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Abstract
Oral cancer has emerged as one of the ubiquitous malignant tumors globally. Timely detection and treatment reduces the
mortality rate of oral cancer. This study utilizes a vision transformer (ViT) framework to classify oral squamous cell carcinoma
(OSCC) and healthy oral histopathology images. The proposed approach is implemented on a public database consisting of
4946 oral histopathology images. Although ViT architectures have been extensively used in the medical imaging field,
they have not yet been explored in oral cancer detection. Though transformer architecture needs large dataset to attain better
performance, our modified architecture accomplishes an accuracy, specificity and sensitivity of 97.78%, 96.72%, and 98.80%,
respectively, on a relatively smaller medical dataset. The evaluation metrics of the proposed method have also been compared
with eight pre-trained deep learning models, namely Xception, Resnet50, InceptionV3, InceptionResnetV2, Densenet121,
Densenet169, Densenet201 and EfficientNetB7. It is observed that the modified ViT model performs better than the deep
learning models, demonstrating the ability to extract various features from the histopathology images for the classification.
The results of the proposed approach would aid the clinical community for detection of oral cancer in patients of diverse
origin.

Keywords Oral cancer · Oral squamous cell carcinoma · Image classification · Deep learning · Histopathology images ·
Vision Transformers

1 Introduction

Oral cancer is indeed a fatal condition with a complex etiol-
ogy and a high death rate. The world cancer research fund
(WCRF) international claims that malignancies of the oral
cavity and lip are one of the most prevalent type of cancers
withmore than 377,700 cases recorded globally in 2020. The
malignancies of the oral cavity and lip are the 11th and 18th
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most frequently occurring in men and women, respectively.
A well-formulated strategy is required for addressing oral
cancer which includes early detection, risk factor manage-
ment, and health literacy. Risk factors include contact with
human papillomavirus (HPV), consuming alcohol, smoking,
lack of dental hygiene, geographical location, lifestyle, and
ethnicity [1].

Squamous cell carcinoma (SCC) may develop from pre-
cancerous lesions such as erythroleukoplakia, oral leuko-
plakia, and verrucous hyperplasia [2]. 90% of all oral cancers
are SCCs [3]. The most accurate way to diagnose oral cancer
is through biopsy, however, this method is painful, and in
cases of extensive or many lesions, selecting the appropri-
ate site and size for surgical treatment of the biopsy sample
could be challenging [4]. Additionally, due to lesion vari-
ability, the prepared histology specimen may not accurately
reflect the identification of the entire lesion. To achieve a
successful cure, higher chances of survival, reduced death
and morbidity rates, oral squamous cell carinoma (OSCC)
must be detected early [5]. The average survival rate stands
at 50% for OSCC [6, 7]. The accepted approach for diagnos-
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ing OSCC is tissue sample histopathological examination
based on microscopy [8, 9]. However, the clinical value of
this approach is constrained by the histopathologists inter-
pretation, which is frequently laborious and prone to error
[10]. Therefore, it is crucial to offer efficient diagnostic tech-
niques to support pathologists in the evaluation and diagnosis
of OSCC.

Recently, deep learning (DL) algorithms have become
the state-of-the-art in field of computer vision and image
processing owing to their strength in processing vast vol-
umes of data [11–13]. As a result, numerous investigations
have been conducted to aid pathologists through DL tech-
niques specially convolutional neural networks (CNNs) in
medical image classification, segmentation and localization
[14–16]. Although CNNs excels at feature extraction, they
are unable to encode the relative positions of distinct features.
Convolution operations fails to recognize global informa-
tion [17] and long-range relationships across an entire image
[18]. Many researchers came up with different architectural
changes for an effective solution in due course and eventually
[19] proposed attentionmechanism that learns the correlation
between output and input patterns without relying on repe-
tition. This enables efficient parallelization of Transformer
implementations. In response to the popularity of Transform-
ers in natural language processing (NLP) tasks, Transformer
architecture was redesigned by [20], referred to as vision
transformer (ViT). In the adapted version, the transformer
accepts a series of fixed-size image patches as input to extri-
cate complex features of the image. It pays global attention
to the entire image overcoming the long-range dependency
issue of CNNs. The potential of ViT has been explored by
several researchers in diverse computer vision applications
say point cloud classification, image enhancement, object
detection and many more. In addition to success of ViT in
NLP, it has made significant contribution in medical com-
puter vision in a variety of medical imaging modalities.

In the realm of histopathological image classification,
ViTs have demonstrated notable success in field of cancer
diagnosis, i.e, renal cell carcinoma, breast cancer, cancerous
esophagus tissues, glioblastoma, bladder urothelial carci-
noma, lower grade glioma, and lung cancer [21, 22]. Despite
the widespread utilization of ViT in various disease diag-
noses, its potential in the domain of oral cancer has been
underexplored. The application of ViTs to oral cancer clas-
sification introduces a novel dimension, emphasizing the
distinct histopathological characteristics and clinical consid-
erations unique to oral tissues. Oral cancer presents its own
set of challenges, marked by specific cellular compositions,
anatomical variations, and staining patterns that differentiate
it from other cancers. The prevalence of oral cancer, often
associated with risk factors like tobacco use, underscores
the critical need for accurate diagnostic tools. While ViTs
have been leveraged in other cancer types, the adaptation

and application of ViTs to oral cancer represent a pioneer-
ing effort, addressing a notable gap in the existing literature.
By recognizing the unique characteristics of oral cancer and
harnessing the power of ViTs, this research contributes to
advancing our understanding of oral cancer pathology and
heralds a promising avenue for improved clinical outcomes.
While Transformers outperform CNNs in interpreting con-
textual information, their computational demands and the
necessity for extensive datasets present challenges in the
medical imaging field. The scarcity of publicly accessible
imaging datasets for oral cancer further intensifies these
difficulties. Considering these constraints, the motivation
emerges to employ a fine-tuned ViT for creating an auto-
mated diagnostic framework for the detection of oral cancer.

