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Abstract
Correcting spatial orientations of groups of high-dimensional data sets such that they are all in a consistent coordinate system
is often a time-consuming and error-prone process. Automation of this process can be accomplished by using Generalized
Procrustes Analysis to estimate the relative orientations among a population of high-dimensional data sets. A least squares
Procrustes solution is applied through a maximum likelihood estimation and random sample consensus framework for robust-
ness. The likelihood model is comprised of a mixture distribution where inliers are modeled using t-distribution and outliers
from a uniform distribution. Applications will focus on a synthetic data set that emulates triaxial acceleration data and also real
shock data from a population of triaxial accelerometers. Outliers represent either non-rigid body responses, environmental
noise, and/or sensor and data acquisition issues. The intended application for the methodology is to robustly automate the
rotation of populations of experimentally collected triaxial accelerometer data sets to a single global coordinate system.

Keywords Procrustes · RANSAC · Orientation · Rotation

1 Introduction

Optimal spatial alignment of one high-dimensional data set to
another has been explored through the literature by the use of
an Orthogonal Procrustes Rotation [1]. Numerous “flavors”
of Procrustes-type methods exist; however, the Procrustes
methods discussed herein apply to linear transformations of
the data set, hence an orthonormal rotation, which differs
from projection problems, transformations by non-square,
orthonormal, matrices. The name originates back to Greek
mythology. Procrustes was a giant who had an iron bed (or,
according to some accounts, two beds) on which he com-
pelled his victims to lie. If the victim was shorter than the
bed, Procrustes stretched them by hammering or racking the
body to fit. Alternatively, if the victim was longer than the
bed, Procrustes would cut off the legs to make the body fit
the bed’s length. In either event, the victim died [2, 3]. In
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a similar, but less gruesome manner, Procrustes Analysis or
Procrustes methods refer to a set of least squares mathe-
matical techniques used to perform transformations among
corresponding points belonging to a generic m-dimensional
space, to satisfy some maximum agreement [3].

2 Motivation, applications, and preview

2.1 Motivation

Little literature exists as to how errors are propagated through
Procrustes-type problems, each piece of literature is highly
dependent on the structure of the problem. Maset, Crosilla,
and Fusiello provided an Errors-In-Variables model in the
anisotropic, row-scaling Procrustes analysis with a solu-
tion that can deal with the uncertainty affecting both sets
of observations [4]. Others have looked at the problem
through estimating the probability distributions over the set
of 3D rotations SO(3) using a von Mises–Fisher distribution
in R

3 [5]. A full uncertainty characterization of the opti-
mization problem of obtaining the transformation between
corresponding m-dimensional point sets and their closed-
form solution while considering point sets perturbed by
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anisotropic noise and points that are not required to be inde-
pendent nor identically distributed has been analyzed for
the Procrustes problem without scaling [6]. Random sam-
ple consensus (RANSAC)methods for outlier detection have
been utilized for various computer vision problems ranging
from 2D homography estimation to video stabilization [7–
9]. Therefore, it seems appealing to find a methodology to
combine the outlier detection and robustness of RANSAC
with Procrustes methods.

This paper covers the statistical nature of Orthogonal
Procrustes Analysis (OPA) and Orthogonal Anisotropic Pro-
crustesAnalysis (OAPA).Analytic solutionswill be provided
for how the residuals are distributed in OAPA, see the
Appendix. Studying the statistical properties of Procrustes
techniques provides the justification formaximum likelihood
estimation (MLE) as a method for modeling the residuals
in order to classify data points as inliers or outliers. This
paper also provides useful information about how to combine
Procrustes methods with parametric and nonparametric sta-
tistical models within RANSAC frameworks for robustness.
Procrustes methods are susceptible to errors when outliers
corrupt the data; thus, robustness needs to be imparted on
them to ensure that the results are minimally impacted by
outliers.

2.2 Applications and examples

The intended application for the methodology is to robustly
automate the rotation of populations of experimentally col-
lected triaxial accelerometer data sets to a single global
coordinate system. The term population is intended to imply
that multiple accelerometers are located within or on a par-
ticular test body and that each accelerometer might not be
aligned with the global coordinate system of the test body. In
the context ofmechanical vibration and shock, outliers repre-
sent non-rigid body responses, environmental noise, and/or
sensor and data acquisition issues. Inlier data are rigid body
responses collected from the triaxial accelerometers such that
the test body does not deform under the action of the applied
forces. Thus, outliers are the complement of the set of inliers.
Common sensor issues causing outliers often manifest them-
selves as corrupt/faulty sensors, clipping, or saturation of a
sensor due to a measured response greater than what the sen-
sor is calibrated for. Scaling of the data is required to correct
the case when the voltages of the accelerometer sensors were
improperly calibrated.

A challenging synthetic data set along with a real data
set from a shock experiment will be used to exemplify the
efficacy of themethodology presented herein. Analysts using
thesemethodologieswill be able to greatly reduce their errors
by avoiding any manual estimation of a rotation while also
reducing the time needed to analyze and validate the data.
When the data does not appear to be correct, the analyst is

faced with correctly identifying whether that the data is valid
but the rotations and/or scalings are wrong or the data is
invalid, regardless of the rotations and/or scalings. Installa-
tion errors such as polarity swaps (180◦ rotations) or spatial
directions swaps (90◦ rotations) can be discovered when the
estimated rotation matrices do not match the rotation matri-
ces provided in the part drawings. Part drawings define how
each accelerometer is to be installed and what its local ori-
entation is in reference to the coordinate system of the test
body.

2.3 High level preview

The procedures listed in the paper follow a sequence of sev-
eral algorithms which are detailed in various sections herein.
To help facilitate the reader’s understanding, a brief overview
of all the components of the full algorithm will be detailed.
The underlying goal of this paper is a methodology that pro-
vides a robust and optimal rotation of multiple objects to
a single coordinate system. For the rotation, and possible
scaling of the object, a variety of Procrustes-type methods
will be implemented. The authors have successfully incorpo-
rated a RANSAC framework within the Procrustes methods
to impart robustness. RANSAC requires subsampling from
the initial datamany times,with the goal of getting at least one
subsample that is entirely outlier free. A Procrustes method
will be performed over all these subsamples yielding many
possible Procrustes models. A Procrustes model is a rotation,
and possibly a scaling matrix (depending on the Procrustes
method). The Procrustes distinction is to help alleviate confu-
sion between the statistic model architectures: MLE mixture
or the nonparametric order-based model. Residuals can then
be calculated for every Procrustes model using one of the
architectures listed above. Analysis of these residuals pro-
vides a method in classifying them and their respective data
points, time points for the applications provided here, as
either inliers or outliers.

Two statistical architectures are suggested on how to
model the distribution of the residuals. A maximum like-
lihood estimation approach using a mixture model on the
residuals where inliers are modeled as one distribution
and outliers as another distribution. The second version is
a nonparametric approach utilizing order statistics on the
residuals to remove potential outliers. The statistical archi-
tectures above provide a heuristic that is used to rank the
numerous Procrustes models generated from the subsam-
pling procedure. A few top Procrustes models are kept from
the initial RANSAC subsampling procedure, these top Pro-
crustes models are further optimized utilizing their inliers
with a procedure known as locally optimized RANSAC (LO-
RANSAC) [7, 8]. The following sections will go in depth for
each of the concepts described above.
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For the context of this paper, the Procrustes models are
first formed by GOPA using RANSAC and LO-RANSAC.
After iterating over each object, the group average Gh is
updated, this is performed until the group average has con-
verged, denoted as G. GOPA is first used to calculate the
initial rotations, Qi , alongwith the group average,G. Finally,
an OAPA model with the target object now being the group
average will be performed for each object, Ai . OAPA using
RANSAC and LO-RANSAC will subsequently provide the
optimal rotation, Qi , and scaling, �i , for each object with
respect to G. The reasoning behind this series of algorithms
will be explained in the Complete Methodology section.

3 Mathematical background

3.1 Orthogonal anisotropic procrustes analysis

The easiest example of OAPA is simultaneously finding the
optimal 3D rotation of one object, A1, with respect to a target
object, A2, while also finding the optimal scaling matrix, �.
The orthogonal Procrustes problem focuses on the optimal
rotation matrix, Q, out of the solution space of all rotation
matrices that minimizes the error between two objects rep-
resented as matrices: {A1, A2}. The term anisotropic come
from the diagonalization of �, which provides different
scaling factors for the columns of A1. In the case of tri-
axial accelerometer data, A(i=1,2) ∈ R

(mx3), with m rows
corresponding tom number of responses in three spatial coor-
dinates with respect to time. OAPA takes the following form:

F(Q,�) = ||A1�Q − A2||2F | QT Q = I3,

� =
⎡
⎣

λx 0 0
0 λy 0
0 0 λz

⎤
⎦ , (1)

where || • ||F refers to the Frobenius norm, and I3 is the
identity matrix in R

3. Methodologies to minimize F(Q,�)

require simultaneously optimizing for Q and � through the
use of block relaxation methods, two-block least squares,
also known as alternating least squares [1, 10].

