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Abstract Merging the chemistry of transfer hydrogenation and carbonyl or imine

addition, a broad new family of redox-neutral or reductive hydrohydroxyalkylations

and hydroaminomethylations have been developed. In these processes, hydrogen

redistribution between alcohols and p-unsaturated reactants is accompanied by C–C

bond formation, enabling direct conversion of lower alcohols to higher alcohols.

Similarly, hydrogen redistribution between amines to p-unsaturated reactants results

in direct conversion of lower amines to higher amines. Alternatively, equivalent

products of hydrohydroxyalkylation and hydroaminomethylation may be generated

through the reaction of carbonyl compounds or imines with p-unsaturated reactants

under the conditions of 2-propanol-mediated reductive coupling. Finally, using vici-

nally dioxygenated reactants, that is, diol, ketols, or diones, successive transfer

hydrogenative coupling occurs to generate 2 C-C bonds, resulting in products of

formal [4?2] cycloaddition.
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1 Catalytic Hydrogenation—A Brief Historical Perspective

The first metal-catalyzed additions of elemental hydrogen to p-unsaturated reactants

were reported by James F. Boyce of the Nathaniel Kellogg Fairbank Soap Company

in connection with the processing of vegetable oils [1]. Subsequently, Paul Sabatier

of the University of Toulouse developed general protocols for the hydrogenation of

alkenes employing heterogeneous nickel catalysts [2]. Foreshadowing the merger

hydrogenation and carbonyl addition described in the present account, Paul Sabatier

and Victor Grignard jointly received the Nobel Prize in Chemistry in 1912 [3].

Following Sabatier’s pioneering work, numerous noble metal catalysts for

heterogeneous hydrogenation emerged. Among these, the platinum oxide catalyst

developed by Roger Adams in 1922 is still one of the most active and readily

prepared catalysts for heterogeneous hydrogenation [4].

The first examples of homogeneous hydrogenation were reported by Melvin Calvin at

the University of California at Berkeley in 1938 [5]. Calvin showed that under one

atmosphere of hydrogen, copper acetate catalyzed the reduction of 1,4-benzoquinone to

1,4-hydroquinone in quinoline solution at 100 �C. It was not until 1961 that Halpern’s

group at the University of British Columbia performed the first homogeneous

hydrogenation of an olefin [6]. In Halpern’s system, ruthenium catalysts were used to

reduce activated alkenes such as maleic acid. In 1962, Vaska subsequently found that

IrCl(CO)(PPh3)2 reacts reversibly with elemental hydrogen to form isolable dihydrides

[7]. This result solidified the conceptual foundation of catalytic hydrogenation by

establishing hydrogen ‘‘oxidative addition’’ as a key mechanistic feature.

Finally, in 1965, Wilkinson’s group at Imperial College reported the homogeneous

hydrogenation of unactivated alkenes and alkynes catalyzed by RhCl(PPh3)3 [8, 9].

This finding ultimately led William S. Knowles of Monsanto Company in St. Louis to

discover the first enantioselective hydrogenation in 1968 [10]. Knowles’ discovery

was made possible by Horner and Mislow’s disclosure of methods for the preparation

of nonracemic P-stereogenic phosphines [11, 12]. In Knowles’ initially reported

asymmetric hydrogenation, a maximum enantiomeric excess of 15 % was obtained.

Subsequent work by Kagan in 1971 using chiral bis(phosphines) derived from tartaric

acid (i.e., ‘‘DIOP’’) gave up to 72 % enantiomeric excess [13]. Using a P-stereogenic

bis(phosphine) known as DiPAMP, chemists at Monsanto performed the first

industrial catalytic asymmetric synthesis for the production of L-DOPA, a treatment

for Parkinson’s disease. Lastly, in 1980 Ryoji Noyori reported the synthesis of BINAP

and demonstrated the broad utility of this ligand in asymmetric hydrogenation [14, 15].

