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Abstract
International seismic building codes of practice specify a simplified method based on the first mode for the seismic analysis 
of regular structures and dynamic analysis for irregular structures. The number of modes to be used in the dynamic analysis 
of structures should be such that the sum total of the modal masses of all the modes considered is at least 90% of the total 
structural mass. Previous studies show that the 90% criterion for the number of modes considered may not result in correct 
responses in all the structural members of an irregular structure. The present study examines the rationale for using the 
codal provisions for the number of modes to be used for dynamic analysis of irregular building structures using the response 
spectrum method. Results of this study show that fundamental mode approach for regular structures and 90% modal mass 
criterion, given by the seismic building codes of practice for the number of modes to be considered for the dynamic analysis 
of irregular structures, are not adequate. It is observed that the present criterion results in the underestimation of shear forces 
in the top and bottom storeys according to the numerical examples considered. A simplified method is given for the elastic 
seismic analysis of irregular and complex structures using a “dynamic correction”, which can be extended to the nonlinear 
pushover analysis of structures.

Keywords Missing mass · Rigid frequency · Residual mode · Modal mass · Response spectrum

Introduction

The premise of the seismic design methodology in a typi-
cal building code is based on the consideration of the first 
mode. In some cases, the error due to the truncation of higher 
modes can be too large to be ignored, especially in the cal-
culation of response of stiff and irregular structural systems. 
Often, it is stated that mode truncation results in significant 
errors for stiff structures but not for flexible structures. Such 
a characterization of this problem is highly incorrect because 
the fundamental mode in an irregular structure is typically a 
localized mode that may not have any bearing on the response 
of certain other parts within a structure [1]. Moreover, some 
response quantities [2, 3] which have a significant contribu-
tion from the higher modes may also be sensitive to this mode 
truncation error, in even not so stiff structures. Instead of the 

first mode, the second one can dominate the shear demand in 
the buildings [3–5]. Experimental studies [6, 7] on the uplift 
effect of structures show that it can increase the contribution 
of the higher modes. In order to check the accuracy of the 
calculated response when higher modes are truncated in a 
modal superposition, typical seismic building codes specify 
that the results can be considered accurate if about 90% of 
the total structural mass participates in the number of modes 
considered [8–16]. This 90% mass criterion for the number 
of modes to be considered in a response spectrum method is 
extended to the nonlinear static pushover analysis [17, 18]. In 
the response spectrum method, the 90% criteria even when 
satisfied may not always result in correct responses in all the 
elements of an irregular structure [1]. The studies conducted 
[19, 20] on multi-frame bridges show that the present codal 
criterion of 90% structural mass for the number of modes to 
be considered for the dynamic analysis of structures is not ade-
quate, especially in long bridges, two-column bent, stiff soils, 
or bridges with high over strength. Further, it is observed that 
this criterion is not sufficient for estimating shear key forces. 
The accurate calculation of the responses is critical for the 
design of structural components like diaphragms and connec-
tions of precast or steel buildings [21, 22] and non-structural 
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components which are mounted on floors [23–25]. The exact 
estimation of lateral force distribution [26, 27] and responses 
can increase the seismic performance of the structure. The pre-
sent design criterion may result in overestimation of response 
in some members, whereas an underestimation of response in 
other members [1–3, 28]. Therefore, for the seismic analysis 
of irregular structures using response spectrum method, all 
the modes up to rigid frequency are considered and “missing 
mass” correction is applied for the truncated high-frequency 
modes having frequencies higher than rigid frequency. The 
consideration of high-frequency modes may introduce addi-
tional inaccuracies if the modal responses are not combined 
correctly [29–32].

