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Abstract
Due to their robust nature, ensemble methods have gained a lot of popularity these days. In this work, we propose several
variations of oblique decision tree ensembles called as oblique random forests, which are implemented with binary and
ternary decision structures. Oblique random forests are trained using a linear classifier, where the feature axis is not invariably
orthogonal to the decision hyperplanes at each internal node of the base model. For the multiclass classification problems,
the training samples are partitioned at non-leaf nodes into groups of classes corresponding to the underlying geometric
characteristics, with respect to a randomly chosen feature subspace. Each of the proposed models employ a different binary
base classifier. The binary classifiers used for this work are twin support vector machines (TWSVM), Improvements on
ν-TWSVM, multi-surface proximal support vector machine (MPSVM) and Regularized MPSVM. We also propose a novel
approach to choose the final hyperplane to split the data at the non-leaf node while optimizing an impurity criterion in the
decision tree. This work presents a comparative analysis of different base classifiers for implementingOblique Random forests
using binary and ternary decision structures. In addition, multiple regularization strategies like Tikhonov regularization, axis-
parallel split regularization, and null space regularization are used to address limited sample size issues in the oblique random
forest decision trees implemented with MPSVM and RegMPSVM. Whereas implementations for TWSVM and IνTWSVM
is done with Tikhonov regularization only. All these models are compared for their generalization ability through benchmark
38 UCI classification datasets. The efficacy of these methods is also established through statistical analysis.

Keywords Ensemble methods · Oblique random forests · Twin support vector machines and Multi-surface proximal support
vector machines · Classification · Decision trees

1 Introduction

Decision tree (DT) is a classification tool that focuses at
extracting the underlying knowledge from the data set. DT
partitions the observed data in a hierarchical manner, by
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employing a set of elementary decisions. Decision trees are
hierarchical learners comprising of a collection of binary
decision nodes. In 1984, Breiman et al. [1] proposed the
tree model for classification and regression problems. Later,
they became quite well known and were widely employed
for innumerable learning applications. Their prosperity may
be said to be benefiting from many advantages: they are
quick and scalable to very large datasets; are very instinc-
tive, and can be composed in a probabilistic manner taking
uncertainty into account. Over the past decades, numerous
learning models have been proposed, most popular being the
C4.5 ofQuinlan [2]. However, an optimal decision tree isNP-
complete problem, and results into complex learners that do
not generalize well, i.e. suffer from over-fitting.

In 1995, Ho formalized [3] to compute an ensemble of
decision trees, known as random forest (RaF), rather than
optimizing an exclusive and complex single tree. Random
forest [1, 4] is an ensemble of decision trees, where DTs
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are greedy, divide and conquer algorithms which are known
for their simplicity and easy interpretation. Katuwal et al.
recently proposed heterogeneous oblique random forests [5].
Decision trees have a low bias, but high variance, there-
fore, they are an ideal candidate for a base classifier in an
ensemble framework. Ensemble classifiers stem on the idea
of perturb and combine strategy [6], involving two steps.
Perturb step involves training a learning algorithm on per-
turbed datasets whereas combine step aggregates the result
of the corresponding classifiers learnt in previous step. This
strategy results in significant improvement of the classi-
fiers and is better than using a single weak classifier. DTs
are sensitive towards perturbation of the training data due
to its recursively partitioning strategy, yet it produces ade-
quately accurate results. Extensive research has been done
to demonstrate the advantages of ensemble paradigm over
single classifier model. Ensemble classifiers, also called as
multiple classifier systems, have gained their way around
most of the research areas such as computer vision [7] and
machine learning [8]. Bonissone et al. proposed a fuzzy vari-
ation of Random forests [9] and Yassin et al. proposed RaF
for road accident prediction [10].

Random forest has been widely studied, with univariate
decision tree approaches [11] employed for its implemen-
tation. Decision trees can be generated as univariate or
multivariate. Univariate (or orthogonal or axis-parallel) DT
singles out the best feature from several features to partition
the data and generate a hyperplane parallel or orthogonal to
the feature axis at each non-leaf node. However, such hyper-
planes do not always learn complex decision boundaries [12],
[13, 14]. By employing a substantial number of stair-like
decision boundaries, DT can determine any oblique deci-
sion boundary. The multivariate (or oblique) DT [15] uses a
linear combination of all or part of the features to perform
a test to split the data. It generates a hyperplane which is
oblique to the feature axes at each non-leaf node. Random
forests are ranked as the best classifiers in a recent compar-
ison among 179 classifiers for 121 datasets [16]. These are,
however, superseded by the oblique random forest (ObRaF)
in a comparison among 183 classifiers [17]. ObRaF ensem-
ble of decision trees are grown using linear hyperplanes at
each internal node to split the data in lieu of a single feature.
The decision tree induction algorithm progresses by search-
ing the split that scores the minimum value based on some
impurity criterion.

Since, random forest demonstrates better generalization
by aggregating results, researcher proposed to inject ran-
domization in the learning framework to learn decorrelated
decision trees. Breiman [18] proposed an approach to inject
randomization in the learning phase, known as “bagging”,
for bootstrap aggregation. This involves learning each indi-
vidual tree with a random subset of the training data samples.
Decision trees in Random Forest are trained on the concepts

of bagging and random subspace [19] to grow an ensem-
ble. It consists of a collection of decision trees employing
randomly selected subspaces of data features at each inter-
nal non-leaf node and optimizing some impurity criteria
such as Gini index or information gain [20]. All the base
classifiers perform proficiently, given the fact that they are
trained on a bootstrap dataset (bagging), similar to that of
the whole population. Variance is increased by employing
random subspace strategy at each internal node of every base
classifier. The underlyingmotivation behind the random sub-
space strategy is that by aggregating ensemble out-turn along
with explicit randomization of the feature selection, vari-
ance should reduce more significantly than other exhaustive
randomization schemes. After this proposition, RandomFor-
est has been eminently used in many applications, mostly
classification frameworks. Nonetheless, they are suitable
to evaluate regression, clustering, density estimation, semi-
supervised learning or manifold learning tasks, as exhibited
in [20].

In [21], Zhang et al. used a binary classifier, the Multi-
surface Proximal Support Vector Machine (MPSVM) [22]
to find the discriminatory hyperplane, which understands
the geometric arrangement of class distributions and appro-
priates the ideas from [23]. MPSVM is a non-parallel
hyperplane classifier (NPHC), which generates two discrim-
inatory hyperplanes proximal to patterns of each class. The
idea is to keep the hyperplane in close proximity to its respec-
tive class and should be away from the other class. The
test patterns are classified based on distance from the two
classes. Angle bisector of these two discriminatory hyper-
planes is chosen to optimize Gini-impurity at each non-leaf
node of the decision tree. To focus on the small sample size
problem, authors use Tikhonov regularization, Axis-parallel
regularization and the NULL space regularization methods
[24]. However, the NULL space regularization is found to be
unstable [25] and is not significant [21].

Most of the support vector machine (SVM)-based classi-
fiers are binary classifiers. So, there is a need to transform
them into multi-category framework. Khemchandani et al.
[26] proposed two approaches for multi-category extension
of binary classifiers. These are ternary decision structure
(TDS) and binary decision structure (BDS). In this paper, we
propose a novel framework for oblique decision tree ensem-
bles with binary and ternary decision structure (BDS and
TDS) models where these oblique decision trees are imple-
mented via different base classifiers. The binary classifiers
used for this work are twin SVM (TWSVM), improvements
on ν-TWSVM,MPSVMand regularizedMPSVM.TWSVM
has been widely researched in the last decade. Iν-TWSVM
[27] is an improved variant of TWSVM, which is used
as a base classifier in this work. Some other variations of
TWSVM are TWSVM with localized kernel spectral clus-
tering [28], ternion SVM [29], angle-based twin parametric
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SVM [30], angle-based TWSVM [31], Fuzzy TWSVM [32],
fuzzy least-squares TWSVM for clustering [33], projection
least-squares TWSVM [34] etc. We also propose a novel
approach to choose the final hyperplane to split the data at
the non-leaf node while optimizing an impurity criterion,
rather than just choosing one of the angle bisectors.

