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Abstract The aim of this paper is to demonstrate the

advanced tools and techniques used for adding value to the

soil stabilization practice. The tools presented involve

advanced laboratory tests and modeling using codes and

soft computing to evaluate the mechanical behavior of

stabilized soils with cement, ranging from short-term to

long-term behavior. More precisely, these tools are able to:

1. Predict the mechanical behavior of the stabilized soils

over time from data obtained in the early ages saving time

in laboratory tests; 2. Predict the mechanical behavior of

the stabilized soils over time based on basic parameters of

soil type and binder using historical accurate data, avoiding

mechanical laboratory tests. 3. Incorporate the service-

ability limit state concept in a novel proposal to estimate

the design modulus in function of the uniaxial compressive

strength and the strain level, making more economic and

sustainable geotechnical solutions.

Keywords Soil stabilization � Design modulus � Soft

computing � Eurocode 2 � Service limit state

Introduction

Soil stabilization works require laboratory testing to obtain

the best dosage of binder necessary to achieve hydraulic

and mechanical properties associated with the service limit

state of the geotechnical structure. The laboratory studies

are time consuming and consequently affecting the deliv-

ery time of the project since in general the mechanical

properties are obtained for at least 28 days [1]. To over-

come this problem the design engineer can use available

empirical rules, codes, and actually more advanced tools

and techniques such as data mining.

Concerning the empirical rules, most of the available

ones are very conservative for mechanical property pre-

dictions since the laboratory techniques available at the

time they were established did not use advanced laboratory

tests using local strain measurements and/or wave propa-

gation techniques [2, 3]. In this work this will be addressed

and a novel proposal will be presented.

In what concerns the use of codes, a paper presented by

authors adapts the Eurocode 2 for prediction of the

mechanical properties of soil–cement mixtures and this

will be reported in this paper to decrease the time in

mechanical laboratory testing [4, 5]. In this context, a

recent test method named EMM-ARM will be presented

allowing the possibility to predict stiffness of stabilized soil

from the early ages [6].

Alternative advanced techniques using soft computing

are also nowadays available with predictive capacities

when a huge amount of historical data is available. This is

our case for results of laboratory soil–cement tests were

these techniques are also applied. In fact, these soft com-

puting techniques are powerful tools for analyzing and

extracting information from raw data, enabling the identi-

fication of complex relationships between several input

variables and the target output. Indeed, there are several

successful cases where these tools were used to solve

complex problems in different knowledge areas, including

this one related to soil stabilization using jet grouting

technology [7–9].

This paper was selected from GeoMEast 2017–Sustainable Civil

Infrastructures: Innovative Infrastructure Geotechnology.

& António Gomes Correia

agc@civil.uminho.pt

1 ISISE – Institute for Sustainability and Innovation in

Structural Engineering, School of Engineering, University of

Minho, Guimarães, Portugal
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In summary this paper will cover these two different

approaches for laboratory formulations of soil stabilization

with cement. Furthermore, an insight into design applica-

tion is gained through a novel proposal allowing the pre-

diction of the design modulus in function of the uniaxial

compressive strength for the level of strain of the material

corresponding to the serviceability limit design of the

structure.

Mechanical property prediction

Mechanical propriety prediction of soil–cement mixtures is

a key issue in soil stabilization projects. To accomplish this

task, a current practice in the framework of soil stabiliza-

tion projects, such as in jet grouting (JG) or cutter soil

mixing (CSM) is to prepare and test some laboratory for-

mulations, using the same soil and binder to be applied

during the in situ treatment. However, these formulations

can represent by itself an important cost to the project.

Thus, to minimize the number of formulations to prepare

and consequently the final cost of the project, it is useful to

have an available numerical model able to accurately

predict its mechanical properties (strength and stiffness)

over time [10].

Nowadays, there are some empirical models available

that can give a valuable help during the design stage.

However, due to the high number of variables involved

(treatment parameters, binder, soil properties, etc.) as well

as the heterogeneity of the soils, most of the existing

approaches present important applicability limitations.

Hence, in last years several attempts have been made to

overcome this limitation. In this paper, two different

approaches are summarized, which have shown to be very

effective in mechanical property estimation of soil–cement

mixtures.

EC2-modified approach

One reference approach that already proved to be of great

efficiency [5] in uniaxial compressive strength (UCS) and

elastic Young modulus (E0) prediction of soil–cement

mixtures is the analytical expression proposed in the

Eurocode 2 (EC2) [11] for both strength and stiffness

prediction of concrete. According to this approach,

mechanical properties of soil–cement mixtures can be

estimated over time based on its characteristics at 28 days

time of cure. However, this delay in testing of soil–cement

seriously limits the design study as well as the control

during production and quality assurance at early ages.