If one assumes that the noise found in both A1 and A2

follows a normal random distribution, independent of spa-
tial direction, then the resulting residuals after the affine
transformation in (1) will also follow a normal random dis-
tribution. The results found in the Appendix exhibit the
underlying property that the sum of independent normal ran-
dom variables also have a normal distribution. In the case
where the original signal noise was not independent of chan-
nel direction, this leads to a trivariate normal distribution,
�1 ∼ N (μ,�), implying nonzero entries in the off-diagonal
of the covariance matrix. However, linear combinations of
multivariate normal random variables preserve the statistical

structure and still are multivariate normal random variables.
The normality of the residuals is useful in the context that a
mixture model can then be built with the assumption that the
inliers follow this distribution.

3.2 General orthogonal procrustes analysis

The term generalized for Procrustes analysis is used when
there are at least two objects, n ≥ 2, to be matched [11].
When there are just two objects in Procrustes analysis, this
implies matching of one object (matrix) onto a target object.
General Orthogonal Procrustes Analysis (GOPA) has the
goal of minimizing the quantity proportional to the sum of
squared norms of pairwise differences,

F(Q1, . . . , Qn) = 1

n

n∑
i=1

n∑
j=i+1

||Ai Qi − A j Q j ||2F . (2)

Equation (2) can be rewritten in an equivalent form seen in
(3), which is matching all transformed objects to their group
average, G [12]

F(Q1, . . . , Qn) = 1

n

n∑
i=1

||Ai Qi − G||2F ,

G = 1

n

n∑
i=1

Ai Qi . (3)

GOPA can be viewed as iterating over each object many
times and performing OPA with the target object as the
group average, G. GOPA requires multiple iterations over
all objects as convergence of G is dependent on all the sub-
sequent rotations, just as the convergence of Qi is dependent
on convergence of the G.

Implementations for any of the General Procrustes meth-
ods, GOPA andGOAPA (explained in the following section),
require multiple iterations over all the objects. One could
update the group average incrementally after estimating each
Qi or one could incrementally update the group average
after estimating all Q1, . . . , Qn ; the authors have chosen the
later approach. To denote how the group average changes
over each iteration, the notation, Gh , is used where, h,
denotes how many times the group average has been esti-
mated. At the very start of general Procrustes methods,
h = 1, the group average, G1, is not defined. The authors
arbitrarily initialize the group average as the first object,
G1 = A1.

Stopping criteria for the group average in this paper is
performed two ways. A tolerance on the error is defined
as εgroupTol . When the Frobenius norm between the cur-
rent group average and the subsequent group average is
less than the convergence criterion, the algorithm stops:
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||Gh − Gh−1||2F < εgroupTol . Occasionally, convergence of
the group average does not reach the tolerance and the error
becomes cyclical between iterations. A maximum number
of iterations is defined as nGroupI ter to avoid an infinite
loop.

For OPA andGOPAbased problems,� is simply the iden-
tity matrix inR

3. Themethod for solving Qi reduces to just a
singular value decomposition problem as shown in (4) where
T implies transpose,

B = AT
i G

B = USV T

Qi = VUT . (4)

For OPA, simply replace the G with the target object, such
as A2.

3.3 General orthogonal anisotropic procrustes
analysis

General Orthogonal Anisotropic Procrustes Analysis
(GOAPA) is similar toGOPAwith the goal ofminimizing the
quantity proportional to the sum of squared norms of pair-
wise differences but subject to some constraint to prevent the
trivial solution for all the anisotropic scalings being 0,

F(�1, . . . , �n, Q1, . . . , Qn)

= 1

n

n∑
i=1

n∑
j=i+1

||Ai�i Qi − A j� j Q j ||2F . (5)

Equation (5) can be rewritten in an equivalent problem,which
is matching all transformed objects to their average [12]:

F(�1, . . . , �n, Q1, . . . , Qn)

= 1

n

n∑
i=1

||Ai�i Qi − G||2F ,

G = 1

n

n∑
i=1

Ai�i Qi . (6)

The methodologies to minimize F(Q1, . . . , Qn, �1, . . . ,

�n) for GOAPA still require the use of block relaxation
methods used in OAPA, albeit with multiple iterations over
all objects. This is because the group average, G, is now
dependent on all the rotations and anisotropic scalings. Con-
straining GOAPA with �i = I3,∀ i = 1, . . . , n causes the
method to collapse to just GOPA.

4 Imparting robustness to procrustes
methods through random sample
consensus

All of the four Procrustes methods presented in Sect. 3 are
susceptible to outliers affecting their results. The approach
used in this paper implements a RANSAC framework to
alleviate the effects of outliers to any of the Procrustes Meth-
ods. The only difference in the implementation of RANSAC
with any of the Procrustes methods described above is purely
in how the residuals are calculated; all other aspects of the
RANSAC framework are identical.

4.1 Stopping criteria

RANSAC requires numerous subsampling from the initial
data, with the goal of getting at least one subsample that
is entirely outlier free. The purpose of this subsection is to
calculate how many times one ought to perform the sub-
sampling. The total number of subsamples required before
stopping RANSAC is denoted as,M . Calculating M requires
some initial worst-case estimate of the inlier fraction, γ , and
the number of subsamples or data points needed to generate
a Procrustes model, L .

L is the minimum, or close to minimum, number of data
points or samples required to estimate the model parame-
ters and is dependent on the problem space. For Procrustes
models, the model parameters would either be rotations or
rotations and scalings. In ordinary linear regression the min-
imum sample size is L = 2 in R

2 because only two data
points from the entire data set are necessary to define a
line. For all Procrustes models, general or not, anisotropic
or isotropic, the authors have found that L = 9 provides a
balance. There is a trade-off between good initial rotation or
scaling estimates from a subsample with more samples and a
higher value of M required to assure, with some confidence,
that the entire subsample is outlier free. For the Procrustes
problems presented here, the subsample, Di , would con-
tain nine time points from the data in R

3, forming a matrix,
Di ∈ R

9x3, Di ⊂ Ai .
The probability of obtaining a subsample of the data with-

out outliers is calculated by [13, 14]:

�(γ, L, M) = 1 − (1 − γ L)M . (7)

�(γ, L, M) is the probability that an outlier-free sample has
already been selected after M iterations. One must compute
the number of iterations, M , using a rough estimate about
the inlier fraction, γ , for the data set and stop only after
all M hypotheses are selected and tested. For the examples
provided herein, γ = 0.95, which implies that the authors
assume that at least 95% of the data are inliers. Ideally, one
wants �(γ, L, M) ≥ c, where c is the desired confidence,
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typically between 95 and 99%, of selecting a subsample that
contains only inliers. One can calculate M as:

M =
⌈

log (1 − c)

log (1 − γ L)

⌉
, (8)

where �•	 denotes the ceiling operator.
The other stopping criterion that must be addressed is for

LO-RANSAC. The stopping procedure can be defined when
a certain threshold or convergence criteria are met within
the local optimization. Experimentally, the authors found the
local optimization for the Procrustes methods described here
converges rather quickly by the second or third iteration as
the number of inliers within that Procrustesmodel converges.
The authors chose a LO-RANSAC stopping criterion after
three iterations, nLOSAC = 3, see Algorithm 3. However,
one could also stop using different criteria depending on the
problem.

4.2 Subsample from the entire data and generate
a Procrustes model consistent with this
subsample

After M is calculated, the algorithm follows by taking a sub-
sample of size, L , from the entire data set to form D(i, j),
where the first subscript, i , denotes fromwhich object and/or
matrix it was sampled from, and the second subscript denotes
the iteration, j , out of M iterations. One then calculates a
Procrustes model, either Q(i, j) or Q(i, j) and �(i, j), from
D(i, j) using the corresponding sample from the group aver-
age denoted G(h, j). Corresponding in this context implies
that the row indices r used to subsample Ai to form D(i, j) are
the same row indices used to subsample Gh to form G(h, j).
The row indices, r , are a random sample of the integers from
1 to m without repeating elements. This additional step is
necessitated by the fact that the Procrustes methods require
that the two objects have the same dimension.

4.3 Apply the procrustes model to the entire
data set

The next step is to apply the Procrustes model, either Q(i, j)

or Q(i, j) and�(i, j), to the entire data of its respective object,
Ai . For RANSAC applications described here, the residuals
are used to help rank the different Procrustes models created
after each subsample iteration. The residual matrix, �(i, j),
in the context of GOPA or GOAPA is defined as:

�i, j = Ai�(i, j)Q(i, j) − Gh, (9)

due to the inclusions of the group average, Gh . For GOPA,
�(i, j) = I3 ∀ i, j . If the group average is already converged,

Gh can be replaced by G which now becomes the target
object. Thus, the form of (9) is suitable for all the Procrustes
methods described above.

