 0.02 0.12 1.62

Table 2   Mix proportions

Mortar Notation Cement (kg) Sand (kg) ZnO (gm)

C + FA + ZnO 0 CM1 1.5 4.5 0
C + FA + ZnO 0.25 CM2 1.5 4.5 3.75
C + FA + ZnO 0.5 CM3 1.5 4.5 7.5
C + FA + ZnO 0.75 CM4 1.5 4.5 11.25
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Table 3   Input details

Where X1 = ZA (gm); X2 = C/ZA; X3 = W/C; X4 = Curing Days

Blends Cement (Kg) Sand (kg) Water (Kg) X1 X2 X3 X4 Load (KN) Strength (Mpa)

(a) Input parameters for the models
CM1 1.50 4.50 0.45 0.00 0 0.30 3 142 28.50
CM1 1.50 4.50 0.45 0.00 0 0.30 3 144 28.90
CM1 1.50 4.50 0.45 0.00 0 0.30 3 146 29.30
CM1 1.50 4.50 0.45 0.00 0 0.30 7 204 40.94
CM1 1.50 4.50 0.45 0.00 0 0.30 7 205 41.14
CM1 1.50 4.50 0.45 0.00 0 0.30 7 209 41.95
CM1 1.50 4.50 0.45 0.00 0 0.30 28 309 62.02
CM1 1.50 4.50 0.45 0.00 0 0.30 28 308 61.82
CM1 1.50 4.50 0.45 0.00 0 0.30 28 310 62.22
CM2 1.50 4.50 0.71 3.75 400 0.47 3 152 30.51
CM2 1.50 4.50 0.71 3.75 400 0.47 3 153 30.71
CM2 1.50 4.50 0.71 3.75 400 0.47 3 154 30.91
CM2 1.50 4.50 0.71 3.75 400 0.47 7 214 42.95
CM2 1.50 4.50 0.71 3.75 400 0.47 7 216 43.35
CM2 1.50 4.50 0.71 3.75 400 0.47 7 219 43.95
CM2 1.50 4.50 0.71 3.75 400 0.47 28 319 64.02
CM2 1.50 4.50 0.71 3.75 400 0.47 28 321 64.43
CM2 1.50 4.50 0.71 3.75 400 0.47 28 320 64.23
CM3 1.50 4.50 0.95 7.50 200 0.63 3 157 31.51
CM3 1.50 4.50 0.95 7.50 200 0.63 3 158 31.71
CM3 1.50 4.50 0.95 7.50 200 0.63 3 160 32.11
CM3 1.50 4.50 0.95 7.50 200 0.63 7 219 43.95
CM3 1.50 4.50 0.95 7.50 200 0.63 7 222 44.56
CM3 1.50 4.50 0.95 7.50 200 0.63 7 220 44.15
CM3 1.50 4.50 0.95 7.50 200 0.63 28 324 65.03
CM3 1.50 4.50 0.95 7.50 200 0.63 28 326 65.43
CM3 1.50 4.50 0.95 7.50 200 0.63 28 325 65.23
CM4 1.50 4.50 1.17 11.25 133 0.78 3 145 29.10
CM4 1.50 4.50 1.17 11.25 133 0.78 3 146 29.30
CM4 1.50 4.50 1.17 11.25 133 0.78 3 149 29.90
CM4 1.50 4.50 1.17 11.25 133 0.78 7 207 41.55
CM4 1.50 4.50 1.17 11.25 133 0.78 7 210 42.15
CM4 1.50 4.50 1.17 11.25 133 0.78 7 209 41.95
CM4 1.50 4.50 1.17 11.25 133 0.78 28 312 62.62
CM4 1.50 4.50 1.17 11.25 133 0.78 28 310 62.22
CM4 1.50 4.50 1.17 11.25 133 0.78 28 315 63.22

Variables Units Minimum Maximum Median Mean Variance Standard deviation

(b) Characteristics of the specimens
X1 gm 0.00 11.25 5.63 5.63 18.08 4.25
X2 – 0.00 400.00 166.50 183.25 21,437.16 146.41
X3 – 0.30 0.78 0.55 0.55 0.03 0.18
X4 Days 3.00 28.00 7.00 12.67 123.66 11.12
Strength (Mpa) N/mm2 28.50 65.43 42.55 45.49 195.95 14.00
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to predict. The target values are compared with predicted 
values and this task is supervised by RBF & MLP models.

