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Abstract
A waste feedstock-derived economical basic alternative catalyst is described in this 
review. Eggshell is one of the household wastes created in tons of weight daily. 
Therefore, in order to reduce the environmental pollution-related problems, its use 
in heterogeneous catalysis can be attributed as a great contribution for the chemical 
and material science society to carry out several known reactions and for the much-
needed energy alternative biodiesel production as low-cost catalytic system. Keep-
ing green chemistry in mind, industrial use of these catalysts may also reduce the 
use of other traditionally used high-cost chemical catalytic systems.

Keywords Egg shell powder · Heterogeneous catalysis · Green chemistry · 
Transesterification · Waste-derived catalyst

1 Introduction

1.1  Green Heterogeneous Catalysis and Egg Shell Powder (ESP)

Due to the greater toxicity problem and cost-effectiveness of organic chemicals, it 
is very necessary to reuse and recycle all the chemicals and catalysts as much as 
possible for the better and greener future of the environment. Keeping these points 
in mind, we have to plan our research work in a green manner so that there should 
be less harmful effects of chemicals on the environment [1]. To undergo a reaction, 
there should be some kind of catalyst that is responsible for dramatically enhancing 
the rate of a reaction without altering the thermodynamic equilibrium of a particular 
reaction [2–5]. Therefore, the important factor is to adapt the organic transformation 
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with less pollution effects along with a reduction of energy and raw material 
consumption.

There are two types of catalysts: homogeneous and heterogeneous; however in 
this review, we will focus on heterogeneous catalysis and we are going to briefly 
discuss the use of egg shell powder [6–8] or calcined egg shell [9, 10]. Homoge-
neous catalysis are well recognized in synthetic organic chemistry, and have some 
disadvantages such as difficult separation of the soluble complexes from the reaction 
mixture, non-recyclability, possibility of breakdown of the complexes, decreasing 
catalytic activity, etc. [11, 12]. On the other hand, heterogeneous catalysts are easy 
and simple to recover from the reaction mixture, which furnish the practical impor-
tance in both research sectors as well as in the industrial sector, e.g., appropriate in 
flow reactors [13, 14]. Heterogeneous catalysts are less selective than the homogene-
ous ones due to the presence of a large number of active sites present on it [15]. In 
recent years, the development of green heterogeneous catalytic systems has attained 
great significance for its implication in the chemical processes, which may cause 
benign environment consequences with high selectivity of the desired molecules, 
great yield, and lesser amount of side products [16, 17].

With the rapid progress of the industrial sector day by day, there will be a possi-
bility of an energy crisis in near future. Because of this energy crisis, improvements 
in renewable energies such as wind power, solar energy, and bio-derived solvent 
extraction have been focused on worldwide [18–20]. Therefore, the development of 
green and ecologically safe energy techniques for a better and sustainable future is 
always a great initiative with enormous significance [21]. Nowadays, economic and 
environmental apprehensions encourage researchers and scientists in the application 
of heterogeneous catalyst to carry out diverse organic transformations, which make 
the transformation clean, environmentally benign, and with a high product yield 
[22–24]. Thus, heterogeneous catalysis has a great impact on the field of synthetic 
organic chemistry due to its immense recyclability, reusability, and it attributes all 
these requirements for the synthetic organic chemistry to overcome the problems 
faced by the researchers [25–30].

1.2  Chemistry of ESP

Egg shell is an important natural calcium feedstock in the form of calcium carbonate 
along with little percentage of calcium phosphate [31–33]. Literature reveals that 
egg shell contains approximately 95%  CaCO3, 2%  Ca3(PO4)2, 2%  MgCO3 and 1% 
of organic substances mostly of albuminous character. In egg shell, the content of 
calcium is 28.2–41.2% and the content of phosphorus is 0.102% [34–36]. Due to the 
basic nature of ESP, [37–39] we thought it could be widely used in synthetic organic 
processes where an external base is necessary for a reaction to proceed. Accord-
ingly, we carried out C–C (Suzuki–Miyaura cross-coupling reactions) and C-hetero 
atom (peptide coupling, click chemistry) bond formation reactions using ESP as a 
base alternative as well as solid support (discussed in the later part of this review). 
SEM-EDAX and TEM-EDAX analysis of the ESP are shown below [40] (Fig. 1):
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1.3  Traditionally Used Heterogeneous Catalyst vs. Egg Shell‑Based 
Heterogeneous Catalyst

The principal features for environmentally acceptable processes are based on green 
heterogeneous catalysts since they are easy to handle and inexpensive in nature.