The contributions of the paper are listed as:

1. The performance of the proposed fine-tuned ViT model
is either superior or comparable to that of state-of-the-art
models in binary-class oral cancer classification across
various publicly available oral cancer histopathology
datasets.

2. We have performed a comparative analysis of the deep
learning (DL) models with the fine-tuned ViT, and it is
inferred that ViT model performs better in comparison to
DL models for classification of oral cancer.

3. The fine-tuned ViT performs well with a smaller dataset,
challenging the assumption that transformer models
require large datasets for optimal performance.

The rest part of this manuscript is organized as follows:
Sect. 2 discusses prior art of oral cancer classification and
ViT in medical domain. Section3 discusses the methodol-
ogy utilized in the work. Section4 presents the results of
the proposed methodology and eight pre-trained deep learn-
ing models. Section5 summarizes the work and outlines the
future scope of our proposed approach.

2 Related works

Various approaches based on both machine learning and
deep learning have been introduced in the literature for
the diagnosis of oral cancer through the analysis of med-
ical images. OSCC image databases involve hyperspectral
imaging, autofluorescence imaging, computed tomography
(CT), magnetic resonance imaging (MRI), and histopatho-
logical imaging. Tables 1 and 2 details some of the earlier
recommended approaches to oral cancer classification imple-
mented using machine learning and DL neural networks. For
machine learning applications on OSCC images, [27] used
SVM classifier to attain 91.64% accuracy. For CNN appli-
cations on OSCC images, [28] created a DL method that
takes patient hyperspectral images into account for advanced
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Table 1 Prior art related to publicly available oral cancer image databases

Years Refs. Method Data type Dataset source Accuracy (%)

2020 [23] Deep learning Histopathology images Public 91.13

2022 [24] Customized Alexnet Histopathology images Public 90.06

2023 [25] 10-layer CNN Histopathology images Public 97.82

2023 [26] CNN and deep belief network Clinical photographs Public 97.35

Table 2 Prior art related to private oral cancer image databases

Years Refs. Method Data type Dataset source Accuracy (%)

2012 [27] Machine learning Histopathology images Private 91.64

2019 [28] Deep learning Hyperspectral images Private 94.50

2021 [29] Deep learning Clinical photographs Private 96.20

2022 [15] Deep learning Clinical photographs Private 85.00

2023 [30] DL based Swin Transfomer Clinical photographs Private 98.60

computer-aided oral cancer diagnosis. The performance of
the proposed regression-based partitioned DL strategy was
assessed against other methods in terms of classifier accu-
racy, sensitivity, and specificity. [23] used CNN models
to attain 91.13%. [29] developed an automated ensemble
DL method that combines the benefits of Resnet-50 and
VGG-16 to examine oral lesions achieving accuracy of
96.2%. [15] developed a lightweight EfficientNet-B0 DL
model for classification of oral lesions images, separating
benign frommalignant or potentially malignant lesions. [24]
explored a tailored AlexNet model designed for the detec-
tion of OSCC in histopathological images. [25] introduced a
ten-layer CNN model, demonstrating superior performance
in diagnosing OSCC from histopathological images com-
pared to pre-trained CNN models. A hybrid optimization
algorithm [26] was created combining particle swarm opti-
mization (PSO) with Al-Biruni Earth Radius Optimization.
This hybrid approach was employed to optimize the design
parameters ofDeepBeliefNetworks andCNNs in the context
of identifying malignant oral lesions.

Based on the preceding discussion, it is evident that CNNs
have proven to be highly effective in classifying oral can-
cer, showcasing remarkable accuracy, and establishing their
significance in this domain. While CNNs with deep architec-
tures excel at extracting features for numerous small objects
within an image, identifying the truly critical regions may
pose a challenge. To address this challenge, the utilization
of the vision transformer (ViT) model has become prevalent
in medical image classification which includes CT scans, X-
rays, OCT/Fundus images,MRI Scans, PET, Histopathology
images, Endoscopy, andMicroscopy. [31] performed amulti-
class colorectal cancer tissue classification using ViT and
Compact Convolutional Transformer achieving accuracy of
93.3% and 95%, respectively. [32] developed an IL-MCAM

framework. It employs interactive learning with attention
techniques. [33] carried out a comprehensive analysis and
review of the ViT framework for emphysema classifica-
tion. [34] utilized ViT for Covid-19 detection using CT
scans. They employed different ViTB-16, ViTB-32, ViTL-
16, ViTL-32, and ViTH-14 for image classification. [35]
compared the performance of pneumonia classification using
ViT, CNN and VGG16 model. It was demonstrated that ViT
achieved highest classification accuracy of 96.45%. [18] put
forward an integrated Transformer model for multimodal
image classification. The hybrid model comprised of a CNN
to learn low-level features, followed by Transformers for
global information. [36] classified normal and abnormal fun-
dus images using Tranformer model achieving accuracy of
85.7%. [37] put forth a model that can interpret visual neural
activities induced by natural images in form of descriptive
text. In [30], a deep-learningmethodology utilizing the Swin-
Transformer attained a classification accuracy of 0.986 and
an AUC of 0.99 in the task of classifying OSCC on clinical
photographs. [22] provides an extensive overview of cutting-
edge ViTs investigated in histopathological image analysis,
covering applications such as segmentation, classification,
and survival risk regression.

In our comprehensive review, it is evident that researchers
strive to achieve promising diagnostic accuracy through
diverse methods. Consequently, we have tailored the ViT
framework for enhanced oral cancer detection.

