
International Journal of Data Science and Analytics
https://doi.org/10.1007/s41060-023-00441-5

REGULAR PAPER

CIAMS: clustering indices-based automatic classification model
selection

Sudarsun Santhiappan1 · Nitin Shravan3 · Balaraman Ravindran1,2

Received: 24 April 2023 / Accepted: 3 August 2023
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023

Abstract
Classification model selection is a process of identifying a suitable model class for a given classification task on a dataset. Tra-
ditionally, model selection is based on cross-validation, meta-learning, and user preferences, which are often time-consuming
and resource-intensive. The performance of any machine learning classification task depends on the choice of the model
class, the learning algorithm, and the dataset’s characteristics. Our work proposes a novel method for automatic classification
model selection from a set of candidate model classes by determining the empirical model fitness for a dataset based only on
its clustering indices. Clustering Indices measure the ability of a clustering algorithm to induce good-quality neighborhoods
with similar data characteristics. We propose a regression task for a given model class, where the clustering indices of a
given dataset form the features and the dependent variable represents the expected classification performance. We compute
the dataset clustering indices and directly predict the expected classification performance using the learned regressor for each
candidate model class to recommend a suitable model class for dataset classification. We evaluate our model selection method
through cross-validation with 60 publicly available binary class datasets and show that our top3 model recommendation is
accurate for over 45 of 60 datasets. We also propose an end-to-end Automated ML system for data classification based on our
model selection method. We evaluate our end-to-end system against popular commercial and noncommercial Automated ML
systems using a different collection of 25 public domain binary class datasets. We show that the proposed system outperforms
other methods with an excellent average rank of 1.68.

Keywords Automated ML · Automatic model selection · Classification as a service · Clustering indices

1 Introduction

An essential step in data science is selecting a suitable
machine learning model that maximizes the performance
measured for a given task. The traditional approach trains
different models, evaluates their performance on a validation
set, and chooses the best model. However, this method is

B Sudarsun Santhiappan
sudarsun@cse.iitm.ac.in

Nitin Shravan
ntnshrav@gmail.com

Balaraman Ravindran
ravi@cse.iitm.ac.in

1 Dept of Computer Science and Engineering, Indian Institute
of Technology Madras, Chennai, Tamil Nadu 600036, India

2 Robert Bosch Center for Data Science and AI (RBC-DSAI),
Chennai, Tamil Nadu 600036, India

3 Claritrics Inc. d.b.a BUDDI AI, New York, NY, USA

time-consuming and resource-intensive. Automated machine
learning is an active area of research to automatically
select a suitable machine learning model for a given task.
Researchers have tried to address the model selection prob-
lem through various approaches such asmeta-learning [1–3],
deep reinforcement learning [4], Bayesian optimization [5,
6], evolutionary algorithms [7–9], and budget-based evalua-
tion [10].

Analyzing the data characteristics is essential for selecting
an appropriate classification model and feature engineering.
However, supposing we can estimate the empirical classifi-
cation model performance with explainability for the dataset
apriori, it becomes straightforward to pick a suitable classifier
model class to solve the problem. This setup is advantageous
while working with large datasets, as evaluating different
classifier model classes for model selection is laborious and
time-consuming.

Clustering methods group the data points having similar
characteristics into neighborhoods or disjuncts of different

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s41060-023-00441-5&domain=pdf

International Journal of Data Science and Analytics

sizes. Clustering indices [11] are cluster evaluation met-
rics used to assess the quality of the clusters induced by a
clustering algorithm. Clustering indices measure the ability
of a clustering algorithm to induce good-quality neighbor-
hoods with similar data characteristics. We hypothesize that
the clustering indices provide a low-dimensional vector rep-
resentation of the dataset characteristics with respect to a
clusteringmethod.Whenweuse different clusteringmethods
to compute the clustering indices, we can generate differ-
ent views of the dataset characteristics. Combining multiple
views of the data characteristics in terms of clustering indices
gives us a rich feature space representation of the dataset
characteristics.

We use the term model fitness to denote the ability of a
model class to learn a classification task on a given binary
class dataset. The empirical model fitness of a dataset can be
measured based on the expected classification performance
of a model class on a dataset. We use the F1 score as the
classification performance metric in our experiments, but the
idea is agnostic to any metric. A classifier’s empirical perfor-
mance depends on the classifier hypothesis’s ability to model
the data characteristics [12]. We hypothesize that the dataset
characteristics represented by the clustering indices correlate
strongly with the empirical model fitness.

In this paper, we propose CIAMS, a novel Clustering
Indices-based Automatic Model Selection method from a set
ofmodel classes by estimating the empiricalmodel fitness for
a given binary class dataset from only its clustering indices
representation of the data characteristics. We model the rela-
tionship between the clustering indices of a dataset and the
empirical model fitness of a model class as a regression prob-
lem. We learn a regressor for each model class from a set
of model classes on several datasets by randomly drawing
subsamples with replacement. Constructing multiple sub-
samples allows us to increase the number of data points to
train our regression model. Another advantage of using sub-
samples is to provide broader coverage of the dataset variance
characteristic for regression modeling.

