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Abstract
According to the economic feasibilities, municipal solid wastes (MSW) are being dumped or treated in different possible 
manners. Municipal solid waste incinerated ash (MSWIA) is one of the final products of MSW treatment plants after incinera-
tion. Due to less sustainable waste management options, MSWIA is produced in tons and dumped into landfills. Researchers 
in various developmental project  suggest using MSWIA as an economical and eco-friendly mode of final disposal. The 
use of MSW incinerated bottom ash (MIBA) has an exceptional potential of supporting sustainability by conserving natural 
resources. The paper targets the possible benefits of MIBA in various construction and soil improvement projects by com-
pensating the primary aggregates. The partial replacement of primary aggregates is a durable and cost-effective option for 
equal or improved strength. The addition of MSWIA is not new, but the studies available are limited in number. The pres-
ence of certain chemical compounds in MIBA is leading to advanced industrial-based applications. The residue can be a 
primary raw material  for synthesizing new compounds,  in land recovery and Hydrogen gas production. Some studies have 
favored its utilization in the most natural form, whereas some suggest avoiding the usage due to its various environmental 
and strength-based limitations. The article investigates significant studies and confirms the possible opportunities from waste 
residues for more competent raw material.
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MSWIA  Municipal solid waste incinerated ashes
MIBA  MSW incinerated bottom ash
MIFA  MSW incinerated fly ash
LCA  Life cycle analysis
WTE  Waste to energy
SEM  Scanning Electroscope Microscopy
LOI  Loss on ignition
TOC  Total organic carbon
PC  Portland cement
CFA  Coal fly ash
GGBS  Ground granulated blast furnace slag
LS  Limestone
Cd  Cadmium

Cu  Copper
Pb  Lead
Zn  Zinc
HCl  Hydrogen chloride
NaCl  Sodium chloride
PCDD  Polychlorinated dibenzo-p-dioxins
Ca  Calcium
Si  Silicon
Al  Aluminum
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Cr  Chromium
Ni  Nickel
OPC  Ordinary Portland cement
C3S  Tricalcium silicate
VBA  Vitrified bottom ashes
PAH  Polycyclic aromatic hydrocarbon
PCDF  Polychlorinated dibenzodioxins
EOX  Extractable halogens inorganic bonding
BTX  Benzene–toluene–xylene
BTEX  Benzene-toluene-ethylbenzene-xylene
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Introduction

It is undeniable fact that human activities are the biggest 
generators of MSW, and studies have predicted an aver-
age production of 2.2 billion tons by the year 2025 [1]. 
Depending on different cultures, legislation, and various 
uses, the MSW sums up other constituents of which food, 
paper, plastics, metals, and glass are relatively common 
[2–4]. The reason behind the wide use of incineration 
practices for MSW is well known in the solid waste man-
agement sector. The reduction in volume by 90% and mass 
by at least 70% of initial values cannot be denied [5–7]. 
This fact favors it to be widely used in different countries 
as every country looks for more sound and cost-effective 
techniques to prevent the present overloading of landfill 
space.

It is also proved that incinerator plants contribute to 
greenhouse gases, but it can be controlled by changing the 
design and operation process. MIBA consists of 25% of 
the total initial waste fed to these incinerators in the form 
of raw MSW [8]. The latest innovations are now helping 
in contributing to the proper burning of MSW, and the 
heat produced is now a significant Waste to Energy (WTE) 
source for developing and developed economies [9–13]. 
The MIBA and the MSW incinerated fly ash (MIFA), 
which can be used for engineering projects, but both come 
with certain limitations [14–16].

The hazardous constituents of both MIFA and MIBA 
are a significant cause of concern for its environmental 
impacts. The leaching of these constituents due to rain-
water exposure or direct contact to groundwater due to 

infiltration can adversely affect the water bodies and the 
exposed site’s ecology [17–19]. Mass production of MIBA 
and MIFA demands safe treatment and scientific disposal 
for a sustainable future. Nowadays, many researchers and 
their research contributions have resolved this issue. The 
focus is on the treatment and disposal of these residues 
and utilizing these ashes as a major or minor component 
in various development projects [20] (Fig. 1).

Fly ash has smaller and smoother particles with a higher 
content of chlorides and hazardous compounds than MIBA, 
known for larger and coarser particles. Therefore, MIBA is 
a vital research interest for people looking for sustainable 
building solutions. The innovation requires public accept-
ance, for which it is necessary to evaluate the technical fea-
sibility of MIBA infused materials considering ecotoxicity, 
LCA’s, and leachability testing [21].

