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Abstract
Fake news and misinformation spread in online social networks in a manner similar to contagious diseases. One possibility
to thwart the contagion cascade is to selectively remove a small number of nodes from the network. Although most of the
literature has focused on the selection of those nodes on the basis of their topological position in the network, we pose that
attributes of the nodes themselves can be more relevant in certain situations. In order to demonstrate this hypothesis, we
introduce a new model of news propagation that accounts for nodes’ attributes. In particular, we introduce three important
characteristics of a node: the influence capacity, the resistance to be influenced and the resistance to become an information
spreader. Besides offering an intuitive justification for the model and these new parameters, we relate them to other proposals
in the literature. Under the new model and using numerical simulations on both synthetic and real life networks, we show that
nodes’ attributes can be more important than their graph structural properties in choosing an adequate set of vertices to be
removed with the purpose of mitigating fake news propagation. Furthermore, our results suggest that removal of nodes with
high influence power is more effective in denser networks and when the influence of a few nodes is much larger than that of
the general population.

Keywords Complex networks · Misinformation · Information diffusion · Online social networks

1 Introduction

We are all familiar with the existence of people who believe
that the Earth is flat [1], or those that, without solid scientific
evidence, firmly believe thatwe have been visited by extrater-
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restrial beings [2]. Furthermore, we know that in an era of
social networks like Facebook, Instagram, Twitter, Twitch or
YouTube, this type of ideas propagates more easily [3, 4].
Probably, most of us do not mind about these conspiracy the-
ories. After all, it is a matter of beliefs: there is no amount
of scientific evidence that could help to change the mind of
a believer.

However, conspiracy theories may sometimes become
dangerous. As an example, many governments and non-
governmental organizations around theworld strongly fought
against anti-vaccinationmovements in themidst of theworld-
wide COVID-19 pandemic [5–10]. Although education and
publicity campaigns based on verified information may help
to oppose the spread of misinformation on the much needed
vaccines, as in the case of the flat-earthers, believers are dif-
ficult to convince even in the face of abundant scientific data.

Some tech companies, such as Facebook [11, 12] and
Google [13], that run social networking applications have
announced several measures to combat false news. There is
also a large body of research in this area. However, most of
the scientific literature and company-based initiatives focus
on either the automatic or man-in-the-loop detection of false
news in social media [14–17]. In this work, to the contrary,
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we focus on a different aspect ofmisinformation: the network
that facilitates its spread.

At the beginning of the year 2021, we witnessed a very
important event: a large social network, Twitter, banned the
account of the United States president [18, 19]. In spite of
the political content of this measure, it signals to an alterna-
tive in the combat against misinformation and false news: the
ban of misinformation super-spreaders. ‘Super-spreader’ is a
term that has been introduced, at least for the general public,
in the last few years in relation to the COVID-19 pandemic.
A super-spreader is a person with a high viral load that gets
in contact with large number of people, for example, in par-
ties or other social gatherings (weddings or religious events).
By analogy, the concept has been transferred to the realm of
information. Indeed, recently some presidents of large coun-
tries have been called super-spreader of disinformation [20,
21]. The concept has caught up and it is becoming part of
common language in the media [22, 23].

As a matter of fact, the idea of super-spreader is not new.
It is related to the well-known concept of an opinion leader
or ‘influential’ [24]. Opinion leaders are defined as ‘the indi-
viduals who are likely to influence other persons in their
immediate environment’ [24]. As it is clearly explained in
Watts and Dodds [24], an opinion leader is not necessarily a
leader, such as the president of a country. A simple example
that comes to mind is that of a company that wants to sell
plastic containers. Opinion leaders in this case can be certain
well-connected housewives, and not a high-profile person.
In this sense, the concept of an influential is different from
the nowadays common concept of ‘influencer’ [25–29], that
is, someone ‘who built a large network of followers, and are
regarded as trusted tastemakers in one or several niches’ [28].

Super-spreaders, influentials or opinion leaders, and influ-
encers are all related, but slightly different concepts. A
common factor in all of them is that of the network of con-
nections. Super-spreaders ‘spread’ misinformation or false
news because they have a large number of connections in
propitious environments (as thosewho spread theCOVID-19
infections in large gatherings in closed rooms). Influentials
can be characterized by their special place in a network of
contacts [24, 30–33]. Influencers are defined by their large
network of ‘followers’ [28]. All in all, the network topology
is in the core of the definition of these types of characters
relevant in opinion formation dynamics.

A careful reading of the previous lines reveals a detail
which is of the utmost relevance. Indeed, although the topol-
ogy of connections in a social network is important in the
definition of either a super-spreader or an influencer, that is
not the only aspect that characterizes them. For example, a
super-spreader not only needs a large number of connections,
but also a propitious ‘environment.’ Besides being followed
by a large number of people, an influencer requires to be
‘regarded as a trusted tastemaker’ [28]. In summary, there is

an attribute of the super-spreader or the influencer that goes
beyond their place in the social network.