The purpose of this review is to provide a comprehensive summary of ruthenium-

catalyzed C–C couplings induced via alcohol-mediated transfer hydrogenation [16–

20]. These studies build on several important milestones in the area of ruthenium-

catalyzed hydrogenation and transfer hydrogenation (Scheme 1). In 1971, one

decade after the seminal work of Halpern on ruthenium-catalyzed hydrogenation

[6], transfer hydrogenations employing ruthenium catalysts were described [21].

The ruthenium-catalyzed acceptorless dehydrogenation of alcohols was reported by

Robinson in 1977 [22] and ruthenium-catalyzed oxidative esterifications were

reported by Shvo in 1981 [23, 24]. These studies were followed by the first highly
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enantioselective ruthenium-catalyzed hydrogenations and transfer hydrogenations,

reported by Noyori in 1986 and 1995, respectively [25, 26]. As documented in this

account, ruthenium-catalyzed transfer hydrogenation now serves as the basis for C–

C bond constructions that directly convert lower alcohols to higher alcohols [16–

20]. This body of work was preceded by studies on metal-catalyzed carbonyl

reductive couplings mediated by elemental hydrogen, as initially described in 2002

by the present author [27], and as documented in the review literature [28, 29].

2 Conversion of Primary Alcohols to Secondary Alcohols

In 2007, our laboratory reported the first transfer hydrogenative couplings of

alcohols with p-unsaturated reactants using iridium-based catalysts [30]. In 2008,

the first ruthenium-catalyzed reactions of this type were developed (Scheme 2).

Specifically, it was found that exposure of alcohols to 1,3-dienes in the presence of

catalysts derived from HClRu(CO)(PPh3)3 and various phosphine ligands results in

hydrogen transfer to furnish aldehyde-allylruthenium pairs that combine to form

homoallylic alcohols as single regioisomers [31]. The coupling of isoprene to d2-

benzyl alcohol results in transfer of a benzylic deuteride to the allylic methyl (19 %
2H) and allylic methine (32 % 2H). These data are consistent with reversible

hydrometallation of the less-substituted olefin to form a secondary r-allyl.

Conversion to the more stable primary r-allyl haptomer occurs in advance of

carbonyl addition, which proceeds through the indicated closed six-centered

transition state with allylic inversion to deliver the product of carbonyl allylation.

Remarkably, while the primary alcohol reactants readily dehydrogenate, the

secondary homoallylic alcohol products resist further oxidation due to chelation of

homoallylic olefin to ruthenium to generate a coordinatively saturated complex.
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Scheme 1 Selected milestones in homogeneous ruthenium-catalyzed hydrogenation and transfer
hydrogenation. aBINAP = 2,20-bis-(diphenylphosphino)-1,10-binaphthalene. TsDPEN = N-p-Tosyl-1,2-
diphenylethylenediamine
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Indeed, in the coupling of isoprene to d2-benzyl alcohol, deuterium is completely

retained at the carbinol position, suggesting that the product is completely unreactive

toward alcohol dehydrogenation. However, the ruthenium catalyst (F3CCO2)

(H)Ru(CO)(PPh3)2, which is generated in situ through the acid-base reaction of

H2Ru(CO)(PPh3)3 and F3CCO2H (TFA), possesses a higher degree of coordinative

unsaturation, enablingb-hydride elimination at the stage of the homoallylic ruthenium

alkoxide to form the b,c-unsaturated enones (Scheme 2) [32]. Notably, both

transformations, diene hydrohydroxyalkylation or hydroacylation, may be conducted

from the alcohol or aldehyde (not shown) oxidation level of the reactant [31, 32].

Initial studies aimed at directing relative and absolute stereochemistry in alcohol-

mediated diene hydrohydroxyalkylation relied on the use of 2-trialkylsilyl-

butadienes [33]. Hydrometallation of 2-trialkylsilyl-substituted dienes gives rise

to crotylmetal species that exist as single geometrical isomers due to allylic strain

[34–36]. In the event, using the chiral ruthenium catalyst generated in situ from

HClRu(CO)(PPh3)3 and (R)-DM-SEGPHOS, the indicated 2-trialkylsilyl-butadiene

couples with reactant alcohols to furnish the branched products of hydrohydrox-

yalkylation with complete syn-diastereoselectivity and uniformly high levels of

enantioselectivity (Scheme 3).