The remaining part of this paper is organized into
following sections: decision trees, random forests, SVM
based binary classifiers and multi-category classification
approaches are reviewed in Sect. 2. Our proposed method
is discussed in Sect. 3. The experimental results are provided
in Sect. 4, and the paper concludes in Sect. 5.

2 Related work

In this section, we briefly discuss decision trees, random
forests, the base (binary) classifiers used in the work and
multi-category classification approaches.

2.1 Decision treemodel

A decision tree (DT) [1] model is a classification algorithm
that possesses a hierarchical tree structure. In a DT, the label
for a data instance x is decided via a pre-structured series of
conditions on the feature vector of x .Here, these conditions in
the hierarchical structure lead to a single node, i.e. leaf node
in a tree. This decision procedure of a series of conditions is a
tree traversal method, where a single sequence of conditions
leads to a path down the tree, from root to a leaf node.

Algorithm 1Top-down Induction of Decision Tree (TDIDT)
Algorithm
Input : = Labeled samples S
Output : node v

1: v ← new Node()
2: if all samples in S have y label then
3: y(v) ← y
4: return v

5: end if
6: (φ(v), τ (v)) ← Select Feat(S)

7: if φ(v) is numeric then
8: v1 ← T DI DT ({(x, y) ∈ S, xφ(v) < τ(v)})
9: v2 ← T DI DT ({(x, y) ∈ S, xφ(v) ≥ τ(v)})
10: else
11: {S1, ....., SY (φ(v))} ← Spli t(S, φ(v))

12: for i:=1 to Y (φ(v)) do
13: vi ← T DI DT (Si )
14: end for
15: end if
16: return v

A decision tree is a divide and conquer strategy for clas-
sification tasks. They are the primary and most standard
models ofmachine learning formalized to imitate the human-

decision making process [1]. In decision tree model, each
internal (non-leaf) node v is related with a feature index φ(v)

and a numeric value τ(v), implementing a condition on the
feature φ(v) with n possible results, resulting to one of the
n child nodes, denoted as v1, ..., vn . Every leaf node v in the
tree has a corresponding single decision value, denoted by
y(v). The top-down induction of the decision tree algorithm
(TDIDT) is illustrated in Algorithm 1. It is a simple recursive
approach to grow a decision tree model, often called as tree
induction. The SelectFeat() function computes the feature
index and numeric value related to the node v, whereas the
“split" procedure creates | Y (φ(v)) | disjoint sets, each con-
taining all samples from S with the identical value of φ(v),
where | Y (φ(v)) | are the numerous possible values for fea-
ture φ(v). For SelectFeat() function, we rely on Gini index
criterion, singling out the pair 〈φ(v), τ (v)〉 that maximizes
this value, as done in the C4.5 algorithm [2], [35, 36].

When used to classify an unknown data sample x , a DT
classifier operates recursively, beginning from the root, as
follows: let xφ(v) be the element in the feature vector related
to the feature index φ(v) of a non-leaf node v. The decision
at node v goes in favour of the left child if φ(v) is an index
of a numeric feature, xφ(v)≥τ(v), otherwise the right child is
selected. The decision at the node v is of the child matching
to xφ(v) in Y (φ(v)), if the φ(v) is an index of a nominal
feature. Considering a data point x , for a fixed decision tree,
DT, a unique path is defined from its root to a leaf node v

such that we follow the edge, at each internal node u, from
u to its child as discussed above. We say that x “arrives" at
u, for each node u along this path. Final decision class label
of DT assigned at x is DT(x) = y(v) (here x arrives at the
leaf v).

2.2 Random forest

Breiman [4] proposed random forests (RaF), g(y, λ) as an
ensemble model of univariate decision trees [1]. It merges
the concepts of bootstrap aggregating and random subspaces
to increase randomization of the individual classifiers. This
improves the generalization ability while reduces the corre-
lation among individual decision trees. In RaF, y is the input
vector and λ is an independent and identically distributed
(i .i .d.) randomvector, which is used to train themodel. From
the given data, Bootstrap set is obtained and is used to grow
each tree for the RaF ensemble model.

From total n features at each node of the tree classifier,
mtry features are selected randomly. This parameter is set to
be round(

√
n) where n is the dimensionality of a given data

set. Then one feature from the mtry features is selected to
perform a partition along the feature axis according to some
impurity criterion like Gini-Index or Information Gain. Each
internal node has a corresponding test function defined as:

123



International Journal of Data Science and Analytics

g(y, λ) =
{
1 if y(λ1) < λ2

0 otherwise,
(1)

where λ1 ∈ {1, 2, ..., c} where c is the number of features in
mtry and threshold is represented by λ2 ∈ R. Data sample
y is directed to the corresponding child node based on the
outcome. From the mtry features, one feature is selected to
split the data based on an impurity criterion. The parameter
λ of the test function g(y, λ) is based on this single feature.
In the ensemble, a vote is given by each tree Di for y. Estab-
lished on the majority count of votes, the final classification
is made.

2.3 SVM-based binary classifiers

Pattern classification is the process of estimation of the clas-
sifier function, which discovers the underlying pattern in the
data and discriminates the data belonging to two or more
class distributions. It explores the patterns from the train-
ing data and possesses generalization ability, i.e. providing
satisfactory accuracy while classifying unseen data. In this
section, four SVM-based binary classifiers are briefly dis-
cussed, which are used as based classifiers in our proposed
oblique random forest model. The classifier is learned from
‘training data’, it’s parameters are tuned with ‘validation
data’, and the performance is evaluated by classifying the
unseen ‘test data’. For instance, let the binary classification
problem patterns belonging to positive and negative classes
have representative matrices A and B respectively, and the
patterns in these classes be represented by m1 and m2 with
m = m1 + m2. Hence, the order of matrices A and B are
(m1 × n) and (m2 × n) respectively, where n represents the
dimension of feature space and Ai (i = 1, 2, ...,m1) is the
row vector in n-dimensional real space R

n , that represents
feature vector of a data sample. The labels yi for positive and
negative classes are given by +1 and −1, respectively.

2.3.1 Twin support vector machine (TWSVM)

TWSVM [37] is a supervised learning tool that classifies
data by generating two nonparallel hyperplanes which are
proximal to their respective classes and at least unit dis-
tance away from the patterns of other class. TWSVM solves
a pair of quadratic programming problems (QPPs) and is
based on empirical risk minimization (ERM) principle. The
binary classifier TWSVM [37, 38] determines two nonparal-
lel hyperplanes by solving two related SVM-type problems,
each of which has fewer constraints than those in a conven-
tional SVM. The hyperplanes are given by

xTw1 + b1 = 0 and xTw2 + b2 = 0, (2)

where w1, b1, w2, b2 are the parameters of normals to the
two hyperplanes, referred as positive and negative hyper-
planes. The proximal hyperplanes are obtained by solving
the following pair of QPPs.
TWSVM1:

min
w1,b1,ξ2

1

2
‖Aw1 + e1b1‖22 + c1e

T
2 ξ2

subject to −(Bw1 + e2b1) + ξ2 ≥ e2, ξ2 ≥ 0. (3)

TWSVM2:

min
w2,b2,ξ1

1

2
‖Bw2 + e2b2‖22 + c2e

T
1 ξ1

subject to (Aw2 + e1b2) + ξ1 ≥ e1, ξ1 ≥ 0. (4)

Here, c1 (or c2) > 0 is a trade-off factor between error vector
ξ2 (or ξ1) due to misclassified negative (or positive) class pat-
terns and distance of hyperplane from positive (or negative)
class; e1, e2 are vectors of ones of appropriate dimensions
and ‖.‖ represents L2 norm. The first term in the objective
function of (3) or (4) is the sum of squared distances of the
hyperplane to the data patterns of its own class. Thus, min-
imizing this term tends to keep the hyperplane closer to the
patterns of one class and the constraints require the hyper-
plane to be at least unit distance away from the patterns of
other class. Since this constraint of unit distance separabil-
ity cannot be always satisfied; so, TWSVM is formulated
as a soft-margin classifier and a certain amount of error is
allowed. If the hyperplane is less than unit distance away
from data patterns of other class, then the error variables
ξ1 and ξ2 measure the amount of violation. The objective
functionminimizes L1-normof error variables to reducemis-
classification. The solution of the problems (3) and (4) can
be obtained indirectly by solving their Lagrangian functions
and using Karush-Kuhn-Tucker (KKT) conditions [39].