The main goal of this work is to investigate whether there
may exist attributes of individuals that can be more relevant
than their place in the network topology when evaluating the
importance of their influence. If there are such attributes, they
can help to detect and combat super-spreaders, which may
be more efficient than fighting the fake news they divulge. A
related idea was treated in Andrade et al. [34], where it was
studied how to efficiently choose what elements of a criminal
network should be targeted to cause the largest damage. It
was found that not only the connections in the network were
important, but also attributes of the criminals. In a similar
manner, we propose to identify who are the news-spreaders
(influencers) that are more convenient to combat in order to
cause the greatest damage to a misinformation network.

Amisinformation network is different than a criminal net-
work. There is a large literature on opinion formation and its
relation to a network of contacts [24, 35–46]. Oftentimes,
fake news are associated with the idea of an spreading virus.
Indeed, it is common to speak of a false news becoming
‘viral.’ A classical model for the propagation of a dis-
ease is known as the susceptible–infected–recovered (SIR)
model [24, 47, 48]. The basic idea of this model is to classify
people in three categories: ‘susceptible,’ they can become
infected; ‘infected,’ as they are sick and can infect others;
and ‘recovered,’ as they were but are no longer sick. Sus-
ceptible individuals can be infected if they come into contact
with infected individuals. There is a probability of infection
which may depend on several factors, but mainly on the type
of contact (for example, how long a susceptible individual
was in contact with an infected person). Sick (infected) peo-
ple recover at a constant mean rate.

It ismost interesting to study the behavior of theSIRmodel
in the context of a social network [24]. There have been sev-
eral proposals on how the probability of contagion is related
to the type of connection between a susceptible individual
and an infected person. During the COVID-19 pandemic, we
have grown used to terms such as ‘close contact.’ The close-
ness of the contact is an attribute of the link between the two
individuals.However,we argue that the contagionprobability
also depends on characteristics of the infected and suscepti-
ble individuals beyond the properties of the connection. As in
the example of presidents of large countries as super-spreader
of (dis)information, there are attributes of the individuals
themselves which are relevant. Indeed, alreadyKatz [49] rec-
ognized three dimensions related to an influential or opinion
leader (we follow Nisbet and Kotcher [50]): (i) ‘who one is’:
certain personality traits; ‘what one knows’: expertise about
a particular subject; and ‘whom one knows’: number of con-
tacts. While the last dimension can be related to topological
properties of the network of contacts, the first two are con-
nected to personal attributes of the particular node. In relation
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to dimension (i), we can mention, for example, personality
strength [51] and communication abilities [52]. Authoritative
individuals are not always characterized by their knowledge
(dimension (ii)), but also by their social standing in a given
community [53, 54]. Another important attribute that has
recently been studied is the personal motivation [55, 56]. For
more information on individual attributes that may be rele-
vant, the interested reader is referred to the works of Valente
and Pumpuang [57] and Bamakan et al. [58] and references
therein. In this work, we study news propagation in a Twitter
network, where the number of mentions is used as a node
attribute.

Our aim is to find a way of identifying the misinforma-
tion super-spreaders (influencers) which are more efficient to
combat in order to produce the greatest damage to a misin-
formation propagation. In order to evaluate this, we propose
a novel approach to the analysis of the propagation of fake
news which, on the basis of a variation of the SIR model,
takes into account both the topology of the social network
and the attributes of the nodes.

The remaining of the paper is organized as follows.
Section2 presents a review of some of the most common
(network-structure related) properties of nodes considered in
the literature. In Sect. 3, we put forth a model of information
diffusion that accounts for the influence power of the agents.
We also discuss the relation of our model with related litera-
ture on complex contagions. Section4 studies the behavior of
the model and the impact of each of its parameters by means
of simulations on both synthetic and real-world networks.
Finally, we close the paper with some conclusions in Sect. 5.

2 Topological properties

Relevance of nodes is usually appraised through differ-
ent centrality metrics which only consider their network-
structure related characteristics. In this section, we review
some of the most common centrality metrics. However, as
we shall show in Sect. 4, they are not always appropriate in
the context our proposed information diffusion model.

Let us consider a social network G = (V , E) where V
is the set of vertices or nodes, E ⊆ V × V is the set edges
between the nodes. For the sake of clarity, in what followswe
shall assume that all nodes are uniquely identified by a natu-
ral number in {1, 2, . . . , n}, where n is the number of vertices
in the network. Edges may be either directed or undirected,
although for our application directed edges are usually more
appropriate. Indeed, an online network such as Instagram has
many important influencers that are ‘followed’ bymany users
which are not necessarily followed-back. In the context of a
graph, following the flow of information, we call predeces-
sors of a node to those nodes it follows and successors to its
followers. We must note that since E ⊆ V × V , only one-

to-one interactions are considered in our modeling approach.
However, higher-order interactions can be of great interest in
the propagation of information or diseases [59, 60].