Thus, to overcome this drawback of EC2 approach, a

modified version was proposed, using reference data tested

at early ages instead of the conventional 28 days time of

cure [4]. The achieved results allow us to balance the

model prediction accuracy and time consumption in the

final project and construction work costs, by comparing

model performance using reference data tested at 3, 7, 14,

and 28 days time of cure.

For training and test purposes, a set of soil–cement

formulations for JG and CSM technologies were used,

performing a total of 342 records for UCS study and 188

records for E0 study. These records contemplate formula-

tions prepared with soils collected from different sites, with

different water cement ratios (W/C), cement content (kg/

m3) and type (coefficient s), which were tested at different

ages (t). For a detailed characterization of the different

formulations considered please see [4].

Following the EC2 approach [11], strength and stiffness

prediction of concrete over time can be performed

according to the following equations, respectively:

fcm tð Þ ¼ e s� 1� 28
tð Þa½ �ð Þ � fcm ð1Þ

Ecm tð Þ ¼ e s� 1� 28
tð Þb

� �� �� �c

� Ecm ð2Þ

In the above equations, t is the age of the mixture, s is a

coefficient related with the cement type defined in EC2

[11], a, b, and c are coefficients to be adjusted using lab-

oratory soil–cement mixtures test results, fcm and Ecm

represent, respectively, the strength and stiffness of each

formulation at 28 days time of cure (reference data), and

fcm(t) and Ecm(t) are, respectively, the strength and stiffness

of the mixture at the age t.

To adapt Eqs. 1 and 2 to JG laboratory formulations

(JGLG) and CSM laboratory formulations (CSMLF) and

Table 1 Coefficients a, b, and c of Eqs. (1) and (2) [4]

Model a b c

3 days

UCS —JGLF 0.04 – –

UCS —CSMLF -28.47 – –

E0—JGLF – 2.42E-4 1.14E2

7 days

UCS —JGLF 0.37 – –

UCS —CSMLF 0.26 – –

E0— JGLF – 2.24E-4 8.62E2

14 days

UCS —JGLF 0.50 – –

UCS —CSMLF 0.42 – –

E0— JGLF – 4.30E-4 1.978E3

28 days

UCS —JGLF 0.67 – –

UCS —CSMLF 0.56 – –

E0—JGLF – 1.61E-3 6.909E2
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assess its performance when applied to unseen data, both

datasets (strength and stiffness studies) were split into two

subsets. One, with 2/3 of the records, for training model

purposes (i.e., to adjust the coefficients a, b, and c of Eqs. 1

and 2, respectively), and another one, with the remaining

records, to test model accuracy.

To check if it is possible to use reference data tested at

early ages instead of the conventional 28 days, Eq. (1) was

trained with UCS data from JGLG and CSMLF, and

Eq. (2) with E0 data from JGLF. In each one of these

experiences, the parameters fcm and Ecm that represent in

the original EC2 approach the 28-day strength and stiffness

of each formulation, respectively, were iteratively replaced

by the equivalent information at 3, 7, 14, and 28 days time

of cure. Table 1 summarizes the optimized values of

coefficients a, b, and c for each one of the three situations

described above.

Figure 1 illustrates the relationship between experi-

mental data versus predicted by EC2 approach

adapted/modified to JGLF considering reference data tes-

ted at 3 days time of cure (Fig. 1a) and 14 days time of

cure (Fig. 1b). As expected, when considering reference

data tested at very early ages (e.g., 3 days of cure) the

achieved performance is poor. On the other hand, using

reference data tested at more advanced ages (e.g., 14 days

time of cure) the EC2 model performance increases
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Fig. 1 Scatterplot of UCS experimental versus predicted by EC2-modified approach using JGLF [4]: a reference data tested at 3 days;

b reference data tested at 14 days
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Fig. 2 EC2-modified approach performance in UCS prediction as a function of the reference data age; a using JGLF; b using CSMLF
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significantly. Indeed, when considering reference data

tested at 28 days, a very high performance is achieved (R2

around 0.9), as depicted in Fig. 2a, which compares EC2-

modified approach performance based on R2, when refer-

ence data tested from 3 to 28 days are used. Table 2

compares EC2-modified approach for each one of these

situations, based on MAD, RMSE, and R2 metrics [4].

From this analysis the influence of the age of the reference

data is clear. It is also observed that there is just a small

difference between EC2-modified approach performance,

when reference data tested at 14 or 28 days are considered.