As we obtain the solutions (w1, b1) and (w2, b2) of the
problems (3) and (4) respectively, a new data sample x ∈ R

n

is assigned to class r (r = 1, 2), depending on which of the
two planes given by (2) it lies closer to, i.e.

r = arg

(
min
l=1,2

|xTwl + bl |
‖wl‖2

)
, (5)

where |.| is the perpendicular distance of point x from the
plane xTwl + bl = 0, l = 1, 2. The label assigned to the

test data is given as y =
{+1 (r = 1)

−1 (r = 2)
.

2.4 Improvements on �-Twin Support Vector
Machine (I�-TWSVM)

Improvements on ν-twin support vector machine solves a
smaller-sizedQPPor a unimodal function as the first problem
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and a UMP as the second problem. This is in contrast to ν-
TWSVMor any other TWSVM-based classifier, which solve
a pair of identical QPPs.

I�-TWSVM (linear classifier)

The first problem of Iν-TWSVM is formulated as a QPP and
is given by:
Iν-TWSVM1:

min
w1,b1,ρ,ξ

1

2
‖Aw1 + e1b1‖22 + c1

2
(wT

1 w1 + b21) + c2e
T
2 ξ − νρ

subject to −(Bw1 + e2b1) ≥ ρe2 − ξ,

ξ ≥ 0,

ρ ≥ 0, (6)

where ‖.‖2 is L2-norm.
The QPP in (6) determines the hyperplane which is closer

to data points of positive class (which is represented by A)
and at least ρ distance away from the data points of nega-
tive class (represented by B). The first term in the objective
function is similar to TWSVM and ν-TWSVM and thus,
Iν-TWSVM follows the empirical risk minimization (ERM)
principle. Further, Iν-TWSVM also takes into consideration
the principle of SRM [40] to improve the generalization
ability, by introducing a term (wT

1 w1 + b21) in the objec-
tive function. This regularization termmaximizes the margin
between two classes with respect to the planewT

1 x+b1 = 0.
Here, the margin between two classes can be expressed as
distance bounded by the plane proximal to the positive class
(wT

1 x + b1 = 0) and the bounding plane (wT
1 x + b1 = −ρ).

This distance is ρ/‖w1‖2 and is the margin between two
classes with respect to plane wT

1 x + b1 = 0. The extra term
b21 is motivated by proximal support vector machine [41].
Let X = [xT , 1]T , W1 = [w1, b1] then the proximal plane
in R

n+1 is XTW1 = −ρ and the margin is ρ/‖W1‖2, i.e.
ρ/

√
(‖w1‖22 + b22). Thus, the distance between two classes

is maximized with respect to orientation (w1) and relative
location of the plane (b1) from the origin.

The secondhyperplaneof Iν-TWSVMisobtainedby solv-
ing a UMP and its formulation is given by
Iν-TWSVM2:

min
w2,b2

1

2
‖Bw2 + e2b2‖22 + c3

2
(wT

2 w2 + b22)

−c4
2

‖[MA 1][w2, b2]T − ρ‖22. (7)

In (7), we find the hyperplane which is proximal to the data
points of negative class and at the same time, the negative
hyperplane should be ρ distance away from the represen-
tative (i.e. mean) of positive class. Instead of maximizing
the distance of all the data points of positive class from the
negative class hyperplane (as considered in TWSVM2), we

are trying to maximize its distance from the mean of posi-
tive class. Here, MA is the mean of matrix A with dimension
(1×n) and is regarded as the representative of positive class.
Hence, the size of the problem is reduced as we are dealing
with unconstrained optimization problem. The positive con-
stants c3 and c4 associate weights with the corresponding
terms. For more details, please refer to [27].

2.4.1 Multi-surface proximal support vector machine
(MPSVM)

MPSVM [22], learns two non-parallel hyperplanes by com-
puting two generalized eigenvalue problems (GEPs), Pz =
μQz. Here, P and Q are symmetric positive semi-definite
matrices. Each hyperplane is decided by choosing the eigen-
vector of the smallest eigenvalue of each GEP. Matrices A
and B represent data points of two classes (referred to as pos-
itive and negative classes) respectively, with m1 and m2 data
points. Hence, their dimensions being (m1×n) and (m2×n),
respectively. Two non-parallel hyperplanes are computed by
MPSVM, as determined by TWSVM in (2). MPSVM solves
the following optimization problem:

Min
w,b 	=0

‖Aw − eb‖22/‖[w, b]T ‖22
‖Bw − eb‖22/‖[w, b]T ‖22

. (8)

Here, e is the one’s vector with proper dimension and
‖.‖ represents the L2 norm, assuming (w, b) 	= 0 [22].
The objective function is simplified and regularized to get
a Generalized Eigenvalue Problem, which is solved to get
the solution.

2.4.2 Regularized multi-surface proximal support vector
machine (RegMPSVM)

The formulation of MPSVM is altered by Guarracino et al.
[22] to generate both the hyperplanes by solving a single
generalized eigenvalue problem (GEP). The GEP Pz = μQz
is transformed as P∗z = μQ∗z, where

P∗ = T1P − δ1Q, Q∗ = T2Q − δ2P. (9)

Where the parameters T1, T2, δ1, and δ2 are selected as a
singular matrix 	,

	 =
[
T2 δ1
δ2 T1

]
. (10)

TheGEP P∗z=μQ∗zwould generate the same eigenvectors
as that of Pz = μQz [42].
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2.5 Multi-category extension of binary classifiers

As binary classifiers, SVM, TWSVM and MPSVM have
been widely studied, and researchers have been exploring
techniques to extend them as multi-category classifiers. Two
approaches have been widely used to manage multi-category
data samples. One approach is to establish and merge sev-
eral binary classifiers that consider a part of the data and
for the second, the entire data samples are considered in one
single optimization problem [43]. The latter advancement is
more expensive in terms of computational complexity as the
single problem generally consists of a lot of variables to be
considered and has applications limited to smaller datasets
only.

By integrating the results of several binary classifiers,
multi-categorySVMsare implemented.Twosuch approaches
are one-against-all (OAA) and one-against-one (OAO) sup-
port vector machine [43]. A series of binary classifiers are
implemented by OAA-SVM where each class is separated
from the remaining classes by a classifier. But, due to the huge
difference in the number of pattern instances, this approach
leads to an unbalanced classification. For a K -class classifi-
cation task, OAA-SVM generates K binary classifiers and
needs an equivalent number of binary SVM comparisons
for each test data samples. In the manifestation of OAO-
SVM, using a pair of classifiers, one at a time, their binary
SVMclassifiers are generated. So, it computes amaximumof
K×(K−1)

2 binary SVM classifiers, which leads to an increase
in computational complexity.

Similarly, directed acyclic graph SVMs (DAG-SVMs)
have their training phase similar to OAO-SVMs, i.e. it deter-
mines K×(K−1)

2 binary SVM classifiers, nonetheless, it’s
testing phase is different. It employs a rooted binary directed
acyclic graph consisting of K×(K−1)

2 internal nodes and K
leaves during its testing phase. Fuzzy linear proximal sup-
port vector machine is proposed for multi-category data
classification by Jayadeva et al. [44]. Lei et al. proposed
half-against-half (HAH) multi-category SVM [45]. HAH is
generated by recursively partitioning the training data sam-
ples of K classes into two subsets of classes. It results in
a decision tree where each node is a binary SVM classi-
fier. Shao et al. proposed a decision tree twin support vector
machine (DTTSVM) for multi-category classification [46],
by generating binary-based classifier on the best splitting
principle. These multi-category classification approaches,
which were initially proposed for SVM, can also be extended
for TWSVM and MPSVM framework. For example, Xie et
al. extended TWSVM for multi-category classification [47]
employing OAA approach.