Literature reports reveal the development of many heterogeneous catalysts to 
carry out different organic transformations in recent decades. Heterogeneous cata-
lysts are based on impregnation of transition metal on the solid support such as sil-
ica [41, 42], clay [43–53], surfactant/clay composites [54, 55], metal exchange clay 
composite [56, 57], etc.

The use of silica-supported reagents in one-pot multi-component constructions of 
heterocycles has received considerable importance in organic synthesis since these 
kinds of catalysts are easy to prepare, inexpensive, and have reusability power due to 
insolubility in volatile organic compounds (VOCs). Many silica-based reagents such 
as  FeCl3–SiO2 [58],  HClO4–SiO2 [59–61],  Fe3O4@nSiO2–NH2–RhNPs@mSiO2 

Fig. 1  a SEM-EDAX of ESP. b TEM-EDAX of ESP [40]
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nanocatalyst [62], Brønsted acids supported on silica [63], TfOH-SiO2  [64] sulfu-
ric acid on nano silica [65], were developed to carry out different organic transfor-
mations. These catalysts are very effective and inexpensive along with recyclability 
power.

Similarly, clay-supported heterogeneous catalysts also find significant applica-
tions and the processes using clay-modified catalysts are relatively greener. Since 
clays are readily available, very cheap, and non-toxic in nature, they have many 
advantages over other catalysts. A good number of papers are available on the use 
of Montmorillonite K10 [66–78], Montmorillonite KSF [79–85], kaolinite [86–88], 
bentonite [89, 90], etc., as solid supports for the preparation of heterogeneous 
catalyst.

Some other heterogeneous catalysts were prepared by using zeolite [91–97], solid 
acid [98, 99], nano-structured catalyst [100, 101], metal organic framework (MOF) 
[102–106], chitosan [107–114], hydrotalcite [115–127], titania [128, 129], alumina 
[130–134], cellulose [135–141], carbon/charcoal [142–150], polymer and nano-
based composite [151, 152], tungstate [153, 154], molecular sieve [155–159], etc., 
for various organic transformations such as C–H activation [160] and C–C and C–N 
bond formations [161–163].

Comparing egg shell powder with other above-mentioned solid supports, we 
found that egg shell powder also acts as a solid support with superior selectivity, 
since calcium carbonate is insoluble in almost all of the organic solvents including 
water. By using ESP as a solid support, it is easy to recover the catalyst from the 
reaction mixture and reuse it. Several reports are available in the literature describ-
ing the use of egg shell as a solid support for different applications such as in syn-
thesis of hydrogen/syngas, bioactive compound, and in waste-water treatment, etc., 
but to the best of our knowledge, no reports are available in the literature describing 
the ESP promoted organic transformations that will be discussed briefly in a later 
part of this review.

1.4  Importance of Biodiesel and Its Production Through Heterogeneous Catalyst 
vs. Egg Shell‑Modified Catalyst

Due to the limited stock of non-renewable energy sources, researchers have been 
paying much more attention to energy alternatives since the last decade to meet 
energy demands. Therefore, to fulfill the increasingly high energy demand in every-
day life, the research field has been directed towards the development of alternative 
and environmental friendly fuel with less pollution effects [164, 165].

Biodiesel, a renewable energy source, is composed of long-chain fatty acid alkyl 
ester. It has similar physical properties to that of petroleum diesel, with some advan-
tages like being biodegradable, renewable, lower toxicity, and low emission of toxic 
chemicals. Foremost technique for the synthesis of biodiesel is done by transesteri-
fication of vegetable oil or animal fat in the presence of methanol by using low-cost 
catalysts (Scheme 1) [166–169]. The usual transesterification reaction for biodiesel 
production is carried out in the presence of a strong base and it is homogeneous in 
nature with certain disadvantages like equipment corrosion, formation of unwanted 
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by-products, being hard to separate, difficult to recycle, high temperature, along with 
certain environment-related problems. Therefore, the development of solid catalysts 
for biodiesel production always has a great importance and recently gained attention 
due to their ease of separation, lack of corrosion, and less toxicity problems.