3 Proposedmethodology

Figure3 shows the workflow of the classification methodol-
ogy. We used the Vision Transformer architecture inspired
by [20] to classify oral histopathology images into normal
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Table 3 Number of oral
histopathology images

Classes Images

Normal 2435

OSCC 2511

and OSCC and named it as ViT-14. Here, 14 represents the
patch size. In this study, we also compared the effectiveness
of the proposed approach using 8 pre-trained DL mod-
els named Xception [38], Resnet50 [11], InceptionV3 [39],
InceptionResnetV2 [40], Densenet121 [41], Densenet169,
[41], Densenet201 [41], EfficientNetB7 [13].

3.1 Dataset description

An oral cancer histopathological imaging dataset is publicly
available in [42]. It has three directories, namely train, test,
and val. We have utilized the train directory [43], as followed
by the study [24]. There are two types of subjects in the con-
sidered oral histopathology dataset: the patients having oral
squamous cell carcinoma and the healthy subjects. Table 3
shows number of images present in the dataset. Figures1 and
2 shows samples from both dataset categories.

3.2 Preprocessing and data augmentation

All the images in the dataset have been reshaped to 224 ×
224 pixel resolution. Data augmentation procedures are
employed to increase the image count as training the orig-
inal dataset will result in overfitting the model. The Keras
DL toolbox provides ImageDataGenerator function to gener-
ate images with appropriate data augmentation. The resized
oral histopathology images undergoes different augmenta-
tion techniques such as normalization, randomly rotated,
zoomed, horizontally flipped, varying height and width to

enhance the generalizability of the model. The details of the
augmentation techniques are shown in Table 4.

3.3 Description of the ViT-14model used in our
proposed work

After pre-processing and data augmentation, the images are
split into non-overlapping patches inspired by the [19] archi-
tecture before being fed to the encoder section. However,
non-overlapping style partly breaks the internal framework
of an image [44]. Multi-headed self attention (MSA) blocks
alleviate this issue by integrating information from several
patches. Additionally, when non-overlapping patches are fed
into Transformer, computational redundancy does not exist.
In our study, an input image of size 224 × 224 × 3 (H=224,
W=224, C=3) is splitted into flattened patches of size 588
(P2C , where P=14,C=3). Thus, 256 patches (N=HW/P2)
are generated before heading into the Transformer encoder
section. It is also noted that the sequence length of the Trans-
former and square of patch size are inversely related, hence,
models having smaller patch size requiresmore computation.

The resulting flattened patches are used to create linear
embeddings of a lower dimensional latent space (D) of size
64, known as patch embeddings. The size of the latent space
remains constant through all layers of the encoder. ViT does
not use convolution or recurrence in themulti-head self atten-
tion module in encoder section, hence to ensure that the
images preserve their positional knowledge, position embed-
dings are then linearly added to the patch embeddings using
Eq.1.

y j = y j + x j (1)

where, y j denotes the patch embedding of the j th patch and
x j denotes the position embedding of the j th patch and y j , x j

Fig. 1 Few histopathology
images from Normal category

Fig. 2 Few histopathology
images from OSCC category
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Table 4 Details of data augmentation techniques

Techniques Values
DL models ViT-14 model

Random rotation 0.02 0.02

Random zoom – 0.2–0.2

Random flip Horizontally Horizontally

Random height 0.2 –

Random width 0.2 –

∈ Dy . Dy is the dimensionality of the j th patch embedding.
An additional learnable (class) embedding is also added sim-
ilar to BERT’s (class) token as shown in Eq.2. The class of
the input image is predicted using this class embedding.

Po = [yclass; y1; y2; ...yN ] + [x1; x2; ...xN ; xN+1] (2)

where, yclass is the additional learnable class embedding and
Po
o is yclass. The outcome of the Transformer encoder (TE)

at the Lth layer (L = 8) is denoted as Po
L . The series of

patches are then passed to the TE layer. The TE module is
composed of alternating layers of multi-head self attention
(MSA) layer and feed forward network (FFN). The patch
embedding passes through a number of layers in encoder
section depicted by Eqs. 3 and 4.

P
′
l = MSA(LN (Pl−1)) + Pl−1 l = 1, 2, ..L (3)

PL = FFN (LN (P
′
l )) + P

′
l l = 1, 2, ..L (4)

where, LN is the layer normalization layer. The output of the
encoder at the Lth layer, Po

L is layer normalized and passed
through a learnable classification network known as multi-
layer perceptron (MLP) head as shown in Fig. 6.

In basic terms, a group of patches splitted from an input
image is transformed into a latent vector with a specified size.
Then position embeddings are added to the transformedpatch
embeddings and a class token is also prepended. Further,
the modified input passes through a chain of encoder layers.
The pictorial representation of the ViT-14 model is shown in
Fig. 4.

In TE block, the embedded patches pass through MSA
layer and feed forward network. A residual connection [11]
is added prior to layer normalization [45] layer around
MSA layer and FFN. The TE module is shown in Fig. 5.
Muti-headed attention boosts the performance of the model
by performing multiple self-attention mechanism simulta-
neously. Each self attention operation serves as a head in
multi-headed attention mechanism, and each head tries to
learn something unique, thus improving the representation
power of the encoder module. Therefore, the model is able
to capture intricate correlations of different patches present
at distinct locations in a histopathology image. It focuses on

Table 5 Specifications of the ViT-14 model

Model Latent dimension Layers Heads Parameters

ViT-14 64 8 4 3.6M

local and global features encompassed within an image in
contrast to conventional CNN models which emphasizes on
local attention. The parameters of the adopted ViT-14 model
is tabulated in Table 5. Details of the layers, output shape and
number of parameters are shown in Table 6.

3.4 Pre-trained deep learningmodels for
comparison

This subsection gives a brief description of the various DL
models used in our work for comparative analysis. Architec-
ture of the DL models used in our study is shown in Fig. 7.
Table 7 lists few details of the DL models.

