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Abstract
Accurate prediction of vehicle trajectories is essential for safe and efficient navigation in urban environments, particularly
with the increasing prevalence of autonomous vehicles and intelligent transportation systems. This paper introduces a deep
learning-based approach for predicting vehicle trajectories on urban roads in real time. The method combines techniques
from graph neural networks (GNNs) and long short-term memory (LSTM)-based models to capture intricate spatial and
temporal dependencies among vehicles. Vehicles are represented as nodes in the proposed graph model, and graph attention
mechanism is used tomodel the interactions between them.Additionally, LSTMmodules encodemotion patterns and temporal
correlations, facilitating spatial and temporal information fusion to improve prediction accuracy. The effectiveness of the
approach is demonstrated through extensive experimentation and evaluation in generating vehicle trajectories, surpassing
baseline methods. The proposed method holds promise for real-time vehicle trajectory prediction, with the potential for
applications in autonomous driving, traffic management, and intelligent transportation systems.

Keywords Autonomous vehicles · Trajectory prediction · Deep learning · Graph attention network · Intelligent transportation
systems · Graph neural networks

1 Introduction

In today’s rapidly evolving urban landscapes, the accurate
prediction of vehicle trajectories plays a critical role in
numerous applications ranging from traffic management to
autonomous driving systems. The ability to anticipate the
future movements of vehicles enables proactive decision-
making, thereby enhancing safety, efficiency, and overall
transportation effectiveness. Traditional approaches to vehi-
cle trajectory prediction have primarily relied on mathemat-
ical models or simplistic statistical methods, often needing
help to capture the intricate dynamics of real-world traffic
scenarios [1–3].
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However, recent advancements in deep learning have
revolutionized vehicle trajectory prediction by offering
more sophisticated and data-driven techniques capable of
handling the complexities inherent in modern traffic environ-
ments [4]. Deep learning models have been widely applied
in various domains of transportation research in recent
years, providing promising solutions to complex problems.
Some notable applications include traffic flow prediction [5],
origin–destination tripmatrix estimation [6], traffic flow esti-
mation and accident analysis [7–9], and vehicle trajectory
prediction. Hence traditional approaches often rely on sim-
plistic assumptions, leading to suboptimal performance in
dynamic and complex traffic environments. Moreover, exist-
ing deep learning-based methods are capable of capturing
nonlinear dynamics of such complex traffic environments in
real world.

One of the key challenges in vehicle trajectory predic-
tion is to effectively capture both the temporal evolution
of trajectories and the spatial interactions among vehicles.
The temporal dependencies, such as acceleration, deceler-
ation, and lane changes, play a significant role in shaping
future vehicle movements. Additionally, spatial interactions,
like lane merging, proximity to other vehicles, and traffic
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flow patterns, offer crucial contextual information essential
for accurate predictions. Among various techniques used
for predicting vehicle trajectories, recurrent neural networks
(RNNs) have demonstrated superior performance in recent
studies [10–14]. However, RNNs, particularly long short-
term memory (LSTM) networks commonly employed for
trajectory prediction, primarily capture temporal dependen-
cies in the data while overlooking the spatial relationships
between traffic objects. This limitation restricts the usability
of LSTMs for accurate trajectory predictions, especially in
complex and dynamic environments where considering the
relationships between objects is indispensable.

In contrast, graph neural networks (GNNs) rely on graph
structures to model the underlying traffic scenarios. GNNs
effectively capture spatial information by leveraging the
structural connectivity among neighboring nodes within
graph models [15]. Recent advancements in GNN-based
vehicle trajectory prediction models utilize graph convo-
lutional networks (GCN) to learn graph features before
inputting trajectory data into Recurrent Neural Networks
(RNN) for sequence prediction [16–18]. These models
demonstrate lower prediction errors compared to other
RNN-based approaches [19]. However, existing GCN-based
vehicle trajectory prediction models typically assign equal
importance to all neighbors of a given node during fea-
ture extraction. This contradicts real-time network behavior,
where the influence of neighboring objects varies signifi-
cantly depending on traffic settings. Notably, not all neigh-
boring objects exert the same influence on a road object under
consideration. To address this issue, Velickovic et al. pro-
posed the graph attention network (GAT) [20]. GAT enables
the assignment of varying importance to different nodes
within a neighborhood without requiring costly matrix oper-
ations. Vehicle trajectory prediction models based on GAT
have surpassed many state-of-the-art GCN-based models,
showcasing superior performance.

However, although the diverse aspects have been well
investigated, a factor was neglected in previous works. In
the context of vehicle trajectory prediction, considering both
spatial interactions at the same time-step and the temporal
continuity of interactions is crucial for accurate and safe pre-
dictions. While existing approaches have often focused on
the spatial interactions between vehicles at a given moment,
neglecting the temporal aspect can lead to incomplete predic-
tions. Temporal continuity refers to the idea that the current
motion behavior of a vehicle is influenced not only by its
immediate surroundings but also by the historical move-
ments of other vehicles in the vicinity. Each vehicles in the
given scene must account for the past trajectories of sur-
rounding vehicles to plan their future paths effectively. By
incorporating temporal correlations of interactions into vehi-
cle trajectory prediction models, we enable vehicles to make
more informed decisions based on a deeper understanding of

the dynamic interactions within the traffic environment. This
approach enhances the predictive capabilities of autonomous
vehicles and improves overall traffic safety and efficiency.

In this paper, we focus on the task of predicting vehicle
trajectories in urban environments, which are characterized
by complex road networks. While the terminology “complex
networks" refers to a specific class of networks in the context
of graph theory, in this paper, we use the term “complex road
networks" to refer to the intricate and challenging nature of
urban road structures, including factors such as dense traffic,
diverse road types, and complex intersections. It is important
to clarify this distinction, as our study primarily addresses
the practical challenges posed by urban road networks rather
than the abstract network properties. Here, we introduce a
novel deep learning approach to predict vehicle trajectories
in a complex urban road network and the key contributions
are:

Integration of RNNs and GNNs: We propose a hybrid
approach that integrates recurrent neural networks (RNNs)
and graph neural networks (GNNs) for capturing both spa-
tial and temporal dependencies in vehicle trajectories. This
integration allows our model to effectively capture the com-
plex interactions between vehicles and predict their future
movements accurately.

Temporal correlations modeling with additional LSTM:
Initially, we address the temporal correlations of interactions
by integrating an additional LSTM network. Notably, prior
approaches often overlooked the significance of explicitly
considering the continuity of interactions.