Use of waste material-derived solid catalyst in biodiesel production has a great 
impact on the environment as well as on the cost-effectiveness of the catalyst. One 
of these kinds of waste solid catalysts was derived from eggshell, which is a house-
hold waste in daily life with a high percentage of calcium components. These kinds 
of eggshell-derived solid catalyst were used as heterogeneous catalysts for biodiesel 
production in batch reactors. Various research groups [166–170] derived such low-
cost catalysts for biodiesel production, which is discussed in detail in the later part 
of this review.

Use of eggshell:

A. As heterogeneous catalysts in synthetic organic chemistry:

There are two ways through which eggshell can act as a heterogeneous catalyst: 
(i) through calcinations of the eggshell, and (ii) eggshell without calcinations. It is 
very hard to compare the efficiency between them since both contain calcium as the 
major source while the difference is that upon calcinations traces of organic matters 
are removed from the eggshell. Upon calcination, eggshell, which mainly contains 
 CaCO3, is converted to CaO and it is free from organic content. Therefore, both 
these catalysts are equally efficient towards different organic transformations and 
their applications are listed below in detail.

a. Use of CaO (from calcined egg shell) as catalyst for organic transformations:

The synthesis of Schiff base is always an important reaction in synthetic organic 
chemistry by the simple condensation of an aldehyde and an amine. Patil and cow-
orkers [9] synthesized functionalized Schiff bases by using the natural catalyst (cal-
cined egg shell or CES) under solvent-free conditions in which CES acts as a dehy-
drating agent (Scheme 2). 
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Scheme 1  Biodiesel synthesis by transesterification of triglycerides
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Similarly, Knoevenagel condensation reaction is another base catalyzed reaction 
in which condensation of an aldehyde and active methylene compound takes place. 
CES mainly contains calcium carbonate as the major component, which is basic in 
nature, and due to this, the condensation of the above compounds takes place. Patil 
et al. [171] also extended the work on CES, showing its application on the Knoev-
enagel condensation in aqueous medium as a heterogeneous catalyst as well as a 
base alternative (Scheme 3).

Khazaei et  al. [172] carried out Suzuki–Miyaura cross-coupling reaction in the 
presence of nano-Fe3O4@SiO2 supported Pd(0), which is a magnetically recover-
able nanocatalyst. Here, the silica was synthesized from rice husk and considered as 
a natural support for the stabilization of magnetic palladium nanoparticles. Due to 
the combination of palladium source and egg shell, Suzuki–Miyaura reactions easily 
proceeded giving the desired biaryl moieties in the presence of calcium oxide with 
the binary mixture of water and ethanol as solvent (1:1) at 85 °C. The synthesized 
catalyst was well characterized by different spectroscopic analyses such as UV–Vis, 
FT-IR, X-ray diffraction (XRD), scanning electron microscope (SEM), transmission 
electron microscope (TEM) and energy-dispersive X-ray spectroscopy (EDX), etc. 
(Scheme 4).

Waghadhare and coworkers [173] also synthesized a magnetically separable 
cobalt-iron nano-catalyst based on egg shell as a heterogeneous catalyst as well as a 
base alternative for Knoevenagel condensation reaction (Scheme 5).
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Scheme 2  Synthesis of Schiff base by using Calcined Egg Shell (CES)

CES (2.5 wt%)
CHOR +

CN

R'

R' = -CN, -COOEt

Water, RT

R CN

R'
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Morbale et  al. [174] synthesized 1,4-dihydropyridine and polyhydroquinoline 
through a green and efficient catalytic system by the simple summarizing of alde-
hydes, dimedone, or ethylacetoacetate and ammonium acetate using an alternative 
heterogeneous basic catalyst “modified eggshells” (MES) in a water:ethanol system 
at 80 °C (Scheme 6).