3.4.1 Xception

The elementary theory of Inception has been pushed to an
extreme in Xception architecture [38]. In Inception, 1x1 con-
volutions were used to extract features from the initial input,
and filters of varying sizes were employed at every depth
space. The reverse occurs in Xception, it uses filters at every
depth space independently prior to compressing the input
image at once using 1x1 convolution. The feature extraction
backbone in theXception architecture is composed of 36 con-
volutional layers. The Xception architecture can be summed
up as a linear stack of residually connected depthwise sepa-
rable convolution layers. As a result, developing and altering
the architecture is relatively simple.

3.4.2 Resnet50

The Resnet50 utilizes a bottleneck framework for its build-
ing block. The residual block consists of 1×1 convolutions
termed as bottleneck, which minimizes the matrix multipli-
cations and parameter count. This makes training each layer
considerably faster. Instead of using a stack of two layers, it
leverages three layers [11]. It is widely known that increasing
the depth of the model for deeper feature extraction reduces
model performance due to exploding or vanishing gradient
issue. To resolve this issue and enable the training of deeper
networks, residual blocks were introduced.

3.4.3 InceptionV3

InceptionV3 is an image recognition model that achieved an
accuracy higher than 77.9% on the ImageNet dataset. It is an
optimized and upgraded adaptation of InceptionV1 model.
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Fig. 3 Proposed classification methodology utilizing Vision Transformer and DL models

Fig. 4 Architecture of ViT-14 model for classifying normal and OSCC histopathology images

Fig. 5 Transformer encoder for processing oral cancer histopathology image patches with multi-head attention layer
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Fig. 6 MLP head for classifying oral cancer histopathology images

Table 6 Details of the names of
the layers, the output shape, and
the number of parameters used
in each layer of the ViT-14
model(a to b layers forms the
encoder section and are repeated
8 times)

Layer name Output shape No. of parameters

InputLayer (None,224,224,3) 0

data_augmentation (None,224,224,3) 7

Patches (None,None,588) 0

PatchEncoder (None,256,64) 54080

LayerNormalizationa (None,256,64) 128

MultiHeadAttention (None,256,64) 66368

Add (None,256,64) 0

LayerNormalization (None,256,64) 128

Dense (None,256,128) 8320

Dropout (None,256,128) 0

Dense (None,256,64) 8256

Dropout (None,256,64) 0

Addb (None,256,64) 0

LayerNormalization (None,256,64) 128

Flatten (None, 16384) 0

Dropout (None, 16384) 0

Dense (None, 2048) 33556480

Dropout (None, 2048) 0

Dense (None, 1024) 2098176

Dropout (None, 1024) 0

Dense (None, 2) 2050

Trainable params 36,376,514

Non-trainable params 7

Factorized convolutions, smaller convolutions, asymmetric
convolutions, auxillary classifiers, and grid size reduction
forms the architecture of InceptionV3 [39].

3.4.4 InceptionResnetV2

A convolutional neural network known as InceptionRes-
NetV2 expands on the Inception group of architectures while
incorporating residual connections. It replaces the filter con-
catenation step of the Inception model [40].

3.4.5 Densenet121/169/201

Densenets are deep CNNs that enhance the training of deeper
networks by connecting the feature map of one layer with
all the layers preceding it [41]. This increase the effective-
ness with regard to memory utilization and computation. It
can extract minute features of the input images with few
channels. DenseNet further improves feature propagation,
increases feature reuse, and significantly lowers the number
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Fig. 7 Architecture of the deep neural network models for comparative analysis with ViT-14 model using oral cancer histopathology images

of parameters, obviate the vanishing gradient issue and mit-
igates its impacts.

3.4.6 EfficientNetB7

EfficientNetB7 is a non-repetitive, nonlinear neural network
search that optimizes floating point operations per second
(FLOPS) and accuracy by balancing resolution, network
depth and breadth. Seven flipped residual blocks, each with
its own parameters, are used in the architecture. These blocks
employ swish activation, squeeze, and excitation blocks [13].

4 Experiments and analysis

All studies related to this work were carried out using Python
3.7.6, TensorFlow 2.7.0, and Keras 2.7.0 on a PC with
2.40 GHz Intel(R) Core(TM) i5-1135G7 processor, Intel(R)
Iris(R) Xe graphics and 16.0 GB of RAM.

4.1 Evaluation indicators

The overall performance of our proposed approach is eval-
uated on the basis of the contents of the confusion matrix.
There are four terms namely true positive (TP), false positive
(FP), false negative (FN), and true negative (TN) included in
this evaluation matrix. TP means a person has OSCC and
the model accurately predicts it. TN means a person has
healthy oral mucosa and the model accurately predicts it.
FP means a healthy oral mucosa is inaccurately predicted
as OSCC. FN means an OSCC is inaccurately predicted as
healthy oral mucosa. Evaluation indicators, namely speci-
ficity, sensitivity, F1-score, precision, cohen kappa score
(CKS), matthews correlation coefficient (MCC), error rate,
false omission rate (FOR), false discovery rate (FDR), neg-
ative predictive value (NPV), false negative rate (FNR), and
false positive rate (FPR) were evaluated to assess the perfor-

mance of our proposed approach. These evaluation indicators
can be calculated utilizing the formulas given as follows:

1. Precision: It represents the proportion of accurately pre-
dicted positive instances out of the total instances pre-
dicted as positive.

Precision = TP

TP + FP
(5)

2. Sensitivity: It denotes the proportion of accurately pre-
dicted positive instances relative to all instances in the
actual positive class.