3 Proposed work

Ensemble classifiers, also called as multiple classifier sys-
tems, have gained popularity around most of the research
areas in pattern recognition, machine learning [8] and com-
puter vision [7]. Ensemble classifiers are based on the
perturb and combine strategy [6] that results in significant
improvement of the classifiers than using a single classi-
fier. This greatly reduces the variance of classifiers [6, 48],
[49]. The classification error can be broken down into two
components—bias and variance, as per bias and variance
decomposition theory [6], [50]. Bias refers to the error intro-
duced by the difference between the learning algorithm’s
result than that of the target. Variance refers to the amount
bywhich learning algorithm’s estimatewould change around
for different training sets.

The issuewith decision tree induction is that it has lowbias
and high variance which leads to over - f i t ting. Two com-
mon methods employed to regularize DTs are pruning and
voting ensembles [51, 52]. Pruning is a method to decrease
the size of a predefined decision tree by swapping inter-
nal nodes in the trees with leaf nodes. This decreases the
complexity of the tree by reducing its size and expectantly
discards the nodes contributing to the noise in the data. How-
ever, we prefer voting ensembles, whereby multiple trees are
generated, and a forest is made by applying DT induction
algorithms. The essential approach to putting together such
a decision forest (DF) is to use bootstrap as aggregation,
normally referred to as the bagging algorithm [18]. In Bag-
ging, the initial learning information is sampled various times
with repetition, generating “bags" of samples to be accus-
tomed to train classification models (bagged predictors). It
is a common practice in bagging-based ensembles, to use
equal weights within the voting process; for a binary model,

DF(x) = sgn
(∑k

i=1 DTi (x)
)
.

In a decision tree, each hyperplane at a non-leaf node splits
the data to facilitate further splitting in the child nodes. Pri-
marily, decision tree induction algorithms splits a node, by
calculating the score based on impurity criterion and select-
ing the nodewithminimum score. The essence of an impurity
criterion is to estimate the skewness of the distribution of dif-
ferent classes in the data samples passed onto the nodes down
the tree. Those distributions that are nearly uniform gets the
least score, and those distributions where the number of pat-
terns of one class is more significant in strength than the
rest gets the highest score. But the drawback with all impu-
rity criterion, reported by [23], is that they only consider
the distribution of different classes on each side of the hyper-
plane. Thus, it does not take into consideration the geometric
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structure of the class regions. If one swaps the label of the
data without changing the relevant features of each class on
either side of a hyperplane, the impurity criterion score won’t
change. In lieu of just considering the label information, the
geometric structure assesses the internal data structure,which
estimates the distance of the data samples to the decision
hyperplane. Therefore, the hyperplane will change, when-
ever any relevant feature changes. Algorithm 2 list down the
steps for implementing a random forest.

Algorithm 2 Random Forest Algorithm
Learning Step :
Inputs :
A = M × m, contains the training data sample points, here, M is the
number of training instances, and,m are the features of eachdata sample.
B = M × 1, are the labels of the training data samples.
L is the ensemble size, i.e., decision trees count in the forest.
Ti corresponds to each random tree; a random forest contains, i =
1, ..., L .
mtry is the randomly selected number of the features to split at each
non-leaf node.
minlea f is the minimum number of samples in an impure node.
1: Create the bootstrapped training set with the replacement for Ti from

M given training data samples.
2: Compute the best split considering the mtry randomly selected fea-

tures at each non-leaf node.
3: Continue with step 2 until Ti is fully generated, resulting in reaching

to a pure node or the minlea f criteria being violated.
Testing Step :
A given test data sample is traversed down each tree, and then each of
them cast a vote on the classified class label on the given data sample.
The most voted class label is assigned to the test data sample.

3.1 Oblique random forest

An oblique random forest (ObRaF) f (x, θ), is an ensemble
algorithm developed with multivariate or oblique decision
trees [15]. The input toObRaFan independent and identically
distributed (i .i .d.) random vector θ and training set, where x
is an input vector. The ObRaF ensemble employs bootstrap
set of training set to train each tree classifier. In multivariate
decision trees, θ is based on the linear combination of all or
some of the features. As the decision boundary can align in
any direction to the axes, the trees possessing such oblique
hyperplanes are also known as oblique trees [1]. Hence, (1)
can be written as:

f (x, θ) =
{
1 if

∑q
i=1 wi xi < θ2

0 if otherwise
(11)

where, weight coefficient is represented by wi for each fea-
ture in data.

In our work, we propose novel oblique decision tree
ensembles with binary and ternary decision structure models

(BDS and TDS), employing oblique decision trees via differ-
ent base classifiers. The binary classifiers used for this work
are Twin SVM (TWSVM), Improvements on ν-TWSVM
(Iν-TWSVM), MPSVM and regularized MPSVM. We pro-
pose a different approach to choose the final hyperplane to
split the data at the non-leaf node while optimizing an impu-
rity criterion, than just choosing one of the angle bisectors.

The non-parallel hyperplanes generated by MPSVM,
RegMPSVM, TWSVM or Iν-TWSVM capture the geomet-
ric data property as per their definitions, which assists greatly
in discriminating the classes at non-leaf nodes. But MPSVM
dwells into GEP, and thus, if the matrix is ill-conditioned,
it could lead to poor classification accuracy. On the other
hand, TWSVMand Iν-TWSVM formulate convex optimiza-
tion problems and are based on ERM principle. So, they are
more robust to noise and have better generalization ability.

In our proposed approach, four binary classifiers are sep-
arately used to generate oblique splits at each node of the
Decision Trees. Each of the above mentioned classifiers is
originally proposed as a binary classifier. These classifiers
are employed with decision trees for both binary and multi-
category classification. The conviction behind using a binary
classifier is to generate two non-parallel proximal hyper-
planes C1 andC2 for two groups of data D1 andD2, such that
C1 (or C2) is closest to the data points of D1 (or D2), and fur-
thest from the data points of D2 (or D1). The hyperplanes are
generated by solving two generalized eigenvalue problems
for MPSVM and RegMPSVM and QPPs for TWSVM and
Iν-TWSVM. The angle bisector of H1 and H2 is used as the
hyperplane to split the data points in each node while opti-
mizing an impurity criterion. Inmulti-category classification,
two hyper-classes are made by dividing all the classes at each
node based on the Bhattacharyya distance [53] implement-
ing a Binary Decision Structure Model (BDS) or Ternary
Decision Structure Model (TDS).

3.2 Bhattacharyya distance

Bhattacharyya distance (B-distance) is a metric that is used
to measure the similarity of two discrete or continuous dis-
tributions. It derives a measure of the distance between two
populations defined in any way and have the same number of
variates in which a one-to-one correspondence can be estab-
lished [53].

For multivariate normal distributions pi =N (μi , σi ),
B-distance is defined as

B(w1, w2) = 1
8 (μ2 − μ1)

T
(∑

1 +∑
2

2

)−1
(μ2 − μ1)

+ 1
2 ln

|(∑1 +∑
2)/2|√|∑1||∑2| . (12)
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where μi and
∑

i are the means and covariances of the dis-
tributions.

The first term here relates to the location of the two
distributions, where the second term helps to account for
differences in shape or direction of the two populations.

3.3 Oblique decision tree via binary classifiers
implemented through TDS and BDS

The classifiers TWSVM, Iν-TWSVM, MPSVM, and
RegMPSVM are used to generate hyperplanes to split the
data at each non-leaf node of the Decision tree. Since all of
these are binary classifiers, so there is a need to address the
issue of handling the multi-category problems.

In [23], the multi-category problem is transformed into a
binary problem by selecting the majority class out and the
remaining classes as two hyper-classes, but this fails to cap-
ture the geometric data structures. In [21], all classes are
separated into two hyper-classes based on their underlying
distributions employing Bhattacharyya distance [53]. The
approach for binary decision structure model (BDS) parti-
tions the data into two groups and is explained in Algorithm
3. Our proposed ternary decision structure model (TDS) is
developed on the lines of [26] and employs Bhattacharyya
distance to get two focused classes (the classes whose pat-
terns are significantly distinguishable) and one unambiguous
(the remaining classes) hyper-class group. The representative
class hyperplanes are further generated using via linear clas-
sifiers. TDS is explained by Algorithm 4.