Techniques have been developed to take the effect of the 
“missing mass” contained in the uncalculated high-frequency 
modes into account. A comparison between the various 
“missing mass” correction methods shows that residual mode 
method is superior to other methods [33, 34]. The residual 
mode can be included as modal properties of an additional 
mode in the dynamic analysis of lumped mass models and 
three-dimensional frame structures and can be combined with 
other modal responses using modal response combination 
rules [33]. The ability of the residual mode to approximate 
the periodic part of the response is not addressed. The modal 
responses, having a frequency less than rigid frequency, also 
have a rigid content, which gradually diminishes from the rigid 
frequency and becomes zero as the frequency goes down to a 
key frequency f1 [30, 32, 35]. In a complex and highly irregu-
lar structure, a large number of modes have to be considered 
before applying the “missing mass” correction. Considerable 
work is done to deal with the importance of higher modes, but 
only a few have addressed the issue of the required number of 
modes [1, 36–38]. This paper discusses the effect of truncation 
of modes on modal mass with the help of numerical examples, 
to show that the criterion given by building codes may not 
result in correct responses in all the elements of an irregular 
building. The ability of the residual mode to approximate the 
periodic part of the response is considered, and a simplified 
method is presented to take the response contributions of trun-
cated modes into account.

Mode superposition method

The equations of motion for an N-degree-of-freedom, vis-
cously damped system with classical damping can be writ-
ten as

where M, C and K are the mass, damping and stiffness 
matrices, respectively; U is the displacement vector; Ub is 
the static displacement vector when the base of the struc-
ture undergoes a unit deflection in the direction of the 

(1)𝐌�̈� + 𝐂�̇� +𝐊𝐔 = −𝐌𝐔büg

earthquake; and üg is the ground acceleration. The displace-
ment U of the system can be expressed as the superposition 
of modal contributions Ui:

where �
i
 are determined from the general eigenvalue prob-

lem ��i = �2
i
��i , Xi = modal coordinates, and �i is the 

frequency of the ith mode. By using Eq. (2), (1) can be 
transformed into a system of uncoupled equations in modal 
coordinates

where �i = �T
i
��b is called the modal participation factor 

and �i is the damping ratio for the ith mode. In the response 
spectrum method, the contribution of ith mode to nodal dis-
placements � is given by

where SDi is the maximum relative displacement of a single-
degree-of-freedom system having frequency �i and damping 
�i . The modal response � can be divided into two parts: the 
rigid part Ur and the damped periodic part Up. The modal 
response U can be expressed in terms of Ur and Up as [30, 
35]

Behaviour of high‑frequency modes

The minimum frequency beyond which the spectral curves 
have the same values of spectral acceleration is defined as 
the rigid frequency [29, 30]. The studies conducted using 
40 earthquake ground motions [32] show that curves with 
different damping ratios become rigid at different frequen-
cies. The spectral curve with lower damping ratio become 
rigid at a higher frequency than a spectral curve with higher 
damping ratio. In high frequencies, the periodic part of 
the response becomes negligible and only the rigid part of 
response remains. The responses in all the high-frequency 
modes having a frequency equal to or greater than rigid fre-
quency are in phase to each other and the rigid response 
always combines algebraically. In this region, the spectral 
acceleration becomes equal to the peak ground accelera-
tion, often referred to as the zero period acceleration (ZPA). 
Consider the first “n” modes of the N-degree-of-freedom 
system, having frequencies less than rigid frequency, and 
let the response in these n modes be �′ and the response in 
the remaining modes be �o . Then,

(2)� =

N
∑

i=1

�i =

N
∑

i=1

�iXi

(3)Ẍi + 2𝜉i𝜔iẊi + 𝜔2
i
Xi = 𝛤iüg, i = 1, 2…N

(4)�i = �iXi = �i�iSDi

(5)� =
√

(�r)2 + (�p)2

(6)�
� =

n
∑

i=1

�i =

n
∑

i=1

�i�i; �o =

N
∑

i=n+1

�i =

N
∑

i=n+1

�i�i
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For high-frequency modes, Eqs. (1), (6) and (7) give

where

Since the residual response in high-frequency modes is 
pseudo-static, we can neglect the terms �̈� and �̇ in Eq. (8); 
therefore,

The response of a high-frequency mode is essentially 
static and could be determined by static analysis using Eq. 
(10) instead of dynamic analysis.