The simplest node centrality measure is its degree, i.e.,
the number of links to other nodes. In a directed network,
we can distinguish between in (d in) and out degree (dout)
depending on whether we account for incoming or outgoing
links, respectively. In the context of information propagation,
dout appears to be more adequate as it refers to the news-
spreading capacity of the node.

A path fromnode i to j in a network consists of a sequence
of edges (ik−1, ik) ∈ E , for k = 1, 2, . . . , p, where i0 = i
and i p = j . A geodesic path from node i to node j is a
path between them with the smallest number of edges in the
sequence and this smallest number is called geodesic distance
between i and j and denoted by di j . For a given node i , let
Vi be the set of nodes j �= i in the network for which there
exists a path from i to j . Let ni be the number of elements in
Vi . Closeness centrality [61] measures the reciprocal of the
mean distance from a node to other nodes in the network that
it can reach by a path:

ccl(i) = ni
∑

j∈Vi
di j . (1)

Wemust remark that distance can bemeasured in other ways,
e.g., incorporating edge-related properties. However, in the
context of the model presented in the following section, we
consider the geodesic distance. Intuitively, we may expect
that, the closest a node is to all other nodes, the fastest a
news will reach all nodes that can be reached from that node.

While the degree only considers how many nodes can
be reached in a single hop, the rapid spread of a news
also depends on the number of nodes connected by the first
layer of neighbors. In this sense, eigenvector centrality [62]
appears to be an adequate measure as the relevance of the
node is proportional to the sum of the centralities of its neigh-
bors. Let A be the adjacency matrix of the network G, i.e.,
a matrix such that Ai j = 1 if there is a link from node i to
node j , and Ai j = 0 otherwise. The eigenvector centrality is
defined by the vector that satisfies

λ1�cTeg = �cTegA, (2)

where λ1 is the largest left eigenvalue of matrix A and the
eigenvector centrality of node i , ceg(i), is given by the i th
element of vector �ceg . Observe that we are using left eigen-
vectors as the centrality of a node depends on the centralities
of its successors, as it is more relevant in the new-spreading
context.

A measure related to eigenvector centrality is PageR-
ank [63], originally devised to evaluate the importance of
webpages. In terms of the adjacency matrix, we can write
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the vector of PageRank centralities as [61]

�cTpr = (1 − α)�1T (I − αAD)−1 , (3)

where I is the n×n identity matrix, n is the number of nodes
in the network, and D is a diagonal matrix such that Di i =
max{1, dout(i)}. The parameter α ∈ (0, 1) is conventionally
assumed equal to 0.85.

Betweenness [64, 65] is a centrality measure which quan-
tifies the importance of a node for the flow of information in
a network. In particular, the betweenness centrality of node
i is defined by

cbe(i) =
∑

j,k �=i

#of shortest paths from j tokthat go throughi

#of shortest paths from j tok
.

(4)

Although there are many other centrality measures, we
shall focus only on these ones, as they are the most common.
For metrics with application to information diffusion, we
refer the interested reader to, e.g., Kitsak et al. [30], Pei and
Makse [31], Pei et al. [32], and Taha [33].

3 Proposedmodel

We introduce a new information diffusion model which
is based on the well-known susceptible–infected–recovered
(SIR) contagionmodel [24, 47, 48]. In particular, we consider
that each node can be in any of three states:

• Susceptible (S): itmayormaynot have received the infor-
mation, but the vertex still does not believe in it.

• Infected (I ): it is aware and believes the information, but
it still does not propagate it to its connections.

• Spreader (P): it actively propagates the news to all of its
successors in the network.

The distinction between an infected and a spreader node has
already been proposed in the literature of information dif-
fusion (see, e.g., Xiong et al. [66]). Note that we are not
considering the possibility of a recovery, i.e., in this model
an infected vertex cannot return to the susceptible state. This
implies that we are not allowing an opinion change; that is,
once a node is infected and believes some information, it
cannot disbelieve it in the future. Even though this choice
might seem unrealistic, it simplifies the analysis. Thus, we
leave modeling opinion changes as a subject of future work.

Let us consider an online social network such as Instagram
or Twitter. A spreader posts a comment or shares another
post commenting a news. When will its followers become
aware of the post? The answer of this question is complex,

as it depends on many factors such as details of the online
social network (e.g., the order in which posts are presented),
habits of the successors, etc. For this reason, in this paper
we assume, as a first approximation, a constant mean rate of
reads of the news. In particular, the time between themoment
a spreader posts a message and a follower reads it is modeled
by an exponential random variable with constant parameter
λ.