This observation shows that in some situations it may be

advantageous to use reference data tested at 14 days,

instead of waiting twice as long to achieve just a small

better prediction confidence. In the case of UCS prediction

of CSMLF, the influence of the reference data age is not so

significant (see Fig. 2b). Indeed, an excellent performance

was achieved (R2 very close to 1) when using reference

data tested at 28 days. Moreover, even when reference data

tested from early ages are used (e.g., 7 days time of cure)

Table 2 EC2-modified

approach performance based on

MAD, RMSE, and R2 [4]

Model MAD RMSE R2

Training set Test set Training set Test set Training set Test set

3 days

UCS—JG 1.93 1.96 2.60 2.45 0.13 0.08

UCS—CSM 0.39 0.48 0.63 0.70 0.73 0.71

E0—JG 0.70 0.79 0.98 1.05 0.49 0.45

7 days

UCS—JG 1.30 1.23 1.78 1.56 0.60 0.62

UCS—CSM 0.29 0.32 0.41 0.45 0.89 0.88

E0—JG 0.56 0.58 0.82 0.83 0.61 0.61

14 days

UCS—JG 0.81 0.78 1.17 1.04 0.83 0.83

UCS—CSM 0.16 0.18 0.25 0.26 0.96 0.96

E0—JG 0.36 0.39 0.47 0.48 0.87 0.87

28 days

UCS—JG 0.50 0.57 0.73 0.80 0.93 0.90

UCS—CSM 0.10 0.11 0.14 0.15 0.99 0.99

E0—JG 0.29 0.26 0.38 0.35 0.92 0.93
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Fig. 3 EC2-modified approach adapted to JGLF for E0 prediction: a scatterplot of E0 experimental versus predicted by EC2-modified approach

using reference data tested at 28 days [4]; b EC2-modified approach performance as a function of the test data age
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an interesting performance is reached (R2 around 0.6). In

addition, just a very small difference is observed in EC2-

modified approach performance when considering refer-

ence data tested at 14 or 28 days time of cure.

Based on the above results, it is observed that EC2-

modified approach performs better in strength prediction of

CSMLF. Comparing JGLF and CSMLF used in this study,

the main difference is related with the way how the cement

Table 3 Comparison of

models’ performance in UCS

and E0 prediction, based on

MAD, RMSE, and R2 metrics,

according to MR, ANN, and

SVM algorithms [13]

Metric MR ANN SVM

UCS E0 UCS E0 UCS E0

MAD 0.78 ± 0.00 0.34 ± 0.00 0.32 ± 0.00 0.15 ± 0.00 0.33 ± 0.00 0.17 ± 0.00

RMSE 1.08 ± 0.00 0.48 ± 0.00 0.51 ± 0.00 0.21 ± 0.00 0.52 ± 0.00 0.25 ± 0.01

R2 0.85 ± 0.00 0.87 ± 0.00 0.97 ± 0.00 0.97 ± 0.00 0.97 ± 0.00 0.96 ± 0.00
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Fig. 4 REC curves and scatterplot of UCS experimental versus predicted by: a SVM-UCS.Lab [13]; b SVM-E0.Lab [24]
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was mixed with the soil. While in JGLF, such mixture was

made through a cement grout, in CSMLF the cement was

mixed in powder state. Accordingly, based on this obser-

vation, we can conclude that EC2 approach works better

with soil–cement mixtures prepared with powder cement

than with a cement grout.

Analyzing the result of EC2-modified approach for

stiffness prediction of JGLF, we can see that the achieved

performance is very similar to those in UCS study. As

shown in Fig. 3a, EC2-modified approach is able to accu-

rately predict E0 over time, particularly when reference

data tested at advanced ages (i.e., 28 days time of cure) are

used. In addition, a clear influence of the reference data age

in EC2-approach performance is observed, as illustrated in

Fig. 3b. This means that when reference data tested at early

ages are used, EC2 performance is low, increasing signif-

icantly when fed with reference data tested at more

advanced ages (higher than 14 days time of cure).

Recently, a novel approach known as EMM-ARM

(elasticity modulus measurement through ambient response

method) has been explored to apply it to soil mixtures [12].

Although such technique has been originally designed to

test concrete, it can be quickly extended to other materials

such as mortar, cement paste, stabilized soils, and even

epoxy resins [6]. EMM-ARM is based on the identification

of the resonant frequency of the testing mould, which

evolves along time due to the hardening process of the

tested material, and then the E modulus of the tested

material can be inferred with basis on the dynamic equa-

tions of motion of the testing system. So, this recent lab-

oratory test method can be used to obtain the E modulus at

early ages and then used as an input value in EC2

approach.

Soft computing techniques

Three different DM algorithms, namely multiple regression

(MR), artificial neural network (ANN), and support vector

machines (SVM), where applied in the development of

predictive models for UCS and E0 of laboratory soil–ce-

ment mixtures [13]. For a detailed description of the

parameters adopted for each technique, particularly for

ANN and SVM, please see Tinoco et al. [7] and Tinoco

et al. [13]. The overall generalization performance of the

trained model was assessed using 20 runs under a leave-

one-out approach [14], where successively one example is

used to test the model and the remaining are used to fit the

model [7]. All experiments were conducted in the R tool

[15] and supported by rminer library [16].