Modal response combination

The peak value of the total response R estimated by combin-
ing the peak modal response of individual modes is given by

where Ri is the maximum modal response in ith mode and �̄�ij 
is the modified correlation factor [18] defined as

where �i is the rigid response coefficient in the ith mode and 
�ij is the correlation coefficient of the damped periodic part 
of modal responses, given by the complete quadratic combi-
nation (CQC) rule. For damped periodic modes, α = 0, and 
the modified double sum equation reduces to CQC, and for 
�̄�ij = 0 , it reduces to the square root of the sum of squares 
(SRSS). Eqs. (11) and (12) include the effect of the rigid 
response of high-frequency modes in the modified cor-
relation coefficient �̄�ij . The rigid response coefficient αi is 
defined as [30, 32]

where ẍi(t) is the acceleration response, 𝜎 ẍ
i
 and 𝜎üg are the 

standard deviations of ẍi(t) and üg(t) , respectively, and td is 
the duration of responses. The value of α gradually reduces 
from one to zero, from the rigid frequency for a particular 

(7)� = �
� + �o

(8)𝐌�̈�o + 𝐂�̇�o +𝐊𝐔o = −MUboüg;

(9)�bo = �b −

n
∑

i=1

�i�i

(10)��o = −��boüg

(11)R2 =

N
∑

i=1

R2
i
+

N
∑

i=1

∑

j≠i

�ijRiRj

(12)�ij = �i�j +

√

[

(

1 − �2
i

)

(

1 − �2
j

)]

�ij

(13)
𝛼i =

td

∫
0

ẍi(t)üg(t)dt

td𝜎
ẍ
i
𝜎üg

damping ratio to a key frequency f1 [30, 32, 35]. The key 
frequency f1 is the frequency at which the rigid response 
coefficient becomes zero. An approximate equation for αi 
can be represented by a straight line between the key fre-
quency f1 and rigid frequency for a particular damping ratio 
on a semilogarithmic graph, which is given by [32]

where fi is the modal frequency in hertz and the key frequen-
cies f1 and f2 can be expressed as

where SA max is maximum spectral acceleration and SV max 
is maximum spectral velocity

Residual mode method

Comparative studies show that residual mode method got 
more advantages than other “missing mass” correction meth-
ods. This method approximates the damped periodic part 
of the response also in addition to the rigid static part. In 
this method, the inertia effect of modes having frequencies 
greater than the rigid frequency is lumped into a “missing 
mass” term which yields the residual response. For high-fre-
quency modes, the equation of motion reduces to Eq. (10). 
The term üg in Eq. (10) is a scalar and can be scaled out 
from the equation. The solution of resulting equation yields 
a vector �r , which is normalized such that �T

r
��r = 1 . The 

fictitious frequency ω2
r
 corresponding to the residual mode 

is given by,

The residual modal vector �r and the corresponding fre-
quency �r can be directly included as modal properties of 
an additional mode in the dynamic analysis. The system 
can be analysed for n + 1 modes, where the contributions of 
high-frequency modes are taken into account by the residual 
mode.

To evaluate the ability of the residual mode to approxi-
mate the periodic part of the response, the two-degree-of-
freedom (2-DOF) system shown in Fig. 1 is considered. 
The modal properties are given in Table 1. The structure is 
analysed using El Centro (1940) ground motion. The key 
frequency f1 is 1.47 Hz, and rigid frequency correspond-
ing to 5% damping is 31.0 Hz. The structure is analysed 
using the first mode, and the second mode is truncated. The 
frequency of the second mode is 2.05 Hz which is far less 
than the rigid frequency and near to the key frequency f1, 

(14)�i =
ln fi

/

f1

ln f r
�

/

f1

, 0 ≤ �i ≤ 1

(15)f1 =
SA max

2�SV max
, Hz.

(16)ω2
r
= ��

r
��r
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which shows that the major part of the response is damped 
periodic. A correction using residual mode is applied for the 
truncation of the second mode. The natural frequency of the 
residual mode is 2.05 Hz, and its mode shape is same as for 
the second mode. The results are shown in Table 2. The error 
is calculated with respect to the response with all the modes. 
It is observed that in this example the responses are exactly 
calculated by the residual mode, even though its frequency 
is 2.05 Hz which is far less than the rigid frequency. This 
shows that in this example residual mode approximates the 
damped periodic part and the rigid part of the response and 
can be combined using modal response combination rules. 
Therefore, the residual mode method can be considered as 
an approximate dynamic correction.