Direct diastereo- and enantioselective hydrohydroxyalkylations of butadiene, an

abundant petrochemical feedstock, required the use of a ruthenium catalyst modified

by a chiral phosphate counterion derived from H8-BINOL. The anion is attached to

the metal center through the acid–base reaction of H2Ru(CO)(PPh3)3 with the

indicated chiral phosphoric acid. With the chiral counterion as the sole chiral

inducing element, primary benzylic alcohols hydrohydroxyalkylate butadiene with

good levels of anti-diastereo- and enantioselectivity (Scheme 3) [37].
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Scheme 2 Ruthenium-catalyzed C–C coupling of primary alcohols with 1,3-dienes to form homoallylic
alcohols or b,c-enones. Yields are of material isolated by flash chromatography on silica gel.
aLigand = (p-MeOPh)3P, bLigand = rac-BINAP, 2,20-bis-(diphenylphosphino)-1,10-binaphthalene.
c120 �C
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The corresponding syn-diastereomers are formed upon use of the ruthenium

catalyst generated in situ from RuH2(CO)(PPh3)3, (S)-SEGPHOS, and the indicated

TADDOL-derived phosphoric acid (Scheme 3) [38]. It is postulated that the s-cis-

conformer of butadiene hydrometalates to form a (Z)-r-crotylruthenium interme-

diate. The relatively Lewis basic TADDOL-derived phosphate counterion preserves

the kinetic selectivity of diene hydrometallation by attenuating the degree of

coordinative unsaturation, decelerating isomerization to the (E)-r-crotylruthenium

haptomer with respect to carbonyl addition. Additionally, computational studies

suggest a formyl hydrogen bond between the transient aldehyde and the phosphate

oxo-moiety assists in stabilizing the (Z)-r-crotylruthenium intermediate [36].

A divergence in regioselectivity is observed upon the use of neutral vs. cationic

ruthenium complexes in alcohol-mediated hydrohydroxyalkylations of 2-substituted

dienes. For example, in 2-propanol-mediated reductive couplings of 2-substituted

dienes with paraformaldehyde (Scheme 4) [39–41], neutral ruthenium complexes

favor coupling at the C3 position [40], whereas ruthenium catalysts with greater

cationic character favor coupling at the C2 position, resulting in formation of an all-

carbon quaternary center [39]. An erosion in C2-regioselectivity is observed when

cationic ruthenium catalysts are applied in reactions of higher carbonyl partners

with 2-substituted dienes, as illustrated in couplings with ethanol (Scheme 4) [42].

The collective data, including deuterium labeling experiments [39, 40], are

consistent with the following mechanistic interpretation (Scheme 5). Hydroruthen-

ation to form allylruthenium complex A is kinetically preferred. For neutral

ruthenium catalysts, hydrometallation is less reversible and strongly favors

formation of allylruthenium complex A. Hence, formation of C3-coupling products
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Scheme 3 Diastereo- and enantioselective alcohol-mediated hydrohydroxyalkylation of butadienes. Yields
are of material isolated by flash chromatography on silica gel. Diastereoselectivity was determined through 1H
NMR analysis of crude reaction mixtures. Enantiomeric excess was determined by chiral stationary phase
HPLC analysis. DM-SEGPHOS = 5,50–bis-[di(3,5-xylyl)phosphino]-4,40-bi-1,3-benzodioxole. dppf = 1,1-
bis-(diphenylphosphino)ferrocene. SEGPHOS = 5,50-bis-(diphenylphosphino)-4,40-bi-1,3-benzodioxole
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is preferred. For cationic ruthenium complexes, hydrometallation becomes highly