Figure 2 describes the architecture of neural network. In 
this first layer is input layers which include the predictors. 
The second layer (hidden layer) includes the units or ignored 
nodes. The value of each node is the function of the predic-
tors, MLP, and RBF extracted required function value as per 
their requirement. The third (output) layer includes the reply 
or output of the model. MLP involved a second hidden layer 
in which each node is the function of first layer nodes. In this 
work zinc ash, cement to zinc ash ratio, water to cement ratio 
& curing days are the input parameters and compressive 
strength is the output parameter.

Principal component regression (PCR)

Generally, the Principal component Regression technique 
is adopted when there is a multicollinearity problem is 
arising in data for the linear regression. Multicollinearity 
causes estimation of least squares neutral values with big 
variance, so its values are so far from its true values and 
create more standard errors. In such a case, PCR reduces 
the standard values and gives accurate prediction values. 
PCR [37] is divided into three parts. In first step, principal 
component factors are extracted from the variables and in 
second step ordinary least square regression is performed 
between dependent parameters and the component which 
were extracted from the first step. The following Eq. (2) is 
the basic regression equation for the PCR model [38].

where Y = Dependent variables, X = Independent Variables, 
B = regression coefficient and e = error or residuals. In this 
work, Zinc Ash, Cement to zinc ash ratio, water to cement 
ratio and curing days are the input parameters and compres-
sive strength is the output parameter.

(2)Y = BX + e

Results and discussion

In this section, the experimental results are compared with 
the ANCOVA, NN, and PCR models prediction. These 
results showed that ZnO nano-particles enhance the com-
pressive strength of the cement mortar significantly, the 
detailed discussion about the result is given below.

ANCOVA model

In Table 4, output parameters of the ANCOVA model are 
given. Using the Backward variables selection method, 4 
variables have been retained in the model. Given the R2, 
99.40% of the variability of the dependent variable Strength 
(Mpa) is explained by the 4 explanatory variables. Given the 
p value of the F statistic computed in the ANOVA table, and 
given the significant level of 5%, the information brought by 
the explanatory variables is significantly better than what a 
basic mean would bring. Form Table 4(a), the ANCOVA 
model R2 value is 0.9994. It means all variables correlated 
and significant for the prediction of the strength. As this 
value is closer to 1, the model is the best-fitted model. From 
the analysis of variance in Table 4(b) F value < 0.0001, it 
shows that all independent variables in the model are sig-
nificant. Abhijit Chatterjee et al. [32] and Okan et al. [39] 
were also reported similar types of results. 

Figure 3 shows the results of ANCOVA models in the 
graphical format. Figure 3a gives the value of R2 = 0.9994 
of predicted value and the observed value of the ANCOVA 
model. Figure 3b and Fig. 3c give the standard residue of the 
training and validation set, the value of the standard error is 
between − 1.4 and 2.1 for active data and − 2 to 2 for valida-
tion data for the ANCOVA.

Neural network model

For research work, 36 specimens were cast. Out of 36 the 
28 specimens (77.8%) were considered as training speci-
mens and 8 specimens (22.2%) were considered as testing 
purposes. The summary of the model processing is given 
in Table 5(a) and Table 5(b) shows the network informa-
tion for the model. Results of model summary are displayed 
in Table 5(c) and the importance of the variables shows in 
Table 5(d). The architecture of the neural network model is 
shown in Fig. 4a. Figure 4b shows the plot of predicted vs 
observed values in this value for R2 is 0.999 which shows the 
model best fitted. Figure 4c shows the residuals of the NN 
model which has a range between − 0.7 to 1. The obtained 
results in research work are similar to khademi et al. [9] and 
Sudarshan et al. [4]. As residues are less, so it is suggested 
that the model predicts the accurate values. This model also 

Fig. 2   General architecture of neural networks
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gives normalizes importance to each variable. The validation 
of the neural network models is its residuals as from Fig. 4b 
and c is very minimum means the prediction of the models 
is very accurate.