Modeling spatial interactions: Representing each vehi-
cle as a node in the underlying graph model and thereafter
utilizing graph attention mechanisms, the proposed method
captures the spatial relationships and interactions between
vehicles in urban traffic scenarios. This enables our model
to learn from the collective behavior of neighboring vehicles
and incorporate their influence into trajectory predictions.
Here, we tackle the spatial interactions among vehicles by
employing Graph Attention Network (GAT) to aggregate the
hidden states of LSTMs.

Evaluation and comparison:We conduct extensive exper-
iments on real-world trajectory datasets and compare the
performance of ourmethod against baseline approaches. The
results demonstrate the effectiveness of our strategy in gen-
erating multiple plausible trajectories and outperform the
existing methods in terms of prediction accuracy and reli-
ability.

2 Literature review

The vehicle trajectory prediction task involves forecasting
the future positions of individual vehicles within the con-
text of current traffic conditions. With the growing interest in
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autonomous driving, there has been a surge in research atten-
tion towards improving vehicle trajectory prediction. Recent
advancements in deep learning models have shown promis-
ing results in tackling this challenge. In this section, we
provide a concise overview of the existing literature related
to vehicle trajectory prediction.
Recurrent neural networks for vehicle trajectory predic-
tion: Sequence prediction tasks revolve around utilizing past
sequence data to forecast future values within the sequences.
Recurrent neural networks (RNNs) and their variants, such
as long short-term memory (LSTM) networks, are specifi-
cally tailored for sequence prediction challenges. They have
demonstrated significant accomplishments across various
domains, including speech and behavior recognition [21,
22], machine translation, resource allocation [23], as well
as image or video captioning.

While many studies have highlighted the effectiveness
of LSTM in modeling the trajectory of individual vehicles,
such as those by Lin et al. [24] and Kavran et al. [25],
Vanilla LSTMmodels often overlook the interactions among
surrounding vehicles. This limitation arises because RNN
models excel primarily in learning temporal sequences. To
address this challenge, Deo and Trivedi introduced convo-
lutional social pooling within an LSTM encoder–decoder
framework to capture the interdependencies among mov-
ing vehicles. However, it is crucial to recognize that both
spatial and temporal information of vehicles significantly
influence trajectory prediction accuracy. Consequently, the
applicability of LSTMs for precise trajectory predictions
becomes constrained in complex, dynamic environments
where accounting for vehicle relationships is essential.

Recently, the emergenceof graphneural networks (GNNs)
and their variations has addressed this limitation by inte-
grating a GNN layer into the LSTM network architecture,
thereby enhancing sequence prediction capabilities. GNNs
leverage the structural connectivity of neighboring nodes
inherent in graph models to capture spatial information. By
extracting features from neighboring nodes, GNNs facilitate
the learning of valuable relational information crucial for
decision-making in interaction-based environments.
Graph neural networks for vehicle trajectory prediction:
Graph neural networks represent a powerful neural network
architecture tailored for machine learning tasks involving
graphs. In recent years, systems built upon Graph Convo-
lutional Networks (GCNs) and Gated Graph Convolutional
Neural Networks (GGNNs) have showcased remarkable
performance across various domains. These include tasks
such as modeling physics systems, learning molecular fin-
gerprints, and predicting protein interfaces. In the existing
literature, numerous research contributions have leveraged
the principles of graph neural networks (GNNs) for sequence
prediction tasks [17, 26–28]. Among these, several notable
studies are particularly relevant to the proposed investigation.

One such contribution is the trajectory prediction method
developed by Chandra et al. in 2019 [29]. This method
is tailored for dense and heterogeneous traffic scenarios,
employing a weighted interaction mechanism to capture the
influence of neighboring vehicles on the trajectory of the
target vehicle. By assigning weights to interactions based
on their relevance and importance, Traphic demonstrates
improved trajectory prediction accuracy in complex traffic
conditions. However, its performance in sparse environments
remains unclear, highlighting the need for further evaluation
across a broader range of traffic scenarios and real-world
datasets to assess its generalizability.

Additionally, Li et al. proposed an interaction-aware graph
convolutional vehicle trajectory prediction model in 2020
[17], aiming to accurately forecast longer sequences with
lower error rates across diverse traffic settings. This model
notably reduces error rates in longer prediction intervals
by utilizing graph convolution operations to transform fea-
tures into a graph, where uniform weights are assigned to all
neighboring traffic participants. Nevertheless, in real-world
scenarios, the influence of neighboring vehicles on a given
participant may vary, constituting a critical factor in achiev-
ing accurate trajectory prediction.

In their work [30], Sunwoo and Lee introduced a mul-
timodal maneuver-based trajectory prediction model that
integrates LSTM and hierarchical GNN architectures. This
model employs a two-stage prediction process. Initially, all
potential trajectories of surrounding vehicles are forecasted
based on multimodal maneuvers, alongside the probabil-
ity for each maneuver determined through a multilayer
perceptron (MLP). As LSTM alone struggles to capture
spatial interactions among vehicles, the authors combined
LSTM encoder–decoder with GCN to extract relevant node
and edge features from the associated graph model. Subse-
quently, an interaction-aware graph model is proposed in the
second stage, utilizing these maneuver-based predicted tra-
jectories. Despite the advancements, accurately predicting
longer sequences of trajectories remains a primary challenge
in these models. To address the issue of increased error
rates in long-term prediction, Cao et al. proposed a tempo-
ral attention-based vehicle trajectory prediction model [31].
By leveraging attentionmechanisms in long-term prediction,
this model demonstrated improved accuracy compared to
existing baseline models.

In their study [32], Mo et al. presented a novel approach
for vehicle trajectory prediction in highway driving scenar-
ios, merging GNNs and RNNs. By leveraging the graph
structure of the road network to model spatial relationships
between vehicles and incorporating temporal dependencies
using RNNs, their model achieved promising results in tra-
jectory prediction accuracy. However, the model’s focus
primarily on highway driving scenarios may limit its appli-
cability to other road environments, despite its strengths.
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Additionally, real-time traffic networks introduce uncertain-
ties due to inevitable circumstances.

Among these methodologies, Velickovic et al. [20] intro-
duced the Graph Attention Network (GAT), offering the
ability to assign varying levels of importance to different
nodes within a neighborhood without requiring computa-
tionally expensive matrix operations. GAT-based models
have consistently achieved or matched state-of-the-art per-
formance across various benchmarks for graph-related tasks
[33–37]. In our context, the intricate latent motions of vehi-
cles can be effectively modeled using GAT. Here, vehicles
within the road scene are conceptualized as nodes on the
graph at each time-step, with the interactions between vehi-
cles represented as graph edges.