4.4 Rank the Procrustes models through some
heuristic

Many different heuristics are available for ranking the Pro-
crustes models generated by the RANSAC subsampling
procedure. For linear regression, a common method is based
on a threshold distance between a data point and the regressed
line [15]. If the data point is beyond a certain threshold, it
is considered an outlier, and if the data point is within the
threshold, it is considered an inlier. The linear model that
selects the least number of outliers, i.e., the greatest number
of inliers, is then chosen. The problem with this heuristic is
that it predicates on knowing what a good threshold value
is, which may change depending on the variance and mag-
nitude of the data. A robust heuristic would account for the
variance andmagnitude of the data, adjusting the threshold to
account for them. Parametric models for the residuals of the
data, such as utilizing the Gaussian distribution, have a ded-
icated term, σ , to account for this variance. The subsequent
sections will provide details on two different architectures
for modeling the residuals generated using Procrustes meth-
ods.

4.4.1 Maximum likelihood estimation for the residuals

It is assumed that the residuals from each spatial direction
are independent from each other and that the residuals are
independent in time. If these conditions are met, one can
decompose the residual matrix, �(i, j), for the i th object, for
the j th iteration, into residual vectors, ε(i, j,k) : k = {x, y, z},
for each of the three spatial directions,

� = [
εx , ε y, εz

]
. (10)

For the remainder of the MLE section, the i th object for the
j th iterationwill be dropped for brevity, but are still implicitly
there, until explicitly needed for clarity.

Due to the property that the residuals follow a normal
distribution, one could then use a MLE method where the
inliers for each spatial direction follow their respective nor-
mal distribution. However, in the case where outliers are
incorrectly identified, the Student’s t-distribution provides
a better alternative. Thus, an MLE method will be utilized
where the inliers for each spatial direction will be mod-
eled as a three-parameter Student’s t-distribution denoted as
ft ,
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ft (εk,l |μk, σk, νk)

= �(
νk+1
2 )

σk
√

νkπ �(
νk
2 )

(
νk + (

εk,l−μk
σk

)2

νk

)−
(

νk+1
2

)

: k = {x, y, z}. (11)

The t-distribution has been used in Bayesian analysis
because of its robustness to outliers [16–18]. Even when
the data is Gaussian, as the parameter ν approaches ∞, the
t-distribution converges to a Gaussian distribution. Model-
ing inliers within RANSAC has predominately been done
through a Gaussian distribution [9, 13, 14].

Ultimately, the residuals are expected to follow a normal
distribution when all the outliers are correctly identified. The
use of the Student’s t-distribution is purely used as an addi-
tional level of robustness against false negatives, true outliers
that incorrectly got classified as inliers. When the Procrustes
methods are OPA or OAPA, and the underlying noise is nor-
mally distributed, the choice of using of using t-distribution
compared to theGaussian distribution is justified above.Nev-
ertheless, with any of the general Procrustes methods the
choice of the inlier distribution may alter the underlying
group average and thus all the subsequent rotations. Due to
the iterative nature of estimating the group average, proving
the exact distribution of the residuals is challenging. Little to
no literature exists on these nuances, but the examples pro-
vided in the Sect. 5 provide evidence that the methodologies
and assumptions presented in this section are satisfactory.

In (11), εk,l refers to the l th time point out ofm within one
of the three spatial residual vectors. For the context of this
paper, it is assumed that the residuals for each spatial direc-
tion have a mean of 0, μk = 0, which reduces the parameter
space for the student’s t-distribution into just two variables:
σk , for the variance and νk , for the degrees of freedom. Thus,
the noncentral t-distribution is simplified to a standard t-
distribution.

Outliers follow a uniform distribution, fU , which is
defined as the reciprocal of the difference between the largest
and smallest residual error for a spatial direction,

fU (εk) = 1



: 
 = max(εk) − min(εk). (12)


 must be defined ahead of time for the mixture model
because the maximum likelihood for the uniform distribu-
tion does not provide the necessary smoothness required for
differentiation to solve for the support of the distribution [19].
The inlier and outlier probabilities are combined into the fol-
lowing mixture model:

Pr(εk,l |θk) = φk ft + (1 − φk) fU : 0 ≤ φk ≤ 1. (13)

φk represents the estimated fraction of inliers by the mixture
model for a spatial direction. If the data in all three spatial
directions follows the statistical model defined above, then
one expects φk � γ , the true inlier fraction, used to estimate
the RANSAC subsampling stopping criterion in Sect. 4.1.
For succinctness, θk = (σk, νk, φk) is used. Finally, the like-
lihood can be represented as,

L (θk |εk) =
m∏
l=1

Pr(εk,l |θk) (14)

which describes multiplying all the probabilities at every
point l up to the number of rows or observations, m.

Maximizing the log-likelihood of (14) provides esti-
mates for θk while providing a metric to which one can
compare one Procrustes model to all other M Procrustes
models. Optimization of the mixture model defined here is
relatively straightforward due to simplicity of fU (εk) and
utilizing a standard t-distribution compared to a noncentral
t-distribution. These modifications provide three equations
and three unknowns leading a well-posed optimization prob-
lem. The global metric, M, is the sum of the negative
log-likelihood from each mixture model representing one of
the three spatial directions,

M j = − log (L (θ x,y,z |εx , ε y, εz))
= − log (L (θ x |εx )) − log (L (θ y |ε y))

− log (L (θ z |εz)). (15)

The best fittingMLEmixturemodel for the residuals from
(15) has the lowest negative log-likelihood value while the
worst fit model has the largest negative log-likelihood value.
Thus, for every j out ofM iterations of theRANSACsubsam-
pling procedure, one verifies whether the newest Procrustes
model has a lower combined negative log-likelihood than the
previous one, i.e., M j < M j−1.

It is possible to represent the likelihood defined in (15)
as a joint, multivariate, distribution over the three spatial
directions instead of three separate, uncorrelated, distribu-
tions. A joint, multivariate, normal or t-distribution has the
benefit of including possible correlations among the spa-
tial direction, but it also brings additional complexities. The
mixture model utilizing any of the multivariate distributions
becomes rather cumbersome as it now requires a multi-
variate uniform distribution. Optimizing univariate mixture
models provide sufficient challenges on their own, let alone
multivariate mixture models. Computational speed is also
important as numerous MLE optimizations occur for each
subsample within the RANSAC framework, which further
inhibits using a multivariate mixture problem. Therefore,
the authors chose to analyze the residuals for each spatial
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direction as their own distinct MLE mixture problem until
summing their negative log-likelihood at the very end.

4.4.2 Nonparametric (order statistics) for the residuals

When the residuals of (10) cannot be adequately modeled by
the mixture model of (13), a nonparametric approach can be
taken. From the authors’ experience, a nonparametric model
works well on accelerometer data originating from a shaker
table driven by a sinusoidal input. A shaker table is a table
that is utilized for general vibration testing of components to
vibration testing of an entire test body. The residuals from this
type of data were multi-modal distributed making it difficult
to fit any elementary mixture model to them.

The ranking metric for a nonparametric inlier model was
chosen as the absolute value, denoted with vertical bars | • |,
of the median of the residuals for each spatial direction. The
global metric is then the sum of absolute value of each direc-
tion’s median residuals,

M j = |median(εx )| + |median(ε y)| + |median(εz)|. (16)

Intuitively, better Procrustes models ought to return smaller
residuals, and the median should be more robust to outliers
than the mean. In a similar manner, the median of the resid-
uals has been used to help model the variance of parametric
models [20]. The assumption with this approach is that over
half the time points are inliers. As previously mentioned, for
every j out of M iterations of the RANSAC subsampling
procedure, one verifies whether the newest Procrustes model
is a better than the previous one.

4.5 Classification of inliers and outliers—use the
residuals

In the previous section, two heuristics were provided for
ranking RANSAC models that utilized the residuals from a
Procrustes model. This section describes how one can utilize
the residuals to classify whether a single time point is either
an inlier or an outlier. Checking all the time points for each
object will result in a logical vector denoting inliers as 1, true,
and outliers as 0, false. The logical vector constructed by the
inliers and outliers will be utilized in Section 4.7 and its cor-
responding LO-RANSAC algorithm for local optimization.

A quick discussion about joint confidence statements
is required to account for controlling multiple hypotheses.
When the residuals are statistically independent, this sur-
mounts to solving for p given the probability of a joint
confidence statement denoted as pJ [21]:

pJ = p3. (17)

For example, if one desires a joint confidence of 95% that all
three spatial directions are inliers, then pJ = 0.95; thus, this
will require p = 0.983 because (0.983)3 = 0.95. The joint
significance level,αJ , is defined to correct for the family-wise
error rate described above, αJ = 1− pJ . The adjustment for
multiple hypotheses is required because the framework above
treats modeling the residuals independently from each other.