Proposed simplified method

The number of modes to be used in the analysis should be 
such that the sum total of modal masses of all modes con-
sidered is at least 90% of the total seismic mass. The total 
structural mass of a building structure is given by

(17)MT = �
T
b
��

b

where Ub = 1 is a unit vector. The modal mass correspond-
ing to a mode is distributed along the mass points of the 
building. If 90% of the modal mass is considered

The ith mode contribution to MUb at each mass point k is 
Γimkϕi which is independent of how the modes are normal-
ized. Therefore, for n modes, Eq. (18) does not imply that 
Ub = 0.9 * 1 for all buildings, where 1 is a unit vector. The 
90% structural mass participation in the number of modes 
used in the analysis does not ensure 90% mass participation 
at all mass points, especially in irregular buildings. In order 
to estimate correct responses in all the structural members, 
the contribution of all the modes up to rigid frequency has 
to be considered for the seismic analysis of irregular build-
ings and “missing mass” correction using residual mode for 
the truncated high-frequency modes beyond rigid frequency. 
For a large system with many degrees of freedom, so many 
modes have to be considered before reaching the rigid fre-
quency. In an irregular system having modal frequencies less 
than rigid frequency, all the modes have to be considered. 
From the 2-DOF system considered above, it is observed 
that the responses are exactly calculated by the residual 
mode, even though its frequency is 2.05 Hz which is far 
less than the rigid frequency and near to the key frequency 
f1. Also from Fig. 2, it is seen that the residual mode shape 
exactly matches with the second mode. Therefore, the con-
tribution of the higher modes can be approximated using a 
residual mode, and from Eq. (4), the corresponding response 
is given by

Therefore instead of considering all the modes, the 
response of the structure can be calculated using the first 
mode and the residual mode. The modal responses can be 
combined using modal response combination rules. The pro-
posed method simplifies the seismic analysis of structures 
having significant contributions from higher modes. The fol-
lowing numerical examples will confirm this point.

Numerical example 1

A 6-DOF structural system [1] with mass irregularity hav-
ing modal frequencies less than rigid frequency is shown 
in Fig. 3. The structure is having mass irregularity in its 
fourth floor. The frequencies, modal damping and the mass 
participation percentage for different modes for this system 
are given in Table 3. If the first mode alone is considered, 
the modal mass participation is nearly 90% and the codal 
provisions are satisfied. The expansion of the modal mass is 
shown in Table 4. The structure is analysed using El Centro 

(18)
n
∑

i=1

M∗

i
= 0.9MT

(19)�i = �r�2SDr

m1=45300 kg

m2 =27100 kg

K1=5.52x10  N/m
             6

K2=1.31x10  N/m
             6

Fig. 1  2-DOF system

Table 1  Modal properties of 2-DOF system shown in Fig. 1

Mode number Frequency (Hz) Damping ratio 
(%)

Mass par-
ticipation 
(%)

1 0.97 5 69.76
2 2.05 5 30.24

Table 2  Storey shear (N) of 2-DOF system shown in Fig. 1

w.r.t. with respect to

Analysis Element 1 Element 2

Modal analysis (all modes) 3.05 × 105 1.79 × 105

First mode
(Error% w.r.t. all modes)

2.45 × 105

(− 19.67)
1.69 × 105

(− 5.13)
First mode + residual mode
(Error% w.r.t. all modes)

3.05 × 105

(0.00)
1.79 × 105

(0.00)
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(1940) ground motion. The key frequency f1 is 1.47 Hz, and 
rigid frequency corresponding to 5% damping is 31.0 Hz. 
The error in the calculation of storey shear considering the 
90% modal mass is shown in Table 5. Though 90% modal 
mass criterion condition prescribed by the building codes 
of practice is satisfied, the error in the calculation of storey 
shear with respect to all the modes in storeys 5 and 6 are 
37.8% and 50.7%, respectively. A residual mode correction 
is applied for the truncated modes. The frequency of the 
residual mode is 1.56 Hz which is far less than the rigid fre-
quency. The response of the second residual mode is calcu-
lated using Eq. (19). The maximum error in the calculation 
of storey shear with respect to all the modes using residual 
mode is only 10.1% in storey 6. This shows that only two 
modes, the first mode and a residual mode with a modified 
mode shape, are sufficient for the calculation of responses.

