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Abstract
Federated learning (FL) facilitates shared training of machine learning models while maintaining data privacy. Unfortunately,
it suffers from data imbalance among participating clients, causing the performance of the shared model to drop. To diminish
the negative effects of unfavourable data-specific properties, both algorithm- and data-based approaches seek tomake FLmore
resilient against them. In this regard, data-based approaches prove to be more versatile and require less domain knowledge to
be applied efficiently. Hence, they seem particularly suitable for widespread application in various FL environments. Although
data-based approaches such as local data sampling have been applied to FL in the past, previous research did not provide a
systematic analysis of the potential and limitations of individual data sampling strategies to improve FL. To this end, we (1)
identify relevant local data sampling strategies applicable to FL systems, (2) identify data-specific properties that negatively
affect FL system performance, and (3) provide a benchmark of local data sampling strategies regarding their effect on model
performance, convergence, and training time in synthetic, real-world, and large-scale FL environments. Moreover, we propose
and rigorously test a novel method for data sampling in FL that locally optimizes the choice of sampling strategy prior to
FL participation. Our results show that FL can greatly benefit from applying local data sampling in terms of performance
and convergence rate, especially when data imbalance is high or the number of clients and samples is low. Furthermore, our
proposed sampling strategy offers the best trade-off between model performance and training time.

Keywords Federated learning · Data sampling · Data imbalance

1 Introduction

Ever since its introduction by Google [1], federated learning
(FL) has become an increasingly popular approach towards
privacy-preserving distributed machine learning (ML) [2, 3].
As such, it enables multiple participants (usually referred
to as clients) to jointly train a shared model without grant-
ing third parties access to their respective private data [3–5].
While FL facilitates privacy-preserving learning, it comes at
the cost of data quality assurance, as no party can directly
access and thus evaluate the data held by individual clients
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[6].Amongothers, a central dimensionof data quality inFL is
data imbalance. It measures how similar a client’s feature and
label distributions are to the overall cohort’s distributions.
Unfortunately, FL is prone to suffer from data imbalance,
causing the performance of the shared model to decrease
significantly when imbalance is high [7–9].

Previouswork addresses the issue of data imbalance either
on an algorithm- or data-level [10, 11]. The former refers to
approaches tailored towards dealing with data imbalance by
adjusting model parameters or architectures [10] (e.g. [12,
13]). The latter seeks to mitigate data imbalance by manip-
ulating the data held by individual clients [10, 11]. This
is usually achieved by deploying data sampling strategies
on each client’s local data prior to participating in training
[11, 14–16]. Both approaches have demonstrated their suit-
ability to compensate for the drop in performance due to
data imbalance to some extent [10, 14]. However, algorithm-
based approaches requiremore domain knowledge and larger
amounts of data to be employed efficiently [10, 17]. In turn,
it seems reasonable to consider local data sampling when
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facing data imbalance in FL [18]. In spite of data sampling
having been applied previously in FL to account for data
imbalance, [14–16, 18–25], to the best of our knowledge, no
prior research investigated the potential and limitations of
local data sampling strategies in FL systematically. This lack
of comprehensive evidence on data-based approaches forces
FL operators to rely on trial-and-error to determine if data
sampling is beneficial for them and what data sampling strat-
egy to choose. This holds the potential to cause significant
computational overhead during training, ultimately increas-
ing the cost of FL application.

This motivates our work towards providing an in-depth
analysis of the potential of local data sampling strategies to
improve FL models. Accordingly, this work tries to answer
the following research questions:

RQ1: To what extent can local data sampling improve FL
performance, convergence, and training time in face of
unfavourable data-specific properties?

RQ2: What are the unique advantages and disadvantages of
different sampling strategies over another?

RQ3: Can locally optimizing the choice of data sampling
strategy improve FL further?

To answer these research questions, we identify relevant
data sampling strategies as well as data-specific properties
known to influence the performance of FL. Afterwards, we
control the severity of these data properties in simulated FL
settings, apply the previously identified sampling strategies
to them, and measure the change in performance, conver-
gence rate, and training time. From the findings among four
different, widely acknowledged datasets for FL research, we
finally draw conclusions regarding the efficient utilization of
local data sampling strategies in FL.

In summary, the contributions of our work are as follows:

1. We systematically benchmark existing local data sam-
pling strategies for FLwith respect tomodel performance,
rate of convergence, and training time in face of three dif-
ferent notions of imbalanced or unfavourable local data;

2. Beyond that we propose a novel sampling strategy named
Optimized that locally optimizes the choice of data sam-
pling approach prior to FL participation and highlight its
advantages over existing strategies both theoretically and
empirically;

3. Afterwards, we investigate how different data-specific
properties affect the choice of the optimal sampling strat-
egy at each client’s side and provide guidance for future
decision-makers of FL applications;

4. Finally, our work sheds light on the distinct advantages
of different local data sampling strategies and how they
can be employed efficiently when facing data imbalance,
particularly small cohorts, or clients with limited data in
FL.

In turn, our work is of great value for researchers and prac-
titioners concerned with the application and improvement
of FL. Furthermore, it creates promising avenues for future
research linking FL literature to the recently emerging data-
centric artificial intelligence (AI) domain [26, 27].

For this purpose,we elaborate on preliminaries and related
work in Sects. 2 and 3. Next, we outline the proposed
methodology before conducting a theoretical analysis on the
improvements through our proposed local sampling strategy
in Sect. 5. This is followed by presenting the results of our
empirical evaluation in Sect. 6. Then, we confirm our previ-
ous findings using real-world and large-scale FL data as well
as state-of-the-art (SOTA) ML models in Sect. 7. Finally, we
conclude the article and discuss limitations as well as future
research directions in Sect. 8.

2 Preliminaries

FL is a novel approach towards distributed ML. Unlike tra-
ditional central ML that requires data from all sources to be
collected and stored at a single side, FL allows data to remain
at the respective owner’s side [28].

By design, FL therefore maintains data privacy of all
involved clients and is in turn a perfect fit for a wide range
of domains with particularly sensitive data [3, 29, 30], e.g.
healthcare [31, 32] or mobile and edge devices [33]. The
most common approach towards FL, i.e. FedAvg [4], consist
of three main parts, namely a ML model, a central server,
and participating clients [28].

• AML model “is a set of algorithms and their parameters
that are arranged in a particular structure to calculate pre-
dictions based on the collected data” [28, p.3]. Here, it
is essential that the model architecture is decided upon
prior to starting the federated training. Typically, ML
models in FL are weight-based neural networks of any
kind, including convolutional neural networks (CNNs)
and many others [28].

• The central server is responsible for orchestrating and
coordinating the federated training as well as the partic-
ipating clients [3, 4]. To do so, it sends out the shared
model to those clients selected for the upcoming round
of training and receives their updates afterwards [28].
Finally, the central server aggregates all clients’ updates
to receive a new global model [4].

• Clients are all entities that hold a set of private data and
that are willing to participate in the FL scheme. Depend-
ing on the setting, this could either be a personal device
such as a smartphone [28] or a dedicated server held by
larger organizations, e.g. healthcare providers [31, 32].
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Fig. 1 Steps of FL

The FL training procedure itself is depicted in Fig. 1 and
starts with initializing the global model. To train the ML
model among all participating clients afterwards, the central
server issues several rounds of federated training [4, 34].
During each round of training, a global model held by the
central server is sent to the clients (Fig. 1, step 2) which fit it
to their respective local data (step 3) [3, 4]. Subsequently, all
local model updates are sent back to the server in a privacy-
preserving manner (step 4) [29], usually by utilizing secure
aggregation [35–37]. Lastly, the central server aggregates all
received model updates (step 5) to compute a new global
model (step 6) [4]. Once finished, a global model is received
that incorporates knowledge from all data contained in the
cohort [9].

