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Abstract
Random forest (RF) is one of the most popular statistical learning methods in both data science education and applications.
Feature selection, enabled by RF, is often among the very first tasks in a data science project, such as the college capstone
project, industry consulting projects. The goal of this paper is to provide a comprehensive review of 12 RF-based feature
selection methods for classification problems. The review provides necessary description of each method and the software
packages. We show that different methods typically do not provide consistent feature selection results, and the model per-
formance also varies when different RF-based feature selection approaches are employed. This observation suggests that
caution must be taken when performing feature selection tasks using RF. Feature selection cannot be blindly done without
a sound understanding of the methods adopted, which is not always the case in industry and many senior capstone projects
that we have observed. The paper serves as a one-stop reference where students, data science consultants, engineers, and data
scientists can access the basic ideas behind these methods, the advantages and limitations of different approaches, as well as
the software packages to implement these methods.

Keywords Random forest · Feature selection · Feature importance · Classification · Data science education · Data science
consulting projects · Capstone projects

1 Introduction

Random forest (RF) is one of the most popular statistical
learning methods in both data science education and indus-
try applications. One important topic under RF is to perform
feature selection that identifies important or relevant features
included in a statistical model. For example, when advis-
ing undergraduate Capstone projects, we have clearly seen
an increasing number of projects that involve building sta-
tistical learning models and feature selection is often one
of the very first tasks of these projects [4]. This is also the
case inmanymultidisciplinary data analytics-related projects
in industry [9, 35, 37]. However, our interactions with stu-
dents, engineers, and data analytics consultants over the past
couple of years clearly indicate that there is a lack of com-
prehensive review and comparison among various feature
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selection methods. Existing methods and software tools are
scattered in different books, research papers, and confer-
ence proceedings from various academic communities.More
importantly, features selected by different approaches often
differ from each other. Hence, the goal of this paper is to
provide a comprehensive review of 12 commonly used RF-
based feature selection methods for classification problems.
The paper serves as a one-stop referencewhere students, data
science consultants, engineers, and data scientists can access
the basic ideas behind these methods, the advantages and
limitations of different approaches, as well as the software
packages to implement these methods.

In many supervised statistical learning problems, there
often exist a large number of candidate features that can
potentially be used to establish the mapping between fea-
tures and responses [19, 22, 26, 31–34, 38, 47]. However,
having more features (i.e., data) does not necessarily mean
one should include all features in a statistical learningmodel.
On the contrary, many candidate features could be irrelevant
or redundant and need to be excluded. Keeping only the right
features in a model can greatly improve model interpretabil-
ity, reduce model complexity, and enhance model predictive
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capabilities. Hence, feature selection is a fundamental task
when constructing statistical learning models. Such a task
becomes even more critical in the age of big data when it
is easier than ever to access larger datasets but with more
redundant information. After all, a dataset is a combination
of useful information and noise. Irrelevant features, like the
noise in data, should be removed. There is a wide range of
applications in which feature selection techniques can be
employed [36, 39].

Feature selection algorithms can be classified into three
categories: “Filters,” “Embedded,” and “Wrappers” [17, 27].
“Filters” select features in a preprocessing step indepen-
dent of the statistical learning process; for example, it first
examines the correlation between features and responses
and then identifies those important features to be included.
Although the “Filters” approach is usually fast and rel-
atively easier to be implemented, it may not be able to
detect complex interactions among features nor take into
account the model performance given selected features.
Unlike “Filters,” “Embedded” algorithms integrate feature
selection into the model training process and identify impor-
tant features by optimizing the model performance. Finally,
“Wrappers” methods are also built around a specific statis-
tical learning approach and utilize the statistical learning
model to score/rank candidate features according to their
predictive power. Random forest (RF)—one of the most
widely used ensemble learning methods for both classifica-
tion and regression—involves constructing a multitude of
de-correlated decision trees [2, 19, 20]. In particular, RF
successfully leverages the “Wrapper” approach to generate
variable importance (VI) scores.

One challenge arising frompractice is that, althoughmany
feature selection techniques have been proposed based on
the framework of RF, it is not always clear to students which
approaches should be used given the problem of interest.
For example, some RF-based feature selection approaches
are performance-based. These approaches typically leverage
a forward selection and/or a backward elimination strategy
to select or remove features for improving prediction accu-
racy. On the other hand, some RF-based feature selection
approaches are test-based. These approaches utilize involve
statistical tests to identify statistically significant features
[40]. In addition, different feature selection methods employ
different objectives when performing feature selection. For
example, some approaches aim to find a minimal optimal
set which includes a subset of features to perform predic-
tion tasks, while others identify all relevant features (both
strongly relevant and weakly relevant) such that removing
these features has a negative impact on prediction accuracy
[30].

Hence, it is timely for this paper to provide a comprehen-
sive review of 12 commonly used RF-based feature selection
methods for classification problems. In particular, we only

include those methods where software packages are avail-
able. The review provides necessary descriptions of each
method as well as the packages implementing the approach.
Table 1 presents a high-level overview of the feature selec-
tion methods reviewed in this paper, including Boruta, RRF,
GRRF, GRF, r2VIM, PIMP, NTA, varSelRF, VSURF, RF-
SRC, AUC-RF, and RFE.

The rest of this paper is organized as follows: Sect. 2 firstly
provides a short review of RF.A comprehensive review of the
12 feature selection methods is presented in Sect. 3. Numeri-
cal results are provided in Sect. 4 to illustrate the applications
of these methods, and Sect. 5 concludes the paper.

2 Random forest

RF involves constructing a collection of weakly correlated
classification or regression trees and then aggregating them
(i.e., an ensemble approach). For regression problems, the
average output of the individual trees is returned. For clas-
sification problems, the idea of majority voting is employed
to determine the final prediction. RF inherits many advan-
tages of decision trees (e.g., invariant under scaling and
transformations of feature values, robust to the inclusion of
irrelevant features, the ability to capture complex interac-
tions among features, and handle noisy and missing data,
etc.) and enhances the capabilities of decision trees such as
the robustness against over-fitting and the capability of com-
puting feature importance.