Numerical example 2

A 5-DOF structural system [37, 38] having modal frequen-
cies less than rigid frequency is shown in Fig. 4. The height 
of each storey is 3 m. The structure is a regular structure 
as per building codes of practice. The frequencies, modal 
damping and the mass participation percentage for different 
modes for this system are given in Table 6. The frequencies 
were chosen to accentuate the contributions of the second 
through the fifth mode of the structural response [37]. The 
expansion of the modal mass is shown in Table 7. If the first 
mode alone is considered, the modal mass participation is 
nearly 90% and the codal provision for the number of modes 
is satisfied. The structure is analysed using El Centro (1940) 
ground motion. The error in the calculation of storey shear 
considering the first mode is shown in Table 8. Though the 
building is a regular one having uniform mass and stiffness 
distribution, the error in the calculation of storey shear with 
respect to all the modes in storey 5 is 33.33%. This shows 
that for this structure consideration of fundamental mode 
as recommended by building codes and 90% mass criterion 
is not sufficient. A residual mode correction is applied for 
the truncated modes. The frequency of the residual mode is 
1.8 Hz, which is far less than the rigid frequency. Therefore, 
response of the second residual mode is calculated using 
Eq. (19). The maximum error in the calculation of storey 
shear with respect to all the modes using residual mode is 
only 3.89% in storey 4. This shows that the first mode and a 

Fig. 2  Mode shapes of 2-DOF 
system

Mode Shape 1 f = 1.47 Hz Mode Shape 1 f = 2.05 Hz Residual Mode Shape f = 2.05 Hz
1 2 r

K1=K2=K3=K4=K5=K6 =4.85x10  N/m
             6

m1 = 45370 kg

m2 = 45370 kg

m3 = 45370 kg

m4 = 125740 kg

m5 = 45370 kg

m6 = 45370 kg

K1

K2

K3

K4

K5

K6

Fig. 3  6-DOF system, numerical example 1

Table 3  Modal properties of 6-DOF system shown in Fig. 3

Mode num-
ber

Frequency (Hz) Damping ratio 
(%)

Mass par-
ticipation 
(%)

1 0.34 5 89.95
2 1.15 5 5.26
3 1.55 5 3.87
4 2.39 5 1.33
5 2.74 5 0.05
6 3.06 5 0.24
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residual mode with a modified mode shape are sufficient for 
the calculation of responses.

Numerical example 3

A 6-DOF structural system [1] with stiffness irregularity 
having modal frequencies less than rigid frequency is shown 
in Fig. 5. The structure is having stiffness irregularity, and 
its ground storey is a soft storey. The frequencies, modal 
damping and the mass participation percentage for different 
modes for this system are given in Table 9. The expansion of 
the modal mass is shown in Table 10. If the first mode alone 
is considered, the modal mass participation is 90% and the 
codal provisions are satisfied. The structure is analysed using 
El Centro (1940) ground motion. The key frequency f1 is 
1.47 Hz, and rigid frequency corresponding to 5% damping 
is 31.0 Hz. The error in the calculation of storey shear con-
sidering the 90% modal mass is shown in Table 11. Though 
90% modal mass criterion condition prescribed by the build-
ing codes of practice is satisfied, the error in the calculation 
of storey shear with respect to all the modes in storey 5 and 
6 is 23.35% and 33.04%, respectively. A residual mode cor-
rection is applied for the truncated modes. The frequency of 
the residual mode is 1.36 Hz which is far less than the rigid 
frequency. Therefore, the response of the second residual 
mode is calculated using Eq. (19). The maximum error in 
the calculation of storey shear with respect to all the modes 
using residual mode is only 12.17% in storey 6 and 3.68% 

Table 4  Modal expansion of Ub 
for numerical example 1

Node Mode1 Mode2 Mode3 Mode4 Mode5 Mode6 Ub

1 0.294 0.198 0.240 0.216 0.009 0.065 1
2 0.575 0.300 0.269 − 0.021 − 0.007 − 0.094 1
3 0.833 0.256 0.060 − 0.214 − 0.004 0.072 1
4 1.055 0.087 − 0.201 0.042 0.010 − 0.011 1
5 1.155 − 0.199 0.027 0.052 − 0.055 0.010 1
6 1.205 − 0.389 0.232 − 0.047 0.031 − 0.004 1
M