We train independent regressors for each model class
with the best achievable classification performance for each
dataset as the output and its respective estimated cluster-
ing indices as the input predictors. We tune every candidate
classifier model for maximum classification performance
concerning the dataset subsample. Thisway,when the regres-
sors learn the mapping between clustering indices and the
maximum achievable classification performance for every
model class. The automationmodel selection process, imple-
mented as a prediction task, can estimate the model fitness
directly in terms of the expected classification performance.
Using the estimated model fitness, we rank the candidate
model classes to suggest the top model classes for a given
dataset as the recommendation. We limit ourselves from
suggesting the model class hyper-parameters. We believe

mapping the hyper-parameters to the dataset characteris-
tics is a separate problem, which we mark as one of the
future extensions of CIAMS. We validate our model selec-
tion regressor through cross-validation using60 (sixty) public
domain binary class datasets and observe that our model
recommendation is accurate for over three-fourths of the
datasets.

We extend our automatic model classification method to
an end-to-endAutomatedMachineLearningplatform to offer
binary classification modeling as a service. We use the top3
model classes predicted by our model selection method to
build tuned classifiers using the labeled portion of the given
production dataset. We define production dataset as the input
provided by an end-user containing labeled and unlabeled
portions, from which we learn these classifiers, followed by
predicting the labels for the unlabeled data points. The best-
performing model, chosen through cross-validation, among
the top3 tuned classifier models is offered as a service to pre-
dict labels for the unlabeled portion of the production dataset.
We validate our platform against other commercial and non-
commercial automated machine learning systems using a
different set of 25 (twenty-five) public domain binary class
datasets of varied sizes. The comparison experiment shows
that our platform outperforms other systems with an excel-
lent average rank of 1.68, proving its viability in building
practical applications.

The main contributions of this paper are:

• A novel hypothesis is that the classification performance
of a model class for a binary class dataset is a function
of the dataset’s clustering indices.

• A novel method to estimate the expected classification
performance of a model class for a binary class dataset
without building the classification model.

• A novel application of clustering indices for automatic
model selection from a list of model classes for a given
binary class dataset.

• A novel automated machine learning platform (Auto-
mated ML) for learning and deploying a classifier model
as a service.

We organize the remainder of the paper as follows. Sec-
tion2 lists the related techniques and approaches for model
selection and model fitness assessment. Section3 summa-
rizes our approach to automatic model selection. Section3.2
gives a detailed explanation of our proposed model selection
system. Section4 describes the entire experimental setup and
parameter configuration. Section5 validates our system and
narrates the results obtained from the experimental study.
Section6 provides the concluding remarks and next steps.

123

International Journal of Data Science and Analytics

2 Related work

In this section, we summarize various approaches from the
literature for automatic model selection organized into dif-
ferent categories.

• Random search: early researchworks hypothesized auto-
mated model selection as a Combined Algorithm Selec-
tion and Hyperparameter optimization (CASH) problem.
Amazon’s Sagemaker [13, 14] is an example of a com-
mercial Automated ML platform that follows the CASH
paradigm. H2O AutoML [15, 16], an open-source Auto-
mated ML platform, uses fast random search and ensem-
ble methods like stacking to achieve competitive results.

• Bayesian optimization: Auto-weka [5] and Auto-sklearn
[6] areAutomatedML frameworks extensions of the pop-
ular Weka and Scikit-learn libraries, respectively. Auto-
Weka [5] uses a state-of-the-art Bayesian optimization
method, random-forest-based Sequential Model-based
Algorithm Configuration (SMAC), for automated model
selection. Auto-sklearn [6] builds on top of the Bayesian
optimization solution in Auto-weka by including meta-
learning for initialization of the Bayesian optimizer
and ensembling to provide high predictive performance.
Microsoft Azure Automated ML [17, 18] uses Bayesian
optimization and collaborative filtering for automatic
model selection and tuning.

• Evolutionary algorithms: TPOT [7] is a Python-based
framework that uses the Genetic Programming algo-
rithm to evolve and optimize tree-basedmachine learning
pipelines. Autostacker [8] is similar to TPOT, but stacked
layers represent the machine learning pipeline. AutoML-
Zero [9] uses basic mathematical operations as building
blocks to discover completemachine learning algorithms
through evolutionary algorithms. FLAML [19] uses an
Estimated Cost for Improvement (ECI)-based prioritiza-
tion to find the optimal learning algorithm in low-cost
environments.