4.5.1 Classification within the MLE framework

Inlier and outliers for each channel direction are then clas-
sified using the quantile function, Qn(•). For the student’s
t-distribution, this is given by:

ρi, j,k,l(εi, j,k,l) =
{
1 if F(αJ , εi, j,k,l)

0 otherwise
, (18)

where F(αJ , εi, j,k,l) is defined as:

F(αJ , εi, j,k,l)

= Qn(αJ |θ i, j,k) < ε(i, j,k,l) < Qn(1 − αJ |θ i, j,k).

Inliers are classified globally when a single data point has
inliers in all three spatial directions by,

ρ(i, j,l) =
{
1 if ρ(i, j,x,l) ∧ ρ(i, j,y,l) ∧ ρ(i, j,z,l)

0 otherwise
(19)

with ∧ denoting the AND operator [22]. Utilizing (19), the
dimension of ρ(i, j) over all data points, l, and over all the
spatial directions, is simply anm x 1 vector of ones and zeros.

4.5.2 Classification within the nonparametric framework

For the nonparametric architecture, outliers and inliers are
based on sorting the absolute value of the residuals for
each spatial direction into their order statistics. The order
is denoted as an individual subscript with a parenthesis,
X(1), . . . , X(m) [23].An individual subscriptwith a parenthe-
sis, X(i), is not to be confusedwithmultiple subscripts, Xi, j,k ,
for which the later notation is used to denote the use of multi-
ple subscripts. When using the order statistic notation along
with additional subscripts, Xi, j,k,(l), no additional parenthe-
sis around all the subscripts will be used to avoid potential
confusion. As is tradition, the first-order statistic is always
the minimum of the sample, X(1) = min (|X1, . . . , Xm |),
while the last order statistic is the largest of the sample,
X(m) = max (|X1, . . . , Xm |). In the rare case of ties for dou-
ble precision values, a tied ranking scheme is implemented.
For example, if counting from smallest to largest, there exists
two identical values, which happen to be the second and third
values, then they both get the rank of 2.5 (average of 2 and
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3). The ordinal index ranking threshold, δ, can be calculated
as:

δ = �mγ �, (20)

where the floor operator is denoted as �•�.
Outliers for each channel direction, k ∈ {x, y, z}, are then

classified using order statistic by:

ρi, j,k,l(Xi, j,k,(l)) =
{
1 if Xi, j,k,(l) < Xi, j,k,(δ)

0 otherwise
. (21)

Inliers are classified globally when a single data point has
inliers in all three spatial directions using (19). There are two
main benefits of using a nonparametric model compared to a
parametricmodel in RANSAC.One is the speed compared to
parametric models that require extensive minimizing of the
negative log-likelihoods M times for each of the three spatial
directions. This is in contrast to simply sorting and ranking
numbers M times for each of the three spatial directions.
Two, the robustness of the nonparametric methods allows it
to generalize regardless of underlying noise distribution.

The biggest drawback for nonparametric methods com-
pared to parametric methods, in this context, is that the
number of inliers for all objects will never be greater than
the estimated inlier fraction, γ . If the real inlier fraction
is much larger than the estimate, a lot of data is excluded
from the calculations to estimate the scaling or rotations.
If one overestimates the inlier fraction, the nonparametric
approach does not adapt which would imply some outliers
are now included in the estimates. Even if one guessed γ cor-
rectly and only one object has an inlier fraction of 0.5 while
the remaining objects have a much higher inlier fraction of
0.99, the nonparametric method will still impose that all the
remaining objects have an inlier fraction of 0.5. To avoid this,
it would possible to assign an estimated inlier fraction for
every object,γi ,within the nonparametric approach, but this
provides additional complexity as each object now requires a
different stopping criterion, Mi . Parametric models are more
flexible in the context of this paper because the inlier fraction
is estimated for every object compared to globally imposed
over all objects.

4.6 Imparting robustness to the group average

If the parametric or nonparametric architectures above pro-
vide false negatives for the outliers, the subsequent rotations
will be affected. The formation of the group average utilizes
each object and its respective rotation. If the rotations are
affected by outliers, this could inevitably cause the group
average to be contaminated. To alleviate this problem, the
group average is calculated by using the spatial median
instead of the mean [24]. Using the median compared to
the mean has precedence from Crosilla and Beinat who used
the median to form the initial centroid in their Iterative For-
ward Search approach for robust Procrustes analysis [25].
In this paper, the authors use the Weiszfeld method for cal-
culating the spatial median for the group average [26]. The
spatial median is calculated for every time point using the
corresponding time point in R

3 from every object.
The group average implemented here utilizes all data from

each object when applying the spatial median. This contrasts
with utilizing only inliers from each object. Forming the
group average using only the inliers adds significant com-
plexity to the framework. It is possible that all the objects
classify a single time point as an outlier. Similarly, for a
single time point to not have enough inliers to form the spa-
tial median. Both issues must be addressed further down the
algorithm pipeline as the group average now has a different
dimension than the objects. Calculating the group average
using all the data is often justified when the data set has
numerous objects and amoderate fraction of inliers, as shown
in the examples provided here.

4.7 LO-RANSAC

Using a Procrustes model from the initial subsampled data
from RANSAC may not yield an optimal Procrustes model,
particularly if the subsampled data has inliers that are not
ideally representative of the entire data. Local optimization
of the Procrustes models, known as LO-RANSAC is then
implemented after the initial RANSAC steps. The purpose of
the local optimization is to refit the Procrustes model to only
inliers and iterate until either the Procrustes model converges
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and/or the number of inliers converges. For the Procrustes
models in this paper, the convergences stated above occurs
within three iterations, hence why the stopping criterion for
the LO-RANSAC algorithm is nLOSAC = 3.

The number of top Procrustes models to further refine
using LO-RANSAC is denoted by the variable K . The
LO-RANSAC implementation used here uses, K = 10.
Lowercase, k, inAlgorithm3, is the kth locally optimizedPro-
crustesmodel out of K .M are the K globalmetrics fromeach
Procrustes model that has completed the local optimization
procedure. The locally optimized Procrustes model with the
minimum global metric,Mi , inM, is the final and best Pro-
crustes model. The final Procrustes model thus provides the
best Qi or Qi and �i , depending on the Procrustes method.

In summary, each individual Procrustes model from the
top ten is locally optimized and the best Procrustes model
after local optimization is chosen. Local optimization signif-
icantly improves the accuracy of Procrustes models because
of the vast increase in inlier data compared to theminimumor
close tominimumsample size, L , used in the initialRANSAC
algorithm.

4.8 Complete methodology

One might expect a generalization of the statistical prop-
erties of OAPA to apply to GOAPA. However, the authors
have found issues with coupling a MLE architecture within
a RANSAC framework for GOAPA. The additional com-
plexity of solving for the scaling factors is the source of the
problem. The group average, rotations, and scaling matrices
are iterated until convergence. The residuals from the MLE
models are affected by this iteration process. Unfortunately,
the authors have found that fitting on these “transient” resid-
uals leads to selecting false MLE models, which eventually
yields an incorrect group average. This problem is not present
when coupling aMLEarchitecturewithin aRANSAC frame-
work for GOPA, which uses unity scaling factors.

To work around these issues, GOPA is implemented first
using aMLE or nonparametric architecture within RANSAC
and LO-RANSAC. The group average, Gh , is updated after
iterating through all the objects, A1, ..., An,, before return-
ing to another loop over all the objects, Algorithm 2. This
continues until the group average, Gh , has met either the
convergence criterion or maximum iteration threshold. The
authors have found that a tolerance on the group average con-
vergence of εgroupTol = 1e − 6 works well. The maximum
number of iterations is defined as nGroupI ter = 10. Exper-
imentally, a value of 10 seems to provide enough iterations
for either the convergence criterion to be met or to avoid an
infinite loop. TheGOPAalgorithm returns a converged group
average, G, which now can be utilized in the OAPA algo-
rithm. In the OAPA algorithm, a final pass over all the objects
is performed utilizing the converged group average as the tar-
get object, Algorithm 4. The only assumption of doingOAPA
after GOPA is that most of the objects only require unity scal-
ing, and the minority will require anisotropic scaling. The
OAPA algorithm returns the final rotations and scalings for
all the objects. The entire framework is succinctly provided
in algorithm 1.