∗
i
% 89.95 5.26 3.87 1.33 0.05 0.24

Table 5  Storey shear (N) of 
6-DOF system shown in Fig. 3, 
numerical example 1

w.r.t. with respect to

Analysis Element 1 Element 2 Element 3 Element 4 Element 5 Element 6

Modal analysis (with all modes) 4.04 × 105 3.62 × 105 3.36 × 105 3.11 × 105 2.01 × 105 1.29 × 105

Modes (90% modal mass)
(Error% w.r.t. all modes)

3.71 × 105

(− 8.47)
3.55 × 105

(− 1.90)
3.25 × 105

(− 3.32)
2.80 × 105

(− 9.94)
1.25 × 105

(− 37.8)
0.63 × 105

(− 50.70)
Proposed method
(Error% w.r.t. all modes)

3.86 × 105

(− 4.63)
3.59 × 105

(− 0.61)
3.25 × 105

(− 3.18)
2.92 × 105

(− 5.98)
1.93 × 105

(− 3.90)
1.16 × 105

(− 10.07)

m = 45370 kg

             6

m = 45370 kg

m = 45370 kg

m = 45370 kg

m = 45370 kg

K1

K2

K3

K4

K5

K1=K2=K3=K4=K5=5.52x10  N/m

Fig. 4  5-DOF system, numerical example 2

Table 6  Modal properties of 5-DOF shown in Fig.  4, numerical 
example 2

Mode num-
ber

Frequency (Hz) Damping ratio 
(%)

Mass par-
ticipation 
(%)

1 0.50 5 87.95
2 1.46 5 8.71
3 2.30 5 2.42
4 2. 95 5 0.75
5 3.37 5 0.15
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in storey 4. This shows that only two modes, the first mode 
and a residual mode, are sufficient for the calculation of 
responses.

Numerical example 4

A 5-DOF model of a structure with a relatively stiff base 
supporting a flexible tower [35, 39] shown in Fig. 6 is con-
sidered for analysis using the proposed method. The frequen-
cies, modal damping and the mass participation percentage 
for different modes for this system are given in Table 12. El 
Centro (1940) ground motion is used for earthquake excita-
tion. In this example, the maximum mass contribution is 
from the fifth mode. The modal mass contribution of the 
first mode is only 40.55%. The first mode is considered for 
the analysis, and the higher modes are truncated. The error 
in the calculation of storey shear considering the first mode 
is shown in Table 13. The error in the calculation of storey 
shear with respect to all the modes in storey 1 is 32.77%. 
For the truncated higher modes “missing mass” correction 
is applied using residual mode method. The frequency cor-
responding to the residual mode vector is 31.01 Hz. In this 
case, the frequency of the residual mode is almost equal to 
the rigid frequency. The behaviour of the residual mode is 
rigid. Inertia forces and damping have no effect on a rigid 
mode. Therefore, the response of the second residual rigid 
mode is calculated using 

(20)�i = Γr�rSDr

Table 7  Modal expansion of Ub 
for numerical example 2

Node Mode1 Mode2 Mode3 Mode4 Mode5 Ub

1 0.35 0.30 0.21 0.11 0.02 1
2 0.68 0.39 0.05 − 0.08 − 0.04 1
3 0.95 0.21 − 0.19 − 0.03 0.05 1
4 1.15 − 0.11 − 0.11 0.11 − 0.04 1
5 1.25 − 0.36 0.15 − 0.06 0.01 1
M

∗
i
% 87.95 8.71 2.42 0.75 0.15

Table 8  Storey shear (N) of 
5-DOF system shown in Fig. 4, 
numerical example 2

w.r.t. with respect to

Analysis Element 1 Element 2 Element 3 Element 4 Element 5

Modal analysis (all modes) 3.75 × 105 3.23 × 105 2.76 × 105 2.31 × 105 1.47 × 105

First mode
(Error% w.r.t. all modes)

3.46 × 105

(− 7.73)
3.18 × 105

(− 1.54)
2.64 × 105

(− 4.34)
1.89 × 105

(− 18.18)
0.98 × 105

(− 33.33)
Proposed method
(Error% w.r.t. all modes)