Contributions:While previousworks have largely focused
on eithermodeling eachvehicle’smotion usingRNNsor inte-
grating RNNs with GCN, CNN, or GAT, an essential factor
has often been overlooked. In the context of vehicle trajectory
prediction, considering both spatial interactions and temporal
continuity is crucial for achieving accurate and safe predic-
tions. To the best of our knowledge, most of the existing
approaches have primarily addressed spatial interactions at a
given moment. However, neglecting the temporal aspect can
result in incomplete and nonrealistic predictions. Temporal
continuity indicates that a vehicle’s current motion behav-
ior is not only influenced by its immediate surroundings but
also by the historical movements of neighboring vehicles.
Each vehicle in a given scenario must consider the past tra-
jectories of surrounding vehicles to effectively plan its future
path. By incorporating temporal correlations of interactions
into vehicle trajectory prediction models, we can facilitate
vehicles to take more informed decisions based on a deeper
understanding of the dynamic interactions within the traffic
environment.

In line with this objective, our proposed study aims to
develop a deep learning approach that combines GNN-
based trajectory predictionmodels, leveraging both GAT and
LSTM architectures. Additionally, an extra LSTM layer is
utilized to capture temporal correlations effectively. As out-
lined in Sect. 1, the primary goal of our study is to develop a
model that is adaptive to complex road scenarios commonly
encountered in urban environments.

3 Methodology

In this section, we introduce a novel deep learning approach,
utilizing a sequence-to-sequence architecture to predict
future vehicle trajectories. In addition to capturing spatial
interactions through a graph attention mechanism at each
time-step, we incorporate an LSTM to encode the tempo-
ral correlations of interactions. In the following section, we
outline the problem statement and provide comprehensive

insights into our model’s architecture, functionality, imple-
mentation, and training procedures.

3.1 Problem definition

In our study, we focus on dynamic scenarios involving mul-
tiple vehicles moving along urban roadways, each identified
as v1, v2, . . . , vM . At any given time-step t , we represent
the position of vehicle vi (where i ranges from 1 to M) as
Pt

vi
= (xtvi , y

t
vi

), indicating coordinates along the horizontal
and vertical axes, respectively. Our objective is to utilize his-
torical trajectory data to forecast the future positions of these
vehicles. Thehistorical trajectorydata, denoted as Pt

vi
, encap-

sulates the past movement of each vehicle from time-step
t = 1 to TP. Here, TP represents the last observed time-step
in the historical data. Our primary goal is to predict the future
positions of the vehicles beyond the observed time-steps,
specifically targeting time-steps ranging from t = TP + 1 to
TF. Here, TF signifies the final time-step for prediction.

3.2 The architecture and working of the proposed
model

The basic architecture of our model is a encoder–decoder
sequence to sequence model as depicted in Fig. 1. The model
consists of three primary components within the encoder
architecture as follows: (1) LSTM-based vehicle trajectory
encoding module: This module is responsible for encoding
the historical trajectory data of each vehicle. (2) GAT-based
module for modeling spatial interactions: The GAT-based
module is designed to capture spatial interactions among
vehicles. By treating vehicles as nodes in a graph and lever-

Fig. 1 Architecture of the proposedvehicle trajectory predictionmodel:
A sequence to sequence-based framework comprising Encoder, Inter-
mediate State, and Decoder modules for predicting vehicle trajectories
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aging attentionmechanisms, themodel can learn to prioritize
and weigh the influence of neighboring vehicles on each
other’s trajectories. This allows for a more nuanced under-
standing of the complex spatial relationships within the
environment. (3) LSTM-based module for capturing tem-
poral correlations: This module focuses on capturing the
temporal correlations of the interactions modeled by the
GAT-basedmodule.By incorporatingLSTMunits, themodel
can effectively track how spatial interactions evolve over
time, enabling it to predict future trajectories based on both
historical movement patterns and dynamic spatial relation-
ships. Next, after obtaining the encoder vector from the
encoder, the decoder LSTM begins decoding the data to pre-
dict future trajectories.

3.2.1 LSTM-based vehicle trajectory encodingmodule

The proposed model is designed to process unprocessed
video data or drone images captured under realistic city traffic
conditions, as detailed in Sect. 4. Prior to being inputted into
the model, the raw data undergoes initial pre-processing pro-
cedures, as outlined in Sect. 4.3, to optimize its compatibility
and quality for effective analysis. After generating the pro-
cessed data, the proposedmodel uses LSTM encoder module
to encode each vehicle data. This section describes how the
proposed model utilizes an LSTM encoder module, termed
V-LSTM, to encode the motion state of each vehicle based
on the generated processed data and the corresponding traffic
graph.

Each vehicle exhibits a unique motion pattern influenced
by factors such as speed, acceleration, and steering behav-
ior. LSTMmodels have shown effectiveness in capturing the
historical motion state of single entities, including vehicles
[38–40]. Therefore, we employ one LSTM for each vehicle
to encode its motion state.We denote this LSTM as V-LSTM
(LSTMfor vehiclemotion encoding). In our implementation,
we first calculate the relative position of the vehicle at each
time-step (t) compared to the previous time-step (t − 1) as
in Eq. (1).

�xtvi = xtvi − xt−1
vi

, �ytvi = ytvi − yt−1
vi

(1)

This equation helps us to calculate how much a vehicle
hasmoved horizontally (�xtvi ) and vertically (�ytvi ) between
time t and t−1. Subsequently, we embed the relative position
of each vehicle vi into a fixed-length vector ptvi for each time-
step, and these vectors serve as inputs to the V-LSTM cell.
We denote the embedding function as E(·) as in Eq. (2).

ptvi = E(�xtvi ,�ytvi ;Wpp) (2)

In Eq. (2), E(·) represents the embedding function, and
Wpp denotes the embedding weight. The V-LSTM cell takes

these embedded vectors along with the previous hidden state
zt−1
vi

as input and produces the current hidden state ztvi . This
process is governed by the weight Wz associated with the
V-LSTM cell by Eq. (3).

ztvi = V-LSTM(zt−1
vi

, ptvi ;Wz) (3)

Here, ztvi represents the hidden state of the V-LSTM at
time-step t . Wz is the weight of the V-LSTM cell. It is cru-
cial to note that these parameters, including Wpp and Wz ,
are shared among all vehicles in the traffic scene, ensuring
consistency in the encoding process across different entities.
This encoding process allows the model to effectively cap-
ture the historical motion state of each vehicle, laying the
foundation for further analysis and prediction tasks within
the proposed framework.