Principal component regression model

Figure 5a shows the scree plot for the PCR model. It shows 
that the model describes 50% of the variability, so it is pos-
sible to present variable on the one axis. Table 6 provides the 
information of output for the model of PCR. From Table 6(a) 
and Fig. 5b the goodness of the fit statistics, the value of R2 
is 0. 944, so that the PCR model is best fitted. The values of 
the standard residue of active and validation data are shown 
in Fig. 5b and c and the range of residue for active data is 
between − 1.17 and 1.8 and validation data is − 1.2 to 1.6. 

So, the prediction of the PCR models also gives accurate 
values. The same types of results also observed by Islam 
et al. [6] in their work. PCR models provide the equation 
given in Table 6(d) for the prediction of the compressive 
strength of mortar, this equation represents the 93.2% of 
the variability.

Table 7(a) shows the overall comparison between com-
pressive strength by actual experimental testing and com-
pressive strength predicted by different models. Table 7(a) 
and Fig. 6a display the compressive strength of all mixers 
enhances with ZnO nano-particles addition continue up to 
0.5% in cement, later on, the strength of cement mortar is 
decreased. Table 7(b) shows the comparison of all models, in 
that R2 and minimum and maximum residues are compared, 
the values of R2 are very closer to 1 for each model but from 
this, it is not clear that which model is best fitted but with 

Table 4   Output of ANCOVA

Statistic Training set Validation set

(a) Goodness of fit statistics
Observations 25 11
Sum of weights 25 11
DF 19 5
R2 0.9996 0.968
Adjusted R2 0.9994
MSE 0.105 0.319
RMSE 0.324 0.565
MAPE 0.589 0.769
DW 2.250
Cp 6.000
AIC  − 51.232
SBC  − 43.919
PC 0.001

Source DF Sum of squares Mean squares F Pr > F

(b) Analysis of variance
Model 5 4500.22 900.04 8580.98  < 0.0001
Error 19 1.99 0.10
Corrected total 24 4502.22

Source Value Standard error t Pr >|t| Lower bound (95%) Upper bound (95%)

(c) Model parameter
Intercept  − 24.32 4.51  − 5.39  < 0.0001  − 33.76  − 14.87
X1  − 12.21 0.65  − 18.90  − 13.56  − 10.86
X2 0.00 0.00  − 4.25 0.00 0.00
X3 288.41 15.13 19.06 256.74 320.08
X4-3  − 33.33 0.17  − 192.41  − 33.69  − 32.97
X4-7  − 20.93 0.14  − 153.92  − 21.21  − 20.64
X4-28 0.00 0.00

(d) Model equation

Strength (Mpa) =  − 24.32–12.21 × X1-3.061E-03 × X2 + 288.41 × X3-33.33 × X4-3–20.93 × X4-7
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the help of residuals plot given in Fig. 6b, it is possible to 
suggest the best model for the prediction of the compressive 
strength of the mortar.