Certain European nations have laid their standards 
regarding recycling and reusing MIBA, keeping human and 
environmental safety in mind. Researchers are continuously 
searching for and developing eco-friendly and sustainable 
solutions to work with incinerated ashes [22–24]. The effec-
tive use of MIBA as an aggregate substitute in cement indus-
try and also as a subgrade material in pavements has been 
studied by various researchers. Recent developments have 
shown the applicability of MIBA in other aspects as well. 
MIBA finds its applications commonly limited to an aggre-
gate substitute in concrete, in cement production and also as 
subgrade material in pavements.

Typical applications of MIBA as a raw material in, and 
as a road construction material are well known, but there are 
specific innovative applications which needs to be addressed. 
This review paper is focused on the past and present works, 
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Fig. 1  Basic Process of MSW incineration plant
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which are milestone studies in MIBA recycling and reuse. 
It also discusses the various types of contaminants present 
in MIBA and multiple strategies to remove these hazardous 
components for safer and economically viable usage.

Methodology

For this review, literature explicitly concerned to inciner-
ated bottom ash applications was targeted. Hence a limited 
number of papers were included for a better understanding. 
Papers were selected based on the recent advances, better 
environmental and economic results, and future scope. As 
a significant number of publications were available, they 
were further narrowed down based on their relevance to the 
topic and the quality of results based on their recent cite 
scores. All these selected works were further bifurcated to 
respective applications and research areas related to MIBA 
as a raw material. It helped in a detailed examination of the 
works, including environmental impacts and the overview 
of cost comparisons and further recommendations regarding 
the MIBA usage (Fig. 2).

The presence of limited literature related to MSWI ashes 
for various applications allows more opportunities to study 
these residuals for a sustainable world. Certain chemical 
compounds in MIBA promise new industrial-based appli-
cations and a cheaper yet equally effective aggregate for spe-
cific geotechnical applications. The paper is divided into 
sections where the composition and properties of MIBA are 
described briefly, citing the available literature, and later 
the applications of MIBA are discussed. The review focuses 
explicitly on the recent works published in the last decade 
(Fig. 3).

In “Composition and Properties of MIBA” section, the 
basic properties and composition from various literature 
have been cited  which the essential compounds present in 
MIBA. The section also discusses the physical and chemical 
nature and the average content present in weight percent-
age of these compounds. Further in “Standard incineration 
ash treatment techniques” section, the variety of techniques 
commonly used at waste incineration facilities are discussed 
briefly. The sections of "Common applications of MIBA" 
and "Advanced applications of MIBA" look into the stand-
ard and advanced possible uses of bottom ash from waste 
incineration facilities. The sections are further divided into 

Fig. 2  Types of MSWI ashes from WTE plant a bottom ash and b fly ash [25]
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types of applications where MIBA can be absorbed sig-
nificantly. These applications help in load minimization on 
landfills and reaping economic benefits. A short note on the 
economic viability of MIBA usage is also mentioned before 
making conclusions and recommendations at the end of this 
review.

This review confirms the considerable potential of incin-
erated bottom ash residues from WTE facilities. It is evident 
that the addition of MIBA as a soil stabilizer improves the 
geotechnical properties of soil. MIBA is a cost-effective and 
eco-friendly product that can be widely used in transporta-
tion engineering, structural engineering, and geoenviron-
mental engineering-based applications. It can be used as tra-
ditional fine aggregate material, but it also finds application 
in  hydrogen gas production, landfill cover, land reclamation, 
and the synthesis of adsorbents. The concerns to leachability 
and groundwater contaminations are real, but with proper 
pre and post-treatment, these concerns can be minimized 
according to the required standards.

Composition and properties of MIBA

Various factors like the composition of raw MSW, type of 
furnace in use, temperature, time of retention, and type of 
quenching process implemented, can be a reason to differ 
the type of MIBA generated, but the overall elemental com-
position remains the same [27]. Studies confirm coarse and 
porous nature of MIBA with a grayish appearance, primarily 
having components like minerals, ceramics, glass, and vari-
ous non-ferrous materials in the unburnt form [27, 28]. Fig-
ure 4 depicts the precise SEM images of bottom incinerated 
ash which confirms the irregular structure of ash particles 
and presence of gypsum and calcite particles.