3.70 × 105

(− 1.60)
3.20 × 105

(− 0.92)
2.77 × 105

(− 0.36)
2.40 × 105

(− 3.89)
1.49 × 105

(− 1.36)

K2=K3=K4=K5=K6 =4.85x10  N/m

             6

m1 = 45370 kg

m2 = 45370 kg

m3 = 45370 kg

m4 = 45370 kg

m5 = 45370 kg

m6 = 45370 kg

K1

K2

K3

K4

K5

K6

K1=3.15x10  N/m              6

Fig. 5  6-DOF system, numerical example 3

Table 9  Modal properties of 6-DOF system shown in Fig. 5, numeri-
cal example 3

Mode num-
ber

Frequency (Hz) Damping ratio 
(%)

Mass par-
ticipation 
(%)

1 0.37 5 90.73
2 1.09 5 7.21
3 1.79 5 0.76
4 2.40 5 0.41
5 2.88 5 0.12
6 3.19 5 0.03
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The results are compared with the peak modal responses 
calculated using modal analysis with all modes. The error 
involved in the calculation of storey shear using each method 
with respect to modal analysis with all modes is shown in 
Table 13. The error involved in the calculation of response 
using the proposed method is less than 4%.

The mass participating in the first mode in numerical 
examples 1, 2, 3 and 4 is 89.95%, 87.95%, 90.73%, and 
40.55%, respectively. In the first, second and third examples, 
the modes considered for the analysis are nearly 90% of the 
structural mass. Further, the second example is a regular 
structure with a uniform distribution of stiffness and mass, 
and as per the building codes of practice, the response can be 
calculated using only the first mode of vibration. In example 
1, even though the mass contribution of the first mode is 
89.95%, it varies along with the building from 0.29 times 
of the mass at node 1 to 1.2 times of the mass at node 6. In 
example 2, the mass participation corresponding to the first 
mode is 87.95%; it varies from 0.35 times mass at node 1 to 
1.25 times mass at node 5. In example 3, the mass participa-
tion corresponding to the first mode is 90.73%; it varies from 
0.42 times mass at node 1 to 1.23 times mass at node 5. The 
maximum error observed in the calculation of storey shear in 
the top storey is 50.7%, 33.33% and 33.04% in examples 1, 
2 and 3, respectively. Numerous failures of buildings during 
earthquakes are due to large floor accelerations which are 
not expected in the design [40]. The accurate calculation of 
storey shear and lateral force distribution is important for the 
design of structural and non-structural components fixed at 
various floor levels [21–27].

Table 10  Modal expansion of 
Ub for numerical example 3

Node Mode1 Mode2 Mode3 Mode4 Mode5 Mode6 Ub

1 0.42 0.29 0.12 0.08 0.03 0.01 1
2 0.67 0.36 0.05 − 0.04 − 0.05 − 0.02 1
3 0.88 0.26 − 0.07 − 0.07 0.02 0.02 1
4 1.05 0.05 − 0.11 0.05 0.03 − 0.02 1
5 1.18 − 0.18 − 0.02 0.07 − 0.05 0.01 1
6 1.23 − 0.34 0.09 − 0.06 0.02 − 0.01 1
M

∗
i
% 90.73 7.21 0.76 0.41 0.12 0.03

Table 11  Storey shear (N) of 
6-DOF system shown in Fig. 5, 
numerical example 3

w.r.t. with respect to

Analysis Element 1 Element 2 Element 3 Element 4 Element 5 Element 6

Modal analysis (all modes) 3.61 × 105 3.18 × 105 2.80 × 105 2.44 × 105 1.97 × 105 1.15 × 105

Modes (90% modal mass)
(Error% w.r.t. all modes)

3.41 × 105

(− 5.54)
3.14 × 105

(− 1.25)
2.72 × 105

(− 2.85)
2.17 × 105

(− 11.06)
1.51 × 105

(− 23.35)
0.77 × 105

(− 33.04)
Proposed method
(Error% w.r.t. all modes)

3.52 × 105

(− 2.49)
3.16 × 105

(− 0.63)
2.75 × 105

(− 1.78)
2.35 × 105

(− 3.68)
1.81 × 105

(− 0.08)
1.01 × 105

(− 12.17)