Algorithm 3 Binary Decision Structure Model (BDS)
Given: :
A = M × m, contains the training data sample points, here, M is the
number of training instances, and,m are the features of eachdata sample.
B = M × 1, are the labels of the training data samples.
{y1, ..., yc} being set of class labels present in the data.
Result: :
Y+1 and Y−1 represent the two groups (hyper-classes).
1: for i = 1, ..., c
2: compute the Bhattacharyya distance between the pair of class yi and

y j , where, j = i + 1, ..., c.
3: Obtain the class pair with the largest Bhattacharyya distance, assign

them names y+1 and y−1, and allot them to group Y+1 and Y−1
respectively.

4: With the remaining classes, for instance y j is allotted to the group
Y+1 if B(y+1, y j ) < B(y−1, y j ), else it is allotted to group Y−1.

BDS is used at every non-leaf node to handle multi-category classifica-
tion problem.

For class separability among two normal classes w1 and
w2,N(μ1,

∑
1) andN(μ2,

∑
2), Bhattacharyya distance pro-

vides a good estimate. As reported in [25], we consider
multivariate Gaussian distributions. Gaussian distribution
has the maximum uncertainty amongst all the distributions
having a given mean and variance. Nonetheless, it is mostly

Algorithm 4 Ternary Decision Structure Model (TDS)
Given: :
A = M × m, contains the training data sample points, here, M is the
number of training instances, and,m are the features of eachdata sample.
B = M × 1, are the labels of the training data samples.
Y+1 and Y−1 being set of class labels present in the data.
Result: :
Y+1, Y−1, and Y0 represent the two group class, and ambiguous class
group (hyper-class).
1: for i = 1, ..., c
2: compute the Bhattacharyya distance between the pair of class yi and

y j , where, j = i + 1, ..., c.
3: Obtain the class pair with the largest Bhattacharyya distance, allot

them to group Y+1, and Y−1 respectively.
4: Remaining classes are allotted to the Y0 group.
TDS is used at every non-leaf node to handle multi-category classifica-
tion problem.

an appropriate model in many situations and the sum of
a large number of independent random distributions obeys
Gaussian distribution.

Using the ternary decision structure (TDS)model, oblique
random forest are implemented via TWSVM, Iν-TWSVM,
MPSVM, and RegMPSVM (called as TDS-TWRaF, TDS-
IνTWRaF, TDS-MPRaF, TDS-RegMPRaF). For each of
these models, four non-parallel hyperplanes are generated,
two for the focused classes, and two for the ambiguous hyper-
class, with respect to each focused class. While optimizing
the impurity criterion, i.e., the Gini index,

Gini(t) = nt l

nt

[
1 −

c∑
i

(
nwi

l

nt l

)2]
+ ntm

nt

[
1 −

c∑
i

(
nwi

m

ntm

)2
]

+nt r

nt

[
1 −

c∑
i

(
nwi

r

nt r

)2
]

(13)

we choose either for the bisector of the ambiguous hyper-
class hyperplanes or one of its hyperplane, employing the
BDS hyperplane selection criteria, while freezing the hyper-
planes of the focused classes. Then these three hyperplanes
represent the three child nodes of the TDS, and data sam-
ples are assigned to these nodes depending on their distance
from these three hyperplanes, resulting in three child nodes,
these hyperplanes are generated by TWSVM, MPSVM,
RegMPSVM. These final three hyperplanes represent the
corresponding three child nodes thresholds.

In this work, we also propose the implementation of
oblique random forest via TWSVM, Iν-TWSVM, MPSVM
and RegMPSVM (called as BDS-TWRaF, BDS-IνTWRaF,
BDS-MPRaF and BDS-RegMPRaF respectively) using the
binary decision structure (BDS) model. For each of these
models, two non-parallel hyperplanes are generated proxi-
mal to the two hyper-classes (or classes) at each node ofBDS.
While optimizing impurity criterion, i.e. the Gini index, we
choose between the angle bisector or the hyperplanes, as on
some occasions the hyperplanes capture more accurate pat-
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terns in the data than its bisector, generated by the binary
classifiers. If the hyperplanes are selected, then they repre-
sent the two child nodes, and data samples are assigned to
these nodes depending on their distance from these hyper-
planes.

Gini index is given as

Gini(t) = nt l

nt

[
1 −

c∑
i

(
nwi

l

nt l

)2]
+ nt r

nt

[
1 −

c∑
i

(
nwi

r

nt r

)2
]
(14)

where nt is the number of data samples reaching a particular
node, nt l , nt r is the number of data samples that reach the
left and right child nodes of the current node, respectively.
Also, nwi

l , nwi
r represents the number of samples of class

wi in the left and right nodes, respectively.
The decision tree implements ternary decision structure

(TDS) and binary decision structure (BDS) using TWSVM,
Iν-TWSVM, MPSVM, and, RegMPSVM from root node
to the leaf node to perform splits. To graphically illus-
trate the difference between hyperplanes generated by these
classifiers, hyperplane structure is shown in Fig. 1 for a stan-
dard multi-category dataset, Iris dataset. BDS-TWSVM and
BDS-MPSVM represents Binary Decision Structure multi-
category approach with TWSVM and MPSVM classifiers
respectively.

Similar hyperplanes are generated for these classifiers
using TDS and are termed as TDS-TWSVM and TDS-
MPSVM. The hyperplanes generated by TDS via TWSVM
and MPSVM are illustrated in Figs. 2. (Note: The hyper-
planes generated by MPSVM and RegMPSVM are almost
identical. Also, the hyperplanes generated by TWSVM and
IνTWSVM are quite similar. So, they are not included in the
figure.)

3.4 Complexity analysis

This work is an attempt to explore the strengths of both TDS
and BDS for implementing oblique random forests. TDS
based model performs better than BDS during testing phase.
For a dataset with K classes, the height of tree generated by
BDS is of the order log2K , where TDS generates the tree
model of height log3K . Hence, TDS is more efficient during
the testing phase.

The TDS algorithm’s strength is that it requires less clas-
sifier comparisons for evaluations than other cutting-edge
multi-class techniques. The BDS technique divides data
recursively into two halves and creates a binary tree of clas-
sifiers. For a K-class issue, BDS determines 2 ∗ (K − 1)
classifiers. BDS requires at most �log2K � binary classifier
evaluations for testing. TDS, on the other hand, divides the
data at each node into at most three groups and creates a
modelwith a height of �log3K �. New test samples can also be
tested using �log3K � comparisons, which is faster than BDS

(a) Hyperplanes generated by BDS-TWSVM

(b) Hyperplanes generated by BDS-MPSVM

Fig. 1 Hyperplanes generated by different classifiers on IRIS dataset
with binary decision structure. The three classes of Iris dataset are shown
with samples of different colors. The solid lines passing through the
samples represent the hyperplanes

testing time. As the classes of the parent node are divided
into three groups, the order of QPP drops to one-third of the
parent QPP with each level of TDS for a balanced decision
structure.

4 Experimental results

In order to prove the efficacy of our models, we compare
the proposed frameworks on real-world benchmark classi-
fication datasets from various research fields. The datasets
analysed during the current study are available in the UCI
repository [54]. For the base classifiers, Decision Trees are
used in the ensembles. One parameter,minlea f , needs to be
tuned for the number of samples reaching an impure node,
which is set to one by convention. The ensemble size L for
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(a) Hyperplanes generated by TWSVM-TDS

(b) Hyperplanes generated by MPSVM-TDS

Fig. 2 Hyperplanes generated by different classifiers on IRIS dataset
with ternary decision structure. The three classes of Iris dataset are
shown with samples of different colors. The solid lines passing through
the samples represent the hyperplanes

the ensemble methods can be regarded as a parameter. Gen-
erally, an increase in L does not decrease the performance
of the RaF; we perform all our experiments with L = 100.
For RaF, another parameter exists, mtry, representing the
number of randomly selected features which controls the
randomness injected in the forest. It is set to round(

√
n), n

being the dimension of the data. For all the experiments, the
Tikhonov regularization term δ is assigned the value 0.01. It
may get some arguments, that the term should be optimized
on the validation dataset or the out-of-bag data. Nonetheless,
as the number of nodes present in the ensemble is consid-
erably large, typically when a large number of data samples
are present, it becomes possibly computational expensive.
In [21], optimization for parameter ‘delta’ was done, but no
significant improvement was observed. Ensemble classifiers

characteristics make them robust in terms of this parame-
ter. For twin support vector machine (TWSVM), parameter
C is set to three values, i.e., 0.1, 0.05, 0.01, which is the
trade-off parameter between the proximity of the hyperplane
to its respective class samples and the distance to the other
hyperplane. The simulations of both the approacheswith four
algorithms on all datasets are carried out in MATLAB 2014b
under Microsoft Windows environment on a machine with
3.40 GHz CPU and 16 GB RAM.