reversible, enabling access to both allylruthenium complex A and allylruthenium

complex B. It now appears that a Curtin–Hammett scenario is operative. For small

aldehyde partners (R1=H), the transition state leading to C2-adducts is lower in

energy. However, as the aldehyde increases in size (R1=Me), the formation of a

R
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R
Me

LnRuII-H

O

LnRuII

R1

H R

Me
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R
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R
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R
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Scheme 5 Divergent regioselectivity in the hydrohydroxyalkylation of 2-substituted dienes
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Scheme 4 Divergent regioselectivity in 2-propanol-mediated reductive couplings of dienes with
paraformaldehyde and redox neutral couplings of ethanol. Yields are of material isolated by flash
chromatography on silica gel. Diastereoselectivity was determined through 1H NMR analysis of crude
reaction mixtures. dppb = bis-(diphenylphosphino)butane
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more congested C–C bond raises the energy of the transition state for formation of

C3-adducts, eroding regioselectivity.

Hydrogen transfer from primary alcohols to allenes represents an alternate means

of accessing allylruthenium-carbonyl pairs that deliver products of hydrohydrox-

yalkylation (Scheme 6) [43–47]. Interestingly, whereas 2-propanol-mediated reduc-

tive couplings of 1,1-disubstituted allenes display poor levels of diastereoselectivity

[43], related redox-neutral couplings with primary alcohols deliver branched

homoallylic allylic alcohols bearing all-carbon quaternary centers with good to

complete control of relative stereochemistry [45]. In reactions conducted from the

alcohol oxidation level, diastereoselectivities are highly concentration-dependent.

At lower concentrations, higher diastereoselectivities are observed. These data

suggest a Curtin–Hammett scenario wherein turn-over limiting carbonyl addition

preferentially consumes the (E)-r-allylruthenium haptomer via stereospecific

carbonyl addition from an equilibrating mixture of transient (Z)- and (E)-r-

allylruthenium isomers. At lower concentration, the (E)-isomer can be replenished

via isomerization of the (Z)-r-allylruthenium isomer. These conditions have been

applied to the coupling of allenes with fluorinated alcohols (not shown) [47].

In the case of mono-substituted allenes, the steric demand of an appropriately

defined substituent can direct exclusive formation of (E)-r-allylruthenium inter-

mediates that participate in stereospecific carbonyl addition to deliver single

diastereomers. For example, hydrogen transfer from primary alcohols to

allenamides provides geometrically defined (amino)allylruthenium-aldehyde pairs

that combine to form vicinal anti-aminoalcohols as single diastereomers (Scheme 6)

[45]. Identical products are accessible as single diastereomers via 2-propanol-

mediated reductive coupling of allenamides and aldehydes (not shown) [44].

HO

PhMe
NO2

2-PrOH (400 mol %)
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O
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Scheme 6 Alcohol-mediated hydrohydroxyalkylation of allenes. Yields are of material isolated by flash
chromatography on silica gel. Diastereoselectivity was determined through 1H NMR analysis of crude
reaction mixtures. dippf = bis-(diisopropylphosphino)ferrocene
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Isomerization of alkynes to allenes under the conditions of ruthenium catalyzed

hydrohydroxyalkylation enables transformations that are otherwise inaccessible,

including the conversion of primary alcohols to (Z)-homoallylic secondary alcohols

(Scheme 7) [48]. Isomerization is promoted through the use of cationic ruthenium

catalysts generated through the acid–base reaction of H2Ru(CO)(PPh3)3 and 2,4,6-

(2-Pr)3PhSO3H. As corroborated by deuterium labeling studies, the cationic

ruthenium complex appears to exist in equilibrium with zero-valent species that

promote isomerization via propargyl C-H oxidative addition. Allene-aldehyde

oxidative coupling mediated by ruthenium(0) then forms an oxaruthenacycle, which

upon transfer hydrogenolysis delivers the (Z)-homoallylic alcohols with good to

complete levels of stereocontrol. Oxidative coupling pathways are suppressed upon

introduction of iodide ion and a chelating phosphine ligand, the Josiphos ligands

SL-J009-1 or SL-J002-1, yet alkyne-to-allene isomerization pathways persist. Under

these conditions, the transient allenes accept hydrogen from primary alcohols to

form chiral allylruthenium-aldehyde pairs that deliver enantiomerically enriched

branched homoallylic alcohols as single diastereomers [49]. In this way, alkynes

serve as chiral allylmetal equivalents [50–57].