The general method of random decision forests can be
traced back to Ho [20] and was later extended by Breiman
[2] to incorporate the idea of “bagging” for reducing the vari-
ance of the estimator. Two important ideas are integrated into
RF, i.e., bagging and random node split. Bagging is a general
technique of bootstrap aggregating that repeatedly selects a
random sample (with replacement) of the training data and
fits trees to these samples. Random node split refers to the
technique that only a random subset of features is consid-
ered at each tree node split. For example, for classification
problems with p features, one may only consider

√
p ran-

domly selected candidate features at each tree node split. As a
result, trees grown from different bootstrap samples become
more different from each other and are less correlated. Even
if there exist one or more features that are very strong pre-
dictors for the response, the random node split prevents these
features from being selected by many of the trees, effectively
de-correlating the trees.

To elaborate, if we consider a set of B random variables,
each with variance σ 2, the variance of the mean of these
random variables is given by

ρσ 2 + 1 − ρ

B
σ 2 (1)
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Table 1 A summary of wrapper methods based on RF for classification problems

Method References R Package Approach Strategy

Boruta Kursa and
Rudnicki [29]

Boruta Test-based Permutation based algorithm

RRF Deng and Runger
[7]

RRF Performance-based Forward feature selection using
regularized RF

GRRF Deng and Runger
[8]

RRF Performance-based Guide RRF using ordinary RF

GRF Deng [6] RRF Performance-based A subset of GRRF that allows
parallel computation

r2VIM Szymczak et al.
[41]

Pomona Test-based Permutation based algorithm

PIMP Altmann et al.[1] vita Test-based Permutation test

NTA Janitza et al. [25] vita Test-based Hold-out VIM test

varSelRF Díaz-Uriarte and
Alvarez de
Andrés [11]

varSelRF Performance-based Backward feature elimination
using OOB-error rate

VSURF Genuer et al. [14] VSURF Performance-based Two-step procedure, first applies backward elimina-
tion then forward selection

RF-SRC Ishwaran et al.
[23]

randomForestSRC Performance-based Forward stepwise regularized
feature selection

AUCRF Calle et al. [3] AUCRF Performance-based Backward feature elimination
using OOB-AUC

RFE Guyon et al. [18] caret Performance-based Backward feature elimination
using OOB-error rate

where ρ is the positive pairwise correlation. Hence, it is seen
that the variance of the mean becomes smaller as B increases
and ρ decreases. This explains why RF works well by (i)
leveraging the idea of bagging to grow a large number of
trees (i.e., to make B larger) and (ii) adopting the idea of
random node split to make the tree less similar to each other
(i.e., to make the correlation ρ smaller).

The algorithm of RF is summarized as follows [19]:

Algorithm 1: Random Forest for Regression and Clas-
sification
Set the number of trees ntree = B
Set the value of mtry = m
for b=1,...,B do

Grow tree t by repeating the following steps:
(i) Draw a bootstrap sample of size N from the training set.
(ii) Grow a binary decision tree Tb to the bootstrapped data as
follow, until the stoppage criterion is met:

• Randomly select m variable from the feature set
• Find the best-split variable and split value that minimize

impurity
• Split the node into two daughter nodes

(iii) Output the ensemble of trees {Tb}B1
end
To predict a new data point: use majority voting for classification
problems and the average for regression problems

One important built-in capability of RF is the computa-
tion of feature importance, such as the Gini index and mean
decrease accuracy. For example, the Gini index at each tree
node ν is defined as:

Gini(ν) =
C∑

c=1

pν
c (1 − pν

c ) (2)

where pν
c is a proportion of class-c observations at node ν.

The Gini impurity of the feature Xi for the two daughter
nodes of ν is then given by

Gain(Xi , ν) = Gini(Xi , ν) − ωLGini(Xi , ν
L)

−ωRGini(Xi , ν
R) (3)

where νL and νR denote the two daughter nodes of ν, andωL

and ωR are the proportions of observations in each daughter
node. Hence, at each tree node split, the improvement in
the split criterion (i.e., the Gini index) is computed for the
splitting feature and is accumulated over all trees for each
feature.

RF also uses another approach to compute the feature
importance in terms of the prediction strength of a feature.
After a tree has been added for the forest, the prediction accu-
racy is evaluated using the OOB samples (i.e., construct the
RF predictor for a data point by averaging only those trees
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corresponding to bootstrap samples in which this data point
did not appear). Then, the values of a particular feature in
the OOB samples are randomly shuffled, and the prediction
accuracy is again evaluated using the newOOB data (as if we
were feeding the incorrect input to the forest). By doing this,
we expect the OOB prediction accuracy to decrease, and the
decrease in accuracy is averaged over all trees. The amount of
decrease (i.e., the mean decrease in accuracy) can be used as
an important measure for the feature whose values have been
permuted. If the feature greatly affects the prediction perfor-
mance, the decrease is expected to be large. If permuting the
values of a feature merely affects the prediction accuracy,
one may naturally expect this feature to be less influential.
The basic built-in capability of RF described above enables
one to generate the feature importance ranking.

3 Feature selectionmethods

In this section, we provide a comprehensive review of the 12
RF-based feature selection methods for classification prob-
lems as summarized in Table 1. For eachmethod,we describe
its main idea as well as the R packages for implementation.
• Boruta

Boruta, proposed byKursa andRudnicki [29], is awrapper
feature selection method built around the RF classification
algorithm. Boruta is a test-based heuristic approximation
algorithm that attempts to find a threshold for feature selec-
tion rather than ranking features with some VIMs. In other
words, it solves the challenging all-relevant feature selection
problem rather than finding a minimal set of features. Boruta
has been implemented in the R package, Boruta [29].

The core idea behind the Boruta is that a feature is
not important if its calculated importance is less than the
importance of a randomly permuted feature. Because remov-
ing irrelevant features is expected to increase the accuracy
in computing the variable importance, Boruta hinges upon
sequentially removing features that are found significantly
irrelevant.

At each iteration, the Boruta algorithm duplicates each
feature that exists in the feature set with a random per-
mutation of their observations. The duplicated features are
referred to as the shadow features. The RF is performed upon
all features, including the shadow features, and the feature
importance is computed. Then, the features that have higher
importance compared to themaximum importance among all
the shadow features are deemed relevant,while the remaining
features are considered irrelevant and removed from the fea-
ture set. Since theRF classifier produces different importance
measures due to its randomness and the presence of shadow
features, Boruta usually repeats the process above multi-
ple times until no more irrelevant features can be removed.
Finally, Boruta categorizes each feature as relevant (irrele-

vant) if it has an importance significantly higher (lower) than
the maximum Z -score among all random shadow features
(MZSF). For those features with close importance measure
to the best shadow feature (known as tentative features), the
Boruta algorithm does not make any decisions and lets the
user decide if those tentative features should be included
given the context of the application.
• RRF, GRRF, and GRF

Regularized random forest (RRF) is a wrapper feature
selection technique built over the RF binary classification
problems. Unlike Boruta, RRF attempts to find a minimal
optimal set of relevant features and remove non-relevant fea-
tures. RRF is available in the R package RRF, Deng and
Runger [7].