A person may have the potential to be very influential. For
example, he/she may be very charismatic, a great speaker or
writer, or an excellent producer of memes. We characterize
the spreading ability of node i by the parameter βmax

i ∈
R

≥0. However, that particular person may not use all of its
potential, e.g., it may depend on his/her current involvement
with the subject. The influence capacity of node i at time t
is modeled by βi (t) ∈ R

≥0, which is always smaller than or
equal to βmax

i . The actual current influence capacity of node
i is determined by the influence power of those who have
contacted it:

βi (t) = βmax
i × �i

⎛

⎝
∑

t j i≤t

β j
(
t j i

)
⎞

⎠ , (5)

where �i : R → [0, 1] is a non-decreasing function and t j i
is the time when node i read the information published by
its predecessor node j . Intuitively, the involvement of vertex
i with the news and, hence, its spreading power depends
on the strength with which node i received the information
from its predecessors. Although more complex alternatives
are possible, for the sake of simplicity we assume that

�i (x) =

⎧
⎪⎨

⎪⎩

0 x < ψi ,
x−ψi
�i

ψi ≤ x ≤ ψi + �i ,

1 x > ψi + �i ,

(6)

where ψi ,�i ∈ R
≥0 are two parameters. While the value of

ψi quantifies the ‘resistance’ of node i to become a spreader,
�i specifies how quickly it achieves its maximum influence
power.Melnik et al. [67] also considered nodeswith different
influence capacities.However, their influencewas discretized
in a finite set of levels.

Susceptible nodes become infected if they have been
exposed to sufficiently strong influences. In particular, node
i goes from state S to state I after being informed of the news
by node k if

∑

t j i≤tki

β j
(
t j i

) ≥ φi , (7)

where φi quantifies the resistance of node i to believe any
piece of information. Since we assume that a node must
be infected, i.e., it must believe in the information, before
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spreading it, we require ψi ≥ φi . It must be noted, though,
that theremay be situations inwhich itmight be convenient to
assume that a spreader does not necessarily believe the news.
A related approach was proposed by Huang et al. [68] that
distinguished between infected and persuader nodes, with
different thresholds to enable the transition from the suscep-
tible state. In their setting, all infected nodes are propagators,
but persuader agents have a larger influence power as they
‘immediately’ infect (persuade) all their neighbors.

It is important to observe that a node might need to be
exposed to the same news from different sources in order
to believe it or to start spreading it. However, this num-
ber depends on the influence capacity of its predecessors
(β j (t j i )) and the resistance of the node to believe (φi ) and
propagate the news (ψi ). Contagion paradigms where expo-
sures frommore than a single neighbor are needed in order to
become infected have been dubbed in the literature as com-
plex contagion models. The seminal work by Centola and
Macy [69] considered the case where a node became infected
only if the fraction of infected neighbors was greater than a
threshold.WhileCentola andMacy [69] focused on the struc-
tural properties of networks that facilitate or hinder contagion
cascades, it also studied the impact of network heterogeneity
and even the existence of some higher-status nodes (in the
context of our model, nodes with high βmax

i ). In this sense,
mathematical details aside, our proposal introduces a new
concept, that of the involvement of a node in the propagation
of a news as dependent on the status of those from whom
it received it. This approach can be related to the observa-
tion that the propagation of a piece of information depends
on the strength of the link on which that information was
received [70]. However, let us observe that, in our model, the
influence power is a property of the node and not of the link
between nodes.

There is another significant difference between this paper
and most of the literature on complex contagions. Indeed,
the vast majority of the papers are focused on the modeling
side [68–78] or, in social and behavioral change applications,
concerned in the best seeding strategies to diffuse a new cul-
tural paradigm [79–85]. On the contrary, we are interested in
how to stop or hinder the diffusion of a news. Profound anal-
ysis of how information propagates can shed light on how to
combat the spread of news [86]. However, we turn to a more
straightforward approachby looking for the nodes that should
be combated in order to most efficiently thwart diffusion. In
the context of complex contagions, this approach has already
been explored by Centola [87] that studied the robustness of
diffusion in scale-free and exponential networks. However,
Centola only analyzed the size of the infection cascade and
the influence of removing either the highest degree or ran-
domly chosen nodes. Kuhlman et al. [88] extended the work
of Centola by analyzing other criteria for node selection.
They showed that, under theirmodeling framework, selecting

a minimal set of nodes to block infection is NP-hard and pro-
posed efficient heuristics. Their work was further extended
for more than one ‘illness’ in Carscadden et al. [89]. We
must remark that all these works do not consider the influ-
ence potential of the nodes as we do in this paper. In general,
the problem of finding an optimal set of nodes to be removed
is dubbed as the critical node detection problem and there
is a vast literature on the subject. The interested reader is
referred to the review by Lalou, Tahroui and Khedouci [90].
It is interesting to note, however, that most papers consider
that nodes can actually be removed from the network. Caval-
laro et al. [91] argue that this may not be always the case, as
some nodes may resist to be removed. While do not pursue
this idea further in this work, it deserves to be studied in the
future.