4.1 Dataset description

For all the simulations, we have used binary as well as multi-
category UCI datasets. The summary of these benchmark
datasets, taken from various domains, is listed in Table 1.
This table include the dataset name along with the number
of classes, samples and features.

4.2 Results for BDS approaches

In order to have a fair comparison of the performance of
various oblique random forest approaches via MPSVM,
RegMPSVM,TWSVMand Iν-TWSVM(referred asMPRaf,
RegMPRaF, TWRaF and IνTWRaF respectively), we have
implemented them in a uniform way. All the experiments
are conducted using fivefold cross validation. Table 2 enlists
the results obtained by BDS approach for all the four types
of random forests, mentioned above. In the table, mean of
classification accuracy for fivefold is reported with stan-
dard deviation as mean ± std. For MPRaF, the results are
given for all three regularization methods, i.e. Tikhonov reg-
ularization (*), Parallel axis regularization (**) and Null
space regularization (***). These results are taken from [21]
and are reported ‘as it is’ without standard deviation. For
ObRaf using RegMPSVM, the implementations are done
for Tikhonov regularization (*) and Parallel axis regulariza-
tion (**). As reported in [21], the NULL space approach for
regularization can be unstable depending on the data. This
problem can be solved for a single DT by using decision
tree pruning, where the most unstable node can be elimi-
nated from by pruning. However, this approach would not
work for decision tree ensemble, as this would increase the
computational complexity with negligible improvement. So,
we have not implemented RegMPRaF with null space reg-
ularization. TWRaF and IνTWRaF are implemented with
Tikhonov regularization for this work.

The table demonstrates that all the implementations of
Oblique Random forest using BDS are able to achieve
satisfactory results for all the benchmark datasets. The clas-
sification accuracy obtained by averaging over 5-folds is
comparable for all the methods. Although, it is observed that
IνTWRaF achieves the highest average classification accu-
racy i.e. 87.66%, which is followed by TWRaF at 87.24%.
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Table 1 Characteristics of the
experimental datasets: number
of classes, samples and features

Datasets Classes, samples, features Datasets Classes, samples, features

Australian 2,690,14 Page block 5,5473,10

Balance scale 3,625,4 Parkinsons 2,195,22

Banknote 2,1372,4 Pima-diabetes 2,768,8

Biodeg 2,1055,41 Planning Relax 2,182,12

Blood transfusion 2,745,4 Seeds 3,210,7

Breast cancer 2,699,9 Segment 7,2310,19

Breast tissue 6,106,9 Sonar 2,208,60

Climate model 2,540,18 Spambase 2,4601,57

Ecoli 8,336,7 Teaching assistant 3,151,5

Fertility 2,100,9 Twonorm 2,7400,20

Glass 7,214,9 User Knowledge 4,258, 5

Harberman 2,306, 3 Vehicle 4,846, 18

Heart 2,270,13 Vertebral-2C 2,310,6

Hepatitis 2,155,19 Vertebral-3C 3,310,6

Ionosphere 2,351,34 Waveform1 3,5000,21

Iris 3,150,4 Waveform2 3,5000,40

Lymphography 4,296,18 Wine 3,178,13

Mam-masses 2,961,5 Wine quality(red) 6,1599,11

Ozone 2,2536,72 Yale 15,165,1024

ForMPRaF, the best result is obtainedwith Tikhinov regular-
ization whereas null-space gives the minimum classification
accuracy. Similar trend is observed in the two implementa-
tions of RegMPRaF. In oblique decision trees implemented
with classifiers like MPSVM and RegMPSVM, matrices
are semi-positive definite and hence different regulariza-
tion methods are required. However, no explicit regular-
ization techniques are required for the primal problems of
TWSVM and IνTWSVM as the matrices are positive def-
inite. Still, Tikhonov regularization is used with TWSVM
and IνTWSVM to avoid overfitting and this significantly
improves the generalization ability of the algorithm. Since
the classification accuracy for twin bounded random forest
(TBRaF) [55] is not known for all the datasets, so average
accuracy is not calculated for it.

4.2.1 Statistical analysis: friedman test

The Friedman test [56] is used to statistically compare the
efficacy of several classifiers on different datasets. This test
can compare more than two related data samples. It is a non-
parametric test that makes no assumptions about the data
distribution. For each dataset, the algorithms are ranked sep-
arately. The information is organized in a table with n1
rows and n2 columns. It scores the algorithms indepen-
dently for each data set, with the top performing algorithm
receiving a rank of 1, the second best receiving a rank of
2, and so on. In the event of a tie, the average ranks are
assigned. The average ranks of algorithms are then com-

pared, R j = 1
N �i r

j
i , where r j

i is the rank of the j th

algorithm on the i th of N data set. The Friedman test on
the classification accuracy of all the classifiers with UCI
datasets is shown in Table 3. Based on average classifica-
tion accuracy, BDS-IνTWRaF is at Rank 1 and is followed by
BDS approaches for TWRaF*, RegMPRaF*, RegMPRaF**,
MPRaF*, MPRaF** and MPRaF***. The results reiterate
that the best results are obtained with Tikhonov Regularisa-
tion.

4.3 Results for TDS approaches

In addition to BDS, oblique random forest approaches via
MPSVM, RegMPSVM, TWSVM and Iν-TWSVM (referred
asMPRaf, RegMPRaF, TWRaF and IνTWRaF respectively)
are implemented using ternary decision structure (TDS).
The classification accuracy is recorded for benchmark UCI
datasets and all the experiments are conducted using 5-fold
cross validation. Table 4 demonstrates the results obtained
by TDS approach for all the four types of Random Forests.
In the table, mean of classification accuracy for 5-folds
is reported with standard deviation as mean ± std. For
MPRaF, the results are given for all three regularization
methods i.e. Tikhonov regularization (*), Parallel axis reg-
ularization (**) and Null space regularization (***). For
ObRaf using RegMPSVM, the implementations are done for
Tikhonov regularization (*) and Parallel axis regularization
(**). TWRaF and IνTWRaF are implementedwith Tikhonov
regularization for this work.

123



International Journal of Data Science and Analytics

Ta
bl
e
2

C
la
ss
ifi
ca
tio

n
ac
cu
ra
cy

(%
)
ac
hi
ev
ed

by
va
ri
ou

s
ob

liq
ue
s
ra
nd

om
fo
re
st
s
im

pl
em

en
te
d
us
in
g
bi
na
ry

de
ci
si
on

st
ru
ct
ur
e
(B
D
S)

m
od

el
.
T
he

pr
op

os
ed

m
od

el
s
ar
e
co
m
pa
re
d
w
ith

th
re
e

va
ri
at
io
ns

of
M
PR

aF

M
PR

aF
im

pl
em

en
ta
tio

ns
[2
1]