• Deep reinforcement learning: AlphaD3M [4] uses deep
reinforcement learning to synthesize various components
in the machine learning pipeline to obtain maximum per-
formance measures.

• Meta-learning: Brazdil et al. [1, 20] uses a k-nearest
neighbor approach based on the dataset characteristics to
provide a ranked list of classifiers using different rank-
ing methods based on accuracy and time information.
AutoDi [2] uses word-embedding features and dataset
meta-features for automatic model selection. AutoGRD
[3] represents the datasets as graphs to extract features for
training the meta-learner. AutoClust [21] uses clustering
indices as meta-features to automatically select suitable
clustering algorithms and hyper-parameters. Sahni et al.
[22] developed a meta-feature approach to automatically

select a sampling method for imbalanced data classifi-
cation. Santhiappan et al. [23] propose a method using
clustering indices as meta-features to estimate the empir-
ical binary classification complexity of the dataset.

Our method follows the meta-learning paradigm, wherein
we learn the relationship between the extractedmeta-features
of the dataset in terms of clustering indices and the expected
classification performance of a model class. The trained
meta-learner predicts the classification performance of a
model class for an unseen dataset without building a classi-
fier model. The differentiation among various meta-learning
methods pivots on the choice of the meta-features extracted
from thedataset. The following list presents themeta-features
from the literature, organized into different categories.

• Statistical and information-theoretic [24, 25]: thesemea-
sures include the number of data points in the dataset,
number of classes, number of variables with a numeric
and symbolic data type, average and variance of every
feature, the entropy of individual features, and more.
These metrics capture important meta information about
the dataset.

– Class boundary: the nature of the class margin
of a dataset is an essential characteristic reflecting
its classifiability. Measures such as inter-class and
intra-class nearest-neighbor distance, error rate, and
non-linearity of the nearest-neighbor classifier try to
capture the underlying class margin properties such
as shape and narrowness between classes.

– Class imbalance: machine learning methods
in their default settings are biased toward learning
the majority class due to a lack of data points repre-
senting theminority class. Features such as entropy of
class proportions and class-imbalance ratio strongly
reflect dataset characteristics such as the classifica-
tion complexity of a dataset.

– Data sparsity [26]: sparse regions in the dataset
affect the classifier’s learning ability leading to poor
performance. The average number of features per
dimension, the average number of PCA dimensions
per point, and the ratio of PCA dimension to the orig-
inal dimension capture sparsity in the dataset.

• Feature-based [27, 28]: the learning ability of methods is
highly correlatedwith the features’ discriminatorypower.
Fisher’s discriminant ratio, Overlap region volume, and
feature efficiency are among many measures from the
literature that tries to capture the ability to learn.

• Model based [29–31]: the hyper-parameters of a model
directly affect the model performance. For instance,
hyper-parameters such as the number of leaf nodes, max-
imum depth, and average gain-ratio difference serve as

123

International Journal of Data Science and Analytics

meta-features in a tree-based model. Likewise, the num-
ber of support vectors required in SVM modeling is a
meta-feature.

– Linearity [27, 32]:most classifiers performhighly
when the dataset is linear. To capture the inherent
linearity present in data, we use model-based mea-
sures, such as the error rate of a linear SVM and
non-linearity of the linear classifier, as meta-features.

– Landmarking: Bensusan et al. [33, 34] noted that
providing the performance measures obtained using
simple learning algorithms (baselines) as a meta-
feature has a strong co-relation with the classification
performance of the considered algorithm. Fürnkranz
et al. [35] explored different landmarking variants
like relative landmarking, sub-sample landmarking
techniques, and their effectiveness in several learn-
ing tasks, such as decision tree pruning.

• Landmarking is one of the most effective meth-
ods for meta-learning-based automatic model
selection [35]. Landmarking uses simple clas-
sifiers’ performance on a dataset to capture the
underlying characteristics. Landmarking requires
building several simple classifier models on
the dataset to extract features. In comparison,
our proposed model selection approach requires
building dataset clusters to extract clustering
indices features. We compare the performance
of landmarking and clustering indices features
through an extrinsic regression task in Sect. 5.2.

• The computational cost of extracting the cluster-
ing indices as themeta-features for big datasets is
mitigated through subsampling similar to Land-
markers [35]. Petrak et al. [36] establish the
“Similarity of regions of Expertise” property,
which says that the meta-features from several
subsamples of the dataset collectively repre-
sent the characteristics of the full dataset. We
also empirically validate the clustering indices
upholding the said property in Sect. 3.1.

• Graph-based [37, 38]: graph representation of a dataset
can help extract useful meta-features such as mean net-
work density, coefficient of clustering, and hub score for
several meta-learning tasks.