Riadi et al. [175] also carried out the Knoevenagel reaction in methanol at room 
temperature using calcined eggshell meal (CEM), which was considered as an alter-
native green solid support as heterogeneous media since it was easy to separate and 
reuse. Due to these advantages, egg shell can be considered as a well-established 
solid support for organic transformations (Scheme 7).

Scheme  5  Knoevenagel condensation reaction inpresence of egg shell based magnetically separable 
nano catalyst

 

Scheme 6  Modified eggshell (MES) catalyzed synthesis of 1,4-dihydropyridine and polyhydroquinoline

 

Scheme 7  Eggshell meal (CEM) catalyzed Knoevenagel condensation reaction
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Taleb et al. [176] synthesized oxime derivatives by simple condensation of alde-
hyde and hydroxylamine hydrochloride by the use of chemically treated eggshell as 
a heterogeneous catalyst in ethanol at reflux conditions. The catalytic activity of this 
newly developed heterogeneous catalyst can be used up to seven times (Scheme 8).

Gao et al. [177] synthesized dimethyl carbonate (DMC) using waste eggshell as 
a heterogeneous catalyst by the treatment of propylene carbonate and methanol at 
25 °C and 1 atm pressure. Calcined eggshell was found to be a highly active base, 
reusable solid heterogeneous catalyst for organic transformations instead of using 
traditional solid supports, and characterized by using various analytical techniques 
such as TGA, XRD, nitrogen physisorption, and energy-dispersive X-ray spectros-
copy (EDS) (Scheme 9).

b. Use of  CaCO3 (from uncalcined egg shell) as catalyst for organic transformations:

M. Khazaei et al. [178] developed reusable and efficient Pd nanoparticles using 
barberry fruit extract through in situ greener reduction method and then supported 
over eggshell. Here, barberry fruit extract has a dual role of reducing agent as well 
as stabilizing agent for palladium nanoparticles. These newly developed Pd nano-
particles were applied for ligand-free ipso-hydroxylation of phenylboronic acid and 

 

Scheme 8  Synthesis of oxime derivatives by the use of chemically treated eggshell

 

Scheme 9  Synthesis of dimethyl carbonate (DMC) by using waste eggshell
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catalytic reduction of different organic dyes, such as 4-nitrophenol, methylene blue, 
Congo red, and methyl orange by using  NaBH4 and aqueous media at room tempera-
ture (Scheme 10).

Montilla et al. [179] developed a feasible way to produce lactulose from lactose 
by employing egg shell as a catalyst (which accelerates the formation of lactulose) 
through ultra filtrate, which is an alternative for consumption of these industrial 
wastes. Here, the reaction was stirred and refluxed at 98 °C in glycerol for 60 min 
using 6 mg/ml of egg shell catalyst loading giving the optimal production of lactu-
lose (Scheme 11).

Youseftabar-Miri et al. [180] carried out the organic transformations for the syn-
thesis of pyrano[3,2-c]quinoline derivatives using eggshell as a heterogeneous cata-
lyst at 60 °C and ethanol as a solvent and described that the eggshell catalyst can be 
recovered and reused for several times without losing its activity (Scheme 12).

Mallampati et  al. [181] also reported a simple method for synthesis of nano-
particle in which metal cations are reduced by eggshell membrane to metal atoms. 
Eggshell membrane (ESM) stabilized these nanoparticles and acts as a supporting 
material for the nanoparticles. These newly developed membrane-supported nano-
particles were employed as a heterogeneous catalyst for the nitro reduction and syn-
thesis of propargylamine and these nanoparticles were used for the testing of their 
catalytic efficiency (Scheme 13).