Carbonates, oxides, and hydroxides can easily be traced 
as these compounds are present in a considerable amount. 

 SiO2, CaO,  Fe2O3, and  Al2O3 are present in MIBA in higher 
concentrations (> 10 wt%), whereas  Na2O,  K2O, MgO, and 
 TiO2 are present in a very minimal concentration [30, 31]. 
The presence of such minerals is depicted using a ternary 
plot in Fig. 5. Studies confirm that  SiO2 accounts for almost 
49% share in MIBA. Ranging between 2.4 and 15.0%, MIBA 
is considered a lightweight material with high water absorp-
tion capacity [22, 32]. LOI or loss on ignition of 5.8%, and 
the specific gravity was found in the range of 1.8 to 2.8, dif-
ferent study marks mean LOI in a diverse range of 1.9–6.3%, 
confirming the effectiveness of incineration.

MIBA has a pH in the range of 10.5 to 12.2, making 
it an essential chemical compound. This pH is the result 
of hydroxide presence. Aluminum is one of the concerned 
elements present in abundance, which causes the release of 
 H2 gas. This limitation can be overcome to a greater extent 
by implementing a grate shifting process [27, 34–36]. The 
leaching potential of MIBA is lower than fly ash, and hence 
it is considered a better material for constructional use. The 
formation of stable complex compounds after chemical reac-
tions with water and carbon dioxide also reduces Hydrogen 
gas (Table 1).

Standard incineration ash treatment 
techniques

The direct use of ash is always a concern for environmental 
degradation, and hence techniques are being used to con-
trol the contamination and to avoid environmental hazards. 
This can be achieved by either removing the hazardous com-
pounds or stabilizing these compounds using various meth-
ods. The washing of ashes is a common treatment technique 
but the stabilization of MIBA is now an advanced trend for 
treatment [50, 51].

The effectiveness of washing techniques is considered 
highly effective in chloride and heavy metal removal [52, 
53]. Chemical leaching involves using certain chemical com-
pounds for the removal of heavy metals from the incinerated 
ash. The use of HCl and NaCl in a specific concentration 
gives excellent results for Zn, Cd, Cu, and Pb removal [54]. 
The concept of Bioleaching is very much related to chemical 
leaching in which microorganisms are used for the produc-
tion of specific organic and inorganic acid, which serves 
the same purpose as chemical leaching. Bioleaching is con-
sidered a better and eco-friendly method of metal removal 
from incinerated ash [55–57]. Another popular and instant 
technique of heavy metal removal is Electrochemical treat-
ment. Although the process is fast and reliable, high costs 
and low results make it the least popular [52, 58].

Stabilization of MIBA and MIFA can be done by add-
ing cement-based materials in a definite ratio. It is con-
sidered an adequate measure of immobilization of heavy 

Fig. 3  Trend of MSWIA related publications in 1994–2018 [26]
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metals in cement matrices by using binding materials. The 
stabilization of MIBA depends on certain environmental 
factors as varying the pH, temperature, and humidity give 
different results [59, 60]. Fish bones in powdered form and 
specific other chemical stabilizers enhance the process of 

stabilization and yield better outcomes [61, 62]. Specific 
techniques like thermal and hydrothermal treatments of 
incineration ash treatments are also under consideration 
for metal removal. The latest studies have shown that effec-
tive microwave heating, when combined with hydrothermal 

Fig. 4  SEM images of MIBA: a, b shows irregular MIBA particles; c shows the presence of gypsum MIBA surface; d shows calcite crystals 
present in MIBA [29]

Fig. 5  Ternary plot of three 
primary contents of MIBA [33]
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treatment, gives the best results for polychlorinated dibenzo-
p-dioxins (PCDD) removal [63, 64].

Common applications of MIBA

Road construction

Countries like Belgium, Denmark, and the Netherlands 
allow the addition of MIBA for road construction as the 
implementation supports circular economy. If heavy metal 
leaching is controlled scientifically, MIBA can be used as 
well-graded sand or gravel for road construction [65]. A 
study by Lynn et al. suggests the use of MIBA can be con-
sidered for road construction. According to the study, the 
addition of MIBA can be done as bitumen-bound materials 
and unbound materials in pavement construction [22]. In 
colder regions, the concept of freezing and thawing of the 
final material should be considered before implementation 
at a mass level. Chelating agents for better solidification are 
considered more eco-friendly, but it permits lower resistance 
toward freezing and thawing [66, 67].