A simple alternative to stop news diffusion is to attack
the first infected nodes, but in practical settings those nodes
might be discovered only when the infection has started to
propagate and, thus, it would be inefficient as an immediate
reaction. Moreover, in an online social network, new infec-
tions may come from external sources [70, 92] out of the
control of the social network itself. Therefore, if it does not
make sense to look for the first news-spreaders, what other
nodes should be attacked or even banned from network? This
is the fundamental question we try answer in this work.

4 Numerical simulations

Since the time between the moment a spreader posts a mes-
sage and a follower reads it is modeled by an exponential
random variable with constant parameter λ, our simulations
are based onGillespie’s algorithm [93]. In particular, the time
to the next infection, δT , is simulated as

δT = − ln(r1)
∑n

j=1
∑

i∈P j
λ

, (8)

where r1 is a random number in (0, 1), P j is the set of pre-
decessors of j that are spreaders and have yet not infected j .
We determine which node k is infected by generating a new
random number r2 with a uniform distribution in (0, 1) and
looking for the minimum k such that

k∑

j=1

∑

i∈P j

λ ≥ r2 ×
n∑

j=1

∑

i∈P j

λ. (9)

Finally,we assume anordering ofPk and choose the infecting
node as the first one such the sumon the left is greater or equal
than that on the right.

In order to understand the workings of the proposed
model, we begin by studying its behavior in synthetic net-
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Table 1 Simulation
parameters—Barabási–Albert
network

Parameter Notation Value

Number of nodes n 1000

Number of edges of each new node m 5

Influence capacity βmax
i U (0.9, 1.1)

Special influence capacity βgr 1000

Resistance to becoming infected φi U (0.9, 1.1)

Resistance to becoming a spreader ψi U (φi , 1.1)

Resistance to attain the maximum influence power �i 4

Number of nodes with special influence capacity ngr 10

Number of nodes removed nrem 10

U (a, b) corresponds to a uniform distribution between a and b

works of the type of Barabási–Albert [94]. In particular, we
start with a network with n = 1000 nodes where each new
added node attaches to other m = 5 vertices according to
the preferential attachment mechanism. Since we shall focus
on networks where most of the nodes are similar and only
a few of them stand out as great potential influencers, we
assign attributes randomly to each vertex according to the
following rules: βmax

i ∼ U (0.9, 1.1), φi ∼ U (0.9, 1.1),
ψi ∼ U (φi , 1.1), where U (a, b) corresponds to the uniform
distribution between a and b. The choice of the distribution
is not significant, and it only introduces a small heterogene-
ity among nodes.For the sake of reference, we summarize all
simulation parameters in Table 1.

Our interest is to find which nodes are more convenient to
remove from the network to either stop or alleviate the prop-
agation of the news. We shall evaluate the convenience of
removing nodes according to some topological metric such
as the out degree, the closeness centrality, the eigenvector
centrality, the PageRank centrality, and the betweenness cen-
trality. We also study the benefit of removing nodes with
largest influence potential βmax

i and, for the sake of com-
parison, randomly chosen vertices. After removing 10 nodes
based on one of these criteria, we choose other 10 nodes
at random to become initial spreaders with its maximum
influence power, i.e., βi (0) = βmax

i . While the choice of the
number of removed nodes is, in principle, arbitrary, it must
be observed that it agrees with ngr, the number of nodes with
βmax
i = βgr. That is, if we remove some of the more influen-

tial nodes, we remove all of them. By the end of this section
we consider the influence of this decision by varying ngr. We
must also mention that the set of firstly infected nodes may
or may not have intersection with the set of more influential
nodes. This choice is in agreementwith previous studies [95].

Figure 1 presents boxplots showing the first three quar-
tiles of the number of infected and spreaders. The results
correspond to 10,000 simulations with different networks.
We used λ = 1 and the panel on the left shows the number
of I and P after 2 time units, while the right panel shows the

numbers after an infinite time period. We do not present the
outliers in the boxplot graph for the sake of clarity. In princi-
ple, there does not appear to have any clear advantage using
any of the proposed metrics and, in general, random removal
of nodes is worst. Thus, in the remaining of the paper and
for the sake of clarity, we shall focus our attention on the
removal of nodes with the highest out degree douti and with
the highest influence potential βmax

i .
The temporal evolution of themean and the standard devi-

ation of the number of infected and spreader nodes is shown
in Fig. 2. As it can be observed, removing the vertices with
highest βmax

i not only is the best option on the average, but it
also exhibits the lowest standard deviation. Nonetheless, the
spread of values is such that it might be possible that, in a
number of situations, removing the nodes with largest degree
might result advantageous. Since the large standard deviation
appears to be inherent to the Poissonian contagion processes,
we shall focus on the average behavior in the remaining of
this work.