A third mechanism for the coupling of primary alcohols with alkynes becomes

operative when these conditions are applied to the propargyl ether, MeC:CCH2-

OTIPS (TIPS = triisopropylsilyl) (Scheme 8) [58]. Unlike closely related ruthe-

nium-catalyzed alkyne-alcohol C–C couplings, deuterium labeling studies

corroborate a novel 1,2-hydride shift mechanism that converts metal-bound alkynes

to vinyl carbenes that protonate to form siloxy-p-allylruthenium nucleophiles in the

absence of intervening allenes. Due to the negative inductive effect of the siloxy

moiety, carbonyl addition occurs through a closed transition structure from the r-

allylruthenium haptomer where ruthenium resides at the oxygen-bearing carbon.

Using a Josiphos (SL-J009-1)-modified ruthenium(II) catalyst, the resulting

products of siloxy-crotylation form as single regioisomers with complete levels of
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Scheme 7 Alkynes as latent allenes in alcohol-mediated hydrohydroxyalkylation to form linear or
branched homoallylic alcohols. Yields are of material isolated by flash chromatography on silica gel.
Diastereoselectivity was determined through 1H NMR analysis of crude reaction mixtures. Enantiomeric
excess was determined by chiral stationary phase HPLC analysis. SL-J009-1 = (R)-1-[(SP)-2-
(dicyclohexylphosphino)ferrocenyl]ethyldi-tert-butylphosphine. Ar = 2,4,6-triisopropylphenyl
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anti-diastereoselectivity and high levels of enantioselectivity. Although mixtures of

enol geometrical isomers are produced, the (Z)- and (E)-selectivity is inconsequen-

tial as fluoride-assisted cleavage of the enol in the presence of NaBH4 converts both

isomers to the same 1,4-diol.

Remarkably, a fourth mechanism for the coupling of primary alcohols with

alkynes is evident in couplings that form allylic alcohols [59] or conjugated enones

(Scheme 9) [60]. These processes are catalyzed by (TFA)2Ru(CO)(PPh3)2 in the

absence of added phosphine ligand. It is postulated that coordinative unsaturation,

the presence of a p-acidic carbonyl ligand and the reducing environment provided

by 2-propanol, promote equilibration between ruthenium(II) and ruthenium(0)

complexes. Thus, while the experimental data cannot exclude hydrometalative

pathways involving vinylruthenium-aldehyde pairs, another possible mechanism

involves ruthenium(0)-mediated alkyne-carbonyl oxidative coupling to form a

ruthenacyclopentene that suffers alcohol-mediated transfer hydrogenolysis to

release the allylic alcohol and regenerate the zero valent catalyst. Under more
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forcing conditions (higher temperatures, longer reaction times) and in the absence of

2-propanol, the initially formed allylic alcohols undergo further dehydrogenation to

form the conjugated enones. Resubjection of the allylic alcohols to the reaction

conditions results in formation of the enone, suggesting b-hydride elimination may

not occur at the stage of the intermediate ruthenacycle.

Hydrogen transfer from primary alcohols to 1,3-enynes delivers allenylruthe-

nium-aldehyde pairs that combine to form products of carbonyl propargylation

(Scheme 10) [61–63]. Initially developed conditions provided products of a-

methyl-propargylation as diastereomeric mixtures [61]. Identical products of

propargylation are generated upon 2-propanol-mediated 1,3-enyne-aldehyde reduc-

tive coupling. In subsequent work, it was found that anti-diastereoselectivity

improves upon use of sterically demanding reactants [62]. More recently, the chiral

ruthenium complex formed in situ from (TFA)2Ru(CO)(PPh3)2 and (R)-BINAP was

found to catalyze the C–C coupling of primary alcohols with the 1,3-enyne,

TMSC:CC(Me)=CH2, to form secondary homopropargyl alcohols bearing gem-

dimethyl groups [63]. These conditions deliver products of C–C coupling with

uniformly high levels of enantioselectivity and are applicable to aliphatic, allylic,

and benzylic alcohols. One may view these protocols as an alternative to the use of

stoichiometric allenylmetal reagents in carbonyl propargylation [64, 65].
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3 Conversion of Secondary Alcohols to Tertiary Alcohols