Note that although it is often possible to select the first
K features with the highest importance scores using the RF
algorithm, selecting non-relevant features among the K fea-
tures is likely in the presence of correlated features. Hence,
the RRF is an ensemble and greedy feature selection tech-
nique that employs a regularized framework together with
an upper bound of the Gini information gain value when
computing the feature importance. The regularized feature
selection by RRF helps identify a compact feature subset
possible to perform the prediction. Let F be the empty set of
indices, λ ∈ (0, 1] be the penalty coefficient, andGain∗ = 0
be the initial upper bound of Gini information gain. At each
tree node, for any feature Xi that is not in the set of indices
i /∈ F , RRF penalizes it by multiplying λ with the Gini
information gain. The regularized gain for variable Xi at a
non-leaf node ν is then calculated as follows:

GainR(Xi , ν) =
{

λ × Gain(Xi , ν) if i /∈ F

Gain(Xi , ν) if i ∈ F
(4)

Hence, the split on Xi only occurs if the GainR(Xi , ν)

exceeds the upper bound Gain∗ obtained from previous
splits, and the Gain∗ is updated after the node splitting. A
comprehensive description of the algorithm is provided in
Deng and Runger [7].

Note that although RRF can be used as an ensemble clas-
sifier, RRF is often recommended to use only for feature
selection purposes. It is also noted that as the depth of a tree
increases, fewer observations may drop in non-leaf nodes.
The lack of enough observations may affect calculating the
Gini information gain, known as the node sparsity issue.
Because of the node sparsity issue, selecting a subset of fea-
tures that includes weakly relevant features is probable.

To alleviate the node sparsity issue, Deng and Runger [8]
proposed an enhanced version of the RRF called the Guided
Regularized Random Forest (GRRF). GRRF is also avail-
able in the R package RRF. GRRF aims to select a compact
feature set by building multiple ensembles, and features are
evaluated on the entire training set. GRRF incorporates the
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importance scores calculated by an ordinary RF to guide the
feature selection procedure in RRF, while the penalty coef-
ficient λ is no longer fixed for the entire feature set. In other
words, GRRF dynamically penalizes features out of the set
of indices as follows:

GainR(Xi , ν) =
{

λi × Gain(Xi , ν) if i /∈ F

Gain(Xi , ν) if i ∈ F
(5)

where λi is given by

λi = 1 − γ (1 − Impi ) (6)

with γ and Impi , respectively, being the weighting control
parameter and the normalized variable importance score of
the variable Xi .

Based on experimental results on 10 gene datasets, it has
been shown that GRRFmay bemore robust thanRRF against
parameter changes, while the overall accuracy of RRF is
higher. Hence, RRF is recommended when accuracy is a
major concern, while one may choose GRRF if shrinking
the feature set is the priority.

Finally, Deng [6] proposed the Guided Random Forest
(GRF) as a special case of GRRF. GRF also shares the same
idea of using a regular RF VIM to guide the feature selection
process. However, despite the GRRF that uses sequentially
grown trees, GRF intends to build independent trees in which
parallel computation is applicable. Moreover, GRF removes
the regularized part in GRRF,making each split in a tree node
highly dependent on previous splits. In a numerical investi-
gation based on 10 gene datasets, GRF, in general, selects
more features than GRRF does. However, it ends up build-
ing a more accurate classification RF model than building
the RF using the entire features. GRF is available in the R
package RRF as well.
• r2VIM

RecurrentRelativeVariable ImportanceMeasure (r2VIM)
was proposed by Szymczak et al. [41] and is implemented
in the R package Pomona [12]. r2VIM is a test-based fea-
ture selection technique built around the RF. The method
is applicable to both regression and classification problems.
Like Boruta, the main goal is to find all-relevant features.
In contrast, r2VIM establishes a criterion to determine the
number of features that need to be selected.

The main idea of r2VIM is that relevant features have rel-
atively high variable importance scores no matter how many
times and with what seeds we run the RF. On the other hand,
irrelevant features only occasionally have high importance
scores.

The r2VIM algorithm involves three main components.
First, it builds several RFs and calculates VIMs associated
with the ensembles. Second, since observing negative VIM
for a noise feature is probable, each variable importance

score is divided by the observed absolute value of the mini-
mum importance score, called the relative importance score.
Finally, all variables with relative importance score larger
than a threshold in all runs are selected as all-relevant fea-
tures. The main advantage of r2VIM is that it is able to limit
the number of false positives under the null hypothesis.
• PIMP

Permutation Importance (PIMP) was proposed by Alt-
mann et al. [1] to distinguish relevant predictors from less
important ones. The key idea of using permutation in PIMP
is to destroy any sort of correlations between features and the
response variable. PIMP is a heuristic approach that attempts
to find unbiased importance scores by fitting RFs to different
permutations of the response vector.

The PIMP algorithm starts by obtaining variable impor-
tance scores using the intact response vector. Then, RFs are
fitted on N different permutations of the response vector,
and the importance scores for all variables are calculated.
Finally, based on the N sets of important scores, the p-value
is computed for each variable. Here, the p-values can be
obtained by computing the fraction of N importance scores
that exceed the original importance score. Very often, to
reduce the number of permutations, a prior distribution such
as Gaussian, log-normal, or gamma can be assumed. The
PIMP algorithm fits the distribution by computing the max-
imum likelihood estimates. After that, the p-values for each
variable are defined as the probability of observing an impor-
tance score greater than the original importance score. Once
the p-values for all variables have been computed, variables
with p-values less than a predetermined threshold (e.g., 0.05)
are statistically significant and thus selected. The R code for
this method is available in the R package vita [5].
• NTA

One limitation that almost all test-based feature selection
techniques is that RF does not provide a threshold for select-
ing features. Hereby, Janitza et al. [25] proposed a Naive
and New Testing Approach (NTA), a computationally fast
heuristic variable importance test, that aims to find a cutoff
point in the VIMs generated by RF so as to find all-relevant
features for classification problems. NTA is available in the
R package vita. Celik [5]