Out of three models, the Neural Network produces the 
lesser value of the residue that means it is the best model 
for the prediction of the strength of cement mortar. It has 
minimum residue values as − 0.7 and 1. Figure 6b shows the 

comparison of overall performance by the models. This indi-
cates that all models give the optimum response at 0.5% of 
addition afterwards it shows declination in the results of the 
compressive strength of the mortar. This is directly validated 
the outcomes of the research. The decreases in the strength 
of mortar may be causes due to ZnO nano-particles formed 
the crystalline layer of CaZn2(OH)2·2H20 around the cement 
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Fig. 3   Graphical results of ANCOVA models
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Table 5   Output for NN model

N Percent

(a) Case processing summary
Sample
Training 28 77.8
Testing 8 22.2
Valid 36 100.0
Excluded 0
Total 36

(b) Network information

Input layer Factors 1 ZA (gm)
2 C/ZA
3 Water (Kg)
4 W/C

Covariates 1 Age (days)
Number of unitsa 17
Rescaling method for covariates Standardized

Hidden layers Number of hidden layers 1
Number of units in hidden layer 1a 2
Activation function Hyperbolic tangent

Output layer Dependent variables 1 Strength (Mpa)
Number of units 1
Rescaling method for scale dependents Standardized
Activation function Identity
Error function Sum of Squares

a. Excluding the bias unit

(c) Model summary

Training
Sum of squares error .010
Relative error .001
Stopping rule used Training error ratio 

criterion (.001) 
achieved

Training time 0:00:00.01
Testing
Sum of squares error .007
Relative rrror .001
Dependent variable: strength (Mpa)

Importance Normalized 
importance 
(%)

(d) Independent variable importance
ZA (gm) .138 27.7
C/ZA .107 21.5
Water (Kg) .152 30.6
W/C .106 21.4
Age (days) .497 100.0
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particles. As per the available literature, some of reported 
that the analysis of X-ray diffraction (XRD) of calcium zinc 
hydrate is formed with ZnO nano-particles which restrict 
the hydration reaction and result in the formation of fewer 
hydrates and ultimately it decreases the compressive strength 
of the mortar. The similar types of results were reported by 
Riahi et al. [40] Kantharia et al. [41] and Arefi et al. [42].

Conclusions

The outcomes of the experimentation show that mortars con-
taining ZnO nano-particles have expressively higher strength 
as compared with mortar without the ZnO. The optimum % 
of the addition of ZnO nano-particles is 0.5%. To validate 
and prediction of the experimental results, three different 
mathematical modelings reported. These three models based 
on Analysis of variance, Neural Network, and Principal 

Component Regression. Thirty-six standard specimens of 
cement paste with nanomaterials were casted. The compres-
sive strength is considered as a function of the zinc oxide 
nano-particles, cement to zinc oxide ratio, water to cement 
ratio, and curing days. It is concluded that the neural net-
work (NN) model is the best fitted and more accurate model 
than other models. Principal component regression (PCR) 
predicts an accurate value of the compressive strength as 
compared to the analysis of variance (ANCOVA) model. 
Although the R2 value of the ANCOVA model is better than 
the PCR model, the residuals of the ANCOVA model are 
more than the PCR model. This shows that PCR gives accu-
rate and better prediction than ANCOVA. In all NN and PCR 
models can be confidently customized to the estimation of 
the compressive strength of cement mortar instead of vast 
and costly methods. The results of NN and PCR models also 
helpful for material selection and its mixed design process.
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Table 6   Outputs of PCR model

(a) The goodness of fit statistics

Observations = 25
Sum of weights = 25
DF = 25
R2 = 0.944
Adjusted R2 = 0.932
MSE = 12.72
RMSE = 3.566
MAPE = 7.672
DW = 1.311
Cp = 5.000
AIC = 67.996
SBC = 74.090
PC = 0.084

Source DF Sum of squares Mean squares F Pr > F

(b) Analysis of variance
Model 4 4265.67 1066.417 83.85  < 0.0001
Error 20 254.352 12.718
Corrected Total 24 4520.02

Source Value Standard error t Pr >|t| Lower bound (95%) Upper bound (95%)

(c) Model parameters for the input variables
Intercept  − 104.47 1798.5  − 0.06 0.95  − 3856.09 3647.14
X1  − 18.90 10.46  − 1.81 0.09  − 40.71 2.92
X2 0.00 0.01  − 0.49 0.63  − 0.02 0.01
X3 442.93 245.50 1.80 0.09  − 69.18 955.04
X4 1.23 0.07 17.86  < 0.0001 1.08 1.37