Cement additive

Ca, Si, and Al’s high content allows MIBA to act as good 
pozzolanic material [68]. To reduce OPC, MIBA can be used 
as the solid cementitious material in the cement blend [69, 
70]. Several studies on partial cement replacement were con-
sidered to determine the leaching behavior of MIBA-based 
specimens. The concentrations of leached elements like 
Cd, Cu, Ba, Cr, Pb, Zn, and Ni were checked and compared 
between U.S limits and Chinese National standards. The 
results were within acceptable limits [3]. Thermal treatment 
of MIBA under the temperature of 800 °C or more causes 
dehydroxylation of Ca(OH)2 [71]. Higher temperatures are 
responsible for converting  CaCO3 to CaO; hence the reac-
tivity with cement increases [72]. It is noticed that due to 
specific alkali-aggregate reactions, both the flexural and 
compressive strengths of cement composites were reduced 
noticeably when incinerated ashes were used [73]. This issue 
can be solved either by decreasing the amount of alkali from 
the cement or using fibers or air-entraining admixtures [74]. 
Alkaline-treated MIBA, when used in concrete, gives higher 
28 days compressive strength of 34.7 MPa and whereas the 
untreated MIBA gives 17.9 MPa [75].

Lightweight aggregate

Fly ash and Bottom ashes are already being used as a light-
weight aggregate in the construction industry. These mate-
rials are known for extraordinary properties such as high 
durability, lightweight, low water absorption, and adjustable Ta
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thermal conductivity [76]. Higher content of CaO allows 
good water absorption, whereas the presence of  SiO2 allows 
vitrification at higher temperatures. The study compared the 
fly ash and MIBA derived from the fixed bed and mechani-
cal bed incinerators to use lightweight aggregates [77]. The 
results confirm that lower calcium oxide content and higher 
contents of both ferric oxide and silica dioxide are necessary 
for better quality lightweight aggregates production. Another 
critical study suggests using recycled concrete slurry waste 
and finer quality MIBA to produce a new variety of cold 
bonded lightweight aggregates [78]. The results of the study 
confirm MIBA as a better version of lightweight aggregate 
when used with OPC [79, 80].

Cement clinker production

Studies have estimated that the European Union annually 
generates 16–18 million metric tonnes of MIBA. This much-
incinerated ash can fulfill the raw material requirement in 
cement production [33, 81]. The use of MIBA as a raw mate-
rial can save natural resources and contribute to protecting 
the planet from environmental issues [82]. The amount of 
limestone in Portland cement production can be reduced 
using incinerated ashes as they have a high percentage of 
 SiO2,  Al2O3, and CaO present in them. It also prevents  CO2 
emissions from manufacturing units, which has a positive 
impact on the environment. MIBA can be used as raw feed 
for clinker manufacturing and can be substituted up to 40% 
of the raw feed [83]. The fly ash and MIBA should be fed 
in a limited percentage to protect the kiln from corrosion. 
If quenching is involved, pre-washing or any other treat-
ment is not required for chloride removal in MIBA [84, 85]. 
The study has shown that up to 6% MIBA addition will not 
adhere to any adverse results on the clinker phase’s composi-
tions. Higher additions will only cause a significant drop in 
C3S values. Another study suggests removing Al and related 
species using alkaline treatment before consuming MIBA for 
cement production [86].

Concrete production

Past studies suggest inclusion of incinerated ashes in con-
crete production for better results [87–89]. MIFA inclu-
sions  have given successful trail results for 10–40% of the 
total weight of the concrete. Comparing the slump values, 
the study has confirmed that MIBA can be used as a sub-
stitute for sand in a limited amount [90, 91]. When used 
as a coarse aggregate, the results for MIBA are more con-
siderable due to lower surface area and better adsorption 
and water retention property. The properties can be further 
improved by washing or chemical treatment of MIBA so that 
the quantity of salts, metals and other organic components 
can be controlled. It has been suggested that the strength 

development in concrete is affected due to presence of Zn, 
Pb, Al ions and other salts which causes a serious delay 
[92–95]. These studies suggest inclusion of additional Si- or 
Al-rich cementitious materials to improve the pozzolanic 
reactions for better mechanical properties. It is also been 
proved that complete replacement of fine aggregates and 
coarse aggregates will give poor quality concrete, as the 
bond between cement and aggregates fails before the crush-
ing of aggregates takes place [22, 33]. The significant results 
of MIBA replacement as both fine and coarse aggregate and 
respective compressive strengths are shown in Fig. 6.