In 2012, it was found that ruthenium(0) complexes catalyze the C–C coupling of

activated secondary alcohols with feedstock dienes such isoprene and myrcene to

furnish products of carbinol C-H prenylation and geranylation, respectively

(Scheme 11) [66–68]. Mechanistic studies corroborate a catalytic mechanism

involving diene-carbonyl oxidative coupling to form an oxaruthenacycle. The

transfer of hydrogen from the secondary alcohol reactant mediates transfer

hydrogenolysis to release the products of C–C coupling and regenerate the

activated ketone to close the catalytic cycle. The regioselectivity of C–C bond

formation for the diene C4-position is unique among diene-carbonyl reductive

couplings [41, 69]. Beyond a-hydroxy esters [66], these conditions are applicable to

3-hydroxy-2-oxindoles [67] and secondary alcohols substituted by certain

heteroaromatic moieties [68]. In the latter case, the putative oxaruthenacycle
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intermediate was isolated, characterized, and reversible metalacycle formation was

demonstrated through experiments involving diene exchange.

The transient 1,2-dicarbonyl motifs required for oxidative coupling are also

accessible from vicinal diols. For example, in the presence of the ruthenium(0)

catalyst derived from Ru3(CO)12 and PCy3, vicinal diols and alkynes react to form

a-hydroxy b,c-unsaturated ketones as single geometrical isomers (Scheme 12) [70].

Here, it was found that carboxylic acid cocatalysts dramatically increase rate and

conversion. A catalytic mechanism that accounts for the effect of the carboxylic

acid cocatalysts is as follows. A mononuclear ruthenium(0) complex [71] promotes

alkyne-dione oxidative coupling to form the indicated oxaruthenacycle [72, 73].

Direct protonation of the oxaruthenacycle by the diol or ketol is postulated to be

slow compared to protonolytic cleavage of the oxaruthenacycle by the carboxylic

acid. The resulting ruthenium carboxylate exchanges with the diol or ketol to form a

ruthenium alkoxide, which upon b-hydride elimination releases the ketol or dione,

respectively, and a vinylruthenium hydride. C–H reductive elimination furnishes the

product of C–C coupling and returns ruthenium to its zero-valent form. Conven-

tional diol-alkyne transfer hydrogenation provides the initial quantities of dione

required for entry into the catalytic cycle [23, 24, 74].

Intermolecular catalytic reductive couplings of a-olefins with unactivated

aldehydes and ketones remains an unmet challenge [75–77]. In a significant step

toward this goal, it was found that ruthenium(0) catalysts promote the transfer

hydrogenative C–C coupling of 3-hydroxy-2-oxindoles with a-olefins, including

feedstocks such as ethylene, propylene and styrene, to furnish the branched adducts

as single regio- and diastereomers [78]. In the absence of carboxylic acid cocatalyst,

only trace quantities of product were formed (Scheme 13).

O

OH
Me

S
Ru3(CO)12 (2 mol%)

PCy3 (12 mol%)

C10H15CO2H (12 mol%)
PhMe, 130 oC

80% Yield
>20:1 (E:Z)

R2

R3HO

HO R4

Me

Ph

C10H15CO2H

HO2CC10H15

SLOW
LnRu0

alcohol
or

ketone

RuIILn
O

HO
Me

O

HO

OH
O

RuII(O2CC10H15)Ln

RuIILn
O

HO
Me

H

Diol or Ketol

O
O

RuIILn

Me
Ph

Me
Ph

PhPh

Diol or Ketol
O

O

HO

HO

Ketol or Dione
O

HO
Me

Ph

R1

97% Yield
>20:1 (E:Z)