 

PdNPs/eggshell (3 mg)

NaBH4, Water

Catalytic reduction process

Organic Dyes
Such as 4-nitrophenol,

Methyl Organge, Congo
red, Methylene Blue

Reduced product of
the dyes

Scheme  10  Ligand-free ipso-hydroxylation and catalytic reduction of  organic dyes by using eggshell 
supported PdNPs

 

Scheme 11  Eggshell catalyzed lactulose synthesis from lactose
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Our group extended the scope of eggshell heterogeneous catalyst and success-
fully carried out several reactions such as click or azide-alkyne cycloaddition, 
peptide coupling reaction, and palladium catalyzed Suzuki–Miyaura reaction 
using ESP [40, 182, 183]. The role of eggshell in these reactions is a base alter-
native/reducing agent. Moreover, eggshell is insoluble in water; therefore it also 
acts as a solid support for these reactions. In case of peptide synthesis, ESP neu-
tralizes the amino acid methyl ester hydrochloride, a coupling partner of the pep-
tide synthesis. Again, in Suzuki–Miyaura reaction, ESP acts as an internal base as 
well as a solid support for incorporation of in situ-generated palladium nanoparti-
cles. The Pd nanoparticles, stabilized by several components of eggshell powder, 
were characterized by SEM, SEM-EDAX, TEM, TEM-EDAX, and XRD analysis 
[40] (Fig. 2 and Scheme 14). 

Kuhn et  al. [184] developed Pd–Ag/Al2O3 egg-shell catalysts with different 
Pd/Ag mole ratios and tested for selective hydrogenation of acetylene under tail-
end conditions in  H2 atmosphere. Here, the total number of Pd surface atoms has 

 

Scheme 12  Eggshell catalyzed synthesis of pyrano[3,2-c]quinoline derivatives

 

Scheme 13  Eggshell membrane (ESM) supported nanoparticles as a catalyst for nitro reduction and syn-
thesis of propargylamine derivatives
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been reduced and isolation of large Pd ensembles takes place, and it is confirmed 
from characterization data (Scheme 15).

Shao et  al. [185] have developed a simple and efficient approach in which 
eggshell Pd/SiO2–Al2O3 catalyst proceeds through CO reduction deposition of 
 PdCl2 at room temperature and aqueous ethanolic solution. Compared to a tradi-
tionally used catalyst, this catalytic system has appreciably higher activity in the 
partial hydrogenation of phenyl acetylene and the formation of ethylbenzene is 

Fig. 2  a TEM image of Pd-ESP through in situ generation of palladium nanoparticles. b TEM-EDAX of 
Pd-ESP composite
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suppressed due to uniform active metal distribution over the surface of eggshell 
(Scheme 16).

Wen et al. [186] also worked on selective hydrogenation of pyrolysis gasoline by 
using eggshell Ni/Al2O3 catalyst in a micro-flow reactor. Here, Wen and coworkers 
derived this catalyst from LDHs precursor with advanced catalytic hydrogenation 

 

Scheme  14  Eggshell powder (ESP) catalyzed Click or azide-alkyne cycloaddition, peptide coupling 
reaction and Suzuki-miyaura reaction

 

Scheme 15  Selective hydrogenation of acetylene in presence of Pd-Ag/Al2O3 egg-shell catalyst
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efficiency, mainly due to the deposition of Ni metal on  Al2O3 as a solid support with 
stronger interaction between the nickel metal and  Al2O3 support (Scheme 17).

Badano et al. [187] developed a supported Pd catalyst over two new polymeric 
composite materials UTAI (made from triethylene glycol dimethacrylate (TEG), 
benzoyl peroxide (BPO) and diurethane dimethacrylate (UDMA) and mixed with 
alumina in monomer ratio of 1:1) and BTAI [made from TEG, BPO and bisphe-
nol A glycerolate dimethacrylate (BGMA) and mixed with alumina in monomer 
ratio of 1:1] which was found to be extremely active for the selective hydrogena-
tion of styrene stirred in tank reactor at 353 K and  H2 pressure in toluene as a 
solvent. With smaller diffusive restriction of the catalyst than other supported Pd 
catalysts made the catalyst more efficient for hydrogenation reaction (Scheme 18).

Khajavi et  al. [188] developed an eggshell-based Pt-metal organic framework 
catalyst that can be applied in the selective hydrogenations of olefin mixtures to 
1-octene, benzonitrile to benzylamine, and linoleic acid to oleic and stearic acid 
(Scheme 19).

Gao et al. [189] also developed  TiO2-modified porous hollow silica nanoparticles 
supported Pd-based eggshell nano-catalysts for selective hydrogenation of acetylene. 
Here, modified  TiO2, as support, promotes the selectivity for hydrogenation of acet-
ylene, which showed better performance in the reaction to reduce the temperature 
and time to 300 °C and 1 h instead of 500 °C and 3 h in  TiO2 alone (Scheme 20).