Algorithm 1 - Final Robust General Procrustes Framework
with Anisotropic Scaling
1: G = GOPA(A1, . . . , An) � GOPA Algorithm 2
2: (�1, . . . , �n, Q1, . . . , Qn) = OAPA(G) � OAPA

Algorithm 4
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Algorithm 2 - GOPA Algorithm using a MLE/Nonparametric architecture and RANSAC Framework. The randperm
function returns a vector r containing L unique integers selected randomly from 1 to m without repeating elements. The
vector r is used as indices to randomly subsample the data and corresponding group average. The spatialMedian
function returns the spatial median of all the rotated objects (Ai Qi , . . . , AnQn) utilizing the Weiszfeld method described in
section 4.6. The global metrics and inlier masks on line 13 of the algorithm are needed for local optimization, Algorithm 3.
Require: L ≥ 1, 0 ≤ γ ≤ 1, n ≥ 2, M ≥ 1
1: Gh = A1, L = 9, K = 10,
2: nGroupI ter = 10, εgroupTol = 1e − 6
3: for h = 1:nGroupI ter do � Iterate for Group Average Convergence
4: for i = 1:n do � Iterate Over All Objects
5: for j = 1:M do � Iterate Through RANSAC Subsampling

6: r = randperm(1 : m, L) � Subsample Indices

7: D(i, j) = Ai [r ], G(h, j) = Gh[r ] � Subsample Data

8: Q(i, j) = argmin
R

||D(i, j)R − G(h, j)||2F � OPA Problem

9: �(i, j) = Ai Q(i, j) − Gh � Calculate Residuals

10: M(i, j) = M (
�(i, j)

) � Calculate Global Metric: (15) or (16)

11: ρ(i, j) = ρ
(
�(i, j)

) � Calculate Inlier Mask: (19) or (21)

12: end for

13: Qi = LO-RANSAC(M(i, j), . . . ,M(i,M), ρ(i, j), . . . , ρ(i,M)) � Local Optimization

14: end for

15: Gh = spatialMedian(Ai Qi , . . . , AnQn) � Qi , . . . , Qn from LO-RANSAC

16: if ||Gh − Gh−1||2F < εgroupTol then

17: G = Gh � Group Average after convergence

18: Break

19: end if

20: end for

21: Return: G � Converged Group Average, G
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Algorithm 3 - LO-RANSAC Algorithm.M(i, j,...,M) a is a vector of global metrics from all M iterations, for the i th object,
within the RANSAC subsampling routine. The minK function returns the K smallest global metrics for a particular object.
The K smallest global metrics are directly associated with the top K Procrustes models. The inlier mask associated with each
of the K smallest global metrics is utilized to resample the data at the start of their local optimization procedure. This contrast
with the small, randomized, sampling procedure in step 6 of Algorithm 2. The inlier mask, ρi,i i (�i,i i ), for a particular object
and associated Procrustes model is updated in the LO-RANSAC procedure; as the number of identified inliers increases after
each iteration, the estimates for the rotation or scalings subsequently improve due to the increased amount of data. Lowercase,
k, is the kth locally optimized Procrustes model out of K . M are the K global metrics from each Procrustes model that has
completed the local optimization procedure. The locally optimized Procrustes model with the minimum global metric, Mi ,
in M, is the final and best Procrustes model. The final Procrustes model thus provides the best Qi or Qi and �i , depending
on the Procrustes method.
1: � Begin Local Procrustes Model Optimization for the i th Object

2: nLOSAC = 3, k = 1
3: if M(i, j) in minK

(M(i, j,...,M), K
)
then � Find Top K Procrustes Models

4: ρ(i,0) = ρi, j (�i, j ) � Inlier Mask from Outer Algorithm
5: for i i = 1:nLOSAC do
6: ρtemp = ρ(i,i i−1)(�i,i i−1) � Previous Inlier Mask: (19) or (21)

7: D(i,i i) = Ai [ρtemp], G(h,i i) = Gh[ρtemp] � Inlier-Data

8: if OPA then � For GOPA Algorithm, Algorithm 2

9: Q(i,i i) = argmin
R

||D(i,i i)R − G(h,i i)||2F
10: �(i,i i) = Ai Q(i,i i) − Gh � Calculate Residuals

11: else � For OAPA Algorithm, Algorithm 4

12: Q(i,i i), �(i,i i) = argmin
R,S

||D(i,i i)SR − G(h,i i)||2F
13: �(i,i i) = Ai�(i,i i)Q(i,i i) − Gh � Calculate Residuals

14: end if

15: M(i,i i) = M (
�(i,i i)

) � Calculate Global Metric: (15) or (16)

16: ρ(i,i i) = ρ
(
�(i,i i)

) � Calculate Inlier Mask: (19) or (21)

17: end for

18: Mk = M(i,nLOSAC) � Store Global Metrics After K Local Optimizations

19: k = k + 1

20: end if

21: Mi = min(M) � Best Procrustes Model has the Minimum Mi

22: if OPA then

23: Return: Qi � Rotations associated withMi

24: else

25: Return: Qi and �i � Rotations and Scaling associated withMi

26: end if
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Algorithm 4 - Final OAPA algorithm using OAPA with
the Group Average as the target object. Utilizing a
MLE/Nonparametric architecture and RANSAC Frame-
work.
1: for i = 1:n do � Iterate Over All Objects
2: for j = 1:M do � Iterate Through RANSAC

Subsampling

3: r = randperm(1 : m, L) � Subsample Indices

4: D(i, j) = Ai [r ], G j = G[r ] � Subsample Data

5: Q(i, j), �(i, j) = argmin
R,S

||D(i, j)SR − G j ||2F �
OAPA Problem

6: �i, j = Ai�(i, j)Q(i, j) − G � Calculate Residuals

7: Mi, j = M(�i, j ) � Calculate Global Metric: (15)

or (16)

8: ρi, j = ρ(�i, j ) � Calculate Inlier Mask: (19) or

(21)

9: end for

10: Qi ,�i =LO-RANSAC
(M(i, j), . . . ,M(i,M), ρ(i, j),

. . . , ρ(i,M)

) � Local Optimization

11: end for

12: Return: (�1, . . . , �n, Q1, . . . , Qn) � Final Rotations

and Anisotropic Scalings

5 Results

5.1 Synthetic data example

To illustrate the effectiveness of the methodology presented
here, a challenging synthetic data set will be used. Five
objects, representing five accelerometers, will need to be
robustly and optimally rotated and scaled. Each object repre-
sents a triaxial accelerometer, where the columns represent
the triaxial acceleration in R

3 and the rows represent a
response in time. The inlier fraction of the response rep-
resents rigid body motion experienced by all members of
the population. The fourth accelerometer will be anisotropi-
cally scaled, while the fifth accelerometer will have outliers
consisting of half of the entire time series. The underlying
time domain ranges from 0 to 4π with a discrete step size of
�t = 0.01, t = [0, 4π ]. Three trigonometric functions are
applied to the time domain, which forms the columns of the
matrix, Atrue ∈ R

1257x3, defined as:

Atrue = [sin(3t), 2 cos(2t), 3 cos(t)]. (22)

The data are generated by applying the inverse of a unique
random rotation, Ri , to each of the true accelerometer data.
Randomly generated noise is added to each of them as
defined by �. The fourth accelerometer was anisotropically
scaled after the rotation, diag(�−1

4 ) = [2, 4, 6]. The fifth
accelerometer is further perturbed by setting the first half
of the signal in all spatial directions to a constant one, with
noise, to emulate faulty data or outliers. The generate data
can succinctly be written as:

Ai = AtrueR
−1
i + �i : i = 1, . . . , 5, i �= 4

A4 = AtrueR
−1
4 �−1

4 + �4

� ∼ N
⎛
⎝0,� =

⎡
⎣
0.012 0 0
0 0.022 0
0 0 0.032

⎤
⎦

⎞
⎠ . (23)

For each channel direction, an individual confidence value
of p = 0.983 was chosen to provide a joint confidence value
of 95%, pJ = 0.95.Thefigures in this section refer to a single
instance of a simulated data set. The synthetic data example
has been purposely curated with various issues that are more
severe than most real data sets. The proceeding subsection
will highlight a real data example coming from a series of
shock experiments.

A robust methodology for the optimal alignment of this
high-dimensional data set should return the optimal rota-
tions, Qi , for all five objects while excluding the faulty
signal content of the first half of A5. The methodology
should also return the correct anisotropic scaling for A4, i.e.,
diag(�4) = [ 12 , 1

4 ,
1
6 ].