3.2.2 GAT-based module for modeling spatial interactions

Simply using one LSTMper vehicle may not effectively cap-
ture the intricate interactions between vehicles on the road.
To overcome this limitation and better capture the dynamics
of traffic scenarios, we treat vehicles as nodes in a graph,
leveraging the advancements in GNNs.

Graph attention networks (GATs) operate on graph-
structured data and compute the features of each graph node
by attending over its neighbors, following a self-attention
strategy. GATs are constructed by stacking graph attention
layers. Figure3 illustrates the concept of a single graph atten-
tion layer, showcasing the process of attention computation
and feature aggregation among nodes in a graph structure.
Each node in the graph corresponds to a vehicle, and the
edges betweennodes represent the interactions betweenvehi-
cles. This graph-based representation enables us to capture
the spatial dependencies and interactions among vehicles in
a traffic scenario effectively. The input of the graph attention
layer is denoted as �h = {�hv1,

�hv2 , . . . ,
�hvN }, where �hvi ∈ R

F

and vN is the number of nodes, and F is the feature dimen-
sion of each node. The output is �h′ = {�h′

v1
, �h′

v2
, . . . , �h′

vN
},

where �h′
vi

∈ R
F .

In our approach, vehicles are represented as nodes in a
graph as illustrated in Fig. 2, and edges are formed between
any two road agents that fulfill the interaction rule. The inter-
action rule dictates that an edge exists between two vehicles
if they are within a proximity threshold distance, for exam-
ple, 10m on an urban road. This graph-based representation
enables us to model the complex interactions and depen-
dencies between vehicles in a traffic scenario. During the
observation period, ztvi (t = 1, . . . , TP), representing the hid-
den states of the vehicles, is fed to the graph attention layer.
The coefficients in the attention mechanism of the node pair
(vi , v j ) can be computed by:
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Fig. 2 Visualization of vehicles on a road as nodes, with edges rep-
resenting vehicle-to-vehicle interactions at time step t . Each vehicle
is depicted as a node, and edges between nodes illustrate interactions
determined by proximity between vehicles at the given time step

αt
viv j

= exp(LeakyReLU(a.T [Wztvi ‖Wztv j
]))

∑
k∈Nvi

exp(LeakyReLU(aT [Wztvi ‖Wztvk ]))
(4)

where ‖ denotes concatenation, .T represents transpose,αt
viv j

is the attention coefficient of node v j to vi at time-step t ,Nvi

represents the neighbors of node vi on the graph,W ∈ R
F×F

is the weight matrix of a shared linear transformation applied
to each node, and a ∈ R

2F is the weight vector of a single-
layer feedforward neural network. The softmax functionwith
LeakyReLU activation is applied for normalization. After
obtaining the normalized attention coefficients, the output of
one graph attention layer for node vi at time t is given by:

ẑtvi = σ(
∑

v j∈Nvi

αt
viv j

Wztv j
) (5)

where σ is a nonlinear function, ẑtvi is the result after graph
attention layers, is the aggregated hidden state for vehicle vi
at time t , which contains the spatial influence fromother vehi-
cles. By integrating GAT-based modules into our model, we
can effectivelymodel the spatial interactions among vehicles,

enabling more accurate predictions and analysis of traffic
behavior.

3.2.3 LSTM-based module for capturing temporal
correlations

In traditional LSTM-based methods for modeling interac-
tions in traffic scenarios, the sharing of hidden states among
vehicles is a common strategy. However, these methods
often neglect to explicitly capture the temporal correlations
between these interactions. In our approach, we introduce an
additional LSTM to explicitly model these temporal correla-
tions, termed as MV-LSTM:

mt
vi

= MV-LSTM(mt−1
vi

, ẑtvi ;Wm) (6)

Here, ẑtvi is obtained from Eq. (5). The parameterWm rep-
resents the weight matrix of the MV-LSTM, which is shared
across all sequences. Within the encoder module as illus-
trated in Fig. 1, we utilize two LSTMs, namely V-LSTM and
MV-LSTM, to capture the motion patterns of each vehicle
and the temporal correlations of interactions, respectively.
The fusion of spatial and temporal information is achieved
by integrating these two modules. At time-step TP, two hid-
den variables (zTPvi , m

TP
vi ) are obtained from the two LSTMs

for each vehicle. In our implementation, these variables are
processed through separate multilayer perceptrons ν1(·) and
ν2(·) before being concatenated as follows:

zvi = ν1(z
TP
vi

) (7)

mvi = ν2(m
TP
vi

) (8)

svi = zvi ‖mvi (9)

Here, ‖ denotes concatenation.

Fig. 3 Illustration of attention coefficient calculation (a) and hidden layer feature generation (b) in a graph attention network (GAT), demonstrating
attention computation and feature aggregation among nodes in a graph structure
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3.2.4 LSTM-decoder module for future vehicle trajectory
prediction

In vehicle trajectory prediction, our objective is to anticipate
future movements of vehicles based on real-world trajectory
datasets. Our model’s intermediate state vector comprises
two parts: the hidden variables of V-LSTM, the hidden
variables of MV-LSTM. The intermediate state vector is cal-
culated as:

svi TP = svi (10)

where svi is obtained from Eq. (9). This intermediate state
vector serves as the initial hidden state of the decoder LSTM,
termed as D-LSTM.
The predicted relative position is given by

(�xTP+1
vi

,�yTP+1
vi

) = ν3(s
TP+1
vi

) (11)

where

ŝTP+1
vi

= D-LSTM(sTPvi
, pTPvi

;Ws) (12)

withWs representing theD-LSTMweight, and ν3(·)denoting
a linear layer. After obtaining the predicted relative posi-
tion at time-step TP + 1, the subsequent inputs of D-LSTM
are calculated based on the last predicted relative position.
Converting relative positions to absolute positions facilitates
computing the loss.

3.3 Loss function

In our model training process, we employ the Mean Squared
Error (MSE) loss function, as detailed in [41]. This loss func-
tion quantifies the disparity between predicted and observed
trajectory data. The overall loss, denoted as L, is computed
using the following formula:

L = 1

TF

TF∑

t=1

Lt = 1

TF

TF∑

t=1

||Y t
pred − Y t

real|| (13)

Here, TF represents the prediction window, Lt signifies the
loss at instance t , andY t

pred andY t
real denote the predicted and

real trajectory data, respectively. The loss function computes
the mean squared difference between the predicted and real
trajectories over the prediction window, providing a measure
of the model’s predictive accuracy.