Richter et  al. [190] carried out nitric oxide selective catalytic reduction by 
using novel eggshell  MnOx/NaY composite over ammonia, which was operated at 

 

Scheme 16  Partial hydrogeneation of Phenyl acetylene in presence of eggshell Pd/SiO2-Al2O3 catalyst

 

Scheme 17  Selective hydrogenation of pyrolysis gasoline by using eggshell Ni/Al2O3 catalyst

 

Scheme 18  Selective hydrogenation of styrene in presence of eggshell-Pd supported catalyst over poly-
meric composite materials
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temperatures lower than 470 K in water as a solvent giving around 80–100% NO 
conversion (Scheme 21).

 

Scheme 19  Selective hydrogenation of olefin mixtures, benzonitrile and linoleic acid in presence of egg-
shell-based Pt-metal organic framework catalyst

 

Scheme 20  Selective hydrogenation of acetylene in presence of TiO2-modified Pd based eggshell nano 
catalyst

 

Scheme 21  Nitric oxide selective reduction in presence of eggshell  MnOx/NaY composite
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Silva et  al. [191] synthesized an efficient and novel Fe–Ni/γ–Al2O3 eggshell 
catalyst for the decomposition of ammonia to  H2 at 650 °C and water as a solvent 
(Scheme 22). Here, the eggshell catalyst shows superior activity towards ammonia 
decomposition and can reduce the ammonia trace concentration to equilibrium level.

Yang et al. [192] described wet air oxidation of waste water of coke-plant over 
eggshell/ruthenium-based catalyst for high chemical oxygen demand (COD) and 
ammonia/ammonium compounds  (NH3–N) exclusion at temperature (250  °C), 
which is relatively efficient compared to other ruthenium-based catalysts with 
the same amount of loading. The reason for the high activity of eggshell catalyst 
towards treatment of waste water of coke-plant can be ascribed to the higher den-
sity of active Ru sites in the eggshell layer compared to other uniform catalysts 
with the same amount of Ru loading (Scheme 23).

Khandelwal et al. [193] developed a method for the synthesis of hydroxyapatite 
(HA) with the chemical formula  Ca10(PO4)6(OH)2, which is the major chemical 
constituent of human bone tissue (70%). This is the reason why it has been widely 
engaged in the dental and non-load bearing implantations, to cope up with the bone 
response as a bioactive material. Here, wet chemical method was employed to syn-
thesize HA powder using eggshells and phosphoric acid  (H3PO4). HA powder was 
characterized by XRD, SEM, EDX FTIR, and TGA-DTA analysis (Scheme 24).

B. As heterogeneous catalysts for biodiesel production

Buasri et  al. [165] described an eggshell waste-derived catalyst through calci-
nation of eggshell, which converts eggshell calcium carbonate to calcium oxide at 
600–900 °C for 4 h. For catalyst testing, it was applied in transesterification of palm 
oil in the presence of methanol for the synthesis of biodiesel for 1–5 h, at 50–70 °C 
with 10–30 wt% catalyst loading (Table 1, entry 1).

 

Scheme 22  Ammonia decomposition reaction in presence of eggshell based catalyst

Scheme 23  Wet air oxidation of waste water of coke plant by using eggshell/ruthenium-based catalyst
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Wei et al. [166] also described an eggshell-based solid catalyst by calcination of 
egg shell at 200–1000 °C for 2 h in a muffle furnace under static air. The catalytic 
activity was confirmed by applying it for the biodiesel synthesis from soybean oil 
and methanol in a batch reactor under 65 °C and vigorous stirring with 3 wt% of 
catalyst loading (Table 1, entry 2).

Yin et  al. [194] also developed an eggshell catalyst for the biodiesel synthe-
sis from soybean oil deodorizer distillate (SODD). Here, eggshells were calcined 
in a muffle furnace up to 900  °C to get the CaO particles. This catalyst was then 
employed for the transesterification of pre-esterified SODD with methanol in vary-
ing catalyst loading, time, and temperatures for the synthesis of biodiesel (Table 1, 
entry 3).