There are several contributions in the literature to bench-
mark AutoML methods. Zöller et al. [39] introduce a
mathematical formulation covering the complete procedure
of automatic ML pipeline synthesis and compare it with
existing problem formulations. The benchmarking encom-
passes eight Hyper-Parameter Optimization methods (HPO)
and six popular AutoML frameworks on real datasets. Santu
et al. [40] introduce a new classification system for AutoML

systems, using a seven-tiered schematic to distinguish these
systems based on their level of autonomy. The authors
describe what an end-to-end machine learning pipeline actu-
ally looks like and which subtasks of the machine learning
pipeline have been automated already. The paper also intro-
duces our novel level-based taxonomy for AutoML systems
and defines each level according to the scope of automation
support provided. He et al. [41] focus only on the deep-
learning-based AutoML and present a survey of methods for
HPO and Neural Architecture Search (NAS).

In this work, we don’t aim to perform an extensive bench-
mark, as our goal is only to propose a new method for
automatic model selection, which we also extend to an Auto-
matedML system for binary classification tasks. So, we limit
our benchmarking to only a few popular AutoML methods
to establish the validity of our approach.

Data characterization is a crucial setup in understanding
the nuances in a dataset. When specific dataset properties
are known, it helps choose the suitable method or algo-
rithm to solve the task. Several meta-features discussed in
the literature are targeted at specific dataset characteristics.
Enlisting the meta-features of a dataset is a laborious pro-
cess that is costly in terms of time and computing power. We
choose clustering indices to be the meta-features to represent
dataset characteristics. Clustering indices are evaluationmet-
rics to estimate how well a clustering algorithm grouped the
datawith similar characteristics. Clustering indices are scalar
values that indicate the nuances in a dataset under different
clustering assumptions. Computing the clustering indices is a
parallelizable process whose time complexity is proportional
to the size of a dataset subsample. We get more comprehen-
sive coverage of the data characteristics when we generate
clustering indices under different clustering assumptions.

In principle, the clustering indices approach to repre-
sent the data characteristics is similar to the landmarking
approach. Despite requiring more computing power for
dataset clustering, our experiments in Sect. 5 empirically
show that the clustering indices capture a richer dataset char-
acteristic representation for providing better generalization.

3 Our approach to automatic model
selection

Data characterization techniques extract meaningful dataset
properties that the downstream machine learning tasks and
applications could use to improve performance. We hypoth-
esize that the clustering indices computed from dataset
clustering represent dataset characteristics concerning a spe-
cific clusteringmethod. Clustering algorithmsmake different
clustering assumptions for grouping the data points into
neighborhoods. Clustering indices are quality measures for
validating the clusters induced by a clustering algorithm.

123

International Journal of Data Science and Analytics

When we use clustering indices to measure the performance
of such clustering algorithms, they inherently capture dif-
ferent properties of the datasets. When a clustering index is
independent of any external information, such as data labels,
the index becomes an internal index, or quality index [11].
On the contrary, when the clustering index uses data point
labels, it becomes an external index.

Table 1 lists the notations used for representing different
entities. Given a binary labeled dataset D = {〈Xi , yi 〉}ni=1,
where the data instance vector Xi ∈ R

p and the binary class
label yi ∈ {−1, 1}, the objective of our automatic model
selection system is to determine the best model class Cbest

from a set of model classes C = {C1,C2, · · · ,Cm} that pro-
vides the best classification performance. We hypothesize
that the clustering indices representing the characteristics of
a binary class dataset D shall strongly correlate with the
expected classification performance of a model class Ci ∈ C
for the dataset D.

Let I = {I1, I2, · · · , It } be the selected clustering
indices containing internal and external measures. Let F =
{F1,F2, . . . ,Ft } be the set of functions that map a given
dataset D to a clustering index I defined as F j (D; A) :
D → I j , where the data instance matrix X of D = 〈X, y〉
transforms to a scalar cluster index value I j . Each func-
tion F(D; A) represents running a clustering algorithm A
on the dataset D, followed by extracting several clustering
indices I ∈ I. The function F(D; A) represents processing
the dataset D independently by all the functions F j ∈ F as
a Multiple Instruction Single Data (MISD) operations.

F(D; A) ≡ [F1(D; A),F2(D; A), . . . ,Ft (D; A)]T (1)

Let the dataset transformation to the cluster indices fea-
ture space be defined as F(D; A) : D → I, where I =
[I1, I2, . . . , It]T. Let the average F1 score be the performance
metric for evaluating the model fitness of a model class Ci .
Let R be a regression task that learns the mapping between
the clustering indices and the expected classification perfor-
mance of themodel classCi defined as R(I;Ci) : I → [0, 1].
We define individual regressors Ri for eachmodel classCi as
a setR = {R1, R2, . . . , Rm}. Now, the objective of the auto-
matic model selection method is to find the best-performing
model classCbest ∈ C for a dataset D based on themaximum
output from each of the regressors inR.

i∗ = arg max
1≤i≤m

Ri (F(D; A)) (2)