4 Dataset

Our model has been trained and evaluated using two urban
datasets: the Apolloscape trajectory prediction dataset [42]

Table 1 Urban dataset used to train the proposed model

Dataset Train Test Validation

Apolloscape 18,905 2338 4964

Argoverse 232,566 25,626 66,365

and the Argoverse Motion Forecasting dataset. While the
Apolloscape dataset provides information about object types,
theArgoverse dataset lacks proper object definitions.Our aim
was to create a universal model capable of accommodating
all datasets. However, even in the Apolloscape dataset, there
are vague classes such as ‘others,’ and uncertainties persist
regarding the sizes of vehicles.

Despite these challenges, our model focuses more on the
maneuver patterns and surrounding context of objects rather
than relying solely on object size or type. This approach is
supported by the fact that object positions are typically given
as centroids, reducing the influence of object size or type
on trajectory prediction. Instead, the model considers fac-
tors such as surrounding vehicles and changes in movement
over time, leveraging Graph Attention Layers and LSTM for
predicting future trajectories. Details regarding the training,
testing, and validation sets for the three datasets are provided
in Table 1.

4.1 Apolloscape dataset

The Apolloscape trajectory dataset [42] comprises camera-
based images, LiDAR-generated point clouds, and meticu-
lously annotated trajectories. This dataset captures diverse
urban environments with varying traffic densities and light-
ing conditions. Notably, it encompasses a diverse range of
dynamic entities, including vehicles, cyclists, and pedestri-
ans, navigating through highly complex traffic scenarios. The
Apolloscape dataset comprises 53min of training sequences
and 50min of testing sequences, all captured at a consistent
frame rate of 2 s. Each line in the text files of the dataset
provides detailed information about objects at specific time
frames, including frame ID, object ID, object type, posi-
tion coordinates (x, y, z), object dimensions (length, width,
height), and heading. The positions are given inmeterswithin
the world coordinate system.

4.2 The Argoverse dataset

The Argoverse Motion Forecasting dataset is sourced from
1006h of driving data collected in Pittsburgh and Miami,
USA. This dataset facilitates 3D tracking and motion fore-
casting in urban settings. With approximately 200 million
trajectories recorded at a sampling rate of 10 Hz, trajectories
are segmented into 5-s intervals for analysis. For this study,
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each trajectory sequence is resampled from 10 to 5 Hz to
maintain consistency in the investigation. These datasets pro-
vide rich and diverse sources of data, enabling our model to
learn and generalize across a wide spectrum of urban driving
scenarios, thereby enhancing its effectiveness in real-world
applications. The dataset is organized into CSV files, with
each file corresponding to a scenario. Each row in the CSV
files includes a timestamp, object ID, object type, x and y
coordinates representing the object’s position, and the data
collection location.

4.3 Pre-processing

The datasets undergo pre-processing before being converted
into text files, where each row comprises the columns: Frame
ID, Object ID, X coordinate, Y Coordinate, and Dataset ID.
Frame IDs are adjusted to range between 1 and n, and Object
IDs between 1 and N , ensuring sequential and nonmiss-
ing IDs. Dataset IDs differentiate scenes within a dataset,
as objects or agents may vary across scenes. The training
sequence length and prediction sequence length for each
dataset are determined based on the dataset’s frame rate
and the desired time intervals. If a dataset is too large, only
selected scenesmaybe considered usingDataset IDs. Finally,
pickle files are generated for training and evaluation. The size
of training, testing, and validation samples is determined by
the number of T-second-long observation sequences of road
agent positions, with T set to 3 in this case.

5 Experiments and results analysis

In this section, we evaluate our method using two publicly
available trajectory datasets: Argoverse and Apolloscape tra-
jectory dataset. We use metrics such as average displacement
error (ADE) and final displacement error (FDE) to quan-
titatively compare the performance of our method against
existing state-of-the-art works.

5.1 Training of themodel

In our implementation, we employed a neural network archi-
tecture consisting of long short-termmemory (LSTM) layers,
a graph attention layer, and activation functions to capture
complex temporal and relational patterns in the data. Below,
we provide a detailed overview of the key components and
hyperparameters utilized.

LSTM layers: Each LSTM layer is configured as a sin-
gle layer to balance model complexity and computational
efficiency. The dimensions of the input and output tensors,
denoted as ptvi and ztvi , respectively, were set to 16 and 32.
These dimensions were determined through experimentation
to capture relevant features and ensuremodel expressiveness.

Graph attention layer: The graph attention layer plays a
crucial role in modeling inter-node dependencies and captur-
ing global graph structures. We utilized a weight matrix W
with a shape of 16× 32 to compute attention scores between
nodes. The attention vector a was set to a dimension of 64,
enabling the model to focus on relevant graph nodes during
computation. Batch normalization was applied to the input
of the graph attention layer to stabilize and accelerate the
training process.

Activation functions: Activation functions ν1(·) and ν2(·)
were employed to introduce nonlinearity into the model and
facilitate feature transformation. Each activation function
consists of 3 layers with Rectified Linear Unit (ReLU) acti-
vation functions. The number of hidden nodes in these layers
was set to 32, 64, and 24 for ν1(·), and 32, 64, and 16 for ν2(·),
respectively. These configurations were chosen to promote
feature extraction and hierarchical representation learning.

Training configuration: We adopted the Adam optimizer
with a learning rate of 0.01 to facilitate efficient optimization
of the network parameters. A batch size of 64 was uti-
lized during training to balance computational efficiency and
model convergence. These hyperparameters were fine-tuned
through experimentation on the training dataset to achieve
optimal model performance and generalization capability.

5.2 Evaluationmetrics

The evaluation of the proposed model performance in fore-
casting future trajectories relies on several key metrics, as
referenced in citations [41] and [42]. These metrics provide
quantitative insights into the model’s effectiveness in pre-
dicting the trajectory of road agents within the dataset.

Average displacement error (ADE): ADE quantifies the
average Euclidean distance between the predicted trajectory
data and the real trajectory data over the prediction interval.
It is computed as follows:

ADEvi = 1

TF

TF∑

t=TP+1

√
√
√
√

N∑

i=1

(x̂ tvi − xtvi )
2 + (ŷtvi − ytvi )

2

(14)

Here, N represents the number of observed road agents in
the traffic scene, TF denotes the number of predicted time-
steps or frames, and x̂ tvi and ŷtvi are the predicted x and y-
coordinates of road agent vi at time instance t . Similarly, xtvi
and ytvi represent the real x and y-coordinates of road agent
vi at instance t .