The first row of Fig. 1 exhibits the true signal compris-
ing of the trigonometric functions in the global coordinate
system. The second row exhibits the original function now
in arbitrary coordinate systems with perturbations. Figure2,
first row, demonstrates the efficacy of the methodology with
all the objects correctly rotated to match the true signal, even
if A1, A2, and A3 are difficult to see behind A4 and A5.
Figure2, second row, highlights the accuracy of the method-
ology in estimating the group average even in the presence
of anisotropy and outliers. Figure3 provides additional infor-
mationonwhat inlierswere selected from A5. The true outlier
fraction was 0.5, and the estimated inlier fraction for A5 is
shown in Table 1, with a value of γ̂ = 0.496. More impor-
tantly, the true positive outliers were all selected with only a
small proportion of false positives being selected because of
the underlying noise. One interesting observation is the indi-
vidual channel direction outlier fractions were much higher
than 0.5, but the joint condition of all three spatial direc-
tions requiring to be inliers corrected for this. The rotational
errors are all less than a Frobenius norm of 1e − 4, Table 1.
The anisotropic scaling estimates are sufficiently accurate
with an error of less than 1e − 2.
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Fig. 1 Atrue with A1, . . . , A5 generated from using (23). A4, purple
line with squares, has anisotropic scaling. A5, green line with hollow
circles, has an almost constant value for the first half the signal that rep-

resents a corrupt signal with noise. The second half of the signal, light
blue with hollow circles, represents the remaining uncorrupt portion
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Fig. 2 Accelerometers A1, . . . , A5 rotated into the global coordinate
system using the optimal rotation matrices from running GOPA and
OAPA with MLE within a RANSAC framework. A4 on the first row
also uses the correct anisotropic scaling to correct the signal. A5 on the
first row correctly identifies that the first half of the signal is corrupt and

excludes that portion with the exclusion of the purple signal content
from Fig. 1 The second row demonstrates how well the group average
matches the ground truth even in the presence of outliers and incorrectly
scaled data
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Table 1 Results from synthetic data example

() Ordinal
object #

Local
direction

Rotational error
Frobenius norm

Spatial direction
inlier fraction

Inlier fraction Estimated
scale factor

Actual scale
factor

()

1 X 1.83e−5 0.975 0.936 1.016 1

Y 0.981 1.000 1

Z 0.978 0.997 1

2 X 6.81e−6 0.979 0.947 1.005 1

Y 0.989 1.012 1

Z 0.975 0.999 1

3 X 7.38e−5 0.979 0.925 1.014 1

Y 0.967 0.999 1

Z 0.973 0.998 1

4 X 1.83e−5 0.979 0.947 0.501 0.500

Y 0.982 0.254 0.250

Z 0.986 0.169 0.166

5 X 1.07e−5 0.811 0.496 1.019 1

Y 0.846 1.020 1

Z 0.616 0.999 1
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Fig. 3 Thefirst rowexhibits A5 in its arbitrary coordinate system,which
needs to be rotated while also identifying which portion of the signal
contains inliers and outliers. The second row exhibits the results of

the methodology presented here by correctly identifying the inliers and
outliers while robustly and optimally solving for the optimal rotation
matrix
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5.2 Shock data

To further illustrate the effectiveness and utility of the
methodology, a real data set from a series of shock exper-
iments are used. Shock data is particularly challenging for
traditional frequency-domain assessments of orientations
that rely on signal stationarity. The experiment consisted of
a test body instrumented with eleven triaxial accelerometers,
many of which are located within the test body. Only one
of the eleven accelerometers was aligned with the coordi-
nate system of the test body, known as the global coordinate
system, while the remaining ten accelerometers were not.
Physical impediments such as complex internal geometry can
inhibit an accelerometer in aligningwith the test body thereby
resulting in a local coordinate system that differs from the
global coordinate system. In the example provided, each
channel number corresponds to the same accelerometer num-
ber. Thus, channel number 1 refers to accelerometer/object
1.

The test body was ejected from an ejection unit 30 times.
The shock imposed onto the test body from the ejection unit
was recorded before it reached the ground using a sample rate
of 32 kHz.All the ejection shock events from a single channel
number and spatial directionwere then concatenated into one
time series. Post-processing of the data included resampling
the data down to 167 Hz followed by 40 Hz low pass filter.
Resampling the data to a lower sample rate was performed
in order to reduce the size of the data set. The final low
pass filter step was designed to isolate rigid body responses
from the test body. Figure4 provides an example of the final
preprocessed data from accelerometer number two.

Figure 5 provides the inlier results from theMLE architec-
ture and RANSAC framework described above. All channels
were estimated to have an inlier fraction of greater than 0.85;
therefore, the MLE mixture model does an adequate job of
selecting inliers from a real data set. The authors were not
aware of any significant outliers from the data set. Thus, the
outliers selected from the model must be noise or responses
found at either tail of the fitted t-distribution.

One way to compare how the expected rotation matrices,
Q̌i , listed in the part drawings, compares to the estimated
rotation matrices, Q̂i , provided by the methodology above,
is to calculate the angle, ϑ , between each row of these matri-
ces for every accelerometer. Calculating this vector angular
deviation, ϑ , is shown below:

ϑ(i,i i) = atan2
(
||(q̌(i,i i) × q̂(i,i i))||2, q̌(i,i i) · q̂(i,i i)

)

: i ∈ {1, . . . , n}, i i ∈ {1, 2, 3}. (24)

The vector, q̌, denotes a row vector from an expected
rotation matrix, Q̌i , and q̂ denotes a row vector from an
estimated rotation matrix, Q̂i . The first subscript denotes the

i th accelerometer and the second subscript denotes using the
i i th row from either the the expected or estimated rotation
matrices. The first, second, and third row from the rotation
matrices can be related to the X, Y, and Z spatial directions,
respectively. The Euclidean norm is denoted as || • ||2 and
atan2(•) refers to the 2-argument arctangent operator.

Figure 6 provides a bar plot ofϑ for every channel number
and their respective spatial/channel direction. For the major-
ity of the channels, the vector angular deviation between the
rotation matrices are very low, usually just a few degrees.
However, channel number 11 shows a significant deviation.
Channel 11, denoting accelerometer 11, suggests that there
are significant alignment issueswith channel directionsXand
Z due to nearly a 90◦ deviation. The issue becomes apparent
when visually inspecting the expected and estimated rota-
tion matrices for channel 11. The estimated rotation can
be approximately achieved from a series of linear trans-
formations to the original expected rotation matrix. One,
multiplying the first row of the expected rotation matrix by
a negative one. Two, swapping the newly modified first row
with the third row. These transformations suggest that the
methodology has found two issues during the data acquisi-
tion test setup. Firstly, a polarity issue with the X channel
direction requiring a sign change. Secondly, it appears that
the X and Z channel directions were swapped during acqui-
sition. The work presented here has identified both issues
automatically allowing the analyst to easily make a posttest
correction.

Each triaxial accelerometer has three cables, one for each
spatial direction. In the example provided here, a total of 33
cables, three from each of the eleven accelerometers must
be wired correctly into the data acquisition (DAQ) system.
It is common for highly instrumented test bodies to con-
tain dozens of accelerometers. Human error can often creep
in with the most common example being channel swaps.
For example, the DAQ is configured such that a particular
accelerometer is in their local X, Y, and Z spatial directions.
However, the test engineering has miswired the DAQ such
that the spatial directions are now Z, Y, and X. Consequently,
the data from the X and Z spatial directions are swapped,
which was the very problem that was identified above.

Another way to compare how Q̌i compares to Q̂i is
to calculate the rotation required to align Q̌i to Q̂i . The
methodology to perform this rotation is actually OPA.
Decomposition of this meta rotationmatrix provided byOPA
into its individual Euler angles (yaw, pitch, and roll) allows
for a different interpretation. Calculating the Euler angles
on the resulting matrix from matrix subtraction, Q̌i − Q̂i ,
often does not work because the resulting matrix may have
a rank less than 3. The absolute value of the Euler angles for
each accelerometer is provided in Fig. 7. The Euler interpre-
tation provides a very similar result compared to the vector
interpretation with channels numbers 1 through 10 having
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Fig. 4 Concatenated shock data
from triaxial accelerometer 2.
The rows of the figure denote
the data collected from each of
the three spatial directions: X, Y,
and Z, respectively. Each spike
corresponds to a single ejection
event. The local orientation of
accelerometer 2 is the only
accelerometer that is also in the
orientation of the test body
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Fig. 5 Estimated inlier fraction
for all 11 triaxial accelerometers
using the MLE mixture model
and RANSAC framework
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angular deviations within few degrees with channel 11 also
having a high angular deviation. However, with the Euler
interpretation, it is less clear how the X and Z channels are
swapped.

Ideally, the estimated group average utilizing various sta-
tistical architectures within RANSAC frameworks would be
similar, provided that all the assumptions in each architec-
ture were met. The group average estimated from a MLE
mixture architecture will be denoted as GMLE and the group
average from a nonparametric architecture will be denoted

as GNonPara. Calculating the alignment between the two
group averages is performed using OPA, the meta rotation
matrix provided byOPA is once again decomposed intoEuler
angles. The notation GNonPara −→ GMLE denotes that object
on the right hand side of the arrow is the target object, GMLE

in this example. The Euler angles shown in Fig. 8 demon-
strate that the two group averages from different statistical
architectures align incredibly close to each other. Irrespective
of which group average is considered the target object, the
angular discrepancies are less than a degree. A salient result
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Fig. 6 Estimated angular
deviations, ϑ , using the row
vectors from the expected and
estimated rotation matrices
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Fig. 7 Estimated angular
deviations between expected
and estimated orientations using
Euler angles
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is how the angular discrepancies for the X and Y spatial
directions are an order of magnitude larger than the angular
discrepancies for the Z spatial direction.