Cbest = Ci∗ (3)

Training a regressor Ri for a model class Ci requires sev-
eral samples of the form 〈I, O〉, where I = F(D; A), and O
being the maximum classification performance score achiev-

able (for instance, F1 metric) for the tuned model class Ci

computed by the function Q(D;Ci).
We understand that the cluster indices feature vector I is

computed for each dataset D. Assumingwe have a collection
of datasetsD = {D1, D2, . . . , DN } for training the regressor
Ri , if we consider each dataset as a single instance vector
of clustering indices, the number of training samples gets
limited by the size of the dataset collectionD. It becomeshard
to train the regressor model due to the shortage of training
samples. We train the regression functions Ri ∈ R using the
dataset subsamples instead of the full dataset to overcome
the data shortage problem. In this process, every dataset Di

undergoes randomsubsamplingwith replacement to generate
b subsamples of constant size h as Bi = {Bi1, Bi2, · · · Bib},
where Bi j = {d‖d ∼ Di }hk=1, ‖Bi j‖ = h.

An advantage of using subsamples instead of the full
dataset is generating more variability in the datasets used
for training the regressors, making it robust to the dataset
variance. Another advantage is the ease of generating clus-
tering indices from subsamples compared to working with
large datasets in a single shot. In the single shot mode, we
run the clustering algorithms on the full dataset population to
estimate the clustering indices. Usually, running the cluster-
ing algorithms on the dataset samples (subsamples mode)
is significantly faster than running on the full population
(single-shot mode).

3.1 Clustering indices of subsamples vs. population

We use the stratified random sampling method to create sub-
samples of a dataset. In this section, we analyze how the
subsamples represent the characteristics of the data popula-
tion.We attempt to establish that the cluster indices estimated
for awhole population are similar to that of the subsamples by
visualizing the cluster indices in a lower-dimensional space
through t-SNE [42]-based visualization.

Figure 1 represents the lower-dimensional representation
of the dataset’s cluster indices for the data population and
subsamples. We observe from the figure that the subsample
cluster indices are found near and around the whole popula-
tion cluster indices inmost cases. The closeness of the cluster
indices implies that the subsamples are indeed representative
of the dataset population collectively.

We useHotelling’s two-sample T 2 test [43], amultivariate
extension of two-sample t-test for checking if a subsample
is representative of the whole dataset population in terms of
the respective dataset predictor variables. Figure1 shows the
subsamples that fail the Hotelling’s T 2 test (shown as RED
dots) along with the passing subsamples (shown as GREEN
dots). The subsamples that pass Hotelling’s test appear closer
to the whole dataset population shown in BLACK color. A
few subsamples appear relatively far from the entire popu-
lation, but they seem to fail in Hotelling’s test appropriately.

123

International Journal of Data Science and Analytics

Table 1 Notations Symbol Definition

Di Binary classification dataset

n, p Number of data points and the data dimensionality of a dataset

〈Xi , yi 〉 A tuple of data instance vector and the respective binary label

〈X, y〉 A tuple of data instance and the respective labels in matrix form

D, N Set of binary class datasets and its cardinality

Ci , C Model class and the set of model classes

Ii , I Clustering index and the set of clustering indices

I, Î Instance vector and matrix forms of the clustering indices

Q(D;C) Function to estimate the max F1 for a given model class C

O Individual F1 ∈ [0, 1] for model class C computed by Q(D;C)

O, Ô Vector and matrix forms of F1 scores for all the model classes

A,A Clustering method and the set of clustering methods

Fi (D; A) Function to map a dataset D to an index Ii using the method A

F Set of mapping functions

t,m Number of clustering indices and model classes

Bi j ,Bi Subsample and the set of subsamples drawn from a dataset Di

h, b Size and Count of subsamples

Ri ,R Regressor to estimate the expected F1 of a model class Ci and its set

This observation confirms the agreement of Hotelling’s test
response to the t-SNE visualization of the clustering indices.

One possible reason for some subsamples to go away from
the whole population cluster indices is the randomness in
sampling. The deviant subsamples benefit the training phase
as our dataset construction pipeline described in Sect. 3.3.3
considers each subsample as an independent dataset. There-
fore, the far-away subsamples offer new dataset variance to
our regressorR training that, in turn, should help the regres-
sors to achieve better generalization over unseen datasets.

On the other hand, the deviant subsamples are problem-
atic in the recommendation pipeline, as they might skew the
estimated classification performance of the model classes in
C. Removing such deviant subsamples from the experiment
requires the whole population cluster indices that might not
be available during testing. To overcome this limitation, we
propose to remove subsamples that fail the Hotelling’s T 2

test from the recommendation pipeline described in Sect. 3.4
to limit the skew due to random subsampling.