3 Related work

As data imbalance is a major cause of poor FL performance
[5, 8], numerous scholars worked towards making FL more
resilient against it [21, 38]. Here, data imbalance refers to
client-specific characteristics of data that differ from the
cohort in terms of labels, features, or quantity held [8]. Their
proposed solutions usually fall into one of two categories:
algorithm- and data-based approaches [10, 11]. Following
this classification, algorithm-based approaches are charac-
terized by improving the training procedure or tuning the
model parameters [39, 40]. Data-based approaches, on the
other hand, address data imbalance by balancing the data
held by individual clients [19] or the entire cohort [41].

3.1 Algorithm-based approaches

Awell-established field of FL research is concerned with the
improvements of learning algorithms, e.g. by implementing
cost-sensitive learners [42–44],model pruning [45], or distri-

bution regularization [46]. These approaches aim to alleviate
performance deterioration caused by data imbalance through
algorithmic improvements and large-scale hyperparameter
tuning [11, 17].

In terms of cost-sensitive learning, various cost functions
have been proposed. In their work, Zhou et al. [42] propose
to re-weight model updates with respect to clients’ class dis-
tributions, whereas other works rely on penalty-terms during
loss computation [43]. In this vein, Zhan et al. integrate a
calibrated cross-entropy loss into local updates by measur-
ing clients’ pairwise labelmargins [47]. Instead ofmodifying
the loss function used during training, model pruning [45]
and parameter activation [48] can dynamically adjust model
depth and parameters during training with respect to individ-
ual clients and entire cohorts. This allows clients with limited
resources (in terms of data and computational resources) to
participate in the training procedure [45], but requires the
central server to define the scope of these adjustments a pri-
ori. Alternatively, distribution-regularized FL aims to project
different local data distributions of clients to a common space
with minimal distance among the projected distributions
using kernel functions [46].While this approach outperforms
non-regularized FL in various data settings, it adds to the
complexity of the FL training procedure.

Finally, recent studies address the issue of partially class-
disjoint data, which causes their respective model updates to
be biased [49]. To this end, Li et al. [50] suggest to extend
existing FL strategies with a restricted softmax function to
limit the local updates of weights associated with missing
classes. The FL strategy FedGELA achieves globally unbi-
ased models from locally biased models by employing a
simplex equiangular tight frame [51],which corrects the clas-
sification angle of each class on a global level [49].

3.2 Data-based approaches

According toLi et al. [52], learning algorithms are only oneof
many aspects when applying FL systems. Careful considera-
tion of the data and proper data life cycles are essential parts
of successful FLapplication [52], too.Unlike their algorithm-
based counterparts, data-based approaches modify the data
held by clients to diminish the effects of data imbalance on
FL and require neither costly hyperparameter tuning nor deep
domain knowledge [10, 17]. To do so, data-based approaches
are either applied locally, i.e. at each client’s side, or globally,
i.e. among the cohort’s combined data.

Here, the former aims to improve the learning procedure
by balancing the datasets held by each client [19]. In this
vein, Duan et al. [19] were the first to propose a framework
to avoid accuracy degradation of the federated model by re-
balancing the train data of each client locally. Since then,
several works have improved data-based approaches further,
usually by oversampling minority classes of clients (e.g. [10,
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16]), undersampling their majority classes (e.g. [16]), or per-
forming a combination of both (e.g. [14, 20]) in order to
re-calibrate their data distributions [15, 21].

On the other hand, global approaches are initiated by the
central server and aim to balance the combined data of all
clients. Therefore, early approaches suggest sharing a global
dataset consisting of small batches of data provided by each
client that can be combined with the local datasets during
training [41, 53]. Given the impracticability of sharing a
global dataset in FL [54], more recent studies apply global
data augmentation in a privacy-preserving manner [54, 55].
Therefore, they either rely on synthesizing reliable samples
from each client [55] or avoid local training bias using glob-
ally shared pseudo-data [54].

While data-based approaches improve the predictive per-
formance of FL models [10, 16], little effort has been
conducted to identify prerequisites of their successful appli-
cation. In this vein, Jorge et al. [14] demonstrated that the
number of clients involved in the training procedure affects
the margin of performance improvements. Moreover, no sig-
nificant differences were measured between oversampling
or undersampling client data when applied to healthcare data
[16]. However, no consensus has yet been reached regard-
ing the potential of local data sampling strategies to improve
FL or the advantages of different sampling strategies over
alternatives.

4 Methodology

In thiswork,we opt to consider data-based approaches for FL
improvement over algorithm-based alternatives, because—
as stated earlier—they require less domain knowledge,
technical expertise, and data to be available in order to be
applied properly, while achieving similar or even superior
performance [10]. In this regard, our work also follows the
recently emerging trend towards data-centric AI [26, 27].
In short, this line of research is concerned with improving
AI through improvements made to the data it is trained upon
rather than the models used during training. Ultimately, local
data sampling in FL aligns well with the goals of data-centric
AI, as both are supposed to reduce the complexity of AI or
FL development and deployment. Furthermore, we stick to
benchmarking local data sampling approaches for FL instead
of global data sampling, considering their ease of application
[10], guarantees regarding data privacy [54], and widespread
application (e.g. [10, 14, 16]).

Our approach towards analysing local data sampling
strategies for FL relies on identifying relevant data sam-
pling strategies as well as data-specific properties affecting
the performance of FL negatively. Once we recognized sam-
pling strategies and data properties, we iteratively increase
the severity of these properties in simulated FL environ-

ments. Afterwards, we apply data sampling to these FL
environments to mitigate the negative impact imposed by
unfavourable data configurations. During the process, we
measure the improvement in terms of performance achieved
due to each sampling strategy.

4.1 Existing local data sampling strategies

As we apply data sampling locally at each client’s side, tra-
ditional data sampling strategies, i.e. those not specifically
designed for the FL setting, can be considered. Here, a vast
variety of local sampling strategies is available that either fall
into the category of undersampling, oversampling or hybrid
sampling [56]. In order to apply them in a federated manner,
each client has to run one of these sampling strategies locally
prior toFLparticipation. Finally, balancing each client’s local
data causes the combined cohort’s data to be balanced, too.

In the following, we outline and explain all local data sam-
pling strategies benchmarked during later analyses. More-
over, we provide a visualization of these sampling strategies
when applied to FL in Fig. 2. Besides, it is worth mentioning
that we do not apply generative approaches for local data
oversampling such as presented by Lee et al. [57], as local
clients can be limited in terms of data available and might
therefore be unable to train the required generative models
in the first place [32].

• None It serves as baseline for the data sampling strate-
gies. In this setting, no local data sampling is applied
and the FL model is trained without re-balancing clients’
data.