NTAuses the hold-out variable importance, also known as
the twofold cross-validation method. It first splits the entire
dataset into two equal-sized subsets. Then, RF is applied
to one of the subsets, and the variable importance scores
are calculated for the other set. This process is repeated
for the other subset as well. The hold-out variable impor-
tance is defined as the mean variable importance scores. The
main idea of NTA is that irrelevant features do not create
positive variable importance. Based on the non-positive vari-
able importance scores, NTA constructs an approximate null
hypothesis distribution and, subsequently, computes the p-
values corresponding to the features of interest. Finally, the
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features that are statistically significant are included as all-
relevant features.
• varSelRF and RFE

Díaz-Uriarte and Alvarez de Andrés [11] proposed a
performance-based variable selection method using RF
(varSelRF) and is available in the R package varSelRF
[10].Using abackward elimination strategyunder the aggres-
sive variable selection framework, the goal of this method is
to find the smallest possible set of variables that has relatively
good predictive accuracy for either two-class or multi-class
classification problems. The varSelRf algorithm calculates
variable importance only once by fitting RF on all features.
Then, it fits several RFs successively, and for each RFmodel,
a predefined fraction of features with the lowest importance
scores (e.g., 20%) is removed. Finally, the algorithm iden-
tifies the smallest set of features that has the smallest OOB
error rate with an error rate within a chosen standard error of
the minimum error rate among the fitted RFs.

It is noted that the varSelRF algorithm above ranks fea-
ture importance only once, which may not be suitable in the
existence of highly correlated predictors. Hence, Guyon et al.
[18] proposed a modified version of varSelRf called Recur-
sive Feature Elimination (RFE) to handle the issue above.
RFE is a performance-based feature selection algorithm that
works under a backward elimination strategy to find a mini-
mal set of features with the minimum OOB-error rate. RFE
is an iterative algorithm where at each step:

� A RF model is fitted.
� Variable importance is calculated.
�OOB-error rate is estimated using samples that were not

used in the model.
� A predefined ratio of the least important features is

removed from the feature set.
One needs to stress that, unlike varSelRF, RFE repeatedly

calculates variable importance. The algorithm stops when
only a single feature remains. In the end, RFE identifies a
set of features that has the minimum OOB-error rate or has
an error within a small range of the minimum error. RFE is
available in the R package caret [28].
• VSURF

Variable Selection Using Random Forest (VSURF) is
another performance-based feature selection technique appli-
cable to both regression and classification problems. VSURF
outputs two subsets of features: one subset for interpreting
purposes, including all features that are highly correlated
with the response variable, and the other subset (known as
the interpretation subset) for predicting purposes that exclude
redundant features so that the model involves only a smaller
number of features [14]. The algorithm is available in the R
package VSURF. [15]

The VSURF algorithm consists of two steps: (i) prelim-
inary elimination and ranking and (ii) variable selection. In
the first step, a number of RFs are constructed, and the vari-

able importance scores for all variables are obtained. Then,
taking the average overall importance scores from all RF
runs, variables are sorted in descending manner in terms of
their importance, and those with the least importance scores
are removed from the feature set.

In the second step, using features retained from step one
with the same order, VSURF fits an RF to the most important
variable and iteratively adds another variable until the last
RF is fitted to all variables. The interpretation subset thus
becomes the smallest feature set that yields the lowest OOB
error rate with an error rate within its standard deviation.
In particular, VSURF uses a forward selection strategy to
further shrink the feature set to achieve a better prediction
performance. A threshold is derived as follows:

1

m − m ′

m−1∑

j=m′
|errOOB( j + 1) − errOOB( j)| (7)

where m is the number of variables selected in the first step,
m

′
is the number of variables that exist in the interpretation

subset, and errOOB( j) is the OOB error of the j-th RF con-
structed. Hence, a variable is selected if the decrease of OOB
error exceeds the threshold.
• RF-SRC

Random Forest for Survival, Regression, and Classifica-
tion problems (RF-SRC) was proposed and developed in the
R package randomForestSRC [24]. In the confrontation
with high-dimensional data, the number of features p may
exceed the sample size n. As a result, the trees in an RF
model cannot reach the sufficient depth where the predictive
variables can be identified. Motivated by this limitation, Ish-
waran et al. [23] proposed the Variable Hunting (RSF-VH)
approach, which performs as a forward stepwise regularized
feature selection method.

The key idea behindRSF-VH is that features that are being
split in nodes closer to the root node are likely to be more
important. Hence, a new concept of order statistic called the
minimal depth of maximal subtrees, is employed to calculate
variable importance scores. The algorithm of RSF-VHworks
as follows:

�Fit anRF and select features usingminimal depth thresh-
olding.

�The set of features obtained in step (1) is used as an initial
model. After that, other features are added to the initialmodel
based onminimal depth ranking until the variable importance
becomes stabilized in the nested models.

�Repeat steps 1 and 2 several times. Finally, a feature that
appears most is selected if its size is greater than the average.

It is reported that, for very high-dimensional microarray
datasets, RSF-VH is able to select a small set of features, and
genes in these particular datasets, along with low predictive
error compared to other state-of-the-art methods [44].
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• AUC-RF
AUC-RF was proposed by Calle et al. [3] and is available

in the R package AUCRF [43]. AUC-RF is a performance-
based variable selectionmethod using RFs for problemswith
a labeled response vector. Using a backward elimination
strategy under the aggressive variable selection framework,
the goal of this method is to find the set of features that has
the highest area under the ROC curve (AUC).

Like varSelRf, AUC-RF fits several RF models succes-
sively. For each RF constructed, feature importance scores
are obtained and features with the lowest importance scores
are eliminated by a predetermined ratio between 0 and 1 (e.g.,
0.2). Finally, the algorithm selects a set of features that has
the highest OOB-AUC value among all RFs constructed.

Table 2 provides a summary of the advantages as well
as some practical considerations of the methods reviewed
above.

4 Examples and discussions

In this section, we apply the feature selection methods
reviewed in Sect. 3 to three datasets and compare the results
generated by different approaches. The data used in this sec-
tion are obtained from the UCI Machine Learning Database
Repository [13].