(d) Equation of the model

Strength =  − 104.47–18.90 × X1-4.1E-03 × X2 + 442.93 × X3 + 1.233 × X4
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Table 7   Strength comparison of the experimentation and models

% ADD Experimental 
Strength

ANCOVA NN PCR

Prediction Resid Prediction Residual Prediction Resid

(a) Model output summary
0.00 28.50 28.88  − 0.38 29.05  − 0.55 32.09  − 3.59
0.00 28.90 28.88 0.03 29.05  − 0.15 32.09  − 3.19
0.00 29.30 28.88 0.43 29.05 0.25 32.09  − 2.78
0.00 40.94 41.28  − 0.33 40.95  − 0.01 37.00 3.95
0.00 41.14 41.28  − 0.13 40.95 0.19 37.00 4.15
0.00 41.95 41.28 0.67 40.95 1.00 37.00 4.95
0.00 62.02 62.21  − 0.19 61.78 0.24 62.78  − 0.76
0.00 61.82 62.21  − 0.39 61.78 0.04 62.78  − 0.96
0.00 62.22 62.21 0.01 61.78 0.44 62.78  − 0.56
0.25 30.51 30.89  − 0.39 30.89  − 0.38 34.89  − 4.38
0.25 30.71 30.89  − 0.19 30.89  − 0.18 34.89  − 4.18
0.25 30.91 30.89 0.02 30.89 0.02 34.89  − 3.98
0.25 42.95 43.29  − 0.34 43.23  − 0.28 39.80 3.15
0.25 43.35 43.29 0.06 43.23 0.12 39.80 3.55
0.25 43.95 43.29 0.66 43.23 0.72 39.80 4.16
0.25 64.03 64.22  − 0.20 64.16  − 0.14 65.58  − 1.55
0.25 64.43 64.22 0.20 64.16 0.27 65.58  − 1.15
0.25 64.23 64.22 0.00 64.16 0.07 65.58  − 1.35
0.50 31.51 31.86  − 0.35 31.94  − 0.43 35.72  − 4.21
0.50 31.71 31.86  − 0.15 31.94  − 0.23 35.72  − 4.01
0.50 32.11 31.86 0.25 31.94 0.17 35.72  − 3.61
0.50 43.95 44.26  − 0.31 43.98  − 0.03 40.63 3.32
0.50 44.56 44.26 0.29 43.98 0.58 40.63 3.93
0.50 44.16 44.26  − 0.11 43.98 0.17 40.63 3.53
0.50 65.03 65.19  − 0.16 65.73  − 0.70 66.41  − 1.38
0.50 65.43 65.19 0.24 65.73  − 0.30 66.41  − 0.98
0.50 65.23 65.19 0.04 65.73  − 0.50 66.41  − 1.18
0.75 29.10 29.54  − 0.44 29.51  − 0.41 31.58  − 2.47
0.75 29.30 29.54  − 0.24 29.51  − 0.21 31.58  − 2.27
0.75 29.91 29.54 0.36 29.51 0.39 31.58  − 1.67
0.75 41.55 41.94  − 0.40 41.56  − 0.01 36.49 5.06
0.75 42.15 41.94 0.21 41.56 0.59 36.49 5.66
0.75 41.95 41.94 0.01 41.56 0.39 36.49 5.46
0.75 62.62 62.87  − 0.25 62.19 0.43 62.27 0.35
0.75 62.22 62.87  − 0.65 62.19 0.03 62.27  − 0.05
0.75 63.22 62.87 0.35 62.19 1.03 62.27 0.96

Model R2 Minimum residue Maxi-
mum 
residue

(b) Models output summary
ANCOVA 0.9994  − 1.4 2.1
NN 0.9991  − 0.7 1
PCR 0.944  − 1.17 1.8
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