• Constrained In this setting, no data sampling is applied
either. Accordingly, it serves as another baseline for the
subsequent sampling strategies. However, it differs from
None, as clients that lack data on one or more of the
classes are excluded from the training entirely. We do
so, as applying oversampling or undersampling locally
requires the respective client to hold at least a single sam-
ple per class that can then be oversampled. We include
this sampling strategy, as it serves as ablation study for
the following strategies to ensure that potential improve-
ments are not just due to the exclusion of aforementioned
clients but can be attributed to applying the respective
data sampling.

• Undersampling We employ random undersampling of
themajority classes at each client tomatch the size of their
respective minority classes. Undersampling is known to
improve traditional ML [58] but is also beneficial for FL
[16].

• Oversampling It focuses on adding minority class sam-
ples to match the size of the majority class [56, 59]. In
our study, we choose SMOTE [60] over alternatives such
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Fig. 2 Local data sampling strategies for a multi-class classification task

as random oversampling due to its demonstrated supe-
riority in terms of achievable model performance [60].
Here, we follow previous works that deploy oversam-
pling using SMOTE in FL [16]. Accordingly, each client
applies oversampling using SMOTE locally prior to join-
ing the federated training procedure.

• Dynamic As oversampling is known to outperform
undersampling in face of particularly small local datasets
[56], we apply oversampling to clients with datasets
smaller than the average client. In case of sufficiently
large datasets, undersampling avoids overfitting better
[58] and is consequently applied to clients with above-
average data counts.

• Hybrid Hybrid data sampling combines undersampling
the majority classes and oversampling minority classes
in order to balance the dataset [14]. From the variety
of available techniques (e.g. [61, 62]), we implement
SMOTETomek [61] due to its proven suitability for FL
environments [14].

4.2 Optimized local data sampling

Besides benchmarking existing local data sampling strate-
gies applicable to FL, a main objective of this work is to
introduce a novel data sampling strategy to further improve
federated model performance in unfavourable data settings.
Therefore, we propose the following strategy named Opti-
mized that locally optimizes the choice of data sampling
approach prior to FL participation. In the following, we elab-
orate upon the rationale behind our proposed local sampling
strategy and provide details on its application to FL cohorts.

• OptimizedDüsing and Cimiano [9] observed that clients
not benefiting from FL participation in terms of perfor-
mance are likely to contribute more to the success of

the cohort. The rationale here is that clients with small
benefit are those capable of training decently perform-
ing local models on their own, as benefit is defined as
improvements in terms of performance achieved using
the federated model over a locally trained model [9, 63,
64]. Hence, their model updates contributed to the cohort
are of particularly high value. This inspires us to consider
a novel setting of local data sampling, i.e. a locally opti-
mized sampling strategy.
In order to do so, each client within the cohort is tasked
to run the local sampling strategy selection prior to par-
ticipating in the training. Therefore, they locally train
a model of the same architecture as the one used later
on during federated training for each of the three sam-
pling strategies oversampling, undersampling and hybrid
sampling.1 Afterwards, each client chooses the sampling
strategy yielding the best performance in terms of F1-
score on their local data partition for the subsequent FL
participation. Thereby, we optimize each client’s local
model performance, which—according to Düsing and
Cimiano [9]—will improve the federated model’s per-
formance the most.

Per default, we apply SMOTE, SMOTETomek, and ran-
dom undersampling such that, afterwards, each client holds
the same amount of samples for each class present in the
data. Thus, the ratio r of minority class size nMinority to the
majority class size nMinority defined as r = nMinority/nMajority

is r = 1 throughout all analyses.

1 Note that dynamic sampling does not need to be considered here, as it
ultimately chooses between applying oversampling or undersampling
at the respective client.
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4.3 Data-specific properties affecting FL
performance

The literature on FL identifies various data-specific prop-
erties affecting the performance of FL. Previously, we
mentioned the detrimental effect of data imbalance on the
predictive performance of the shared model [10, 13], which
is arguably the most prominent property to consider. How-
ever, both cohort size and data counts affect performance, too
[8, 14]. In order to analyse the potential of local data sam-
pling, we consider the following three factors influencing FL
performance:

• Data imbalance Data imbalance in FL refers to deviant
client data dissimilar to the remaining data held by the
cohort [8]. The most common type of data imbalance is
label imbalance, where clients differ in terms of label
distribution and quantity [3, 8, 13, 50]. This was repeat-
edly shown to have detrimental effects on performance,
with the degree of imbalance influencing the decrease of
accuracy [10, 11, 13, 17, 21, 47, 50, 65]. To account for
data imbalance, Cheng et al. [10] identified data-based
approaches as a promising solution to reduce its impact
on FL in various settings.

• Cohort size The number of clients participating in the
FL affects both its communication overhead [66] as well
as its performance [14, 67]. In this vein, Jorge et al.
[14] demonstrated that reducing the number of partic-
ipating clients decreases the accuracy of a FL model.
More importantly, however, they also identified that data
sampling using SMOTETomek can reduce this negative
impact to some extent [14]. Based on these results, we
hypothesize that the number of clients participating in the
cohort needs to be controlled for during our analyses.

• Samples per client ML, and deep learning in partic-
ular, benefits significantly from the availability of big
data [68]. FL is no exception in this regard. Here,
previous studies show that clients with small datasets
contribute less to the success of a cohort than those with
large datasets [9]. Similarly, Li and colleagues [8] iden-
tify large imbalance in data quantity among clients to
negatively influence performance. Hence, reducing the
amount of data available per client risks harming the
shared model’s performance. Accordingly, we consider
the number of samples per client a relevant data property
in terms of our subsequent analyses.

5 Theoretical analysis

Inspired by similar studies [47, 49, 69, 70], we conduct a
theoretical analysis of the improved convergence through our
proposed optimized sampling strategy. In simple terms, our

argument is that a local convergence of the loss at every client
implies a global convergence of the loss, provided that the
loss is smooth and the variance of the weights decreases over
time.

The global objective function in standard FL such as
FedAvg is defined as:

F(w) =
N∑

j=1

n j

N
Fj (w), (1)

where N is the overall number of samples, n j the number of
samples on client j , and Fj (w) the local objective function
of client j .

We assume that the weights w are learned step by step via
some iterative optimizer. More specifically, we assume that
each client j obtains local weightswt

j via some learning rule,
and these are aggregated to global weights wt via Eq.2 [4].

w(t) =
N∑

j=1

n j

N
w

(t)
j . (2)

For our convergence analysis, we now make three key
assumptions. First, we assume that the local objective func-
tions Fj (w) are L-smooth, meaning that

∥∥Fj (u) − Fj (v)
∥∥ ≤ L ‖u − v‖ , ∀u, v,∈ R

d (3)

This assumption is fulfilled for typical differentiable models
and is common in FL theory (e.g. [71, 72]).

Second, we assume that the variance of the weights
decreases over time, meaning that

∥∥∥w(t) − w
(t)
j

∥∥∥
2 ≤ Dt , ∀t, j (4)

where D1, D2, . . . is an eventually decreasing sequence of
bounding constants on the difference between the weights
of any single client and the aggregated weights via (2). This
assumption is motivated by the fact that the weights of all
clients are initialized at the same point (hence D1 = 0)
and the local loss of every client approximates the global
loss. Hence, any reasonable iterative optimizer will drive the
weights to similar local optima, thus decreasing their distance
over time. Also, refer to Fig. 3 for an illustration.

To make this notion of local optima precise, we finally
assume, in line with similar studies [71], that the expected
difference between the local loss of client j and the optimal
loss achievable for client j is bounded as follows.