3.2 Automatic model selection system architecture

The Automatic Model Selection system consists of two
independent pipelines, one for training the underlying regres-
sion models and another pipeline for recommending the
top-performing model classes for a given dataset. Figure2
illustrates the overall architecture of the proposed automatic
model selection system. The upper section is the Train-
ing pipeline, and the bottom is the model Recommendation
pipeline. The Mapper module of the training pipeline con-

tains the regressors for each model class that learn the
mapping between clustering indices and model fitness. The
model recommendation pipeline uses the learned regressors
(Mapper modules) to predict the expected model fitness in
terms of F1 score (but not limited to) for each model class.
The model classes that score the top3 F1 scores become the
best-fit classifier candidates for the given production dataset.
We pick the best-performing classifier among the recom-
mended top models through cross-validation to predict the
labels of the unlabeled data.

3.3 Training pipeline

The training phase has three subparts, namely: A Prepro-
cessing, B Data construction, and C Mappers as regression
models shown as the Training pipeline enclosed in the top
dotted rectangle region in Fig. 2.

3.3.1 Preprocessing

Data preprocessing involves multiple sub-tasks to transform
a single dataset Di into a set Bi of several subsamples
generated by stratified random sampling with replacement.
The dataset Di divides into 70:30 training-validation parti-
tions for cross-validating the regressor model training. The
training and validation partitions undergo random sampling
independently to generate the respective subsamples. The
constructed subsamples {Bi j }bj=1 from a dataset Di , undergo
a cleansing process involving scaling and standardization.
At the end of the preprocessing stage, we have a set Bi =

123

International Journal of Data Science and Analytics

Fig. 1 Low dimensional t-SNE visualization of the clustering indices
estimated for the whole dataset population and dataset subsamples. The
BLACK points represent the cluster indices of the whole dataset popula-

tion, whereas theGREEN points represent cluster indices of the dataset
subsamples. The RED points represent the subsamples that have failed
Hotelling’s T 2 test (colour figure online)

{Bi1, Bi2, . . . , Bib} of several randomly sampled subsamples
from both the training and validation partitions of the dataset
Di . The training process uses the training subsamples for
learning and tuning the regressor functionsR through cross-
validation. We use the validation partitions for reporting the
performance through R2 score.

3.3.2 Estimating model-fitness

When applied to a dataset, the model-fitness score indicates
what to expect as the classification performance fromamodel
class. We set up the functionQ(B;C) to measure the model
fitness of a classifiermodel classC for the dataset B.Wemea-
sure themodel fitness by estimating themaximumachievable
classification performancemeasured using F1 metric (but not
limited to) by building tuned classifiers for the given dataset.
Table 2 lists the tuning parameters we use for each model
class to achieve optimal performance. We tune the classifiers

for each given dataset to find the maximum achievable F1
score and use the estimate as a surrogate measure for model
fitness. Our hyper-parameters list is not exhaustive but only
indicates the need to optimize themodel performance.We do
this exercise through cross-validation to avoid an overfitting
scenario that potentially skews the model-fitness score.

3.3.3 Data construction

Given a set of subsamplesBi = {Bi1, Bi2, . . . , Bib} for train-
ing and validation drawn from each dataset Di ∈ D, the
objective of the data construction phase is to generate a set
of tuples {〈Iij,Oij〉}bj=1 from all the subsamples in Bi , where
Iij = F(Bi j) as per Eq. (1) andOij is the model-fitness score
for a dataset Bi j for every model class in C given by:

Oij ← [Q(Bi j ;C1),Q(Bi j ;C2), . . . ,Q(Bi j ;Cm)
]T (4)

123

International Journal of Data Science and Analytics

Dataset

Sp
lit

tin
g

R
an

do
m

su

b-
sa

m
pl

eTrain

Test

C
le

an
in

g

Pre-processing

Generate Cluster
indices

Generate F1
score

Dataset construction phase

Mapper
module

Best
Regression

models

Train sub-
samples

Best
regression

models

Production
dataset

Pr
e-

pr
oc

es
si

ng

G
en

er
at

e
C

lu
st

er
 In

di
ce

s

Predicted
F1 scores

Training pipeline

Recommendation pipeline Model building pipeline

Model
recommendations

Predicted
class
labels

Labeled

Unlabeled

Test sub-
samples

Cluster
indices

Estimated
F1 score

Build Top 1

Build Top 2

Build Top 3

Classify

Best
Classifier

Fig. 2 Architecture of the automatic model selection system

Table 2 Hyper-parameters for tuning the classifiers while estimating the model-fitness

Model class Hyper-parameters

Logistic regression • Penalty: elasticnet

Decision tree • Maxdepth: tree grows until the leaves are pure, followed by backward-pruning for
optimal depth

• Criterion: Gini index

Regression forest • #Trees: 100

• Criterion: Gini index

• Maxdepth: tree grows until the leaves are pure, followed by backward-pruning for
optimal depth