Final displacement error (FDE): FDEmeasures the mean
Euclidean distance between the last predicted trajectory data
and the real trajectory data of road agents. It is calculated as:
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FDEvi =
√

(x̂ TFvi − xTFvi )2 + (ŷTFvi − yTFvi )2 (15)

Here, TF represents the last instance or frame in the predicted
trajectory data, and x̂ TFvi and ŷTFvi denote the predicted x and
y-coordinates of road agent vi at the last instance TF . Like-
wise, xTFvi and yTFvi represent the real x and y-coordinates of
road agent vi at instance TF . The overall FDE is computed
by averaging the FDEs of all observed road agents. This met-
ric provides insights into the model’s long-term forecasting
capabilities.

5.3 Baselinemethods

To comprehensively assess the effectiveness of our proposed
model, we conducted a comprehensive comparison with
various state-of-the-art methodologies using urban datasets.
Each of these baselinemethods represents a distinct approach
to trajectory prediction, incorporating various techniques and
architectures to capture the complex dynamics of urban traf-
fic.

Lane attention and trajectory prediction: Unifying lane
features with an encoder–decoder network, this method
adeptly forecasts future trajectories by incorporating lane-
related context into the prediction process [43].

LaPred: Leveraging a CNN-LSTM network, LaPred
synthesizes nearby agents’ joint characteristics with lane
and trajectory data to provide future trajectory predictions,
emphasizing contextual understanding in trajectory forecast-
ing [35].

DATF: Pioneering a holistic approach, DATF incorpo-
rates signals from the multimodal world and dynamic agent
interactions, drawing insights from environmental context to
inform trajectory predictions across varied pathways [44].

VectorNet: Distinguished by its hierarchical graph neu-
ral network architecture, VectorNet elegantly captures the
geographical locality and high-order interactions between
road components, enriching trajectory predictions with spa-
tial context [45].

UST:A straightforward trajectory prediction model, UST,
relies primarily on spatio-temporal pooling for sequence
prediction, offering a simplified yet effective approach to
trajectory forecasting [46].

GRIP andGRIP++:Thesemethods harness LSTM-based
trajectory prediction coupled with Graph Convolutional Net-
works (GCN), with GRIP++ further enhancing GCNs with
a GRU-based encoder–decoder, propelling graph-based tra-
jectory prediction techniques [18, 41].

SCOUT: By leveraging attention mechanisms and Graph
Neural Networks (GNN), SCOUT meticulously models
trajectory prediction, dynamically allocating attention to rel-
evant spatial and temporal features [47].

TraPHic: Employing a hybrid LSTM-CNN network,
TraPHic capitalizes on dynamic weighted graph representa-
tion to encapsulate the intricate interactions among dynamic
agents in the traffic, thereby enriching trajectory predictions
[29].

Graph LSTM: This model synthesizes LSTM for trajec-
tory prediction with the power of graph neural networks,
enabling the extraction of high-dimensional features from
complex trajectory data [48].

CS-LSTM: By integrating convolutional social pooling
within an LSTM encoder–decoder architecture, CS-LSTM
adeptly captures interdependencies in vehicle movement,
leveraging spatial context to inform trajectory predictions
[49].

TrafficPredict: Pioneering an LSTM-based trajectory pre-
diction model, TrafficPredict innovatively represents trajec-
tories and their interactions within a 4D graph framework
using an instance layer [42].

SocialGAN:Thismethod fuses generative adversarial net-
works and sequence-to-Sequence Models to amplify trajec-
tory predictions, leveraging adversarial training to enhance
the fidelity of generated trajectories [50].

Multiscale spatial–temporal graph:The authors introduce
a novel framework for autonomous vehicle trajectory pre-
diction, integrating spatial–temporal layers, dilated temporal
convolutions, andLSTM-based trajectory generationmodule
[51].

HVTD: The hierarchical vector transformer diffusion
model (HVTD) is a novel trajectory prediction method for
autonomous driving, combining local and global informa-
tion acquisition, aleatoric uncertainty capture, and adaptive
graph-based spatial–temporal feature extraction for superior
speed and accuracy [52].

5.4 Analysis of results

In our evaluation, we compared the performance of the
proposed model with these baseline methods on both the
Apolloscape and Argoverse datasets. The comparison was
based on key metrics such as ADE and FDE, which provide
insights into the accuracy of trajectory predictions. Our anal-
ysis revealed several noteworthy observations: While some
models showcased commendable performance across both
datasets, others exhibited variability in their effectiveness,
highlighting the nuanced challenges inherent in urban tra-
jectory prediction. Models that demonstrated proficiency in
capturing contextual cues, such as lane features and dynamic
agent interactions, tended to exhibit superior performance.
Certain models excelled in short-term predictions but faced
challenges in accurately forecasting long-term trajectories,
underscoring the complexity of capturing temporal depen-
dencies in trajectory data.
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Table 2 Performance
evaluation of the proposed
model using cutting-edge
techniques on the Argoverse and
Apolloscape datasets
(Validation =3s)

Apolloscape Argoverse

Models ADE FDE ADE FDE

Proposed model 1.19 1.85 0.89 1.58

Lane attention and trajectory prediction – – 1.24 2.49

LaPred – – 1.48 3.29

Multiscale spatial–temporal graph 1.9 3.5 – –

HVTD – – 1.59 1.27

DATF – – 2.04 3.69

VectorNet – – 1.66 2.21

UST 1.24 2.25 1.47 2.94

GRIP++ 1.25 2.36 – –

GRIP 1.25 2.34 – –

SCOUT 1.26 2.25 – –

TraPHic 1.283 11.699 1.039 3.079

CS-LSTM 2.144 11.699 1.050 3.085

Graph LSTM 3.59 3.71 2.40 3.09

Social GAN 3.980 6.750 3.610 5.390

TrafficPredict 8.588 24.2262 – –

Bold values indicate that the proposed model’s results, allowing for differentiation from other state-of-the-art
methods

As illustrated in Table 2, the proposed model consistently
outperforms the comparison models. Notably, both ADE and
FDE values show significant decreases compared to other
models, except for exceptions such as GRIP++, UST, Vec-
torNet, and Graph LSTM, where FDE values are higher
than those of the reported model. Moreover, the proposed
model surpasses GCN-based approaches and achieves the
highest accuracy for both short- and long-term predictions.
This success is attributed to the GAT layer, which effectively
captures interaction patternswith selected importance, aiding
in learning the localization patterns of surrounding vehicles.
On Apolloscape dataset, TrafficPredict exhibits limitations
in accurately forecasting road agents’ movements, as evi-
denced by high ADE and FDE values. Social GAN, Graph
LSTM, Multiscale spatial–temporal graph, and CS-LSTM
demonstrate competitive performance in capturing complex
interactions and improving trajectory predictions. TraPHic
excels in short-term predictions but shows limitations in
accurately forecasting long-term trajectories. The proposed
model emerges as the top-performing model on the Apol-
loscape dataset, showcasing remarkable accuracy with small
ADE and FDE values.