E

[
Fj (w

(t)
j ) − Fj (w

∗)
]

≤ Ct (5)

where w∗ are the loss-minimizing weights for client j , and
where C1,C2, . . . is an eventually decreasing sequence of
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Fig. 3 Illustration of the assumed learning dynamics for our theoretical
convergence analysis. The weights w

(t)
j of all clients start at the same

point and iteratively approach similar local optima, thus decreasing the
distance to the aggregate w(t)

bounding constants. Note that our analysis is agnostic regard-
ing the precise shape of the bound sequence C1,C2, . . ..
However, we do assume that the bounds are tighter for our
optimized strategy because the sampling strategy is chosen
such that a smaller local loss is likely. Also, note that tighter
bounds in (5) also make it more likely that a similar local
optimum is achieved, hence improving the bounds in (4). In
other words, our assumptions also support each other.

Using our assumptions, we can now show that local loss
convergence (which we support via our optimized sampling
strategy) is sufficient to imply convergence in the federated
loss (1). Please refer to Appendix A for details on the proof
of the theorem.

Theorem 1 If assumptions 3, 4, and 5 hold, we obtain:

E

[
F(w(t)) − F(w∗)

]
≤ Ct + L · Dt , ∀t (6)

To summarize, we believe that our procedure ensures
tighter bounds for assumptions 4 and 5, thus also improv-
ing global loss convergence. We also note that our bound in
Theorem 1 is rather conservative: Inspecting Fig. 3, we see
that there may be many cases where the aggregated weights
achieve even a better loss than the single client weights. Still,
we provide a worst-case upper bound.

6 Empirical evaluation

6.1 Experimental setup

In order to foster reproducibility,we outline all relevant infor-
mation on data and models used during our analyses.

DatasetsWe select four publicly available datasets for the
following analyses, all of which were frequently applied in
FL research (e.g. [8, 9, 55, 73]). More precisely, we opt for

Table 1 Dataset statistics

Name Samples Features Classes

Covtype 581,012 54 2

Diabetes 101,767 37 2

Postures 78,095 15 5

MNIST 70,000 28*28 10

Covtype2,Diabetes2, Postures2, andMNIST [74].Covtype is
known to be a particularly challenging task in FLwhen facing
data imbalance [8], making it a perfect fit for our analyses.
Moreover, Covtype, Diabetes, and Postures contain tabular
data, whereas MNIST contains image data on handwritten
digits. Finally, our choice of dataset requires binary as well
as multi-class classification and significantly differs in the
overall data quantity. Accordingly, we argue that our choice
of datasets is sufficiently diverse to derive meaningful con-
clusions fromour findings. Table1 provides some descriptive
statistics about the datasets used.

Data setting In what follows, we outline the procedure
to simulate a FL setting using the previously mentioned
datasets.3 First of all, we split each dataset D into 80% train
(DTrain) and 20% test (DTest) data. The test set DTest will be
held out from all subsequent steps and serves only to evaluate
the performance of the FL models.

Per default, we distribute data samples from DTrain among
100 simulated clients (m = 100) in accordancewith aDirich-
let distribution and its concentration parameter α set to 2.
Dirichlet distributions are commonly used to obtain prior
distributions in Bayesian statistics and are suitable for sim-
ulating real-world data distributions [8]. It was first used
to simulate FL settings described by Yurochkin et al. [75]
and found widespread application since then. In short, the
Dirichlet distribution controls for the severity of label imbal-
ance among the clients, where small α values imply high
imbalance [9]. More precisely, our work follows Li et al. [8]
and we sample pk ∼ DirN (α) and allocate a pk, j propor-
tion of instances of class k to client j , where Dir(·) denotes
the Dirichlet distribution and α the distribution’s concentra-
tion parameter [8]. Setting α = 2 causes a moderate degree
of imbalance within the cohort and ensures that the learn-
ing task does not become too trivial due to homogeneous
data. Avoiding homogeneity of data is also important, as
applying data sampling to perfectly balanced datasets does
not hold any value. Afterwards, we perform modifications

2 Received from the UCI Machine Learning Repository.
3 Note that simulating FL environments using a centrally available
dataset is necessary due to the very limited amount of available real-
world FL datasets and in order to isolate the effect of the respective
data-specific properties on performance and convergence. Therefore,
simulating FL environments is a common approach in existing FL lit-
erature [30, 34].
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to the data setting in order to test for the impact of the
above-mentioned data-specific properties on FL models (as
described in Sect. 4.3). These modifications are described in
more detail hereafter.

As conducted in similar studies (e.g. [8, 9]), we simu-
late data imbalance by enforcing label imbalance among
clients. This is achieved by controlling the aforementioned
concentration parameter α. In order to simulate different
magnitudes of data imbalance, we decrease α step-wise start-
ingwith α = inf (perfectly homogeneous data) untilα = 0.1
(severely imbalanced data) is reached.

In order to simulate smaller cohort sizes, we randomly
remove clients from the default cohort (with m = 100 and
α = 2) until the threshold of mmax clients is met and train
the FLmodel among the remaining clients. Decreasingmmax

iteratively during benchmarking reduces not only the cohort
size but also the overall number of data samples contained in
the cohort.

Finally, we simulate decreasing numbers of samples per
client by randomly removing as many samples from each
client’s local data as required in order to meet the threshold
nmax defined for each simulation. Thus, we limit the amount
of data each client and, in turn, the cohort can learn from.
Again, we initially rely on the default cohort configuration
with m = 100 and α = 2 for this simulation.

For each setting, FL is performed with all the aforemen-
tioned local sampling strategies, namely None, Constrained,
Undersampling, Oversampling, Dynamic, Hybrid, and our
proposed sampling strategy named Optimized. After each
iteration, the performance of the respective FL model is
evaluated by measuring the mean micro-averaged F1-score
achieved on DTest using fivefold cross-validation in all of our
experiments.

FL Setting For all three tabular datasets, we deploy neural
networks consisting of three linear layers. Their input layer
is of size f (where f is the number of features present in
the respective dataset), the hidden layers are of sizes 0.75 f ,
0.5 f , and 0.25 f , and the output layer has the size of classes
contained in the data. Further, we apply ReLU-activation for
all but the output layer and apply dropout of 0.2.

For MNIST, we utilize a CNN consisting of two convo-
lutional layers, each with a kernel size of 5. After applying
2×2max pooling, the network stacks two linear layers (again
withReLU-activation),where theoutput size of thefinal layer
equals the number of classes within the dataset.

Both model architectures are inspired by Li et al. [8], who
successfully applied them to various FL settings in order to
empirically investigate the effects of data imbalance on FL
performance.

As FL aggregation strategy, we apply FedAvg [4], the de
facto standard due to its popularity and widespread applica-

tion [8]. Training is applied for 200 rounds, during each of
which all clients perform 3 epochs of local training.

Note that it is not the scope of this work to apply models
achieving SOTA performance, but to demonstrate improve-
ments through data sampling for arbitrarymodels. During the
later demonstration on real-world data, however, we apply all
aforementioned local sampling strategies to SOTA models to
confirm the validity of our results on significantly more com-
plex models.