SVM • Kernel: RBF

• C (Penalty): grid search over {0.01, 0.1, 1, 10, 100}

• γ (bandwidth) is set to 1
p×σ

– σ is the variance of the flattened feature matrix X

– p is the data dimensionality

K-NN • #Neighbors: based on the Imbalance ratio (ex: K=R, if the ratio is 1:R)

XGBoost • Maxdepth: grid search over {1, 2, 4, 8, 16, 32, 64}

At the end of the data construction phase, we get a matrix
of clustering indices feature vectors Îi = [Ii1, Ii2, . . . , Iib]T
generated for every subsample from the set Bi from dataset
Di with the corresponding matrix of model-fitness scores
Ôi = [Oi1,Oi2, . . . ,Oib]T estimated for each model class
in C. Then, we combine the data generated for individual
training datasets Di ∈ D into a jumbo dataset 〈Î, Ô〉, such
that:

Î ←
[
Î1, Î2, . . . , ÎN

]T
(5)

Ô ←
[
Ô1, Ô2, . . . , ÔN

]T
(6)

3.3.4 Mapper for model selection

In theMapper phase, we learn a multiple regression function
R : Î → Ô using the dataset 〈Î, Ô〉 generated from the
Data Construction stage.We tune the hyper-parameter of the
multiple regressors using the evaluation set through cross-
validation. Alternately, instead of multiple regressorsR, we
can also build individual regressors R ∈ R per model class
C ∈ C as Rk : Î → Ô(k), where Ô(k) is the kth column-

123

International Journal of Data Science and Analytics

vector of the matrix Ô. The mapper module constitutes the
resulting set of regressors R = {R1, R2, . . . , Rm}, which
we use to predict the expected classification performance of
different model classes Ck ∈ C for a given test dataset D′.

During prediction, themapper estimates the expected clas-
sification performance of a dataset from its clustering indices
features. The expected classification performance is what an
optimized/tuned classifier may achieve for a given dataset.
We assume that the representation of the dataset samples
in the clustering indices space follows the i.i.d assumption.
This means that the parameter setting required for achieving
higher performance for the training sample shall be similar to
that of the validation sample. As themapper learns tomap the
clustering indices to the tuned classifier performance during
training, we expect the mapper to predict the closest estimate
of optimized performance during validation.

3.4 Recommendation pipeline

The automatic model selection system’s recommendation
pipeline is a simple process of invoking the tuned regressor
modelsR for predicting the expectedmodel fitnessmeasured
in terms of expected classification performance for a given
test dataset D′. The test dataset undergoes the same data
transformation and cleansing stages as the training pipeline
for consistency.

I′ ← F(D′) (7)

The transformed data is input to each regressor function
R ∈ R to predict the expected classification performance
(model-fitness) score for all the model classes C ∈ C.

O′ ← R(I′) (8)

We recommend the best model class Cbest that scores the
highest model-fitness score for the given test dataset D′.

i∗ ← arg max
∀Ri∈R

Ri (I′) ≡ arg max
1≤i≤m

O′
i (9)

Cbest ← Ci∗ (10)

Alternately, the prediction for the test dataset is also
runnable using the data set subsamples, where we generate
several subsamplesB′ by random samplingwith replacement
from the input test dataset D′ as B′ = {B ′

1, B
′
2, . . . , B

′
b},

where B ′
i = {d ‖ d ∼ D′}hk=1,∀B ′

i ∈ B′.
We then transform the subsamples to the clustering index

feature space.

I′j ←
[
F1(B

′
j),F2(B

′
j), . . . ,Ft (B

′
j)

]T
, ∀B ′

j ∈ B′ (11)

Table 3 Set of internal and external clustering indices I
Internal indices External indices

Between-cluster scatter Entropy

Banfeld–Raftery Purity

Ball–Hall Recall

PBM Folkes–Mallows

Det-ratio Rogers–Tanimoto

Log-det-ratio F1

Ksq-DetW Kulczynski

Score Norm-mutual-info

Silhouette Sokal-Sneath-1

Log-SS-ratio Rand

C-index Hubert �

Dunn Homogeneity

Ray–Turi Completeness

Calinski–Harabasz V-measure

Trace-WiB Jaccard

Davies–Bouldin Adj-rand

Within-cluster scatter Phi

McNemar

Russel–Rao

Precision

Weighted-F1
Sokal–Sneath-2

Adj-mutual-info

We input these vectors of cluster indices to the regressors
R to make predictions of expected model-fitness scores for
each model class C ∈ C.

O′
j ← R(I′j), 1 ≤ j ≤ b (12)

We compute the expected model-fitness scores for all the
model classes for the dataset D′ by averaging the estimated
fitness scores for each subsample B ′ ∈ B′.