Sensitivity = TP

TP + FN
(6)

3. Specificity: It measures the ability of the model to cor-
rectly identify true negatives.

Specificity = TN

TN + FP
(7)

4. Accuracy: It measures the ratio of accurately identified
images to the total number of test images.

Accuracy = TP + TN

TP + TN + FP + FN
(8)

5. F1-Score: It is the harmonic mean of precision and recall,
serves as a means to optimize the model either for recall
or precision.

F1 Score = 2 ∗ Precision ∗ Recall

Precision + Recall
(9)

6. Cohen Kappa score: It is a metric used to measure the
agreement between predicted and actual classifications
while accounting for the possibility of random agreement.

CKS = Po − Pe
1 − Pe

(10)

123



International Journal of Data Science and Analytics

Table 7 A brief introduction to the DL models used along with the ViT-14 for a comparative study in oral histopathology image classification

Model Refs. Number of parameters Major remarks

Xception [38] 22.9M (a) It is InceptionV3’s improved version.

(b) It makes use of separable convolutions in depth

Resnet50 [11] 25.6M (a) There is a new block called residue

(b) The issue of accuracy rapidly declining as a result
of an increase in network layers has been resolved

InceptionV3 [39] 23.9M (a) It makes use of a better Inception Module

(b) Small convolutions are used to introduce the
concept of factorization

InceptionResnetV2 [40] 55.9M (a) The Resnet connection and the Inception block
are combined

Densenet121 [41] 8.1M (a) When two layers have the same feature map size,

Densenet169 [41] 14.3M a direct connection between them is established

Densenet201 [41] 20.2M (b) Hundreds of layers are possible at this scale

EfficientNetB7 [13] 66.7M (a) Reduces parameter size and increases accuracy

where Po is the observed agreement and Pe is the expected
agreement.

7. MCC: It is a correlation coefficient between the observed
and predicted binary classifications.

MCC = (TP ∗ TN − FP ∗ FN)√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(11)

8. Error rate: It provides a measure of misclassification.

Error rate = 1 − Accuracy (12)

9. False omission rate (FOR): It is the proportion of false
negatives out of the total actual negative instances.

FOR = FN

FN + TN
(13)

10. False discovery rate (FDR): It is the proportion of false
positives out of the total predicted positive instances.

FDR = FP

FP + TP
(14)

11. Negative predictive value (NPV): It is the proportion of
correctly predicted negative instances out of the total pre-
dicted negative instances.

NPV = TN

TN + FN
(15)

12. False negative rate (FNR): It is the proportion of false
negatives out of the total actual positive instances.

FNR = FN

FN + TP
(16)

13. False positive rate (FPR): It is the proportion of false pos-
itives out of the total actual negative instances.

FPR = FP

FP + TN
(17)

4.2 Model parameters

Weselected sparse categorical crossentropy as a loss function
for our binary classification task. The training is done over
100 epochswith theAdamWoptimizer.We have used a patch
size of 14×14×3with each image having 256 patches. In our
Transformer encoder architecture, we employed a configu-
ration with 4 heads and opted for 8 layers in the Transformer
encoder. Batch size of 32, learning rate of 0.001 and weight
decay of 0.0001 are chosen for model training. Table 8 lists
the optimal hyperparameters used in our study.

4.3 Ablation study onmodel parameters

We perform an ablation study to analyze how different
components and hyperparameters in our proposed model
contribute to the overall performance of the model.

4.3.1 Impacts of different parameters

In the initial experimentation phase with the ViT-14 model,
default hyperparameterswere initially assumed.This included
a learning rate of 0.001, a batch size of 8, weight decay of
0.0001, a patch size of 14×14×3, a latent dimension of 64,
the number of Transformer encoder layers set to 6, and the
number of heads set to 4. Subsequent exploration involved
varying batch sizes to 8 and 16 while keeping other parame-
ters constant, and it was found that a batch size of 32 yielded
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Table 8 Hyperparameters used in the ViT-14 model

Hyperparameters ViT-14 model

Optimizer AdamW

Learning Rate 0.001

Weight decay 0.0001

Loss Function SparseCategorical

Crossentropy

Batch Size 32

Epochs 100

Input size 224 × 224 × 3

Patch size 14 × 14 × 3

Patches per image 256

Latent dimension 64

Transformer encoder layers 8

Number of heads 4

Table 9 Accuracy of theViT-14model using different hyperparameters

Parameters Values Accuracy (%)

Batch size 8 95.15

16 95.96

32 96.97

Patch size 12 × 12 96.36

14 × 14 96.97

16 × 16 96.57

Latent dimension 16 95.96

32 96.36

64 96.97

Layers 6 96.97

8 97.78

10 96.97

Heads 4 97.78

6 97.37

8 95.96

Values in bold indicate the best evaluation metrics

the highest accuracy, as outlined in Table 9. Further exper-
iments focused on patch size variations while maintaining
other parameters constant, confirming that the initial dimen-
sions of 14×14×3 for the patch achieved highest accuracy.
Likewise, alternative latent dimensions of 16 and 32 were
explored while keeping other parameters constant, with the
initial choice of 64 demonstrating the highest accuracy, as
illustrated in Table 9. Once optimized values for batch size,
patch size, and latent dimension were obtained, experiments
on the number of layers indicated that 8 layers outperformed
6 and 10, as detailed in Table 9. Finally, experiments on the
number of heads, exploring values of 6 and 8, validated the
initial choice of 4 as yielding the highest accuracy, as indi-
cated in Table 9.

Table 10 Number of training, validation and testing images in ViT-14
model

Dataset Percentage No. of images

Training 90% 4451

Validation 10% of the training set 445

Test 10% 495

Table 11 Evaluation metrics of the ViT-14 model

Evaluation metrics Obtained value

Precision 96.88

Sensitivity 98.80

Specificity 96.72

Accuracy 97.78

F1-score 97.83

CKS 0.96

MCC 0.96

Error rate 2.22

FOR 0.01

FDR 0.03

NPV 0.99

FNR 0.01

FPR 0.03

4.4 Results

After obtaining the optimal model hyperparameters, we have
evaluated the performance of the model. The dataset is
divided into two subsets: the training set, comprising 90%
of the data, with 10% of this subset allocated for validation;
and the testing set, which constitutes the remaining 10% as
shown in Table 10.