6.2 Impact of data sampling onmodel performance

In order tomeasure the effects of local data sampling on FL in
face of the above-mentioned data-specific properties affect-
ing FL performance, we follow the methodology outlined in
Sect. 4 and iteratively modify the severity of them in simu-
lated cohorts, apply each sampling strategy, and measure FL
performance in terms of F1-score afterwards. Figure4 out-
lines the performance measured for each setting, sampling
strategy, and dataset.

The results suggest that applying local data sampling,
regardless of the actual method used, improves the perfor-
mance of the FL model in most cases. The few exceptions
are for datasets Covtype andDiabetes, where local data sam-
pling neither harms nor improves performance significantly
when label imbalances are small (α > 2).

Data imbalance Considering data imbalance, we find that
the performances for None and Constrained drop rapidly
for α < 2, whereas all other sampling strategies maintain
the same level of performance and show only marginal per-
formance deterioration for severe data imbalance. The only
exception from this is MNIST, where local sampling indeed
improves performance of the federated models but suffers
from data imbalance similarly to the baseline-settings None
andConstrained. This shows the performance improvements
achieved by applying data sampling when facing imbalanced
data. Among all sampling strategies, Oversampling and our
proposedOptimized are the two best-performing approaches,
in particular when facing high data imbalance.

Cohort size In terms of cohort size, we identify similar
patterns yet the magnitudes of improvements are smaller.
For Covtype, Postures, and MNIST, FL without data sam-
pling (i.e. None and Constrained) suffers for settings with
mmax < 30, causing the model performance to drop signif-
icantly. For Diabetes, there is a much more steady decrease
in performance for decreasing cohort sizes and also a large
difference betweenNone andConstrained. For Fig. 4e–g, we
uncover that decreasingmmax correlates with larger improve-
ments using local data sampling. ForMNIST, improvements
through data sampling again remain steady throughout the
decrease of mmax. However, among all data sampling strate-
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Fig. 4 Model performance (mean and standard deviation of fivefold cross-validation)

gies, we see that no strategy yields significantly better
performance compared to the others for large FL cohorts.
However, as cohort sizes decrease, improvements of Opti-
mized become more evident. Additionally, results for the
Postures dataset also reveal thatUndersampling is less effec-
tive compared to its alternatives when cohorts and their
overall data counts become increasingly smaller.

Samples per client Looking at our findings regarding the
number of samples per client reveals the following findings:
first, neither data sampling strategy can compensate for the
decrease in sample size to the same extent they do when
facing increasing data imbalance or decreasing cohort sizes.
Second, Oversampling and Optimized are again among the
best-performing data sampling strategies. Third, Undersam-
pling performs significantly worse than all alternatives for
small nmax and even drops below the performance of FL
without data sampling on Postures andMNIST. This is most
likely due to the fact that it even further decreases the amount
of data to learn from and the performance of deep learning
models hinges on the availability of larger datasets [68].

Overall, we find local data sampling strategies to offer vast
improvements in terms of performance compared to our two

baselines. In total,Oversampling andOptimized performbest
among all datasets and data specifications, with Optimized
having a slight edge over the former for increasingly small
cohort sizes.

We previously considered the ratio of minority class size
and majority class size after data sampling to be r = 1, i.e.
all classes are sampled to the same size. In Fig. 5, we now
investigate how reducing r affects model performance.

The results show that amongall datasets, reducing r causes
the respective model performance to decrease, regardless
of the applied sampling strategy. Considering our findings
among all datasets, we argue that while applications with
r = 1 yield the best performance, reducing r up to r = 0.6
does not affect performance much, but reduces the computa-
tional overhead during sampling and subsequent training.

Finally, we conclude that applying local data sampling
strategies in FL is a good choice when optimal performance
is the main objective. Regarding the choice of sampling
strategy, we find that unlike previous studies that mainly
concluded that the choice of sampling strategy does not
significantly affect the final performance (e.g. [16]), cer-
tain data-specific properties affect the efficiency of these
strategies to different extents. For clients with particularly
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(a) Covtype (b) Diabetes (c) Postures (d) MNIST

Fig. 5 Performance impact of class ratio after data sampling

imbalanced or small local datasets, for example (either
induced by small cohort sizes or few samples per client), we
identifyOversampling andOptimized as sampling strategies
with the highest overall performance. To avoid deteriorating
performance, setting r > 0.6 is recommended.

6.3 Impact of data sampling onmodel convergence

Following existing studies that evaluate the effectiveness of
FL algorithms [46, 55, 76], we study the impact of local data
sampling strategies on model convergence by measuring the
minimal rounds required to reach a certain performance tar-
get. More precisely, we set the target F1-score for Covtype
and Diabetes to 0.7, and to 0.5 and 0.8 for Postures and
MNIST, respectively. These targets are set in accordancewith
our previous findings as well as similar studies on FL con-
vergence [54, 55]. In Fig. 6, we plot the number of federated
rounds of training required to meet the target performance
previously set. (The cut-off at 50 rounds serves to ensure
good scaling, as training rarely exceeds 50 rounds.)

Data imbalance The results from our model convergence
analysis depicted in Fig. 6 reveal that applying data sampling
strategies indeed increases the convergence rate of the respec-
tive FL model. In particular, the convergence of FL models
without data sampling in place starts to worsen when data
imbalance increases (α < 5). Except for Postures, where
no data sampling approach yields a model that reaches the
target performance for α = 0.1, local data sampling signif-
icantly decreases the number of rounds required, especially
for cohorts with particularly high data imbalance.

Cohort size Fromour analysis on the cohort size, we find that
local data sampling can speed up convergence significantly
for all cohort sizes. As mmax decreases, improvements in
terms of model convergence increase even further. Consider-
ing the Diabetes dataset as an example, the federated model
None does not meet the target performance of 0.7 for cohorts
of 5 clients. In contrast, using any local data sampling strat-
egy would allow to meet that target within 12 or less rounds
of training.

Samples per client Similar to previous finding onmodel per-
formance, neither sampling strategy can maintain the same

magnitude of improvement over the baselines during our
analysis of the number of samples per client.With few excep-
tions, however, FL applications with clients that hold limited
amounts of data can still improve model convergence using
local data sampling. In particular, relying on oversampling or
locally optimizing the choice of sampling strategy facilitates
fast convergence.

Although there is no sampling strategy significantly bet-
ter than the other when facing data imbalance,Oversampling
and Optimized are again the overall best strategies to deal
with small cohorts and limited local data. Moreover, we find
that applyingUndersampling to multi-class datasets requires
more rounds of training than the other sampling strategies,
posing a limitation to its applicability in arbitrary environ-
ments.

6.4 Impact of data sampling on training time

In addition to previous analyses and inspired by Wang and
colleagues [46], we take the effects of local data sampling
on the training time into account, as altering the amount of
data involved during training correlates with training time
per round. To account for this, we measure both the number
of seconds taken for each training round per client and the
overall training time required to train a federated model to
achieve the target performances defined in Sect. 6.3. Unlike
previous analyses, we only consider the label imbalance
in this regard, because it directly affects the magnitude of
imbalance present at each client. This local imbalance then
determines the required amount of samples being undersam-
pled or oversampled, which in turn affects the overall training
time. Finally, it is worth mentioning that all models were
trained on the same hardware, namely a singleNVIDIATesla
V100 (16GB) and batch-size set to 16.