Table 3 shows and compares the performance of the

models based on MAD, RMSE, and R2. As shown, ANN

Fig. 6 Comparison of the stress–strain and modulus-strain curves for a fresh sample [25]

Fig. 7 Laboratory specimen instrumented with LDT and LVDT [1]
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and SVM algorithms evidence a high performance in both

UCS and E0 prediction of laboratory soil–cement mixtures,

with an R2 higher than 0.96. Such high performance is

plotted in Fig. 4, which depicts the relationship between

experimental and predicted values (read on top and right

axis) according to SVM algorithms (SVM-UCS.Lab and

SVM-E0.Lab models), overlapped by regression error

characteristic (REC) curves [17] (read on button and left

axis). Observing REC curves, we can see that both ANN

and SVM models present a very similar performance,

which is significantly better than MR models.

Aiming a better assessment and interpretation of the

data-driven models for both UCS and E0 prediction, the

relative importance of each input variable was calculated

based on a sensitivity analysis (SA) as described by Tinoco

et al. [7], and Cortez and Embrechts [18]. Figure 5, which

plots the relative importance of each input variable

according to SVM predictive models of UCS (SVM-

UCS.Lab) and E0 (SVM-E0.Lab), illustrates that the relation

n/(Civ)
d is the key variable in both mechanical property

prediction of laboratory soil–cement mixtures. Moreover,

in the UCS study the t, Civ, and s also have a strong

influence in UCS development. On the other hand, it is also

observed that the soil properties are apparently more rele-

vant in stiffness prediction of laboratory soil–cement

mixtures than in strength study.

Novel proposal for application in design

For design purposes, UCS and Etg50% (tangent deforma-

bility modulus at 50% of the maximum stress) are those

properties currently required. Due to time and cost con-

cerns, usually only compression tests without strain mea-

surement are carried out. Therefore, for Etg50%

quantification a relation between Etg50% and UCS (Etg50%/

UCS) can be very useful.

In the past, and based on experimental results, some

relations have been proposed. However, since the local

deformation measurement techniques were not applied, a

big scatter was observed and also the modulus was

underestimated. Then, it is fundamental to update Etg50%/

UCS relation considering new experimental results for

which local deformation was measured.

Indeed, previous investigations, dating from the 1980s

[19–22], show the imprecision of evaluating moduli by the

use of external measurement of the deformation of sam-

ples. This fact is addressed in Fig. 6, where the result of the

modulus tangent to 50% of the ultimate strength (Etg50%) is

very distinct when the stress–strain and modulus-strain

curves are plotted with local and external measurements of

Fig. 8 Typical soil variation of stiffness (full) and damping (dashed)

with shear strain [25]

Fig. 9 Correlation between the

ratio Etg50%/UCS as a function

of the strain
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the sample deformation. For the example shown, the ulti-

mate strain obtained with the external measurement device

is about three times as high as the local measurement and

the Etg50% determined with the local measurement is about

three times as high as the Etg50% determined with the

external measurement.

Figure 7 illustrates how local measurements can be

measured using LDTs (Local Deformation Transducers,

[23]).

On the other hand, it is known that soil moduli are

dependent on the applied level of strain. This relation is

depicted in Fig. 8, which illustrates a typical soil variation

of stiffness (full line) with shear strain.

As a final step we need to know how to correlate Etg50%

and UCS as a function of the applied strain level. Based on

Fig. 9, we can see that there is a well-defined trend

between the strain and the relation of Etg50%/UCS, for

28 days. This novel proposal was established based on

laboratory and field data which give more reliability in its

use. With this proposal, the design engineer can easily

predict the Etg50% for the design strain level based on the

conventional uniaxial compressive strength test results.

Conclusions

The findings presented in this paper are an added value for

the soil stabilization practice. Despite the results presented

for one type of binder, the cement, it is believed that the

same methodology can be adapted for other type of binders

too. The results presented show that the approach proposed

in EC2 for mechanical property prediction over time can be

adapted for stabilized soils using mechanical test results

obtained at early ages. In this context and in what concerns

the moduli, advanced laboratory tests with local strain

measurements (on sample measurements) are necessary

and the recent EMM-ARM (elasticity modulus measure-

ment through ambient response method) can be very

useful.

It is also demonstrated how soft computing techniques

can be used as a powerful tool for predictive purposes of

mechanical properties over time when a historical database

is available.

Finally, a novel proposal is presented for the prediction

of design modulus based on the results of conventional

uniaxial compressive strength tests. This modulus is a

function of the strain level of the stabilized material

mobilized for the serviceability state of the structure.
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Ingénieur en Génie Civil’’. Paris, École National des Ponts et
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