On Argoverse dataset, similar trends are observed on
the Argoverse dataset, with the proposed model maintain-
ing superior performance. Social GAN, Graph LSTM, and
CS-LSTMcontinue to demonstrate competitive performance
in capturing diverse urban traffic scenarios. The proposed
model sustains its superior performance, emphasizing its effi-
cacy in both short- and long-term trajectory predictions on
the Argoverse dataset. In Fig. 4, we present visualizations

of prediction results across varying traffic conditions such
as mild, moderate, and congested utilizing datasets from the
Apolloscape and the Argoverse. Upon examining 3s of his-
torical trajectories, our model forecasts trajectories for a 5 s
future horizon. Furthermore, the visualizations provided in
Fig. 4 highlight the striking comparability between estimated
and actual trajectories, demonstrating the effectiveness of the
proposed model when paired with graph attention and two
types of LSTM models. The model’s ability to perform well
in complex urban traffic settings underscores its general suit-
ability for trajectory prediction in autonomous vehicles.

On an average, the proposed model achieves a prediction
time of 0.65 s over 30 frames, with a runtime of 30.62 frames
per second (fps).Wedefine the size of the adjacencymatrix as
M×M , whereM represents themaximumnumber of objects
detected in a single frame. This prediction time is influenced
by the value of M, which we analyze further. Examining the
traffic densities of the datasets, we observe an average density
of 3.19 for theApolloscape dataset and1.03 for theArgoverse
dataset. Considering Apolloscape as the denser dataset, we
set M to its maximum value of 120, resulting in a prediction
time of 0.112s for a one-second-ahead prediction. Table 3
illustrates the variations in prediction time as M increases.
Real-timepredictionbecomes infeasible forM ≤ 650,where
M = 650 indicates the observation of 650 road agents in a
single frame by the camera or LIDAR on the Ego vehicle’s
roof a scenario rare in real-world heavy traffic conditions.

The impact of threshold distance on constructing a graph
for vehicle prediction models is crucial for understanding
howsurroundingobjects affect prediction accuracy.Bydefin-
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Fig. 4 Visualization of vehicle trajectories from the Apolloscape and
Argoverse datasets. Red lines denote past observed trajectories, blue
lines represent ground truth trajectories, and yellow lines depict pre-

dicted trajectories. Each trajectory reflects the movement history and
future predictions of multiple vehicles within the scene

ing a threshold distance, we determine the proximity of
vehicles and investigate how varying this threshold affects
model performance. Figure5 presents a comparison of results
for different threshold distances. Notably, when the threshold
distance is less than or equal to 0 m (as depicted by the blue
bars in Fig. 5), indicating no consideration of surrounding
objects, the prediction error is higher compared to scenarios
where nearby vehicles are taken into account (Distance ≤
0 m). This underscores the importance of considering sur-
rounding objects in enhancing prediction accuracy.

Moreover, as the threshold distance increases, the pre-
diction error initially decreases, suggesting better perfor-
mance asmore surrounding objects are considered.However,

beyond a certain threshold (for example, Distance > 10
m), the prediction error starts to increase. This observation
implies that an excessive number of surrounding objects can
degrade prediction accuracy, indicating a balance between
considering enough surrounding objects for accurate predic-
tions and avoiding information overload. Additionally, the
graph shows that prediction errors tend to increase as we
move from left to right, reflecting the decreasing influence of
front objects on predictions. This suggests that objects closer
to the vehicle have a more significant impact on prediction
accuracy compared to those farther away. Furthermore, it is
noteworthy that predicting farther into the future (e.g., predic-
tion window 5s) results in higher prediction errors compared
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Table 3 Variation in the time required for one-second-ahead prediction
as the value of M increases

M Time for 1-second-ahead prediction (s)

120 0.112

240 0.178

480 0.331

500 0.621

550 0.682

600 0.733

625 0.778

630 0.985

650 1.015

Fig. 5 Comparison of various threshold distance on Apolloscape
dataset

to shorter-term predictions (prediction window 1s). This is
expected due to the inherent uncertainty in forecasting dis-
tant future states, highlighting the challenges associated with
long-term prediction. It is also important to mention that a
threshold distance of 10 m provides good accuracy for both
short-term and long-term predictions. On the other hand, a
threshold distance of 5m yields less accurate longer-term
predictions due to the reduced influence of surrounding vehi-
cles. This indicates the necessity of balancing the threshold
distance based on the desired prediction accuracy and the
influence of surrounding vehicles.

5.5 Future research directions

By incorporating temporal correlations of interactions into
vehicle trajectory prediction models, we empower vehi-
cles to make more informed decisions, leveraging a deeper
understanding of the dynamic interactions within the traffic
environment. This approach enhances the predictive capa-
bilities of autonomous vehicles and contributes to overall

traffic safety and efficiency. However, one limitation of our
proposed model is its exclusive focus on the motion of other
vehicles, overlooking contextual or intentional factors influ-
encing their movements. Future research endeavors could
explore methods to integrate contextual information, such
as road layout and traffic regulations, as well as discern the
intentions of other drivers, thereby enhancing the accuracy
of trajectory predictions.

6 Conclusion

In this work, we proposed a novel deep learning approach
for real-time vehicle trajectory prediction on urban roads.
Leveraging techniques from graph neural networks and
LSTM-based models, we addressed the challenges associ-
ated with capturing complex interactions between vehicles
and modeling the uncertainty in future trajectories. By rep-
resenting vehicles as nodes on a graph and employing graph
attentionmechanisms, we effectively captured spatial depen-
dencies and interactions between vehicles in crowded urban
environments. Our model, incorporating multiple LSTM
components for encoding motion patterns and temporal
correlations, achieved fusion of spatial and temporal infor-
mation, leading to improved prediction accuracy. Through
extensive experimentation and evaluation, we demonstrated
the effectiveness of our approach in generating multiple
plausible trajectories and outperforming baseline methods.
By evaluating using standard error metrics such as ADE
and FDE, we quantified the predictive performance of our
model. In conclusion, our proposed method offers a promis-
ing solution for real-time vehicle trajectory prediction, which
is crucial for applications such as autonomous driving, traffic
management, and intelligent transportation systems. Future
work could explore further enhancements, such as incorpo-
rating additional contextual information to further improve
prediction accuracy and robustness in diverse urban environ-
ments.