Me

MeO

OH
Me

89% Yield
>20:1 (E:Z)

O

OH
Me

Scheme 12 Ruthenium(0)-catalyzed C–C coupling of diols with alkynes via transfer hydrogenation.
Yields are of material isolated by flash chromatography on silica gel. C10H15CO2H =
1-adamantanecarboxylic acid. PCy3 = tricyclohexylphosphine

35 Page 12 of 23 Top Curr Chem (Z) (2016) 374:35

123



4 Transfer Hydrogenative Cycloaddition

Intermolecular hydrogen transfer reactions that result in the formation of rings

represent a new class of metal-catalyzed cycloadditions [79, 80]. Ruthenium-

catalyzed C–C bond forming transfer hydrogenation contributes a new dimension to

this emerging area. Using a ruthenium(0) catalyst, diols react with acrylates to form

spiro-c-butyrolactones (Scheme 14) [81]. Ethyl 2-(hydroxymethyl)acrylate reacts

with diols by way of transient oxaruthenacycles that engage in E1cB elimination to
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Scheme 13 Ruthenium(0)-catalyzed C–C coupling of diols with a-olefins via transfer hydrogenation.
Yields are of material isolated by flash chromatography on silica gel. C10H15CO2H =
1-adamantanecarboxylic acid. PCy3 = tricyclohexylphosphine
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furnish a-methylene-spiro-c-butyrolactones [81]. As illustrated in couplings with

3-hydroxy-2-oxindoles, b-substituted acrylic esters provides spiro-c-butyrolactones

as single diastereomers [81]. Remarkably, the cycloadditions may be conducted in

oxidative, redox-neutral, or reductive modes using diols, ketols, or diones,

respectively, as reactants. To illustrate, ethyl acrylate reacts with hydrobenzoin,

benzoin or benzil to form an identical c-lactone. For the latter reaction involving

benzil, 2-propanol (300 mol %) is employed as terminal reductant (Scheme 15).

In the presence of a ruthenium(0) catalyst, vicinal diols transfer hydrogen to

conjugated dienes to furnish diones that engage in diene-carbonyl oxidative

coupling. The resulting oxaruthenacycles incorporate an allylruthenium moiety that

engages the pendant ketone in intramolecular allylruthenation to form products of

formal [4?2] cycloaddition as single diastereomers (Scheme 16) [82, 83]. The

cycloadducts are readily transformed to the 9–12 membered 1,6-diketones upon

exposure to iodosobenzene diacetate [83]. Alternatively, the cycloadducts can be

dehydrated to form products of benzannulation [84]. Two-directional benzannula-

tion is especially powerful. For example, exposure of the indicated pyracylene-

based tetraol to butadiene in the presence of the ruthenium(0) catalyst delivers the

double [4?2] cycloadduct, which is directly dehydrated to form the indeno[1,2,3-

cd]-fluoranthene in a single ‘‘one-pot’’ operation.

Exposure of 3,4-benzannulated 1,5-diynes (benzo-endiynes) to a-ketols in the

presence of ruthenium(0) catalysts derived from Ru3(CO)12 and RuPhos results in

successive redox-triggered C–C coupling to generate products of [4?2] cycload-

dition (Scheme 17) [85]. Here, redox-neutral couplings using a-ketols are essential,

as diols require a sacrificial hydrogen acceptor, which contributes to partial

reduction of the diyne reactant. Regioselective cycloaddition is achieved using

nonsymmetric diynes with alkyne termini substituted by n-propyl and t-butyl

groups. This strategy for cycloaddition has been extended to the reaction of ortho-

acetylenic benzaldehydes with a-ketols [86]. Using ruthenium(0) catalysts modified

by CyJohnPhos, the indicated products of [4?2] cycloaddition form as single regio-

and diastereomers. This methodology enables convergent construction of ring

systems characteristic of type II polyketides, specifically those of the angucycline

class [87–89].
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5 Hydroaminoalkylation