It is extremely important that the model does not exhibit
significant overfitting to ensure the overall effectiveness of
the proposed method. Figure8a shows the training and vali-
dation accuracy and loss curves plotted over 100 epochs. It
is observed that the model exhibits no major overfitting, and
robustness is maintained. The confusion matrices (CM) gen-
erated have been displayed in Fig. 8b which further helps in
understanding the results. It is inferred from CM that FP and
FN are very less in number as compared to TN and TP, thus
showing correct predictions of images into normal andOSCC
classes. Table 11 shows the evaluation metrics of the pro-
posed model. As shown in Table 11, ViT-14 model achieved
an accuracy, specificity, and sensitivity of 97.78%, 96.72%,
and 98.80%, respectively.

In our study, we implemented a fivefold cross-validation
methodology, running the model five times to ensure a com-
prehensive and robust evaluation of its generalization to
unseen data. For each iteration, the dataset was shuffled to
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Fig. 8 a Training and validation accuracy vs epoch plot of ViT-14 model over 100 epochs (top); Loss vs epoch plot of ViT-14 model over 100
epochs (bottom) b Confusion matrix of the ViT-14 model

Table 12 Evaluationmetrics for the ViT-14model using fivefold cross-
validation technique

Folds Accuracy (%) Sensitivity (%) Specificity (%)

Fold 1 95.15 93.82 96.82

Fold 2 95.15 97.82 91.82

Fold 3 96.97 97.09 96.82

Fold 4 94.34 96.36 91.82

Fold 5 96.16 97.09 95.00

Average 95.56 96.44 94.46

create unique training and test sets, with the training set com-
prising 90% of the data and the test set representing the
remaining 10%. Evaluation metrics were computed in each
iteration on the assigned test set, offering a thorough assess-
ment of performance of the model across diverse data splits.
The CM generated from each of the five folds have been
displayed in Fig. 9 which further helps in understanding the
results. Evaluation metrics for ViT-14 model using fivefold
cross validation are listed in Tables 12 and 13.

4.4.1 Impacts of split ratio

Themodel underwent evaluationwith different combinations
of training and testing ratios. This evaluation retained con-
sistency with the same set of hyperparameters, as detailed in
Table 8. This approach allowed for an assessment of its per-
formance under different data split scenarios while keeping
the experimental conditions uniform.

Table 13 Classification report for the ViT-14 model using fivefold
cross-validation technique

Folds Class Precision Recall F1-score

Fold 1 Normal 0.93 0.97 0.95

OSCC 0.97 0.94 0.96

Fold 2 Normal 0.97 0.92 0.94

OSCC 0.94 0.98 0.96

Fold 3 Normal 0.96 0.97 0.97

OSCC 0.97 0.97 0.97

Fold 4 Normal 0.95 0.92 0.94

OSCC 0.94 0.96 0.95

Fold 5 Normal 0.96 0.95 0.96

OSCC 0.96 0.97 0.97

Case 1 (90:10) Training images constitute 90%, and test-
ing images make up 10% of the entire dataset. For the ViT-14
model, 4451 images were used for training, and 495 for test-
ing. Themodel underwent five runs to assess generalizability,
and the resulting average accuracy values are detailed in
Table 14.

Case 2 (80:20) Training images constitute 80%, and test-
ing images make up 20% of the entire dataset. For the ViT-14
model, 3956 images were used for training, and 990 for test-
ing. Themodel underwent five runs to assess generalizability,
and the resulting average accuracy values are detailed in
Table 14.

Case 3 (70:30) Training images account for 70%, with
testing images at 30% of the overall dataset. The ViT-14
model was trained on 3462 images and tested on 1484. Sim-
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Fig. 9 The confusion matrices of the five folds of the cross-validation technique for the ViT-14 proposed approach

Table 14 Average accuracy of ViT-14 model using fivefold cross vali-
dation technique for different split ratios (train:test)

90:10 80:20 70:30

Accuracy (%) 95.56 95.51 94.99

Values in bold indicate the best evaluation metrics

ilar to Case 1, the model underwent five runs to evaluate
generalizability, and the corresponding average accuracy val-
ues are presented in Table 14.

It is observed from Table 14 that the accuracy appears to
decrease as the proportion of training data decreases relative
to testing data. Thus, a higher proportion of training data
(90:10 ratio) contributes to better model performance.

4.5 Comparative analysis of model performance
across different datasets

After the ablation study, the optimal model configuration is
used for further analysis on two publicly available oral cancer
histopathological datasets.

Dataset 1 [46] was collected from a histopathological
image repository of the normal epithelium of the oral cav-
ity and OSCC images. The repository consists of 1224 total
images. They are divided into two sets in two different reso-

lutions, 100x magnification and 400x magnification. In total,
there are 290 normal epithelium images and 934 OSCC
images.

Dataset 2 is an oral cancer histopathological imagedataset
available in [42]. It comprises three directories: train, test,
and val, containing a total of 5192 images. There are 2,494
normal images and 2,698 images with OSCC.

We employed a fivefold cross-validation approach, exe-
cuting the model five times to ensure a thorough and robust
evaluation of its ability to generalize to new data. In each
iteration, the dataset was shuffled, creating distinct training
and test sets. The training set constituted 90% of the data,
while the test set comprised the remaining 10%. Evaluation
metrics were calculated in each iteration on the assigned
test set, providing a comprehensive assessment of the per-
formance of the model across a variety of data partitions.
Tables 15 and 16 present the evaluation metrics for dataset 1
and dataset 2, respectively, respectively, utilizing the fivefold
cross-validation technique.