Acknowledgements The authors thank the reviewers for their valuable
feedback in enhancing the quality of the manuscript.

Author Contributions Sundari K helped in conceptualization, compu-
tational work, methodology, data analysis, manuscript writing. Dr. A
Senthil Thilak contributed to supervision, contribution to manuscript
writing and improvement of methods, project guidance.

Funding This research received no specific funding.

Data availibility The dataset supporting the findings of this study
is publicly available and can be accessed from the following link.
Apolloscape dataset: https://apolloscape.auto/trajectory.html Argov-
erse dataset: https://www.argoverse.org/av2.html.

123

https://apolloscape.auto/trajectory.html
https://www.argoverse.org/av2.html


International Journal of Data Science and Analytics

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

References

1. Bharilya, V., Kumar, N.: Machine learning for autonomous vehi-
cle’s trajectory prediction: a comprehensive survey, challenges, and
future research directions. Veh. Commun. (2024). https://doi.org/
10.1016/j.vehcom.2024.100733

2. Nayak, A., Eskandarian, A.: Cooperative probabilistic trajectory
prediction under occlusion. IEEETrans. Intell. Veh. (2024). https://
doi.org/10.1109/TIV.2024.3365651

3. Li, H., Wang, X., Su, X., Wang, Y.: Improved gaus-
sian mixture probabilistic model for pedestrian trajectory
prediction of autonomous vehicle. Recent Patents Mech.
Eng. 17(1), 65–75 (2024). https://doi.org/10.2174/
0122127976268211231110055647

4. Yuan, H., Li, G.: A survey of traffic prediction: from spatio-
temporal data to intelligent transportation. Data Sci. Eng. 6(1),
63–85 (2021). https://doi.org/10.1007/s41019-020-00151-z

5. Owais, M.: Deep learning for integrated origin-destination esti-
mation and traffic sensor location problems. IEEE Trans. Intell.
Transp. Syst. (2024). https://doi.org/10.1109/TITS.2023.3344533

6. Alshehri, A., Owais, M., Gyani, J., Aljarbou, M.H., Alsulamy, S.:
Residual neural networks for origin-destination trip matrix estima-
tion from traffic sensor information. Sustainability 15(13), 9881
(2023). https://doi.org/10.3390/su15139881

7. Owais, M., Moussa, G.S., Hussain, K.F.: Robust deep learning
architecture for traffic flow estimation from a subset of link sensors.
J. Transport. Eng. Part A Syst. 146(1), 04019055 (2020). https://
doi.org/10.1061/JTEPBS.0000290

8. Moussa, G.S., Owais, M., Dabbour, E.: Variance-based global
sensitivity analysis for rear-end crash investigation using deep
learning. Accid. Anal. Prev. 165, 106514 (2022). https://doi.org/
10.1016/j.aap.2021.106514

9. Owais, M., Alshehri, A., Gyani, J., Aljarbou, M.H., Alsulamy, S.:
Prioritizing rear-end crash explanatory factors for injury severity
level using deep learning and global sensitivity analysis. Expert
Syst. Appl. 245, 123114 (2024). https://doi.org/10.1016/j.eswa.
2023.123114

10. Park, S.H., Kim, B., Kang, C.M., Chung, C.C., Choi, J.W.:
Sequence-to-sequence prediction of vehicle trajectory via LSTM
encoder–decoder architecture. In: 2018 IEEE Intelligent Vehicles
Symposium (IV), pp. 1672–1678. IEEE (2018). https://doi.org/10.
1109/IVS.2018.8500658

11. Xie, G., Shangguan, A., Fei, R., Ji, W., Ma, W., Hei, X.: Motion
trajectory prediction based on aCNN-LSTMsequentialmodel. Sci.
China Inf. Sci. 63, 1–21 (2020)

12. Dai, S., Li, L., Li, Z.: Modeling vehicle interactions via modified
LSTM models for trajectory prediction. IEEE Access 7, 38287–
38296 (2019). https://doi.org/10.1109/ACCESS.2019.2907000

13. Kim, B., Kang, C.M., Kim, J., Lee, S.H., Chung, C.C., Choi, J.W.:
Probabilistic vehicle trajectory prediction over occupancy gridmap
via recurrent neural network. In: 2017 IEEE 20Th International
Conference on Intelligent TransportationSystems (ITSC), pp. 399–
404. IEEE (2017). https://doi.org/10.1109/ITSC.2017.8317943

14. Ip, A., Irio, L., Oliveira, R.: Vehicle trajectory prediction based on
LSTM recurrent neural networks. In: 2021 IEEE 93rd Vehicular
TechnologyConference (VTC2021-Spring), pp. 1–5. IEEE (2021).
https://doi.org/10.1109/VTC2021-Spring51267.2021.9449038

15. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Philip, S.Y.: A
comprehensive survey on graph neural networks. IEEETrans. Neu-
ral Netw. Learn. Syst. 32(1), 4–24 (2020). https://doi.org/10.1109/
TNNLS.2020.2978386

16. Lu, Y., Wang, W., Hu, X., Xu, P., Zhou, S., Cai, M.: Vehicle tra-
jectory prediction in connected environments via heterogeneous
context-aware graph convolutional networks. IEEE Trans. Intell.
Transport. Syst. (2022)

17. Li, X., Ying, X., Chuah, M.C.: Grip++: enhanced graph-based
interaction-aware trajectory prediction for autonomous driv-
ing (2019). arXiv preprint arXiv:1907.07792. https://doi.org/10.
48550/arXiv.1907.07792

18. Li, X., Ying, X., Chuah,M.C.: Grip: graph-based interaction-aware
trajectory prediction. In: 2019 IEEE Intelligent Transportation Sys-
tems Conference (ITSC), pp. 3960–3966. IEEE (2019)

19. Choi, S.,Kim, J.,Yeo,H.:Attention-based recurrent neural network
for urban vehicle trajectory prediction. Proc. Comput. Sci. 151,
327–334 (2019)
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