It is interesting to observe the influence of the network
density in the temporal evolution determined by our model.
Figures3 and 4 show results for Barabási–Albert networks
where each new added node links to m = 2 and m = 10
existing nodes, respectively. As it can be observed, removing
nodes with higher degree is more effective than removing
vertices with higher influence potential when the density of
the network is low. The intuition behind this result comes
from the fact that super-spreaders need their neighbors to be
well connected so that their influence spreads through the
network. Therefore, networks with higher density are more
susceptible to damage caused by nodes with high influence
power.

In order to understand the impact of each parameter in the
model, we vary them while showing the results after 2 time
units for the case of the Barabási–Albert graph with m = 5
new links with each new node. The left panel of Fig. 5 shows
that, as expected, the removal of the nodes with higher βmax

i
becomes more effective as the value of βgr increases. We can
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Fig. 1 Boxplots for the number of infected and spreader nodes after 2
time units (left) and after an infinite amount of time (right). Outliers are
not presented for the sake of clarity. Each boxplot corresponds to the
result after the removal of randomly chosen nodes (Random), vertices

with the highest out degree (dout), closeness (ccl ), eigenvector central-
ity (ceg), PageRank (cpr ), betweenness (cbe), and influence potential
(βmax)

Fig. 2 Temporal evolution of the mean (left) and standard deviation of the number of infected and spreader nodes in Barabási–Albert networks
with m = 5 connections made by each new added node

Fig. 3 Temporal evolution of the mean (left) and standard deviation of the number of infected and spreader nodes in Barabási–Albert networks
with m = 2 connections made by each new added node

arrive at a similar conclusion in relation to changes to �i , as
shown in the right panel of Fig. 5.

The left panel of Fig. 6 presents results when the mean
value of φi is changed. These results correspond to assigning
the attributesφi ∼ U (φ−0.1, φ+0.1),ψi ∼ U (φi , φ+0.1).
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Fig. 4 Temporal evolution of the mean (left) and standard deviation of the number of infected and spreader nodes in Barabási–Albert networks
with m = 10 connections made by each new added node

Fig. 5 Influence of βgr (left) and �i (right). A logarithmic scale is used in the second figure in order to better appreciate the differences between
the three curves

Fig. 6 Influence of φ (left) and ψ (right). A logarithmic scale is used in the first figure in order to better appreciate the differences between the
three curves

It is immediate to observe that as the resistances of the
nodes to become infected and spreader increase, the num-
ber of infected vertices decreases. For small values of φi

(φ < 0.5), nodes are easily infected and, thus, it is conve-
nient to remove higher degree nodes as there is no need for a
large influence power for the spread ofmisinformation.How-

ever, when resistance to infection increases (φ ∈ (0.5, 1.0)),
influence power of spreading nodes becomes more relevant
and it is more effective to remove nodes higher βmax. Finally,
for large resistance values (φ > 1), there is not a significant
difference between the behavior when the nodes of higher
degree or the nodes with largest βmax are removed. Since the
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Fig. 7 Influence of β
max
i (left) and of the number of nodes with βmax

i = βgr (right)

initially infected nodes are a small portion of the population
and the resistance to infection is high, it may be the case that
the infection does not reach nodes with high degree or large
βmax by the time considered in Fig. 6 (2 time units).

Results where only the value of ψi is changed are shown
in the right panel of Fig. 6. In particular, nodes received the
value ψi ∼ U (max(ψ − 0.1, φi ), ψ + 0.1). Observe that,
for higher values of ψ , it becomes more effective to remove
nodes with higher degree. As a matter of fact, once the nodes
with higher βmax have spread the information as much as
they can (if they are present), most of the contagions are
due to ‘regular’ nodes. If the resistance to become a spreader
increases, there is a need for a larger number of contagions to
transform an infected node into a spreader. A larger number
of contagions is possible if the node has a high in degree.
Since the Barabási–Albert network is, in effect, undirected,
removing the nodes with high degree hinders this process.

We vary the influence potential of regular nodes, by
assigning βmax

i ∼ U (β
max − 0.1, β

max + 0.1) and changing
themean value β

max
. As it can be observed in the left panel of

Fig. 7, the removal of the nodes with higher βmax
i becomes

less effective as β
max

increases. Intuitively, as the regular
nodes become potentially better spreaders, the importance
of nodes with large influence power diminishes in compari-
son.

We also evaluate the influence of ngr, the number of
higher-status nodes with large βmax

i = βgr. Keeping constant
in 10 the number of removed nodes and the number of ini-
tially infected nodes, as the number of nodeswithβmax

i = βgr

increases, it becomes less convenient to remove them, in com-
parison with the removal of nodes with high degree. As it can
be observed in the right panel of Fig. 7, when ngr > 80, the
removal of high-degree nodes is more efficient. This sug-
gests that the removal of high βmax

i is more important when
a large portion of them is removed from the network. If this
is not possible, then it is better to focus on the removal of
high-degree nodes.