Advanced applications of MIBA

At present, MIBA is commonly used as a raw additive to 
applications mentioned above. In addition to it, there are 
some studies available that point out the futuristic applica-
tions of this incinerated byproduct as a valuable resource 
for further use. There are a limited number of publications 
available, and all these innovative applications require better 
pre-treatment of raw MIBA before considering for real-time 
industrial applications.

Hydrogen gas production

Hydrogen gas is considered as the biggest flaw in the case 
of concrete production using MIBA. Higher pH values and 
Aluminum ion presence, is the reason behind the release of 
 H2 gas when MIBA comes in contact with  H2O molecules. 
According to Saffarzadeh et al. [96], the process can be used 
for cleaner  H2 gas production. The process can further help 
in the removal of Al ions as they are dissolved in water and 
can be recovered hence making MIBA aluminum-free and fit 
for concrete production, and the gas collected can be stored 
and availed in cell fuel applications. According to a study, 
MIBA has an aeration capacity of about 1% of pure Al pow-
der by mass. But the study limits this result to the specific 
source of bottom ash. It further explains that the reaction 
rate depends on the smaller particle size, molarity, and the 
reaction temperature of ash particles, and hence the amount 
of gas generation varies [47]. A further study of hydrogen 
gas production from MIBA seeks out the newer possibili-
ties and suggests that better process design and controlled 
environment can yield better results [97].

Land reclamation

Human existence needs land to develop its civilization, and 
for that land, reclamation is a need of the hour in countries 
with the highest population and limited land resources. Stud-
ies have been done to predict heavy metal leaching behavior 
when sea water comes in contact with MIBA due to land 
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reclamation. Certain factors like the degree of disturbance 
in sea water, concentration gradients, and re-adsorption 
of heavy metals by MIBA were considered in such stud-
ies. These studies confirm a considerable potential in using 
MIBA for the land reclamation process [98]. Another 
research suggests that solidification/stabilization of marine 
clay using MIBA has given the desired results according 
to standards laid in Singapore [99, 100]. Stabilization of 
MIBA helps in controlling heavy metal leaching, and a pre-
treatment with the alkaline medium is advised for better 
results [49].

Landfill cover

MSWI ashes, both MIBA and MIFA, are most commonly 
disposed directly to landfills, and contamination control is 
often a concern due to direct disposal. This concern was 
challenged by a study published in 2017, which suggests 
the positive effect of MIBA on nitrogen compounds found in 
landfill sites [101]. In the same year, another study reported 
the adsorption behavior of MIBA toward nitrates, nitrites, 
and ammonia which are common in leachate. After a par-
ticular time, a varied trend in the leaching of Cr, Zn, and 
Cu from MIBA was noticed [102]. Not only MIBA but also 
MIFA has demonstrated successful adsorption of Hydrogen 
sulfite gas [103]. These studies suggest that both MIBA and 

fly ash can be used as landfill cover material, but incinerated 
ashes as a landfill liner need more studies and strict control.

Synthesis of adsorbents and glass–ceramic 
materials

Ceramic-based materials are known for having low thermo-
electrical conductivity and high durability with high 
thermochemical resistance. MIBA is generally used for 
glass–ceramic foams, ceramics, bricks, and tiles manufac-
turing as the higher temperatures are destroying dioxins and 
various other organic contaminants. A study shows the man-
ufacturing of glass–ceramics from MIBA having 80% poros-
ity and compressive strength of more than 6 MPa [104]. The 
recent research confirmed magnetite and hematite in porous 
products synthesized from VBA-based ceramics with high 
relative permittivity exceeding 50,000 (for a 20–200 Hz fre-
quency range) and electrical conductivity of 0.9 ± 0.1 S/m. 
It confirms that VBA-based products have numerous new 
possible applications other than building materials [39].