Table 12  Modal properties of 5-DOF system shown in Fig. 6, numer-
ical example 4

Mode num-
ber

Frequency (Hz) Damping ratio 
(%)

Mass par-
ticipation 
(%)

1 5.71 5 40.55
2 16.44 5 6.21
3 25.21 5 4.52
4 30.94 5 8.00
5 33.23 5 40.71

m1=12x10  kg             4

m2 =22x10  kg             3

K1

K2

m3 =22x10  kg             3

m4 =22x10  kg             3

m5 =22x10  kg             3

K3

K4

K5

K2=K3=K4=K5 =2.4x10  N/m

K1=4.8x10  N/m
             9

             8

Fig. 6  5-DOF system, numerical example 4
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The first and third numerical examples show that 90% of 
mass criteria are not sufficient. In the second example, the 
structure is a regular one as defined by the building codes of 
practice, but consideration of first mode alone results in an 
error of 33.33%, whereas the error in the proposed method is 
less than 4%. In the last example, the maximum contribution 
(40.71% of the structural mass) is from the last mode. The 
higher modes are truncated and “missing mass” correction 
is applied using residual mode. The error by using the pro-
posed method is less than 4%. Therefore, seismic analysis of 
structures can be performed using first mode and dynamic 
correction using residual mode. The numerical examples 
considered show that the proposed method gives reason-
able results. The proposed method simplifies the analysis 
procedure for the seismic analysis of irregular building 
structures. In all the examples, only two modes, first and 
residual modes, are sufficient to get results with reasonable 
accuracy. Further, the recommendations given by building 
codes of practice for response spectrum method of seismic 
analysis are extended to the nonlinear pushover analysis of 
structures. Instead of a modal pushover analysis, a single 
pushover can be performed for the first mode alone and the 
contribution of higher modes can be calculated from their 
elastic response. Previous studies show that the assumption 
of elastic behaviour for higher modes leads to reasonable 
results and has been widely adopted [2, 41–45]. Therefore, 
for structures with a dominating first mode (having mass 
participation factor of nearly 90%), a single pushover analy-
sis can be performed for the first mode alone and a dynamic 
correction using a second residual mode as explained above 
can be applied to take the contribution of higher modes into 
account. Some limited available studies show that the second 
mode can be inelastic, whereas the other modes are elas-
tic [3–5]. Further detailed studies are necessary to extend 
the simplified procedure for the inelastic analysis of such 
structures.

Conclusions

In response spectrum method of seismic analysis, the present 
criteria of considering the first mode for regular structures 
and 90% of the structural mass participation in the number of 

modes considered for irregular structures given by the interna-
tional building codes of practice may not always result in cor-
rect responses in all the elements of a structure. For irregular 
structures, all the modes up to rigid frequency are included 
in the analysis and “missing mass” correction techniques are 
applied to account for the response contributions of uncalcu-
lated high-frequency modes. Generally, it is observed that for 
a highly irregular structural system a large number of modes 
have to be considered till rigid frequency, though 90% mass 
participation is achieved within the first few modes. For large 
structures with many degrees of freedom, considering all the 
modes up to rigid frequency is a computationally tedious pro-
cess. An alternate simplified method for the seismic analysis 
of building structures is proposed in which only two modes, 
the first mode and a residual mode are used for the seismic 
analysis of structures. The residual mode is considered, irre-
spective of whether the truncated modes are rigid or damped 
periodic. If the frequency of the residual mode is far less than 
the rigid frequency then the response of the residual mode 
is calculated using the second mode shape of the structure, 
instead of the residual mode shape. In the proposed simplified 
method, the residual mode approximates the damped peri-
odic part also, along with the rigid part of the response of 
the uncalculated modes. The residual mode can be included 
as an additional mode in the analysis, and the corresponding 
response can be combined according to the modal response 
combination rules. In the numerical examples considered, it 
is observed that response with reasonable accuracy can be 
achieved by using only the first mode and dynamic correction 
with the residual mode. The proposed method can be used for 
the dynamic analysis of complex irregular structures, and the 
dynamic correction using residual mode for higher modes can 
be extended to nonlinear pushover analysis of the first-mode-
dominated structures.
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