Navajas et  al. [195] derived a catalyst based on eggshell that was calcined 
in a muffle furnace at 900  °C for 2  h. This catalyst was applied in used cook-
ing oil (UCO) in a batch-type reactor along with previously mixed 2% sulfuric 
acid–methanol solution at 60 °C for 3 h to obtain the desired biodiesel (Table 1, 
entry 4).

Jazie et al. [196] developed an egg shell eco-friendly catalyst for transesterifica-
tion of rapeseed oil for the biodiesel production in which eggshell was calcined in 
a muffle furnace up to a temperature of 1000 °C for 2 h under static air. This eco-
friendly catalyst was characterized by XRD,  N2 adsorption–desorption, BET sur-
face area, and FTIR analysis. This catalyst was applied for biodiesel production by 
the treatment of methanol along with rapeseed oil, which was previously heated at 
378 K for 1 h in  N2-atmosphere to remove water and other volatile organic impuri-
ties and cooled (Table 1, entry 5).

Boro et al. [197] synthesized eggshell-derived CaO/Li-doped catalyst which was 
calcined at 800 °C for 2 h and was used for biodiesel production from nonedible oil 
feedstock with 94% of conversion with 5% catalyst along and 2% of lithium loading. 
This derived catalyst was characterized by using XRD, FTIR, and BET surface area 

 

Scheme 24  Hydroxyapatite synthesis by the use of eggshell catalyst
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analysis. This catalyst was used for esterification of Mesua ferrea Linn (Nahor oil) 
with concentrated  H2SO4 and methanol for 3 h at 60 °C (Table 1, entry 6).

Chen et al. [198] described calcium oxide derived from eggshell and explored the 
effectiveness of the catalyst for the biodiesel synthesis through transesterification of 
palm oil. Here, the ostrich eggshells were calcined at 800 °C for 4 h with a heating 
rate of 10  °C/min. The catalyst was used in the reaction along with palm oil and 
methanol at 60 °C for 1–3 h with varying amount of ultra power and low amount of 
catalyst loading (3–10 wt%) (Table 1, entry 7).

Viriya-empikul et  al. [199] described a catalyst derived from eggshell  CaCO3, 
which was transformed to CaO by calcinations in the presence of air at 800 °C for 
4  h for the biodiesel production from palm olein oil. This catalyst was character-
ized and confirmed by using XRD, TG/DTA, SEM, EDXRF,  N2 adsorption, and 
BET surface area analysis and applied in palm olein oil and methanol at 60 °C with 
10 wt% of catalyst (Table 1, entry 8).

Niju et al. [170, 200–202] described biodiesel production using waste egg shells 
as heterogeneous catalyst derived from eggshell through calcination in a muffle fur-
nace at 900 °C for 2.5 h under static air in order to form active CaO catalyst which 
was characterized by using XRD, SEM, EDAX, and BET surface area analyzer. 
Afterwards, this newly developed calcined catalyst was applied in biodiesel synthe-
sis from waste frying oil (WFO) with methanol at 65  °C in a reactive distillation 
(RD) system. The general method for the production of biodiesel was also employed 
by using the same catalyst from WFO giving around 95% of conversion with 3 wt% 
of the catalyst in methanol at 65  °C for 3  h. Similarly, Niju and coworkers also 
derived highly active CaO catalyst through calcination-hydration-dehydration tech-
nique of egg shells. It was used for biodiesel production from WFO with methanol 
for 1 h at 65 °C (Table 1, entry 9).

2  Conclusions

The use of eggshell, a household waste material, -derived feedstock reduces the 
probable pollution-related problems and can be used as a better renewable catalyst/
product for maximum use of feedstock. Again, the production of biodiesel using 
eggshell as catalyst/solid support has gained much interest in the field of chemistry 
and chemical engineering for a better and sustainable future. The industrialization 
of this kind of waste feedstock for synthesis of the above-mentioned reactions may 
also get high significance and thus it is expected that eggshell will definitely play 
an important role in biodiesel production and heterogeneous catalysis in the near 
future.
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