Multiple studies have shown that the low silica content 
and large surface area of smaller MIBA particles enable 
higher removal efficiencies of heavy metals and organic 
dyes [105–107]. In the year 2017, the study demonstrated 
the conversion of MIBA to porous adsorbents, which can 
be used for gas and wastewater treatment [108]. A process 
was designed to convert the solid structure of MIBA to a 

Fig. 6  Graph showing MIBA 
replacement versus compressive 
strength of concrete (28 days) 
where a illustrates fine aggre-
gate and b illustrates coarse 
aggregate components [22]
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porous microstructure under high alkaline conditions. The 
adsorbent proved significant toward Cu(II) ions, and a maxi-
mum adsorption capacity of 270.27 mg/g was observed. The 
results suggest the use of such adsorbents in the wastewater 
treatment process [109]. MIBA controls the leaching of met-
als, and adsorption of contaminants like 3-chloroaniline and 
triclosan was noted up to a greater extent (Table 2).

The economic viability of MIBA applications

The incineration process is highly cost-driven and requires 
a considerable investment to keep it running for longer peri-
ods. As MSW’s incineration is necessary to keep the volume 
of the waste being dumped into landfills in control, the appli-
cations of MIBA add individual profits to these incineration 
plants. In the year 2011, an LCA analysis confirmed that 
incineration leads to higher energy recoveries and the benefit 
to cost ratio was 6.5 times of that of landfill operations [111]. 
The studies have proved how economic and environmental 
benefits were achieved by utilizing MIBA in cement produc-
tion (20 wt%) and brick production (10 wt%) [112]. In the 
USA, MIBA was used as 20% of MIBA in hot mix asphalt 
(HMA) and as 5% of clinker [113, 114]. Both of these stud-
ies suggest the economic feasibility of incorporating MIBA 
as a raw material at an industrial level (Table 3).

Conclusions and recommendations

MIBA was once considered as a residue is now proving 
its potential as a significant construction material in vari-
ous applications. The paper reviewed the current scenario 
of MIBA usage and its advantages on the environment and 
natural resources protection. The studies that happened over 
the years indicated that incinerated bottom ash could be suc-
cessfully used in the construction sector. The review tar-
geted the four critical sections: (1) Management of MIBA; 
(2) Composition and properties of MIBA; (3) Common 
and  innovative applications of MIBA; and (4) Economic 
feasibility of MIBA applications.

The review makes the following conclusions fulfilling all 
these critical areas.

• Many constituents that are highly dependent on the 
feeding material and incineration facilities, limit the 
usage of MIBA as a raw material. The applications of 
MIBA are hence directly reliant on the type of constitu-
ents the bottom ash retains. Therefore, proper chemical 
characterization is a must for its application in con-
crete and other resource-based applications. The iden-

tification of heavy metals and soluble salts will help in 
selecting cost-effective pre-treatment techniques. It will 
ensure limited environmental setbacks and sustainable 
solutions for waste management.

• The review highlights, numerous advanced strate-
gies to cut the adverse effects of bottom ash on the 
environment. Consumption in the construction sector, 
raw feeding to industries, hydrothermal treatment and 
removal of heavy metals before final landfill disposal 
are some of  these which are cost effective. These appli-
cations can be further extended for the development of 
new technologies and various other value-added prod-
ucts.

• The solidification/stabilization of MIBA into cement or 
concrete composites is significant due to its cementa-
tion effect. The technique reduces the release of toxic 
compounds to a substantial amount and also results 
in structural benefits. The use of MIBA as a raw feed 
for solid cementitious materials, aggregate replace-
ment, and cement clinkers has been  proven useful by 
researchers in their works.

• From an engineering perspective, the application of 
MIBA in road construction and as a backfill material 
has suggested that MIBA is efficient as other construc-
tion or backfill materials. The only cause of concern is 
the contamination of ground and surface water sources 
from leachate interaction with runoff, rainfalls, and 
infiltration. In such a scenario, necessary preventive 
measures and design considerations can avoid the 
future contamination of resources.

• Although incineration is considered less eco-friendly, 
studies have shown that both MIBA and MIFA are 
being used since a decade. The incinerated ashes, when 
incorporated with cement production or any other facil-
ity where the incinerated ashes can be used directly, 
prove more environment friendly. It controls the carbon 
footprint of the industry and also favors the concept of 
a circular economy.

• Treatment of incinerated ashes according to the envi-
ronmental rules and regulations is suggested. It is nec-
essary to follow the standard protocols and a proper 
LCA of MIBA and its products are recommended 
before introducing the applications on an industrial 
level. There is an urgent need to establish guidelines, 
laws and regulations to give positive and controlled 
direction to MIBA generation and its utilization  in 
developed countries. The regulations should follow 
the scientific evidences and address the need for a 
resource-efficient waste management action plan.
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