The first dataset is the Sonar, Mines vs Rocks (SMR)
dataset [16]. This dataset contains the sonar (sound naviga-
tion and ranging) data that can be used to distinguish metal
sea mines and rocks on seafloor. This dataset contains 60
features and 208 instances where 111 of them are metal sam-
ples and the rest are rock samples. The features are derived
from the receiving sonar signals under various conditions and
from different angles, spanning 90 degrees for the cylinder
and 180 degrees for the rocks.

The second dataset is theWisconsinBreast Cancer (WBC)
dataset from patients diagnosed with cancer [45, 46]. This
dataset can be used to predict whether a cancerous tumor is
malignant or benign, utilizing the information obtained from
biopsy procedures. The dataset has 9 features and involves
699 patients.

The third dataset is the Spam Emails (SE) dataset [21].
The data are collected from personal andwork-related emails
and include 4601 sample emails categorized into two groups:
spam and non-spam. A total number of 57 features are avail-
able, including the ratio of 48 different words that repeat in an
email over the total number of words, the frequency of 6 dif-
ferent characters occurring in the email, and 3 other features
relating to uninterrupted sequences of capital letters.

For all three datasets, we apply RF (using all features) as
well as the 12 feature selection approaches (using selected
features). Figures1, 2, and 3, respectively, show the number
of features selected by each method for the three datasets.
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Fig. 2 Number of features selected by eachmethod for theWBCdataset

An initial examination immediately suggests that the num-
ber of features selected by different feature selection methods
varies dramatically. This is a natural consequence as these
feature selection methods have different definitions of fea-
ture importance and use different algorithms to identify those
important features. For all three datasets, GRF always selects
the smallest number of features based on all three datasets,
while Boruta tends to include most of the features. Such a
lack of consistency strongly suggests that caution is needed
when choosing feature selection methods given the problem
of interest.

Furthermore, Tables 3, 4, and 5, respectively, show exactly
what features are selected by different approaches for the
three datasets. In these tables, “1” and “0,” respectively,
denote that a feature is included or excluded, and the last
column shows the number of times that a feature is selected
by the 12 feature selection methods. It is not surprising to see
that different feature selection methods select different sets
of features, as these methods are built upon different ideas.
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Table 2 A summary of advantages and practical considerations for RF-based feature selection methods

Method Advantages Some practical considerations

Boruta High interpretability, robustness to
noise, handles mixed data types

Computationally intensive, sensitivity to hyperparameters. Requires
sufficient samples, limited to small to medium-sized feature sets

RRF, GRF, and GRRF Reduces overfitting, handles
high-dimensional data, and
provides feature importance

Requires parameter tuning and may be sensitive to the number of
reference features. Assumes linear relationships, requires sufficient
samples

r2VIM Provides feature importance,
handles high-dimensional data

Computationally expensive, may be sensitive to algorithm choice.
Assumes linear relationships, requires sufficient samples

PIMP Provides feature importance,
handles high-dimensional data

Computationally expensive, may be sensitive to algorithm choice.
Assumes linear relationships, requires sufficient samples

NTA Considers variable interactions,
handles high-dimensional data,
provides variable importance

Computationally intensive, requires parameter tuning. Assumes linear
relationships, may struggle with highly correlated features

VarSelRF Handles both continuous and
categorical variables, and handles
high-dimensional datasets

Computationally expensive for large datasets, requires parameter
tuning, may not capture subtle interactions or nonlinear
relationships. Assumes correlation between important features and
target variable, assumes linear relationships, may struggle with
highly correlated features

VSURF Considers variable interactions,
handles high-dimensional data,
provides variable importance

Computationally expensive, requires parameter tuning. Assumes linear
relationships, may struggle with highly correlated features

RF-SRC Considers variable interactions,
handles high-dimensional data,
provides feature importance

Computationally expensive, requires parameter tuning. Assumes linear
relationships, may struggle with highly correlated features

AUCRF Considers variable interactions,
handles high-dimensional data,
provides feature importance

Computationally expensive, requires parameter tuning. Assumes linear
relationships, may struggle with highly correlated features

RFE Reduces feature space, provides
feature ranking, can handle any
machine learning algorithm

Computationally intensive, sensitive to algorithm choice, may not
capture complex interactions. Requires sufficient samples, may
struggle with high-dimensional data
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Fig. 3 Number of features selected by each method for the SE dataset

Of the all feature selectionmethods reviewed in this paper,
only Boruta, r2VIM, varSelRF, and VSURF require one or
more thresholds to be setup which we used the default values
used in the packages. For example, when using Boruta, we
used p-value = 0.1 as a significance level or a threshold for
deciding whether a feature is important or not.

One interesting question to answer is to see which of these
feature selection methods tend to agree with other meth-
ods. To shed some light on this question, we perform an
association analysis on the features to uncover the hidden
relationship among the outputs from different feature selec-
tion methods [42]. Tables 6, 7, and 8, respectively, show the
results from our association analysis for the SMR,WBC, and
SE datasets. For a pair of feature selection methods (given
in the first two columns of these tables), association analysis
returns the “support” and “confidence” of the two methods.
Here, “support” refers to the proportion of times that a feature
is selected by both methods, while “confidence” refers to the
proportion of times that a feature is selected by the method
in the second column given that this feature is selected by
the method in the first column. For SMR data in Table 6,
we see that the results generated by Boruta, PIMP, and NTA
seem to agree with each other. For example, the empirical
probability that a feature is selected by both PIMP and NTA
methods reaches 80%, and a feature is also selected by NTA
if this feature is selected by PIMP. However, by examin-
ing the results from Tables 6, 7, and 8, we do not see any
consistent association rules among different feature selec-
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Table 3 Sonar, mines vs rocks selected features