Figure7 summarizes the results of our analysis of the
training time per round and client. Furthermore, it outlines
the number of clients excluded from training. From the
graphs, we find that the training time for None and Con-
strained remains unaffected by the change in α, as the
total amount of data does not change for this setting. For
Oversampling and Hybrid, training time increases signifi-
cantly en par with an increased imbalance. At α = 0.1, it
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Fig. 6 Model convergence (median of fivefold cross-validation)
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Fig. 7 Training time per round and client and number of excluded clients

exceeds the baseline None 2.5–8 times, depending on the
dataset. As argued previously, this is likely due to the increas-
ing discrepancy of minority and majority class size at each
client, necessitating larger amounts of data being oversam-
pled. Regarding Dynamic, we find that the training time is
similar to that of None for Covtype and Postures, smaller
than the baselines for Diabetes, and significantly higher on
MNIST. Unsurprisingly, the training time per client decreases
when Undersampling is in place. This is due to the reduc-
tion in local dataset sizes. Finally, the training time per round
and client varies among datasets for our proposed sampling
strategy named Optimized. More precisely, its training time
is similar to None on Covtype, smaller than it on Diabetes,

and greater on the remaining datasets. As later analyses will
reveal, this is due to the fact that the locally optimized choice
of sampling strategy differs notably among these datasets.

Plotting the number of excluded clients (i.e. clients not
holding samples of every output class) reveals a steep
increase in number for α < 1. At its peak, the significant
increase in global data imbalance causes around 80% of
clients to be excluded from the training entirely. Still, as
our previous analyses have shown, this reduction in active
clients combined with the application of local data sampling
increases FL model performance and convergence signifi-
cantly.
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Table 2 Overall training time
for α = 2

Method (s) Covtype (s) Diabetes (s) Postures (s) MNIST (s)

None 278 182 123 67

Constrained 934 40 80 28

Undersampling 74 15 53 11

Oversampling 136 47 88 33

Dynamic 105 21 53 25

Hybrid 170 52 89 25

Optimized* 108 23 60 24

*not including time for local optimization of sampling strategy

Besides benchmarking the training time per round and
client, we also investigate the overall time required to train a
FL model that achieves the target performances per dataset
we previously defined. This is motivated by the fact that
monitoring training time per round alone does not take
our previous findings on the improved model convergence
through local data sampling into account. Accordingly, we
also benchmark sampling strategies with respect to the over-
all training time. This combines various previous findings,
as the overall training time is defined as number of rounds
required to reach the target performance multiplied by train-
ing time per round per clients and the number of active
(i.e. non-excluded) clients. Note that communication time,
i.e. time required to send and receive model updates, is not
included, as it heavily depends on external factors such as
available bandwidth and latency.

Table2 outlines the overall training time per dataset and
sampling strategy when applied to the default data setting
(m = 100 and α = 2). It shows that Undersampling has the
lowest overall training time regardless of the dataset, con-
verging 2.5–12 times faster then the respective None setting.
The improvements are due to the improved convergence rate
despite fewer clients participating and the reduced data quan-
tity.More surprisingly, however, all other sampling strategies
improve the overall training time, too.

While our results have shown for such data sampling
strategies that they increase the training time per round and
client, this is mostly due to their improved rate of conver-
gence compared to FL without data sampling. Among these
strategies,Oversampling requires the largest amount of time,
usually followed byHybrid sampling. Furthermore, the table
shows that Dynamic and Optimized achieve very similar
overall training times.

Overall, our findings allow to conclude that Undersam-
pling is the data sampling strategy of choice when computa-
tional time and resources are limited. Moreover, we find all
data sampling strategies contained in this work to improve
the overall training time of FL models. Considering previous
findings from Sect. 6.2, local data sampling does not only
improve the training time of FL models but also their perfor-
mance in terms of F1-score.

6.5 Optimal choice of sampling strategy

Considering all previous analyses, we argue that our pro-
posed strategy named Optimized is the best choice of local
data sampling strategies for FL to achieve high perfor-
mance and fast convergence in a reasonable amount of time.
Accordingly, we recommend it for future integration into FL
deployment processes of various kinds. In order to reliably
deploy locally optimized data sampling, however, we finally
have to explore the factors influencing the choice of opti-
mal data sampling strategy at each client’s side. Knowledge
about the inner workings of the strategy not only increases
its reliability but also its trustworthiness and reproducibility.

Therefore, we visualize each client’s locally optimized
choice of data sampling strategy in Fig. 8. In it, we do not
include cohorts with reduced amounts of clients, as the num-
ber of clients does not affect each client’s local choice at
all. Consequently, the figure shows the percentage of clients
within each cohort applying either oversampling, undersam-
pling, or hybrid sampling when increasing data imbalance
or decreasing the amount of samples per client.

Figure8 reveals some distinct differences in terms of local
optimization between the two binary classification datasets
(Covtype andDiabetes) and the twomulti-class datasets (Pos-
tures andMNIST ). The most dominant difference lies in the
prevalence of undersampling as optimal sampling strategy. In
case of binary classification tasks, the share of clients choos-
ing undersampling instead of over- and hybrid sampling
increases with increasing imbalance or decreasing samples
per client. In terms of increasing data imbalance, this sug-
gests that locally oversampling large amounts of data (which
is necessary as the discrepancy between local minority and
majority class size increases) is less effective. For the two
multi-class datasets on the other hand, the number of clients
opting for undersampling is vanishingly small. Although
the share of clients preferring oversampling remains mostly
consistent throughout both analyses, the number of clients
applying hybrid sampling increases slightly.

Unfortunately, optimizing the choice of data sampling
strategy locally requires clients to spend additional time and
resources prior to FL application. To save these resources and
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Fig. 8 Choice of sampling strategy in Optimized

also to justify or previous decision not to include the time
for local optimization into the overall training time reported
in Table2, we lastly aim to provide the coefficients of cor-
relation derived from a logistic regression model between
a set of data properties and each client’s respective opti-
mal sampling strategy. Based on these coefficients, future
decision-makers may identify the sampling strategy that will
most likely yield the optimal performance without expensive
local optimization. The logistic regression model is fitted on
the data reported throughout all our previous experiments.
Moreover, the set of independent variables representing each
client consists of four variables, namely: the number of sam-
ples held by the client, the number of input features for the
federated model, the number of output classes, and the local
imbalance LI j that is defined as

LI j = n j
Majority

n j
Minority

, (7)

wheren j
Majority andn

j
Minority refer to themajority andminority

class sizes of client j .
The correlation coefficients reported in Table3 confirm

our previous findings on the number of classes and their effect
on the choice of sampling strategy. Here, the negative coef-
ficient for undersampling and the positive coefficients for
hybrid sampling and oversampling prove that these strate-
gies are to be preferred in multi-class settings. Moreover,
local imbalance shows a positive correlation with undersam-
pling but negative correlation with the other two options.
Accordingly, clients with high discrepancy between major-
ity and minority class size are likely to benefit from applying

Table 3 Logistic regression coefficients per sampling strategy in Opti-
mized from all previous experiments

Undersampling Hybrid Oversampling

# Samples −0.0005* 0.0002* 0.0003*

# Features 0.0096* 0.0253* −0.0349*

# Classes −1.0296* 0.7176* 0.3119*

Local Imbalance 0.1211* −0.0335 −0.0876*

*significant at p < 0.05

undersampling. Finally, the number of samples and the num-
ber of features have the weakest correlation with either class,
suggesting that they are less important for decision making.
However, we find that clients with large sample sizes can
benefit the most from applying oversampling, whereas tasks
with many features show highest positive correlation with
hybrid sampling.