4.6 Comparison with deep learningmodels

The proposed approach is compared with eight pre-trained
DL models to demonstrate its effectiveness. The details of
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Table 15 Evaluation metrics of
ViT-14 model using fivefold
cross validation technique for
Dataset 1 (Acc:Accuracy,
Prec:Precision, Sens:Sensitivity,
F1:F1-score, Spec:Specificity)

Folds Acc. (%) Prec. (%) Sens. (%) F1 (%) Spec. (%)

Fold 1 91.87 95.35 93.18 94.25 88.57

Fold 2 94.31 94.12 98.97 96.48 76.92

Fold 3 93.49 96.08 96.08 96.08 80.95

Fold 4 95.12 95.05 98.97 96.09 80.76

Fold 5 91.05 92.78 95.74 94.24 70.96

Average 93.17 94.68 96.59 95.43 79.63

Values in bold indicate the best evaluation metrics

Table 16 Evaluation metrics of
ViT-14 model using fivefold
cross-validation technique for
Dataset 2 (Acc:Accuracy,
Prec:Precision, Sens:Sensitivity,
F1:F1-score, Spec:Specificity)

Folds Acc. (%) Prec. (%) Sens. (%) F1. (%) Spec. (%)

Fold 1 97.69 98.21 97.51 97.86 97.91

Fold 2 97.69 97.74 97.74 97.74 97.64

Fold 3 97.12 96.22 98.08 97.14 96.15

Fold 4 96.35 95.24 98.25 96.73 94.04

Fold 5 96.92 95.86 98.08 96.96 95.77

Average 97.15 96.65 97.33 97.29 96.30

Values in bold indicate the best evaluation metrics

the hyperparameters are listed in Table 18. The dataset is
divided into two subsets: the training set, comprising 90% of
the data, with 10% of this subset allocated for validation; and
the testing set, which constitutes the remaining 10%as shown
in Table 17. The training-to-testing split ratio of 9:1 was
maintained, consistent with the proposedViT-14method.We
selected binary cross-entropy as a loss function for our binary
classification task. Adam optimizer is used for training over a
course of 100 epochs. The reduction of the generalization gap
between training loss and validation loss was ourmain objec-
tive during model training. A batch size of 32 and a learning
rate of 0.001 is used. Additionally, a dropout rate of 0.2 is
used to address overfittingduring training time [29]. Then,we
saved the weights of the model having lowest validation loss
for evaluation purposes. We adhered to the original architec-
tural descriptions of convolutional filters, padding, pooling
and strides in Xception, Resnet50, InceptionV3, Inception-
ResnetV2, Densenet121/169/201, EfficientNetB7 models.

We have utilized a model pre-trained on the ImageNet
dataset for the analytical results of DL models on the oral
histopathology dataset. The training and validation accuracy
and loss curves are plotted over 100 epochs as displayed in
Figs. 10 and 11. The confusion matrix (CM) for DL models
were also calculated to help in understanding the results as
shown in Fig. 12. It is inferred from the CM that FP and
FN have increased in comparison to the ViT-14 model, thus
showing lesser correct predictions of images into normal and
OSCC classes. Table 19 lists the various evaluation measures
of the compared DL models and ViT-14 model. Table 20
shows the superior performance of ViT-14 model in terms of

Table 17 Number of training, validation and testing images inDLmod-
els

Dataset Percentage No. of images

Training 90% 4450

Validation 10% of the training set 445

Test 10% 496

Table 18 Hyperparameters used in the considered deep learning mod-
els

Hyperparameters DL models

Optimizer Adam

Learning Rate 0.001

Loss Function Binary Cross-entropy

Batch Size 32

Epochs 100

Dropout 0.2

Input size 224 × 224 × 3

accuracy, specificity and sensitivity in comparison to the DL
models.

4.7 Comparison with previous works

Table 21 provides a comprehensive comparative analysis of
diversemethods andmodels applied to various publicly avail-
able oral cancer datasets. In previous research [23], transfer
learning methods using Resnet50, MobileNet, and Incep-
tionV3 achieved accuracies ranging from 76.61% to 91.13%
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Fig. 10 The convergence
behavior of the Deep learning
models used for comparative
analysis
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Fig. 11 The convergence behavior of the DL models used for comparative study

on a dataset containing 290 normal and 934 OSCC images
[46]. A customized 10-layer CNN [25] attained a higher
accuracy of 97.82% on the same dataset [46]. A hybrid
approach involving both CNNs and SVM, and the integration
of deep and texture-based features, the study [47] demon-
strated an accuracy of 97.00% on 2698 OSCC images and
2494 healthy tissue images [42]. Additionally, Gabor filter
combined with a Catboost classifier [48] achieved 94.92%
accuracy on the same dataset [42]. A transformer with exter-
nal attention [49] attained an accuracy of 96.97% on 2511
OSCC images and 2435 healthy tissue images [43]. Trans-
fer learning using Alexnet [24] achieved 90.06% accuracy
on same set [43]. While the proposed method demonstrated
an accuracy of 95.12% on the dataset [46], it is noteworthy
that the 10-layer CNN model [25] achieved a higher accu-
racy of 97.82%. However, it is important to highlight that
the proposedmethod showcased competitive performance on
other datasets, achieving accuracies of 97.69% and 97.78%
on datasets [42] and [43] respectively. It is evident that a
reduction in performance on the dataset [46] is significantly
due to class imbalance, potentially impacting the model’s
ability to effectively learn and generalize across both classes.
While the presently employed data augmentation techniques,
such as rotation, zoom, flip, height, and width variations,
contribute to model resilience, addressing the class imbal-
ance may require additional augmentation strategies. This
could involve applying techniques like synthetic minority
over-sampling technique (SMOTE) and employing genera-
tive adversial networks (GANs) for the creation of realistic
synthetic samples, particularly for the minority class. By