Features Boruta varSelRF r2VIM RFE RRF GRRF GRF NTA PIMP VSURF AUCRF RF-SRC Sum

V1 1 0 1 1 0 0 0 1 1 0 0 0 5

V2 1 0 0 0 1 0 0 1 0 0 0 0 3

V3 0 0 0 0 0 0 0 1 0 0 0 0 1

V4 1 1 1 1 0 0 0 1 1 0 1 1 8

V5 1 0 1 1 0 0 0 1 1 0 1 1 7

V6 0 0 0 0 0 0 0 1 0 0 1 0 2

V7 0 0 0 0 0 0 0 1 0 0 0 0 1

V8 1 0 0 1 1 0 0 1 1 0 0 0 5

V9 1 1 1 1 0 1 1 1 1 0 1 1 10

V10 1 1 1 0 0 1 1 1 1 0 1 1 9

V11 1 1 1 0 1 1 1 1 1 1 1 1 11

V12 1 1 1 1 1 1 1 1 1 1 1 1 12

V13 1 1 1 0 1 0 0 1 1 0 1 1 8

V14 0 0 0 1 0 0 0 1 0 0 0 0 2

V15 1 1 1 0 0 0 0 1 1 0 0 0 5

V16 1 1 1 0 1 0 0 1 1 1 1 1 9

V17 1 1 1 1 1 0 0 1 0 1 1 1 9

V18 1 1 1 0 0 1 0 1 0 0 1 0 6

V19 1 0 0 0 0 0 0 1 1 0 0 0 3

V20 1 1 1 0 1 0 0 1 1 0 1 0 7

V21 1 1 1 1 0 0 0 1 1 1 1 1 9

V22 1 0 1 0 1 0 0 1 1 0 0 0 5

V23 1 1 1 1 1 0 0 1 1 0 1 0 8

V24 0 0 0 0 0 0 0 1 1 0 0 0 2

V25 0 0 0 1 0 0 0 1 1 0 0 0 3

V26 1 0 0 0 0 0 0 1 1 0 0 0 3

V27 1 1 1 0 0 0 0 1 1 1 1 0 7

V28 1 1 1 1 0 0 0 1 1 0 1 1 8

V29 1 0 0 0 0 0 0 1 1 0 0 0 3

V30 0 0 0 1 0 0 0 1 1 0 0 0 3

V31 1 0 1 1 1 0 0 1 1 0 1 0 7

V32 0 0 0 0 1 0 0 1 1 0 0 0 3

V33 0 0 0 0 0 0 0 1 0 0 0 0 1

V34 1 0 0 1 0 0 0 1 1 0 0 0 4

V35 1 1 0 0 0 0 0 1 1 0 1 0 5

V36 1 1 1 1 1 1 0 1 1 1 1 1 11

V37 1 1 1 0 0 0 0 1 1 1 1 1 8

V38 0 0 0 0 0 0 0 1 1 0 0 0 2

V39 0 0 1 0 0 0 0 1 1 0 1 0 4

V40 0 0 0 0 0 0 0 1 0 0 0 0 1

V41 0 0 0 0 0 0 0 0 0 0 0 0 0

V42 0 0 0 1 0 0 0 1 1 0 0 0 3

V43 1 0 1 1 1 0 0 1 1 0 0 0 6

V44 1 1 1 1 1 0 0 1 1 0 1 0 8

V45 1 1 1 0 1 0 0 1 1 0 1 1 8

V46 1 1 1 0 1 0 0 1 1 0 1 1 8
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Table 3 continued

Features Boruta varSelRF r2VIM RFE RRF GRRF GRF NTA PIMP VSURF AUCRF RF-SRC Sum

V47 1 1 1 1 1 0 0 1 1 0 1 1 9

V48 1 1 1 0 1 0 0 1 1 1 1 1 9

V49 1 1 1 1 0 0 0 1 1 0 1 1 8

V50 0 0 0 0 0 0 0 1 1 0 0 0 2

V51 1 0 1 1 0 0 0 1 1 0 1 1 7

V52 1 0 1 1 1 1 0 1 1 0 1 1 9

V53 0 0 0 0 1 0 0 1 1 0 0 0 3

V54 0 0 0 0 0 0 0 1 1 0 0 0 2

V55 0 0 0 0 0 0 0 1 1 0 0 0 2

V56 0 0 0 0 1 0 0 0 0 0 0 0 1

V57 0 0 0 0 0 0 0 1 0 0 0 0 1

V58 0 0 0 0 0 0 0 1 1 0 0 0 2

V59 1 0 0 0 0 0 0 1 1 0 0 0 3

V60 0 0 0 0 0 0 0 1 1 0 0 0 2

Table 4 Breast cancer selected features

Features Boruta varSelRF r2VIM RFE RRF GRRF GRF NTA PIMP VSURF AUCRF RF-SRC Sum

Cl.thickness 1 1 0 1 1 0 0 0 1 1 1 0 7

Cell.size 1 1 0 0 1 1 1 0 1 1 1 1 9

Cell.shape 1 1 0 1 1 1 1 0 0 1 1 1 9

Marg.adhesion 1 0 0 1 1 0 0 0 0 0 1 0 4

Epith.c.size 1 0 0 1 1 1 0 0 0 1 1 0 6

Bare.nuclei 1 1 0 1 1 1 1 0 1 1 1 1 10

Bl.cromatin 1 0 0 1 1 1 0 0 0 1 1 1 7

Normal.nucleoli 1 1 0 1 1 1 0 0 1 1 1 0 8

Mitoses 1 0 0 1 0 0 0 0 0 0 1 0 3

tion methods. The results in these three tables suggest that
the association among different feature selection methods
depends on the problem itself (i.e., data). This observation
once again demonstrates the challenges associated with fea-
ture selection. It shows the necessity of applying different
feature selectionmethods on the samedataset. It also suggests
that users’ experiences, domain knowledge, and theoretical
guidance are all needed in performing feature selection tasks.

We used RF as a learner for the statistical analysis. The
data flow is to input data, get the subset of data with feature
selection methods, train the RF classifier on the training set,
andmeasure the performancemetrics such asAUC,F1-score,
and OOB-error rate on the out-of-sample set. Finally, a 10-
fold cross-validation is performed for all approaches. The
mean and standard deviation of the classification AUC (area
under the curve), F1-score, and OOB-error rate are reported.
Tables 9, 10, and 11, respectively, present the results obtained
from the three datasets. Each table shows the 10-fold cross-

validation AUC, F1-score, OOB-error rate, and the number
of features selected by each method.

For the SMR dataset, we see from Table 9 that the num-
ber of features selected by different feature selectionmethods
varies dramatically.While the NTAmethod identifies 58 fea-
tures, the GRFmethod only includes 4 features. Remarkably,
it is noted that the VSURF approach achieves the highest F-1
score and the lowest OOB-error rate by including the small-
est number of features (i.e., only 9 out of the 60 features are
included to achieve the best performance). VSURF also pro-
duces a reasonably high AUC, which is only slightly lower
than that of PIMP, varSelRF, and NTA, while the latter three
approaches involve way more features.