A hypothesis for why there exists a magnitude difference
in the angular discrepancies for the Z spatial direction is
due to the signal content of the data set. The shock data set
has significantly more excitation in the Z spatial direction
in the coordinate system of the test body due to the ejection
motion directed along this spatial direction. This is evident
in Fig. 4 with the amplitude of the acceleration content in
the Z spatial direction being roughly an order of magnitude
larger than that of the X and Y spatial directions. Channel 2
is a convenient triaxial accelerometer to reference because it
is the only accelerometer that is supposed to be aligned with
the test body, i.e., its rotation matrix to align with the test
body is simply the identity matrix.

To further illustrate the concept above, a signal-to-noise
ratio (SNR) metric, z, will be defined uniquely for this prob-

lem space. The SNR metric for each accelerometer, Ai , is
defined as a row vector representing the SNR ratio for each
of the three spatial directions, zi ∈ R

(1x3). The data from
each accelerometer can be represented as three column vec-
tors denoted as a(i,k) : k = {x, y, z} and shown below:

Ai = [
a(i,x), a(i,y), a(i,z)

]
(25)

zi =
[
RMS(a(i,x))

RMS(εi,x )
,
RMS(a(i,y))

RMS(εi,y)
,
RMS(a(i,z))

RMS(εi,z)

]

: i ∈ {1, . . . , n}. (26)

The SNR metric shown in (26) utilizes the RMS of the
residuals defined in Sect. 4 as the noise component. Figure9
provides the SNR metric for all of the channels and spatial
directions; the figure also provides supplementary evidence
that the underlying group average is dependent on the signal
content of the underlying data. The SNR metric for the Z
spatial direction is roughly eight times the SNR metric for
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Uncertainty in Group Average
MLE vs Nonparametric RANSAC Framework
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Fig. 8 Uncertainty in the alignment of the group average, G, from two
different RANSAC frameworks: MLE mixture model, GMLE, and a
nonparametric order-based statistics model, GNonPara. Calculating the
alignment between the two group averages is performed using OPA.
The notation GNonPara −→ GMLE denotes that the object on the right
hand side of the arrow is the target object, GMLE. Comparing the align-
ment of the two group averages provides two choices as to which group
average is considered the target object when performing OPA. Regard-

less of which group average is the target, the rotation matrix, provided
by OPA, is then decomposed into Euler angles. The resulting rotation
matrix when swapping which group average is considered the target
object can be trivially calculated by taking the inverse of the original
rotation matrix. Although the rotation matrices are linked by a linear
transformation, decomposing thematrices results in asymmetrical Euler
angles

the remaining spatial directions. The imbalance in the SNR
metric between spatial directions explains why the uncer-
tainty in the group average along the Z spatial direction is an
order of magnitude less than the other spatial directions. This
result aligns with one’s intuition that the underlying rotation
estimates are dependent on the quality and signal content
of the data set. The authors have noticed that data sets with
roughly an equal SNR metric between all spatial directions
provide a similar magnitude of uncertainties across all the
spatial directions for the group average. Such data sets occur
during single-axis, sinusoidal, vibration testing. This is when
a test body is subjected to a single-axis excitation and then
is rotated and re-mounted to test the subsequent orthogonal
axes. Therefore, the accelerometers record roughly equal sig-
nal content from all the spatial directions over the course of
the entire test series.

Uncertainties in the group averagewill propagate to uncer-
tainties in the final rotationmatrices for each of the individual
channel numbers. Figure10 compares how the absolute Euler

angular differs between the various architectures. Formost of
the channel numbers, the angular differences are only a few
degrees. The angular differences between the various archi-
tectures for the Z spatial direction are typically much smaller
than the other spatial directions, most likely due to having a
vastly higher SNR metric along this spatial direction.

Finally, the SNR metric also provides a method in assess-
ing the validity of the anisotropic scaling estimates. Tables 2
and 3 provide tabular results of estimated anisotropic scaling
values for each channel number and their spatial direction.
From analyzing the time series data, the authors expect that
the anisotropic scalings for all the channels should be approx-
imately one for unity scaling. However, both architectures
estimated a scaling factor of 0.37 for channel 6 along the Y
spatial direction. The nonparametric architecture estimated
a scaling value of 0.633 for channel 4 and scaling value of
0.542 for channel 11 both along the Y spatial directions. The
values are shown in bold in Tables 2 and 3. The scaling val-
ues for the Z spatial direction exhibit less variance which is
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Fig. 9 SNR of the channel
numbers and their spatial
directions. The SNR for the Z
spatial direction is considerably
larger than the remaining spatial
directions due to the shock event
occurring in the Z direction of
the test body’s coordinate
system. See Fig. 4 for an
example of shock data collected
from channel/accelerometer 2
which shares the same
coordinate system as the test
body’s
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Fig. 10 Absolute values of the
Euler angles between the
estimated rotation matrices
utilizing two different RANSAC
frameworks: MLE mixture
model and a nonparametric
order-based statistics model.
Notice how the uncertainties in
the estimated rotation matrices
in the Z direction are much
lower than the other spatial
directions for most of the
channels. These results are
likely due to the higher SNR in
the Z direction, see Fig. 9
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hypothesized to be attributed to the higher SNR metric. In
general, the anisotropic scaling estimates exhibit more vari-
ability than the rotational estimates. The authors recommend
that the scaling estimates be used to help guide an analyst for
further analysis.

One of the assumptions made for the MLE architecture
was that the residuals are independent among the spatial
directions. The inlier fraction for each channel number in
Table 2 is less than the assumed 95% joint value. This could
imply that the residuals are correlated along their spatial
direction; although it appears that the effects on the final
rotations and scalings are benign. The inlier fraction for each
spatial direction in Table 3 are all 98.3% with the expected
joint inlier fractions for each channel number to be around
95%. The actual joint inlier fraction was between 96 and
97%. The difference in the estimated inlier percentages is
attributed to the different statistical architectures. Both statis-
tical architectures provide similar rotation estimates sharing

the same magnitude on the Frobenius norm. The rotational
error associated with channel 11 is consistent between both
of the statistical architectures with a error that is 2–4 times
greater in magnitude compared to the error from all of the
other channel numbers.

6 Conclusion

We have presented how to implement various statistical
architectures with a RANSAC framework in the context of
Procrustes-type problems. The methodology presented here
suggests how to incorporate robust techniques of RANSAC
and LO-RANSAC, while using the spatial median, within
various Procrustes-type problems. Utilizing a GOPA algo-
rithm followed by a OAPA algorithm allows for the group
average to be robustly calculated while the final algorithm
provides optimal rotation and scalings matrices. The efficacy
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Table 2 Results from shock data using the MLE architecture with a RANSAC framework

() Channel # Local direction Rotational error
Frobenius norm

Spatial direction
Inlier fraction

Inlier fraction Estimated scale
factor

()

1 X 7.67e−3 0.981 0.879 0.930

Y 0.981 0.866

Z 0.882 1.082

2 X 4.59e−3 0.972 0.876 0.921

Y 0.982 0.843

Z 0.880 1.016

3 X 2.38e−3 0.975 0.936 0.939

Y 0.957 0.941

Z 0.954 0.988

4 X 6.17e−4 0.960 0.891 1.006

Y 0.918 1.011

Z 0.900 1.360

5 X 2.51e−2 0.946 0.926 0.983

Y 0.956 0.953

Z 0.958 1.037

6 X 2.37e−2 0.985 0.887 0.989

Y 0.983 0.370

Z 0.888 1.087

7 X 9.17e−3 0.978 0.936 0.928

Y 0.942 1.076

Z 0.963 0.942

8 X 5.78e−3 0.963 0.929 0.891

Y 0.950 0.955

Z 0.960 0.976

9 X 2.98e−4 0.963 0.927 0.972

Y 0.945 0.822

Z 0.959 0.991

10 X 9.72e−3 0.976 0.948 0.930

Y 0.973 0.844

Z 0.968 0.994

11 X 4.20 0.955 0.930 0.949

Y 0.949 0.915

Z 0.971 0.981

123



International Journal of Data Science and Analytics

Table 3 Results from shock data using the nonparametric architecture with a RANSAC framework

() Channel # Local direction Rotational error
Frobenius norm

Spatial direction
inlier fraction

Inlier fraction Estimated scale
factor

()