7 Demonstration on real-world and
large-scale data

After finishing the empirical evaluation using synthesized FL
environments, we finally seek to confirm our previous find-
ings on real-world and large-scale data with SOTA models.
Ultimately, this serves to prove that our previous findings are
of practical value.

This demonstration addresses four limitations of our pre-
vious analyses, namely the use of synthetic FL environments,
smaller datasets, non-SOTA models, and ignoring the local
optimization time for our proposed sampling strategy. In the
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following, we will elaborate upon how these limitations are
addressed during the demonstration and provide details on
data and models used.

Synthetic FL environmentsWhile the use of synthetic data
splits was necessary to systematically study the impact of
the three data-specific properties and their severity on the
value of local sampling strategies, previous studies found
that “[s]uch synthetic partition approaches may fall short of
modelling the complex statistical heterogeneity of real fed-
erated datasets” [77, p.3]. Evaluating novel FL methods on
real data splits instead ensures their capability of addressing
real-world challenges [77].

Therefore,we use theFEMNIST dataset obtained from the
FL benchmark corpus LEAF [78] in Sect. 7.1. FEMNIST has
been created by partitioning the EMNIST dataset (an exten-
sion to MNIST which also contains letters) [79], according
to the writers’ identities contained in the data. In turn, FEM-
NIST splits data naturally, thus providing a real-world data
partitioning suitable for our demonstration. It contains 3.550
clients with a total of 805.263 samples [78]. However, we
decide to limit our demonstration to numerical digits as con-
tained in the MNIST dataset in order to allow for a better
comparison of results.

Smaller datasets Moreover, the datasets used in Sect. 6 are
not particularly large (the largest one being Covtype with
about 600,000 samples) and split among at most 100 clients.
Therefore, our previous analyses might fall short on captur-
ing data sampling effects unique to large-scale datasets and
environments.

To this end, we also demonstrate the effectiveness of
local data sampling and our proposed approach on the
KDDCup1999 dataset [80] in Sect. 7.2. The dataset con-
tains about 4,900,000 samples used for network intrusion
detection based on 41 different features [80]. To simulate
the large-scale FL environment, we split the train dataset
DTrain among 10,000 simulated clients. To simulate a realis-
tic degree of data imbalance, we set α = 0.2.

Non-SOTA models Our previous choices of models were
inspired by the studies of Li et al. [8] on the impact of data
imbalance on FL and in accordance with various previous
studies on this topic (e.g. [5, 9]).Despite thesemodels achiev-
ing reasonable performance on the datasets used in our study,
it remains open, if and to what extent our findings generalize
to larger and more complex models used for prediction. To
resolve this uncertainty,we train amodel following theVGG-
16 architecture [81] to classify the images from theFEMNIST
dataset (see Sect. 7.1). VGG-16 consists of 13 convolutional
layers, 5 max pooling layers, and 3 dense layers [81]. For the
classification of KDDCup1999 data in Sect. 7.2, we rely on
a neural network similar to those outlined in Sect. 6.1. How-

ever, we extend them to five hidden layers with 128 neurons
each.

Local optimization time We previously argued that moni-
toring correlations of different data-specific properties with
the choice of optimal sampling strategy (as conducted in
Sect. 6.5) may allow clients to choose the local sampling
strategy that likely provides the best outcome for the cohort
without having to perform costly local optimization. In
order to validate whether this assumption was justified, we
include the sampling strategy named Optimized_coef into
our following demonstrations. Unlike the previously pro-
posed Optimized, Optimized_coef relies on the correlation
coefficients presented in Table 3. To do so, clients first calcu-
late their respective local imbalance LI j in accordance with
Eq.7. Subsequently, they determine the optimal sampling
strategy s∗ from the set of available sampling strategies S
that maximizes the following equation:

s∗ = argmax
s∈S n jβ

s
n + f jβ

s
f + c jβ

s
c + L I jβ

s
L I , (8)

where n j , f j , and c j refer to the number of samples, features,
and classes of client j , whereas βs

n , β
s
f , β

s
c , and βs

LI are the
coefficients of correlation for the number of samples, fea-
tures, classes, and the local imbalance of sampling strategy
s, as presented in Table3.

7.1 Real-world data

Figure9 depicts the results in terms of performance, con-
vergence4, and overall train time from applying each local
sampling strategy to FEMNIST before training a VGG-16
model using FedAvg.

Figure9a shows VGG-16’s performance for all local
sampling strategies. Similar to our previous findings, both
baselines perform significantly worse than settings were data
sampling was applied. Moreover, oversampling as well as
our two proposed sampling strategies Optimized and Opti-
mized_coef slightly outperform their alternative and yield
the overall best F1-scores. Another interesting aspect is that
the coefficient-based choice of optimal sampling strategy
performs only marginally worse compared to the compu-
tationally much more expensive Optimized sampling.

Next, the results on model convergence in Fig. 9b also
confirm our findings. They show that applying local data
sampling has the potential to reduce the number of rounds
required to achieve the target performance by up to 50%.
Interestingly—with the exception of dynamic sampling—all
sampling strategies require a very similar number of rounds to
reach convergence. This includes the coefficient-based sam-

4 In line with our previous analyses on model convergence for MNIST,
we set the target F1-score for FEMNIST to 0.8.

123



International Journal of Data Science and Analytics

(a) Performance (b) Convergence (c) Overall Training Time

Fig. 9 Performance, convergence, and overall training time for the FEMNIST dataset using VGG-16 (mean and standard deviation of fivefold
cross-validation)

(a) Performance (b) Convergence (c) Overall Training Time

Fig. 10 Performance, convergence, and overall training time for theKDDCup1999 dataset (mean and standard deviation of fivefold cross-validation)

pling strategy Optimized_coef that converges in almost the
same number of rounds as Optimized.

Finally, we visualize the overall training time that again
consists of the number of rounds for convergence, the train
time per client and round, as well as the number of active
clients per round. It shows that, despite some of the sampling
strategies increasing the overall sample size contained in the
cohort, the speed-up convergence causes the overall train-
ing time to decrease significantly compared to the settings
without data sampling in place. Unsurprisingly, undersam-
pling is again the sampling strategy with the lowest overall
training time, followed by both optimized approaches and
hybrid sampling. (However, hybrid sampling has signifi-
cantly higher standard deviation, making it harder to judge it
reliability.)

7.2 Large-scale data

Similar to Fig. 9, Fig. 10 depicts performance, convergence5,
and overall train time for the KDDCup1999 dataset using
various local data sampling strategies.

The findings regarding the macro-averaged F1-score
demonstrate the improvements through either data sampling

5 Considering the baseline performance without data sampling, we set
the target F1-score for KDDCup1999 to 0.85.

strategy compared to the None baseline setting. In line with
previous findings, Oversampling, Hybrid, Optimized, and
the coefficients-based Optimized_coef yield the best perfor-
mance. However, the improvements over the alternatives are
less pronounced compared to previous analyses. In particu-
lar, it is worth mentioning that the mere exclusion of clients
that do not hold samples from all classes (as indicated by the
Constrained setting) accounts for most of the improvement
over the baseline.