Since the initial discovery of metal-catalyzed hydroaminoalkylation (Maspero [90]

and Nugent [91]) in the early 1980s, significant advances in the field of

hydroaminoalkylation using early transition metal catalysts have been made. In

contrast, the development of corresponding late transition metal-catalyzed amine

C-H functionalizations has proven challenging [92–94]. Indeed, with the exception

of the present authors work [95–99], all other late-transition metal-catalyzed

hydroaminoalkylations require pyridyl-directing groups in combination with mono-

olefin reactants [100–108]. In a significant departure from prior art, it was found that

ruthenium-catalyzed hydrogen transfer from 4-aminobutanol to 1-substituted-1,3-

dienes results in the generation of dihydropyrrole-allylruthenium pairs, which

combine to form products of hydroaminoalkylation with good to complete control

of anti-diastereoselectivity (Scheme 18) [95]. As corroborated by deuterium

labeling experiments, kinetically preferred hydrometallation of the terminal olefin

of the 1-substituted-1,3-diene delivers a 1,1-disubstituted p-allylruthenium complex

that isomerizes to the more stable monosubstituted p-allylruthenium complex.

Imine addition then occurs with allylic inversion through a closed transition

structure. Using a carboxylic acid cocatalyst, pyrrolidine itself can be engaged in

direct ruthenium-catalyzed diene hydroaminoalkylations. Finally, 2-propanol-

mediated reductive coupling of butadiene with the dihydropyrrole trimer provides

the identical product of diene hydroaminoalkylation. All three reaction types

proceed through a common set of reactive intermediates, as shown in the indicated

stereochemical model (Scheme 18).

Carbonylative hydroaminomethylation (hydroformylation-reductive amination)

[109–115] has only been reported for mono-olefin reactants, as hydroformylation of

dienes and allenes suffers from poor regioselectivity and ‘‘over-hydroformylation’’
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to form dialdehyde products. In contrast, 2-propanol-mediated reductive couplings

of allenes or dienes with formaldimines (generated in situ from saturated 1,3,5-

triazines) are efficient and selective processes (Scheme 19) [96–97]. Specifically,

ruthenium-catalyzed transfer hydrogenation of allenes in the presence of 1,3,5-

tris(4-methoxyphenyl)-hexahydro-1,3,5-triazine provides products of

hydroaminomethylation as single regioisomers [96]. Under similar conditions,

butadiene and related 2-substituted dienes engage in regioselective reductive C–C

coupling to furnish products of hydroaminomethylation [97]. Here, higher

temperatures (140 �C) are required to suppress the competing aza-Diels–Alder

reaction of formaldimine. Regioselective 2-propanol-mediated reductive coupling

of dienes with iminoacetates also have been described (not shown) [98].

Whereas ruthenium(II) catalysts promote hydroaminoalkylation through

hydrometalative pathways, ruthenium(0) catalysts derived from Ru3(CO)12 and

triphos enable catalytic mechanism involving diene-imine oxidative coupling

(Scheme 20) [99]. Presently, transformations of this type are restricted to the
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hydroaminoalkylation of isoprene with aryl substituted hydantoins. The catalytic

mechanism involves hydrogenolytic cleavage of the azaruthenacyclopentane

intermediate through hydrogen transfer from the hydantoin reactant, which releases

product and regenerates the requisite imine for oxidative coupling.

6 Conclusions and Outlook

Since the seminal work of Sabatier and Grignard, hydrogenation and carbonyl

addition have found longstanding use as methods for chemical synthesis. Merging

the chemistry of transfer hydrogenation and carbonyl or imine addition, we have

developed a broad, new family of reductive and redox-neutral hydrohydroxyalky-

lations and hydroaminomethylations—processes in which the transfer or redistri-

bution of hydrogen is accompanied by C–C bond formation. We have just begun to

exploit the potential of this novel reactivity mode, yet already one may see that

carbonyl additions traditionally employing stoichiometric organometallic reagents

can now be conducted catalytically via hydrogen transfer. Perhaps most impor-

tantly, this new reactivity has enabled transformations that have no counterpart in

the current lexicon of synthetic methods.
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