In previous simulations, the value of the influence power
βmax
i was uncorrelated with the degree. Although this is a

convenient starting point of analysis, in real-world scenarios
a relation between both quantities is to be expected. In order
to understand the consequences of a correlation between
them, we set up networks as those used in Fig. 2. However,
the nodes with βmax

i = βgr were not uniformly chosen at
random from the set of all vertices, but with a probability
proportional to (douti )α . The value of α ∈ R changes the cor-
relation between the out degree and the influence power, but
it does not alter their marginal distributions. Figure8 shows
the mean (left panel) and the standard deviation (right panel)
of the number of infected nodes at time t = 5, for 10,000 sim-
ulations and α ∈ [−10,+10]. As it can be readily observed,
there is a range of values of α, corresponding to both nega-
tive and positive correlations, for which the deletion of the
nodes with higher influence capacity is the more convenient
option. For α < −2, nodes with large βmax

i are poorly con-
nected and, thus, it is more convenient to isolate vertices with
higher degree. On the contrary, for α > 3, nodes with higher
degree are also (with high probability) nodes with high influ-
ence power. Hence, isolating either with respect douti or βmax

i
yield almost the same results.

4.1 Twitter network

The use of synthetic networks has the advantage of allowing
control their characteristics; however, their structures may
be somewhat different from that of networks found in the
wild. Moreover, the Barabási–Albert graph is intrinsically
undirected and we are more interested in the directed prop-
agation of information. For these reasons, in this section we
apply our model to real network data. In particular, we use
data from Twitter that was first presented in De Domenico
et al. [96]. The dataset was built by following the messages
posted in Twitter about the discovery of the Higgs boson
between 1 and 7 July 2012, and it contains the network of
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Fig. 8 Mean (left) and standard deviation (right) of the number of infected and spreader nodes in Barabási–Albert networks withm = 5 connections
made by each new added node. Nodes with βmax

i = βgr were chosen with a probability proportional to (douti )α

Fig. 9 Complementary cumulative distribution function of the spreading capacity (left) and capacity as a function of out degree (right) in the Twitter
network

Twitter followers as well as statistics on retweets, replies and
mentions.

From the social graph, we kept only the largest strongly
connected component consisting of 360,210 vertices and
14,102,583 directed edges. In order to represent the flow of
information, edges were directed as going from accounts to
each of their followers. One very interesting characteristic of
the dataset is that there are several non-topological properties
that may be considered as measures of influence power; for
example, the number of times an account was mentioned or
the number of retweets of the account’s posts. Thus, let us
assume the number of mentions nmen

i that node i received
as corresponding to its spreading capacity βmax

i . However,
given the short period of time (7 days) that was surveyed, not
every node was mentioned. In order to allow for each node
to have some spreading capacity, we set βmax

i = nmen
i + 1.

The left panel of Fig. 9 shows the complementary cumulative
distribution function of the spreading capacity, showing that
a large fraction of the nodes has a small value of βmax.

It is interesting to analyze the relation between the spread-
ing capacity of each node in the resulting network with some

its topological properties. The right panel of Fig. 9 presents a
scatter plot of the spreading capacity as a function of the out
degree. The correlation coefficient between both quantities
is ∼ 0.37, where its positivity is related to the observed ten-
dency of higher βmax to correspond to larger dout. However,
the correlation coefficient is not close to unity and the popu-
larity of a node, measured here by the number of mentions, is
not perfectly correlated with a topological property such as
its degree. This fact is on the basis of our proposal, i.e., that
there may exist some non-topological properties of vertices
which are important in the dissemination of news.

Since some nodes reach values of βmax > 104, we set
a large value of �i , namely, �i = 100. The remaining
parameters are randomly assigned: φi ∼ U (0.9, 1.1), and
ψi ∼ U (φi , 1.1). For our simulations, we arbitrarily set
λ = 1 (arbitrary units). Simulation parameters are sum-
marized in Table 2. Figure10 shows the results for 100
realizations when the number of removed nodes and initial
infected vertices were set to 1% the graph size, that is, 3602
nodes. As it can be readily observed, it is more advantageous
to remove nodes with higher influence power than, for exam-
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Table 2 Simulation
parameters—Twitter network

Parameter Notation Value

Number of nodes n 360,210

Number of edges M 14,102,583

Influence capacity βmax
i Number of mentions + 1

Resistance to becoming infected φi U (0.9, 1.1)

Resistance to becoming a spreader ψi U (φi , 1.1)

Resistance to attain the maximum influence power �i 100

Number of nodes removed nrem 3602

U (a, b) corresponds to a uniform distribution between a and b

Fig. 10 Temporal evolution of the mean (left) and standard deviation of the number of infected and spreader nodes in the Twitter network

Fig. 11 Influence of �i in the Twitter network. A logarithmic scale
is used in order to better appreciate the differences between the three
curves. The parameters φi and ψi were randomly assigned as φi ∼

U (0.9, 1.1) and ψi ∼ U (φi , 1.1)

ple, vertices with higher degree, as we have already observed
in the synthetic networks.