Figure10b reveals that even on large-scale datasets, local
data sampling can significantly improve the convergence of
federately trainedmodels. In particular, most strategies allow
to reduce the number of rounds required by more than half.
Here, the convergence of Undersampling stands out from
previous findings, as we now find it to be among the fastest
converging sampling strategies.

With respect to the overall training time, Fig. 10c con-
firms the superiority of local Undersampling. Additionally,
it reveals that althoughOptimized has a decent training time,
Optimized_coef allows for a significantly faster training.
This is likely due to the fact that the coefficient-based strat-
egy selection caused more clients to chose undersampling
compared to optimizing locally. Accordingly, these findings
further support our previous claim that Optimized_coef is a
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viable alternative to Optimized, especially when computa-
tional resources are limited.

In general, the results of both demonstrations confirm our
previous findings presented in Sect. 6. From this we argue
that our findings generalize reasonably well for FL on real-
world and large-scale data settings as well as more complex
SOTA model architectures.

8 Discussion and conclusion

Despite its great potential and theoretical guarantees to over-
come the issue of distributed privacy-preserving ML [2, 30,
82], FL suffers from performance degradation when data is
imbalanced [8]. To alleviate these drawbacks and improve
FL on imbalanced data, both algorithm- and data-based
approaches have been proposed in the past [10, 11]. Although
the former are usually evaluated carefully and systematically
(e.g. [42]), the latter lack a systematic analysis of their poten-
tial to improve FL. In turn, FL initiators have to rely on a
best-guess- or trial-and-error-based approach when it comes
to applying data sampling strategies in their FL environment.
Unfortunately, this might necessitate repeating the FL sev-
eral times to identify the best-performing approachor itmight
harm performance.

In this work, we address this evident gap in the existing
literature by providing a holistic view on local data sampling
strategies applied to FL environments and systematically
benchmarking their impact on FL performance. Therefore,
we identify the most common local data sampling strategies
(i.e.Undersampling,Oversampling,Dynamic sampling, and
Hybrid sampling) as well as relevant data-specific properties
negatively affecting FL systems (i.e.Data Imbalance,Cohort
Size, and number of Samples per Client). Moreover, we pro-
pose a novel local data sampling strategy named Optimized
that facilitates local optimization of the sampling strategy
selection prior to FL participation. Afterwards, we apply the
aforementioned sampling strategies to various FL environ-
ments where we control for the severity of each data-specific
property, to ultimately answer our three initial research ques-
tions.

Our findings with respect to RQ1 (To what extent can
local data sampling improve FL performance, convergence,
and train time in face of unfavourable data-specific proper-
ties?) suggest that applying data sampling strategies prior
to training a federated model increases both the perfor-
mance of the model in terms of F1-score as well as its rate
of convergence. This is mostly in line with similar studies
applied to non-distributed settings [83]. For highly imbal-
anced or particularly small cohorts, we find that local data
sampling nearly completely compensates for the decrease in
performance and convergence speed caused by the respec-

tive influencing data property. With respect to the sample
size of clients, similar but less pronounced patterns can be
observed. Additionally, we find that the ratio of minority and
majority class size after data sampling affects the effective-
ness of local data sampling. Here, we show that reducing the
ratio below r = 0.6 decreases model performance signifi-
cantly. With respect to the training time per round as well
as the overall training time, our findings prove that although
some sampling strategies increase the training time per round
and client, either data sampling strategy reduces the overall
train time due to the improved convergence.

To answer RQ2 (What are the unique advantages and dis-
advantages of different sampling strategies over another?),
we find Oversampling and Optimized yielding the high-
est overall performance and exhibit the fastest convergence
among different datasets and data distributions. However, the
choice of sampling strategy affects both the overall and the
training time per round. Our findings suggest that although
some sampling strategies increase the training time per round
and client, either data sampling strategy reduces the over-
all train time due to the improved convergence. Among all
strategies, Undersampling requires the least training time,
followed shortly by Dynamic and Optimized.

Finally, regardingRQ3 (Can locally optimizing the choice
of data sampling strategy improve FL further?), we con-
clude from our findings that locally optimizing the choice
of data sampling strategy is a good choice for various FL
applications where high performance or fast convergence is
the main objective. Yet, local optimization is computation-
ally expensive and might hence be inapplicable when time
and resources are limited. Our results thus shed light on the
impact of local optimization, showing, among other things,
that the application of undersampling is a promising option
in many binary classification settings but less viable for
multi-class classification. During demonstration, we show
that relying on the coefficients of correlation allows clients to
avoid the computationally expensive local optimizationwith-
out having to compromise on performance, convergence, or
training time.

Limitations Currently, the scope of our analyses is limited
to three data-specific properties influencing FL performance.
However, additional model- or client-specific factors such as
model complexity [84–87],model heterogeneity [67, 88, 89],
and client dropout rates [2, 90–92] were found to affect FL
performance. Furthermore, additional nuances of data imbal-
ance such as partially class-disjoint data, feature imbalance,
and quantity imbalance have detrimental effects on FL [8, 9,
49]. In turn, the validity of our findings is yet unknown for
these settings.

Moreover, we rely on Cheng et al. [10] who proved empir-
ically that data-based approaches perform similarly, if not
superior, compared to algorithm-based approaches and did
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not compare performance with baselines such as Gradient
Harmonizing Mechanism Classification [93] ourselves.

Futurework In various real-world applications of FL, clients
have access to vast amounts of unlabelled data, which cur-
rently cannot be facilitated during the supervised training
of federated models. And although high labelling costs may
prevent clients from utilizing this data during training [94],
integrating such data to augment the train data through
federated semi-supervised learning [95, 96] seems to be a
promising extension to this work.

Moreover, FL might benefit from considering more
sophisticated sampling strategies such as oversampling using
generative models [57], triplet-based oversampling [73], or
similarity-based undersampling [97]. Finally, we seek to
complement our work by considering different types of data
and models, e.g. recurrent neural networks for time-series
data.

Appendix A Proof of Theorem 1

This section proves global loss convergence based on
assumptions (3),(4), and (5).

First, we prove an auxiliary bound for the local losses.
Using assumption (3), we obtain

∣∣∣Fj (w
(t)
j ) − Fj (w

(t))

∣∣∣ ≤ L ·
∥∥∥w

(t)
j − w(t)

∥∥∥

Applying assumption (4) to the right-hand-side and re-
arranging then yield the bound

Fj

(
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)
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w

(t)
j

)
+ L · Dt . (A1)

Now, consider the expected loss difference for the cohort,
which by definition equals:

E

[
F

(
w(t)

)
− F

(
w∗)]

= E

⎡

⎣
N∑

j=1

n j

N
·
(
Fj

(
w(t)

)
− Fj

(
w∗))

⎤

⎦

=
N∑

j=1

n j

N
· E

[
Fj

(
w(t)

)
− Fj

(
w∗)]

Using Equation (A1), we obtain:

N∑

j=1

n j

N
· E

[
Fj

(
w(t)

)
− Fj

(
w∗)]

≤
N∑

j=1

n j

N
· E

[
Fj

(
w

(t)
j

)
+ L · Dt − Fj

(
w∗)]

≤ L · Dt +
N∑

j=1

n j

N
· E

[
Fj

(
w

(t)
j

)
− Fj

(
w∗)]

because
∑N

j=1
n j
N = 1.

Finally, we apply assumption (5), yielding:
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n j
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(
w∗)] ≤ L · Dt + Ct ,

which concludes the proof. �	
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