1 X 6.60e−3 0.983 0.967 0.963

Y 0.983 0.928

Z 0.983 1.153

2 X 8.36e−3 0.983 0.971 1.103

Y 0.983 0.875

Z 0.983 1.040

3 X 3.11e−3 0.983 0.970 0.971

Y 0.983 1.014

Z 0.983 0.972

4 X 1.77e−3 0.983 0.973 1.005

Y 0.983 0.633

Z 0.983 1.054

5 X 1.92e−2 0.983 0.963 0.885

Y 0.983 0.979

Z 0.983 1.060

6 X 1.26e−2 0.983 0.973 0.876

Y 0.983 0.377

Z 0.983 1.058

7 X 9.81e−3 0.983 0.973 0.942

Y 0.983 0.860

Z 0.983 1.006

8 X 5.62e−3 0.983 0.970 0.929

Y 0.983 0.938

Z 0.983 0.995

9 X 3.44e−3 0.983 0.964 0.992

Y 0.983 0.721

Z 0.983 0.996

10 X 6.34e−3 0.983 0.966 0.948

Y 0.983 0.874

Z 0.983 0.993

11 X 4.37 0.983 0.970 1.021

Y 0.983 0.542

Z 0.983 1.099
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of MLE architecture as a method for characterizing outliers
when the noise is either normally or multivariate normally
distributed has been demonstrated. The inclusion of robust
parametric models within the RANSAC framework using
the t-distribution offers another layer of robustness over the
classical Gaussian distribution that has been previously used
while allowing the method to identify outliers. A nonpara-
metric architecture using order-based statistics has also been
provided when the underlying noise does not follow any ele-
mentary mixture type distribution.

A challenging synthetic case study has been provided to
elucidate the effectiveness of themethodology. The synthetic
case study correctly identified outliers and inliers among the
various accelerometers along with correct rotations and scal-
ings. A real data set from a series of shock experiments
was also provided. The MLE and nonparametric architec-
tures provided similar rotation and scaling estimates. Minor
differences between the architectures were exhibited in the
form of their estimated inlier fractions among the accelerom-
eters. A vector and an Eulerian method were provided in
analyzing the angular deviations between the expected and
estimated rotation matrices. Both architectures found that
estimated rotation matrix for accelerometer 11 differed sig-
nificantly from its expected rotation matrix, suggesting an
installation error occurred. Uncertainty in the orientation of
the group average from the various architectures yielded
minimal discrepancies. A SNR metric was provided as a
method for assessing validity of scalings and rotations. Chan-
nel directions with a high SNR metric provided consistency
in their estimated rotations and scalings. The application
provided was in the domain of data analysis for structural
dynamics; however, the methodology can be applied to other
domains, particularly, digital image processing for point
cloud data. Additional work is required to further under-
stand how changes in noise resulting in different SNR levels
affect the rotational and anisotropic scaling estimates herein.
Amore intricate synthetic study could be utilized to elucidate
these nuances.
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Appendix: Proof of trivariate normally
random residuals for OAPA

F(Q,�) = ||A1�Q − A2||2F | QT Q = I3,

� =
⎡
⎣

λx 0 0
0 λy 0
0 0 λz

⎤
⎦ (1)

The goal of OAPA in (1) is to minimize F(Q,�), where
object A1 is being transformed to best align with the target
object A2. The Frobenius Norm is denoted as F and I3 is the
identity matrix in R

3. In the case of triaxial accelerometer
data, A(i=1,2) ∈ R

(mx3), with m rows corresponding each to
three spatial coordinates in time. One can decompose each
object into a matrix of the true signal and a noise matrix:

A1 = A∗
1 + �1

A2 = A∗
2 + �2 (2)

where the star, ∗, in (2) denotes the true signal. It is assumed
that A∗

1�Q = A∗
2. � represents the noise matrix, �i ∈

R
(mx3) : i = {1, 2}. The noise matrices are thus m real-

izations from three random variables with a joint probability
density function, �(i, j) ∼ fXi ,Yi ,Zi (x, y, z). The subscript,
j , denotes that it is the j th row out ofm. For random vibration
and/or acceleration data, it is assumed that the realizations
follow a multivariate normal distribution. Therefore, each
row out of m is multivariate normal distributed shown as:

�(i, j) ∼ N (μi ,�i )

: i = {1, 2}, j = {1, . . . ,m}. (3)

If one assumes independence among the channel direc-
tions, then the correlation among channel directions is zero.
The resulting covariance matrix is diagonal. Thus, the joint
random variable probability density function can be decom-
posed into a product of the three marginal probability density
functions,

fXi ,Yi ,Zi (x, y, z) = fXi (x) fYi (y) fZi (z)

: i = {1, 2}.

The independence assumption allows one to decompose
the joint probability distribution,�i , as a random vector, and
the superscript T denotes the transpose,

�i ∼
⎡
⎣
fXi (x)
fYi (y)
fZi (z)

⎤
⎦
T

.
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In many instances, the noise for each channel direction is
normally distributed,

fXi (x) = N (μ(x,i), σ
2
(x,i))

fYi (y) = N (μ(y,i), σ
2
(y,i))

fZi (z) = N (μ(z,i), σ
2
(z,i)),

where the residuals are given by the following:

� = A1�Q − A2

= (A∗
1 + �1)�Q − (A∗

2 + �2)

= A∗
1�Q + �1�Q − A∗

2 − �2

= (A∗
1�Q − A∗

2) + �1�Q − �2

= �1�Q − �2. (4)

Writing the random variables as column vectors for each
�i is as follows:

�i := [
ψ (x,i) ψ (y,i) ψ (z,i)

]
.

The rotation matrix can be generalized as,

Q =
⎡
⎣
q11 q12 q13
q21 q22 q23
q31 q32 q33

⎤
⎦

re-writing (4) is shown below:

� =
⎡
⎣
q11λxψ (x,1) + q21λyψ (y,1) + q31λzψ (z,1)
q12λxψ (x,1) + q22λyψ (y,1) + q32λzψ (z,1)
q13λxψ (x,1) + q23λyψ (y,1) + q33λzψ (z,1)

⎤
⎦
T

−
⎡
⎣

ψ (x,2)
ψ (y,2)
ψ (z,2)

⎤
⎦
T

.

(5)

Further decomposing the residuals for each column is as
follows:

� :=
⎡
⎣

εx
ε y
εz

⎤
⎦
T

.

The dimensions of each column vector are εk ∈ R
m : k =

{x, y, z}. The mean of the transformed random variables can

now be analyzed:

E(εx ) = E
(
q11λxψ (x,1) + q21λyψ (y,1)

+ q31λzψ (z,1) − ψ (x,2)
)

= q11λx E
(
ψ (x,1)

) + q21λy E
(
ψ (y,1)

)

+ q31λz E
(
ψ (z,1))

) − E
(
ψ (x,2)

)

E(εx ) = μεx = q11λx (μ(x,1)) + q21λy(μ(y,1))

+ q31λz(μ(z,1)) − (μ(x,2)),

denoting the expectation operator as, E(•).
Similarly for the remaining spatial directions,

E(ε y) = μεy = q12λx (μ(x,1)) + q22λy(μ(y,1))

+ q32λz(μ(z,1)) − (μ(y,2))

E(εz) = μεz = q13λx (μ(x,1)) + q23λy(μ(y,1))

+ q33λz(μ(z,1)) − (μ(z,2)).

As often the case for noise, themeans are assumed to equal
zero implying:

⎧⎨
⎩

μx,i = 0
μy,i = 0
μz,i = 0

⎫⎬
⎭ : i = 1, 2

∴
0 = E(εx ) = μεx

= E(ε y) = μεy

= E(εz) = μεz . (6)

The variance of the distribution can be written as:

Var(εx ) = Var
(
q11λx fX1(x) + q21λy fY1(y)

+ q31λz fZ1(z) − fX2(x)
)

= Var
(
q11λx fX1(x) + q21λy fY1(y)

+ q31λz fZ1(z)
) + Var

(
fX2(x)

)

= σ 2
x,A1

(q211λ
2
x ) + σ 2

y,A1
(q221λ

2
y)

+ σ 2
z,A1

(q231λ
2
z ) + σ 2

x,A2

= σ 2
εx

.

(7)

For the remaining spatial directions,

Var(ε y) = σ 2
εy

= σ 2
x,A1

(q212λ
2
x ) + σ 2

y,A1
(q222λ

2
y)

+ σ 2
z,A1

(q232λ
2
z ) + σ 2

y,A2

(8)

Var(εz) = σ 2
εz

= σ 2
x,A1

(q213λ
2
x ) + σ 2

y,A1
(q223λ

2
y)

+ σ 2
z,A1

(q233λ
2
z ) + σ 2

z,A2
.

(9)
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Finally using (6) for the mean along with (7)–(9) for the
variance yields:

⎡
⎣

εx
ε y
εz

⎤
⎦
T

∼
⎡
⎣
N (0, σ 2

εx
Im)

N (0, σ 2
εy
Im)

N (0, σ 2
εz
Im)

⎤
⎦
T

. (10)
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