Pr
op
os
ed

B
D
S
m
od
el
s
us
in
g

D
at
as
et
s

M
PR

aF
*+

M
PR

aF
**

M
PR

aF
**
*

T
B
R
aF

1
R
eg
M
PR

aF
*+

R
eg
M
PR

aF
**

+
T
W
R
aF

*
Iν
T
W
R
aF

*

A
us
tr
al
ia
n

86
.4
2

86
.9
0

86
.2
5

67
.8
2±

3.
50

88
.1
1

±
0.
00

88
.2
6

±
0.
00

94
.2
1

±
0.
03

94
.8
4

±
0.
03

B
al
an
ce

sc
al
e

89
.0
2

88
.1
9

89
.1
0

89
.7
9

±
1.
80

89
.2
0

±
0.
03

89
.7
2

±
0.
02

91
.3
6

±
0.
02

91
.2
9

±
0.
02

B
an
kn
ot
e

99
.9
1

99
.9
1

99
.8
9

–
10
0.
00

±
0.
00

99
.9
3

±
0.
01

10
0.
00

±
0.
00

10
0.
00

±
0.
00

B
io
de
g

86
.6
8

86
.5
2

85
.7
8

–
85
.5
0

±
0.
02

86
.6
4

±
0.
02

86
.3
5

±
0.
02

87
.8
7

±
0.
02

B
lo
od

tr
an
sf
us
io
n

78
.0
5

77
.4
9

77
.5
0

–
78
.6
8

±
0.
04

78
.1
4

±
0.
01

78
.1
3

±
0.
02

79
.7
4

±
0.
02

B
re
as
tc
an
ce
r

96
.7
2

96
.7
2

96
.9
2

73
.3
6±

4.
2

95
.4
2

±
0.
00

95
.4
2

±
0.
00

97
.6
7

±
0.
01

97
.6
7

±
0.
01

B
re
as
tt
is
su
e

68
.8
7

67
.5
5

60
.9
4

–
72
.7
6

±
0.
09

71
.7
3

±
0.
06

77
.4
6

±
0.
09

77
.2
1

±
0.
09

C
lim

at
e
m
od
el

92
.0
6

91
.8
5

91
.5
9

–
92
.2
2

±
0.
01

91
.6
7

±
0.
00

92
.6
6

±
0.
03

92
.8
5

±
0.
03

E
co
li

85
.4
6

84
.7
6

84
.4
0

–
86
.9
7

±
0.
02

82
.5
5

±
0.
03

89
.2
4

±
0.
04

89
.1
9

±
0.
04

Fe
rt
ili
ty

87
.9
0

88
.2
0

88
.0
0

88
.0
0

±
0.
02

88
.0
0

±
0.
02

88
.0
0

±
0.
01

89
.0
0

±
0.
05

88
.0
0

±
0.
05

G
la
ss

94
.2
1

96
.6
4

59
.6
7

–
74
.0
8

±
0.
08

74
.1
5

±
0.
06

74
.5
3

±
0.
05

74
.5
4

±
0.
05

H
ar
be
rm

an
72
.3
9

70
.2
9

71
.3
4

74
.0
5

±
4.
1

74
.5
5

±
0.
05

70
.5
1

±
0.
02

83
.8
3

±
0.
05

84
.0
5

±
0.
05

H
ea
rt

83
.7
4

82
.9
6

83
.0
7

82
.4
0±

4.
4

81
.0
5

±
0.
03

82
.7
2

±
0.
03

83
.5
9

±
0.
06

83
.4
0

±
0.
06

H
ep
at
iti
s

83
.6
1

83
.9
4

79
.4
8

81
.9
0±

3.
1

87
.6
2

±
0.
09

88
.9
1

±
0.
05

88
.9
1

±
0.
05

88
.9
0

±
0.
05

Io
no
sp
he
re

92
.6
8

93
.9
6

89
.7
4

93
.3
4±

2.
7

91
.0
4

±
0.
01

93
.4
8

±
0.
02

93
.9
6

±
0.
02

93
.3
4

±
0.
02

Ir
is

97
.6
0

95
.6
7

97
.4
0

94
.2
7±

2.
4

97
.3
7

±
0.
02

97
.9
7

±
0.
01

98
.3
3

±
0.
01

98
.4
7

±
0.
01

Ly
m
ph
og
ra
ph
y

95
.3
7

93
.0
1

89
.2
6

84
.1
9±

7.
7

92
.4
6

±
0.
07

87
.1
6

±
0.
03

88
.1
8

±
0.
08

94
.1
9

±
0.
08

M
am

-m
as
se
s

82
.2
4

81
.9
3

82
.3
8

82
.4
4±

2.
3

83
.6
6

±
0.
01

83
.4
5

±
0.
02

82
.5
4

±
0.
04

82
.4
4

±
0.
04

O
zo
ne

97
.1
2

97
.1
0

97
.1
3

–
97
.1
6

±
0.
00

97
.1
6

±
0.
00

97
.1
2

±
0.
00

97
.2
0

±
0.
00

Pa
ge

bl
oc
k

97
.2
8

97
.3
5

95
.3
7

–
97
.3
0

±
0.
00

97
.3
0

±
0.
00

97
.5
9

±
0.
01

96
.4
7

±
0.
01

Pa
rk
in
so
ns

91
.2
3

90
.8
2

86
.3
6

91
.0
8±

4.
8

89
.1
9

±
0.
03

93
.3
8

±
0.
02

92
.8
2

±
0.
04

91
.0
8

±
0.
04

Pi
m
a-
di
ab
et
es

75
.9
1

75
.9
8

76
.7
7

75
.7
6±

2.
8

75
.3
4

±
0.
00

75
.2
6

±
0.
02

75
.3
2

±
0.
02

75
.9
8

±
0.
02

Pl
an
ni
ng

R
el
ax

70
.4
9

70
.6
6

71
.2
1

71
.6
8±

6.
1

73
.6
2

±
0.
02

73
.6
2

±
0.
02

73
.5
2

±
0.
06

73
.6
8

±
0.
06

123



International Journal of Data Science and Analytics

Ta
bl
e
2

co
nt
in
ue
d

M
PR

aF
im

pl
em

en
ta
tio

ns
[2
1]

Pr
op
os
ed

B
D
S
m
od
el
s
us
in
g

D
at
as
et
s

M
PR

aF
*+

M
PR

aF
**

M
PR

aF
**
*

T
B
R
aF

1
R
eg
M
PR

aF
*+

R
eg
M
PR

aF
**

+
T
W
R
aF

*
Iν
T
W
R
aF

*

Se
ed
s

94
.1
9

93
.1
4

92
.4
3

94
.5
8±

3.
5

94
.7
8

±
0.
01

94
.8
0

±
0.
03

95
.2
3

±
0.
02

94
.5
8

±
0.
02

Se
gm

en
t

94
.4
2

95
.5
1

89
.5
5

–
98
.3
9

±
0.
00

94
.6
4

±
0.
00

98
.5
7

±
0.
00

98
.9
7

±
0.
00

So
na
r

82
.1
2

78
.9
9

81
.4
4

–
86
.2
1

±
0.
03

84
.1
3

±
0.
05

85
.2
5

±
0.
01

86
.0
6

±
0.
01

Sp
am

ba
se

93
.6
8

94
.6
8

93
.7
7

–
94
.3
5

±
0.
00

91
.7
2

±
0.
00

94
.9
5

±
0.
00

95
.1
3

±
0.
00

Te
ac
hi
ng

as
si
st
an
t

55
.1
0

55
.5
6

53
.3
8

–
57
.5
7

±
0.
03

57
.7
7

±
0.
05

58
.7
2

±
0.
10

58
.2
1

±
0.
10

Tw
on
or
m

97
.4
7

97
.5
1

97
.4
5

–
97
.7
7

±
0.
00

97
.7
3

±
0.
00

97
.8
0

±
0.
00

97
.5
5

±
0.
00

U
se
r
K
no
w
le
dg
e

91
.2
0

91
.8
2

90
.1
5

–
95
.2
8

±
0.
00

94
.8
0

±
0.
01

95
.7
8

±
0.
05

96
.5
8

±
0.
05

V
eh
ic
le

76
.3
0

76
.3
4

70
.7
6

–
77
.6
6

±
0.
02

77
.8
9

±
0.
02

78
.6
1

±
0.
02

78
.6
1

±
0.
02

V
er
te
br
al
-2
C

84
.6
1

84
.5
8

84
.1
0

85
.3
6±

3.
3

86
.7
5

±
0.
05

84
.4
2

±
0.
00

78
.3
8

±
0.
12

86
.7
6

±
0.
12

V
er
te
br
al
-3
C

83
.6
1

83
.7
7

82
.4
8

–
85
.4
7

±
0.
03

84
.8
1

±
0.
03

84
.1
9

±
0.
03

85
.5
1

±
0.
03

W
av
ef
or
m
1

85
.7
0

85
.5
0

85
.7
0

–
85
.6
4

±
0.
00

85
.4
6

±
0.
00

85
.8
8

±
0.
01

85
.8
8

±
0.
01

W
av
ef
or
m
2

85
.4
4

85
.3
2

85
.3
4

–
85
.3
2

±
0.
01

85
.3
4

±
0.
01

85
.5
9

±
0.
02

85
.5
9

±
0.
02

W
in
e

97
.6
4

98
.2
6

96
.2
4

97
.7
5±

1.
1

98
.8
9

±
0.
01

97
.4
3

±
0.
01

99
.4
3

±
0.
01

98
.8
9

±
0.
01

W
in
e
qu
al
ity

(r
ed
)