For the WBC dataset, we obtain from Table 10 a similar
observation that the number of features selected by different
feature selection methods can vary dramatically. While the
Boruta and AUCRF approaches retain all 9 features, GRF
method only selects 3 features. It is also noted that the r2VIM
and NTA approaches are not able to produce valid results
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Table 5 Spam emails selected features

Features Boruta varSelRF r2VIM RFE RRF GRRF GRF NTA PIMP VSURF AUCRF RF-SRC Sum

make 1 0 0 1 1 0 0 0 0 0 1 0 4

address 1 0 1 1 0 0 0 0 1 0 1 0 5

all 1 1 1 1 1 0 0 0 1 0 1 0 7

num3d 1 0 0 1 0 0 0 0 0 0 0 0 2

our 1 1 1 1 1 1 0 0 1 1 1 1 10

over 1 1 1 1 1 1 0 0 1 0 1 0 8

remove 1 1 1 1 1 1 1 0 1 1 1 1 11

internet 1 1 1 1 1 0 0 0 1 0 1 1 8

order 1 0 1 1 1 1 0 0 1 0 1 0 7

mail 1 0 1 1 1 1 0 0 1 0 1 1 8

receive 1 1 1 1 0 0 0 0 1 0 1 1 7

will 1 1 1 1 1 1 0 0 1 1 1 1 10

people 1 0 1 1 1 0 0 0 1 0 1 0 6

report 1 0 0 1 0 0 0 0 1 0 1 0 4

addresses 1 0 1 1 0 0 0 0 1 0 0 0 4

free 1 1 1 1 1 1 1 0 1 1 1 1 11

business 1 1 1 1 1 0 0 0 1 1 1 1 9

email 1 1 1 1 1 1 0 0 1 0 1 1 9

you 1 1 1 1 1 1 0 0 1 1 1 1 10

credit 1 1 1 1 1 1 0 0 1 0 1 0 8

your 1 1 1 1 1 1 1 0 1 1 1 1 11

font 1 0 1 1 0 0 0 0 1 0 1 0 5

num000 1 1 1 1 1 0 0 0 1 1 1 1 9

money 1 1 1 1 0 0 0 0 1 0 1 1 7

hp 1 1 1 1 1 1 0 0 1 1 1 1 10

hpl 1 1 1 1 0 0 0 0 1 0 1 1 7

george 1 1 1 1 1 1 0 0 1 1 1 1 10

num650 1 1 1 1 1 0 0 0 1 1 1 0 8

lab 1 0 1 1 1 0 0 0 0 1 0 0 5

labs 1 1 1 1 0 0 0 0 1 0 1 0 6

telnet 1 0 1 1 0 0 0 0 1 0 0 0 4

num857 1 0 0 0 0 0 0 0 0 0 0 0 1

data 1 0 1 1 1 1 0 0 1 0 1 0 7

num415 1 0 0 0 0 0 0 0 0 0 0 0 1

num85 1 0 1 1 1 0 0 0 1 0 1 0 6

technology 1 0 1 1 1 0 0 0 1 0 1 0 6

num1999 1 1 1 1 1 0 0 0 1 1 1 1 9

parts 1 0 0 1 0 0 0 0 0 0 0 0 2

pm 1 0 1 1 0 0 0 0 0 0 1 0 4

direct 1 0 0 1 0 0 0 0 1 0 0 0 3

cs 1 0 0 1 1 0 0 0 0 0 0 0 3

meeting 1 1 1 1 1 1 0 0 1 1 1 1 10

original 1 0 1 1 0 0 0 0 0 0 0 0 3

project 1 0 1 1 1 0 0 0 1 0 1 0 6

re 1 1 1 1 1 1 0 0 1 1 1 1 10

edu 1 1 1 1 1 1 0 0 1 1 1 1 10
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Table 5 continued

Features Boruta varSelRF r2VIM RFE RRF GRRF GRF NTA PIMP VSURF AUCRF RF-SRC Sum

table 0 0 0 1 0 0 0 0 0 0 0 0 1

conference 1 0 1 1 0 0 0 0 1 0 0 0 4

charSemicolon 1 0 1 1 1 1 0 0 1 0 1 0 7

charRoundbracket 1 1 1 1 1 0 0 0 1 0 1 1 8

charSquarebracket 1 0 1 1 0 1 0 0 0 0 1 0 5

charExclamation 1 1 1 1 1 1 1 0 1 1 1 1 11

charDollar 1 1 1 1 1 1 1 0 1 1 1 1 11

charHash 1 0 1 1 1 0 0 0 1 0 1 0 6

capitalAve 1 1 1 1 1 1 1 0 1 1 1 1 11

capitalLong 1 1 1 1 1 1 0 0 1 1 1 1 10

capitalTotal 1 1 1 1 1 1 0 0 1 1 1 1 10

Table 6 Association analysis
sorted by support on SMR
dataset

Method 1 Method 2 Support Confidence

PIMP NTA 0.8 1

NTA PIMP 0.8 0.82

Boruta NTA 0.63 1

NTA Boruta 0.63 0.65

Boruta PIMP 0.58 0.92

PIMP Boruta 0.58 0.72

Boruta, PIMP NTA 0.58 1

Boruta, NTA PIMP 0.58 0.92

NTA, PIMP Boruta 0.58 0.72

r2VIM NTA 0.51 1

NTA r2VIM 0.51 0.53

r2VIM Boruta 0.5 0.96

Boruta r2VIM 0.5 0.78

Boruta, r2VIM NTA 0.5 1

r2VIM, NTA Boruta 0.5 0.96

Table 7 Association analysis
sorted by support on WBC
dataset

Method 1 Method 2 Support Confidence

AUCRF Boruta 1 1

Boruta AUCRF 1 1

RFE AUCRF 0.89 1

AUCRF RFE 0.89 0.89

RFE Boruta 0.89 1

Boruta RFE 0.89 0.89

RRF AUCRF 0.89 1

AUCRF RRF 0.89 0.89

RRF Boruta 0.89 1

Boruta RRF 0.89 0.89

RFE, AUCRF Boruta 0.89 1

Boruta, RFE AUCRF 0.89 1

Boruta, AUCRF RFE 0.89 0.89

RRF, AUCRF Boruta 0.89 1

Boruta, RRF AUCRF 0.89 1
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Table 8 Association analysis
sorted by support on SE dataset