As we did in the previous section, we study the influence
ofmodel parameters on the results. Figure11 shows themean
number of infected and spreader nodes at time t = 5 as the
value of�i varies. The results correspond to 100 realizations
where φi and ψi were randomly chosen as described in the

previous paragraph. It can be observed that the strategy that
removes nodes depending on βmax is more convenient for
intermediate values (�i ∈ (30, 300)), while not representing
any real advantage over the selection using the out degree for
neither smaller nor larger values. This behavior is different
from that observed in the synthetic graphs (cf. right panel
of Fig. 5). A plausible cause for this difference may be the
positive correlation between βmax and dout in the Twitter
network. This hypothesis is supported by the results in Fig. 8
for synthetic networks.

The right panel of Fig. 12 shows the influence of the
mean value of ψi . The results correspond to 100 realiza-
tions, where �i = 100 was fixed and φi and ψi were
varied in each simulation according to φi ∼ U (0.9, 1.1),
ψi ∼ U (max(ψ − 0.1, φi ), ψ + 0.1). As in the synthetic
networks, the benefit of using the removal strategy based
on the spreading capacity diminishes as the value of ψ

increases. However, a much larger change is needed in order
to observe significant differences (compare the doubly loga-
rithmic scales in the right panel of Fig. 12 to the linear ones
in the right panel of Fig. 6).

The left panel of Fig. 12 exhibits the influence of the mean
value ofφi . However, it is difficult to disentangle its influence
from that of ψi as it must be true that ψi ≥ φi . The results
correspond to 100 realizations, where �i = 100 was fixed

123



270 International Journal of Data Science and Analytics (2024) 18:259–273

Fig. 12 Influence of φ (left) and ψ (right) in the Twitter network. While �i = 100 was kept constant, φi and ψi were varied in all realizations

and φi and ψi were varied in each simulation according to
φi ∼ U (φ − 0.1, φ + 0.1), ψi ∼ U (φi , φ + 0.1).

5 Conclusions

We studied the problem ofmitigating the propagation of mis-
information in networks.While most of the literature focuses
on the characterization of influential agents based only on the
topological properties related to their position in the social
network, we introduced a new characteristic which is an
intrinsic attribute of the node: its influence power.

To evaluate the impact of the influence power on the spread
of fake news in the network, we put forth a new model of
information diffusion. In this model, we related this attribute
to an inherent potential of the agent and the intensity of its
commitment to the news propagation which is, in turn, due
to the strength with which such information was received.
By means of numerical simulations on both synthetic and
real-world networks, we showed that, in certain conditions,
the influence power of the agent can be more important than
its topological properties.

Our results suggest that the removal of nodes with high
influence power is more effective in combating the misinfor-
mation diffusion in denser networks. Moreover, this method
of mitigating fake news spread seems also to be more robust
since it obtained the smallest standard deviation of the results.
That strategy is also more convenient when the influence
power of a few nodes is much larger than that of the gen-
eral population. On the other hand, for the method to be
effective it is necessary to remove a large portion of such
super-spreaders.

As an important real-world example, we presented sim-
ulations based on a large Twitter dataset (> 300 thousand
nodes). We posited that the number of times that a Twit-
ter account is mentioned may represent its actual spreading
capacity. Building on this idea, we showed that removing

the nodes with higher influence power is more convenient
than removing those with higher degree in order to curtail
the propagation of a news.

We must remark that our main objective is to demonstrate
that there can exist node attributes that are more important
than other structural characteristics, such as their degree, for
the propagation of information. Since the main application
of our results is the obstruction of viral propagation of fake
news ormisinformation by selective removal of agents froma
social network,we believe to havemade a case for accounting
for the node attributes in choosing which nodes to remove.

Finally, we call the attention to certain practical difficul-
ties related to the removal of nodes from a social network.
Indeed, the subject of government policies and legal actions
in relation to misinformation is a delicate matter which is
very actively discussed worldwide (see, e.g., [97–102] and
references therein). Banning a user from a social network
can be considered an act contrary to fundamental right of
free speech. Moreover, legislation can be inadequately used
by totalitarian governments or ill-intentioned corporations.
All in all, the methodology of removing nodes with high
influence capacity, if this capacity is appropriately defined
and quantified, may be more transparent for lay people than
other automatic or algorithmic approaches and, hence, more
desirable [101].
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