67
.2
2

67
.1
0

59
.4
2

–
66
.6
7

±
0.
02

66
.6
7

±
0.
02

67
.6
0

±
0.
01

67
.6
0

±
0.
01

Y
al
e

80
.0
0

64
.5
6

78
.2
2

–
82
.7
8

±
0.
01

80
.8
0

±
0.
03

82
.7
2

±
0.
10

82
.7
2

±
0.
10

A
ve
ra
ge

86
.1
5

85
.5
5

83
.6
8

–
86
.4
4

±
0.
02

85
.9
4

±
0.
02

87
.2
4

±
0.
03

87
.6
6

±
0.
03

*:
T
ik
ho
no
v
re
gu
la
ri
za
tio

n
**

:P
ar
al
le
la
xi
s
re
gu

la
ri
za
tio

n
**
*:

N
ul
ls
pa
ce

re
gu
la
ri
za
tio

n
+
:T

he
se

re
su
lts

ar
e
re
po

rt
ed

fr
om

[2
1]

1:
T
he
se

re
su
lts

ar
e
re
po
rt
ed

fr
om

[5
5]

123



International Journal of Data Science and Analytics

Table 3 Friedman test ranks for oblique random forests implemented with binary decision structure using different classifiers

Datasets MPRaF* MPRaF** MPRaF*** RegMPRaF* RegMPRaF** TWRaF* IνTWRaF*

Australian 6 5 7 4 3 2 1

Balance scale 6 7 5 4 3 1 2

Banknote 5 5 7 1 4 1 1

Biodeg 2 4 6 7 3 5 1

Blood transfusion 5 7 6 2 3 4 1

Breast cancer 4 4 3 6 6 2 1

Breast tissue 5 6 7 3 4 1 2

Climate model 4 5 7 3 6 2 1

Ecoli 4 5 6 3 7 1 2

Fertility 7 2 2 2 2 1 2

Glass 2 1 7 6 5 3 3

Harberman 4 7 5 3 6 2 1

Heart 1 5 4 7 6 2 3

Hepatitis 6 5 7 4 1 1 1

Ionosphere 5 1 7 6 3 1 4

Iris 4 7 5 6 3 2 1

Lymphography 1 3 5 4 7 6 2

Mam-masses 6 7 5 1 2 3 4

Ozone 6 7 4 2 2 5 1

Page block 5 2 7 3 3 1 6

Parkinsons 3 5 7 6 1 2 4

Pima-diabetes 4 2 1 5 7 6 2

Planning Relax 7 6 5 2 2 4 1

Seeds 5 6 7 3 2 1 4

Segment 6 4 7 3 5 2 1

Sonar 5 7 6 1 4 3 2

Spambase 6 3 5 4 7 2 1

Teaching assistant 6 5 7 4 3 1 2

Twonorm 6 5 7 2 3 1 4

User Knowledge 6 5 7 3 4 2 1

Vehicle 6 5 7 4 3 1 1

Vertebral-2C 3 4 6 2 5 7 1

Vertebral-3C 6 5 7 2 3 4 1

Waveform1 3 6 4 5 7 1 1

Waveform2 3 6 4 7 4 1 1

Wine 5 4 7 2 6 1 2

Wine quality(red) 3 4 7 5 5 1 1

Yale 4 7 6 1 4 2 2

Average Rank 4.61 4.84 5.76 3.63 4.05 2.32 1.89

Final Rank 5 6 7 3 4 2 1

*Here symbols have following meaning: Tikhonov regularization, **: Parallel axis regularization, ***: Null space regularization

The table shows that all the implementations of oblique
random forest using TDS are able to achieve classification
results that are comparable or slightly better thanBDS imple-
mentations. Similar trends are observed for BDS and TDS.
IνTWRaF achieves the highest average classification accu-

racy, i.e. 87.75%, which is followed by TWRaF at 87.12%.
ForMPRaF, the best result is obtainedwithTikhonov regular-
ization,whereasNull-space gives theminimumclassification
accuracy.
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Table 5 Friedman test ranks for oblique random forests implemented with binary decision structure using different classifiers

Datasets MPRaF* MPRaF** MPRaF*** RegMPRaF* RegMPRaF** TWRaF* IνTWRaF*

Australian 4 7 6 3 5 2 1

Balance scale 1 7 6 4 3 5 2

Banknote 1 1 1 1 1 1 1

Biodeg 1 5 7 2 6 3 4

Blood transfusion 2 5 7 4 2 5 1

Breast cancer 3 5 2 5 3 1 5

Breast tissue 4 6 7 1 5 3 2

Climate model 3 5 7 5 3 1 2

Ecoli 6 5 7 3 4 2 1

Fertility 3 3 3 1 3 1 3

Glass 6 4 4 3 7 2 1

Harberman 6 3 5 1 6 1 3

Heart 3 4 7 5 6 1 2

Hepatitis 2 6 7 5 2 1 4

Ionosphere 2 7 5 1 2 6 4

Iris 4 7 4 2 6 2 1

Lymphography 4 5 5 2 7 3 1

Mam-masses 6 1 4 5 2 7 2

Ozone 2 7 2 6 2 2 1

Page block 3 7 6 5 3 2 1

Parkinsons 2 6 7 4 2 1 5

Pima-diabetes 4 4 1 7 4 1 3

Planning Relax 1 5 7 6 1 1 1

Seeds 3 6 7 4 5 1 2

Segment 3 5 7 2 6 4 1

Sonar 6 1 7 5 4 1 1

Spambase 4 7 6 5 3 2 1

Teaching assistant 3 7 5 6 4 2 1

Twonorm 3 5 6 4 2 7 1

User Knowledge 3 7 5 5 4 2 1

Vehicle 4 5 7 3 5 2 1

Vertebral-2C 1 2 2 7 2 2 2

Vertebral-3C 2 3 3 3 3 7 1

Waveform1 3 7 6 5 4 2 1

Waveform2 3 6 7 5 4 2 1

Wine 5 2 7 4 6 2 1

Wine quality(red) 5 4 6 3 7 1 1

Yale 5 6 7 4 3 1 2

Average 3.32 4.95 5.39 3.84 3.87 2.42 1.82

Rank 3 6 7 4 5 2 1

Here symbols have following meaning *: Tikhonov regularization, **: Parallel axis regularization, ***: Null space regularization
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4.3.1 Statistical analysis

Friedman rank test is applied on results given by different
Versions of Oblique Random Forests and the ranks obtained
with different classifiers is presented in Table 5. A trend sim-
ilar to Table 3 for various BDS approaches, is observed here
also. Rank one is assigned to IνTWRaF and the first four
ranks are secured by algorithms that use Tikhonov regular-
ization. These are followed by Parallel axis regularization
algorithms and the last position is given to Random Forest
with Null space regularization.

5 Conclusions

In this paper, we propose novel oblique random forest
algorithms implemented using Ternary and Binary deci-
sion structures, which employ SVM-based four classifiers,
i.e. multi-surface proximal SVM, regularized multi-surface
proximal SVM, twin SVM and improvements on ν-twin
SVM, to split the data at the internal nodes of the deci-
sion trees. The generalization ability of each of these models
is experimentally verified through 38 UCI datasets. It is
observed that TWSVM and IνTWSVM-based models are
able to give better results than the other two classifiers, for
most of the datasets.
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