Table 19 Oral cancer image classification summary report without
cross-validation technique

Models Class Prec. Rec. F1

Xception Normal 0.89 0.89 0.89

OSCC 0.89 0.89 0.89

Resnet50 Normal 0.93 0.86 0.89

OSCC 0.88 0.93 0.90

InceptionV3 Normal 0.85 0.82 0.84

OSCC 0.83 0.86 0.85

Inception Normal 0.90 0.82 0.86

ResnetV2 OSCC 0.84 0.91 0.87

Densenet121 Normal 0.92 0.69 0.79

OSCC 0.76 0.94 0.84

Densenet169 Normal 0.91 0.77 0.83

OSCC 0.80 0.92 0.86

Densenet201 Normal 0.92 0.84 0.88

OSCC 0.86 0.93 0.89

EfficientNetB7 Normal 0.90 0.83 0.87

OSCC 0.85 0.91 0.88

ViT-14 Normal 0.99 0.97 0.98

OSCC 0.97 0.99 0.98

Values in bold indicate the best evaluation metrics

implementing such additional data augmentation techniques
tailored to address class imbalances, the proposed model is
likely to achieve improved generalization and classification
accuracy across all datasets, ensuring consistent performance
in the presence of varied class distributions.
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Fig. 12 The confusion matrices of the DL models used for comparative study

5 Conclusion

Histopathological assessment by pathologists stands as the
gold standard for detecting oral squamous cell carcinoma
(OSCC). However, the intricate morphological variations in
cancerous conditions pose a significant challenge for human
evaluation. This study is a dedicated effort to aid clinicians in
early OSCC identification.While deep learning (DL)models
have advanced to enhance various applications for effective
medical assessments, the incorporation of attention mecha-
nisms into Vision Transformers (ViTs) introduces a level of
precision that is essential in the medical industry, where
inaccuracies could have profound consequences. The study
introduces ViT-14, a fine-tuned ViT framework, specifically

designed for classifying oral histopathology images into nor-
mal and OSCC categories across diverse publicly available
datasets. The ViT-14 model demonstrates performance on
par with or exceeding that of state-of-the-art models, empha-
sizing its effectiveness in early oral cancer detection using
histopathological images. This study not only underscores
the capabilities of ViTs in the field of medical imaging but
also establishes ViT-14 as a promising instrument to assist
clinicians in achieving more precise and timely diagnoses in
cases of oral cancer.

The potential for enhancing oral cancer classification
with fine-tuned ViT models is promising, but it is crucial
to recognize certain limitations. Limited and imbalanced
datasetsmay hinder generalization, and interpreting complex
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Table 20 Comparison of ViT-14
model with other DL models for
oral cancer histopathology
image classification without
cross-validation

Models Acc. (%) Spec. (%) Sens. (%) CKS MCC

Xception 88.70 88.87 88.52 0.77 0.77

Resnet50 89.92 87.69 92.54 0.80 0.80

InceptionV3 84.07 83.14 85.10 0.68 0.68

Inception 86.69 83.94 90.09 0.73 0.74

ResnetV2

Densenet121 81.85 75.80 92.31 0.64 0.66

Densenet169 84.68 80.34 90.78 0.69 0.70

Densenet201 88.71 85.77 92.34 0.77 0.78

EfficientNetB7 87.30 84.87 90.22 0.75 0.75

ViT-14 97.78 96.72 98.80 0.96 0.96

Values in bold indicate the best evaluation metrics

Table 21 Comparative analysis with previous research on different publicly available oral cancer histopathology datasets (Acc: Accuracy, Prec:
Precision, Sens: Sensitivity)

Method Year Model/Classifier Samples Acc Prec Sens

Classification by 2021 Resnet50 290 normal 91.13 88.00 87.00

Transfer learning MobileNet epithelium images 85.48 81.00 79.00

Method [23] Large CNN and 934 OSCC images [46] 76.61 58.00 52.00

InceptionV3 89.52 89.00 82.00

10 layer CNN 2023 Customized 290 normal 97.82 97.00 98.00

model [25] CNN epithelium images

and 934 OSCC images [46]

Deep learning 2023 Support vector 2698 OSCC images 97.00 96.77 90.90

and hybrid techniques [47] machine 2494 healthy tissue images [42]

Gabor filter and 2023 Catboost 2698 OSCC images 94.92 95.51 84.30

Resnet50 [48] classifier 2494 healthy tissue images [42]

Transformer [49] 2023 External 2511 OSCC images 96.97 – 97.61

attention 2435 healthy tissue images [43]

Transfer learning [24] 2022 Alexnet 2511 OSCC images 90.06 – 92.74

2435 healthy tissue images [43]

Proposed method 2023 ViT-14 290 normal 95.12 95.05 98.97

epithelium images

and 934 OSCC images [46]

Proposed method 2023 ViT-14 2698 OSCC images 97.69 98.21 97.51

2494 healthy tissue images [42]

Proposed method 2023 ViT-14 2511 OSCC images 97.78 96.88 98.80

2435 healthy tissue images [43]

Values in bold indicate the best evaluation metrics

models like ViT remains difficult. Class imbalance and the
"black-box" nature of these models can introduce bias and
limit explainability. Computational demands pose challenges
for resource-limited institutions, and integrating these mod-
els into clinical workflows requires addressing privacy and
regulatory issues. Despite these challenges, the future out-
look is promising, with ongoing efforts to overcome these
limitations through the accumulation of more diverse and
expansive datasets, advancements in model interpretability,

and optimization of computational efficiency for broader
applicability in clinical settings.
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