Method 1 Method 2 Support Confidence

RFE Boruta 0.95 0.98

Boruta RFE 0.95 0.96

r2VIM RFE 0.84 1

RFE r2VIM 0.84 0.87

r2VIM Boruta 0.84 1

Boruta r2VIM 0.84 0.86

r2VIM, RFE Boruta 0.84 1

Boruta, r2VIM RFE 0.84 1

Boruta, RFE r2VIM 0.84 0.89

PIMP RFE 0.81 1

RFE PIMP 0.81 0.84

PIMP Boruta 0.81 1

Boruta PIMP 0.81 0.82

RFE, PIMP Boruta 0.81 1

Boruta, PIMP RFE 0.81 1

Table 9 Summary of RF
10-fold cross-validation using
Sonar, Mines vs Rocks dataset

Method AUC F1-score OOB(%) Selected Features

RF 0.946 ± 0.036 0.824 ± 0.108 15.97 ± 1.17 60

Boruta 0.936 ± 0.040 0.802 ± 0.148 15.01 ± 1.65 38

varSelRF 0.938 ± 0.045 0.809 ± 0.096 14.79 ± 1.44 24

r2VIM 0.936 ± 0.043 0.838 ± 0.096 14.63 ± 1.54 31

RFE 0.929 ± 0.048 0.781 ± 0.137 16.93 ± 1.15 23

RRF 0.923 ± 0.049 0.798 ± 0.106 16.56 ± 1.44 22

GRRF 0.872 ± 0.073 0.777 ± 0.112 20.62 ± 1.97 7

GRF 0.800 ± 0.087 0.703 ± 0.085 26.87 ± 1.47 4

NTA 0.939 ± 0.039 0.796 ± 0.170 15.49 ± 1.65 58

PIMP 0.949 ± 0.037 0.828 ± 0.132 15.11 ± 0.88 48

VSURF 0.937 ± 0.049 0.842 ± 0.063 14.37 ± 1.03 9

AUCRF 0.936 ± 0.045 0.812 ± 0.112 15.06 ± 0.91 29

RF-SRC 0.922 ± 0.043 0.802 ± 0.140 17.25 ± 1.26 20

Table 10 Summary of RF
10-fold cross-validation using
Wisconsin Breast Cancer dataset

Method AUC F1-score OOB(%) Selected Features

RF 0.993 ± 0.009 0.963 ± 0.029 2.86 ± 0.33 9

Boruta 0.993 ± 0.009 0.963 ± 0.029 2.86 ± 0.33 9

varSelRF 0.989 ± 0.011 0.949 ± 0.043 3.28 ± 0.53 5

r2VIM NA NA NA NA

RFE 0.992 ± 0.009 0.961 ± 0.035 2.50 ± 0.34 8

RRF 0.993 ± 0.008 0.963 ± 0.032 2.74 ± 0.35 8

GRRF 0.990 ± 0.011 0.948 ± 0.047 3.28 ± 0.53 6

GRF 0.990 ± 0.010 0.935 ± 0.043 4.52 ± 0.57 3

NTA NA NA NA NA

PIMP 0.989 ± 0.010 0.942 ± 0.052 3.52 ± 0.43 4

VSURF 0.992 ± 0.009 0.961 ± 0.029 2.89 ± 0.44 7

AUCRF 0.993 ± 0.009 0.961 ± 0.033 2.63 ± 0.25 9

RF-SRC 0.990 ± 0.010 0.927 ± 0.034 4.63 ± 0.61 4
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Table 11 Summary of RF
10-fold cross-validation using
the Spam Emails dataset

Method AUC F1-score OOB(%) Selected Features

RF 0.986 ± 0.006 0.936 ± 0.010 4.93 ± 0.14 57

Boruta 0.986 ± 0.006 0.935 ± 0.012 4.91 ± 0.10 56

varSelRF 0.986 ± 0.005 0.937 ± 0.010 4.91 ± 0.10 30

r2VIM 0.986 ± 0.006 0.938 ± 0.011 4.91 ± 0.05 48

RFE 0.986 ± 0.006 0.937 ± 0.012 4.95 ± 0.13 55

RRF 0.986 ± 0.005 0.941 ± 0.009 4.71 ± 0.11 38

GRRF 0.985 ± 0.005 0.935 ± 0.010 5.04 ± 0.07 24

GRF 0.957 ± 0.006 0.895 ± 0.010 7.82 ± 0.23 6

NTA NA NA NA NA

PIMP 0.986 ± 0.005 0.932 ± 0.010 4.82 ± 0.17 46

VSURF 0.986 ± 0.005 0.936 ± 0.010 4.79 ± 0.16 21

AUCRF 0.986 ± 0.005 0.938 ± 0.012 4.76 ± 0.11 45

RF-SRC 0.986 ± 0.005 0.936 ± 0.007 5.02 ± 0.12 26

(indicated by “NAs”) in this table. As already mentioned
in Sect. 3, this is because the r2VIM and NTA algorithms
lean on negative variable importance created by non-relevant
features, and error messages are returned when running the
code.

For the SE dataset, all methods but NTA are able to pro-
duce valid results, as shown in Table 11. The number of
features selected by different feature selectionmethods again
varies dramatically. GRF approach identifies a much smaller
number of features. However, it also has the worst overall
performance among the 13 approaches. Because all meth-
ods (except for GRF) yield similar predictive performance,
one naturally prefers those methods that include a smaller
feature set features for a better balance of model complex-
ity and model performance, such as VSURF (21 features),
GRRF (24 features), and RF-SRC (26 features).

5 Conclusion

This paper provided a comprehensive review and discussion
of 12 commonly used RF-based feature selection methods
for classification problems. The fundamental ideas behind
each method were described, the R packages were intro-
duced, and numerical studies were presented that illustrate
the implementation of thesemethods and compare the results
generated from different methods. The numerical examples
show that different methods often identify different impor-
tant features as these feature selection methods are based on
different ideas and approaches. This observation indicates
that caution is often required when performing feature selec-
tion tasks. It is a good practice to try more than one feature
selection method and identify important features by examin-
ing the outcomes from different approaches integrated with
users’ experiences, domain knowledge, and theoretical anal-

ysis. The paper serves as a one-stop referencewhere students,
data science consultants, engineers, and data scientists can
access the basic ideas behind these methods, the advantages
and limitations of different approaches, as well as the soft-
ware packages to implement these methods.
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