O′ ← 1

b

b∑

j=1

O′
j (13)

With the availability of the estimated F1 scores, the
expected classification performance per model class from
Eq. (13), we use Eqs. (9) and (10) to recommend the best
model class Cbest for the test dataset D′.

3.5 Configuration

The Automatic Model Section system requires configuration
of the clustering indices set I and the list of representative
model classes C. Table 3 lists the set of clustering indices [44]

123

International Journal of Data Science and Analytics

Table 4 List of classifiers
Ci ∈ C representing different
model classes and the set of
clustering methods A to
generate clustering indices I

Model class C Family Clustering Family

Decision tree Divisive K-means++ Convex

Logistic regression Linear Agglomerative Hierarchical

SVM Large margin Spectral Kernel, non-convex

KNN Lazy learner HDBSCAN Density, non-convex

Random forest Bagging ensemble

XGBoost Boosting ensemble

that we configure the system to represent the dataset charac-
teristics. The dataset clustering assumptions greatly influence
the clustering indices. To make the clustering assumptions
comprehensive, we configure multiple clustering algorithms
representing different clustering assumptions on the dataset.
Table 4 lists different clustering algorithms A ∈ A that we
use to generate the respective clustering indices. We con-
catenate the clustering indices generated by these 4 (four)
clustering methods to form a broader clustering index fea-
ture space of 4t dimensions.

The transformation function set becomes F = {F1,F2,

. . . , F4t } to cover the clustering indices from four different
families of dataset clustering assumptions. We aim to use
as many clustering indices as possible to build the dataset’s
feature space representation. By scaling up the 40 (forty)
dimensional clustering indices features from Table 3 with
four different clustering algorithms from Table 4, we get
a total of 4 × 40 = 160 clustering indices features to
represent the dataset characteristics. The mapper modules
use an appropriate subset of the features while learning the
association between clustering indices and the expected clas-
sification performance of a model class.

I = [IA1:kmeans, IA2:agglomerative,

IA3:spectral , IA4:hdbscan
]

(14)

I =
⎡

⎢
⎣I1, I2, . . . , It︸ ︷︷ ︸

A1:kmeans

, It+1, It+2, . . . , I2t︸ ︷︷ ︸
A2:agglomerative

,

I2t+1, I2t+2, . . . , I3t︸ ︷︷ ︸
A3:spectral

, I3t+1, I3t+2, . . . , I4t︸ ︷︷ ︸
A4:hdbscan

⎤

⎥
⎦ (15)

In our choice of clustering indices, we are fully aware of
the existence of feature redundancy due to correlation among
the indices. Despite that, we like to leverage the perspec-
tives a clustering index can provide when it combines with
different clustering methods becoming unique tuples of the
form I × A. To overcome the possible shortcomings, we
expect themapper (regressor)module that learns the relation-
ship between clustering indices and empirical model fitness
to automatically choose predictors (tuple features) based on

their ability tomaximize the regression task performance. For
instance, tree-based regressors have the capability to elimi-
nate redundant or correlating features during the tree growth
[45].

3.6 Classificationmodeling as a service

In an Automated ML setting, a user uploads a production
dataset containing labeled and unlabeled parts to the ser-
vice endpoint. The user then expects label predictions for
the unlabeled part of the dataset without thinking about
the underlying machine-learning pipeline. As an enterprise
extension to the Automatic Model Selection system, we
expose the underlying data classification modeling as a ser-
vice (an Automated ML SaaS offering) by abstracting the
model selection, tuning, and training processes on a pro-
duction dataset. Here, we rank the model classes by their
estimated model fitness score and pick the best perform-
ing model among top3 models (CA,CB,CC ∈ C). We use
the given labeled portion of the production dataset 〈X, y〉 to
cross-validate the top3 models with the best parameter set-
tings. Using the best-performingmodel amongst the top3, we
expose anAPI for predicting the class labels for the unlabeled
portion of the production dataset. When the user invokes the
API with the unlabeled data instance, the best-performing
model among top3 classifiers outputs the class label ŷ for the
data instance X from the test dataset D′.

We describe the detailed validation of the end-to-end
Automated ML system in Sect. 5.5 by comparing it against
a few of the popular commercial and noncommercial Auto-
mated ML solutions.

4 Experimental setup

In this section,we test ourClustering Indices-basedAutomatic
classificationModel Selection (CIAMS) hypothesis by cross-
validating with several classification datasets collected from
multiple public domain sources.We set up the experiment by
choosing 6 (six) different classification model families listed
in Table 4 representing various model classes.

123

International Journal of Data Science and Analytics

Table 5 List of binary class
datasets used for training and
validating the proposed model
selection

Dataset Dims Count Dataset Dims Count

Analcatdata_halloffame 17 1340 2d planes 10 40, 767

Abalone 8 4176 Contraceptive1_2 9 1473

Balloon 2 2000 Banana 2 5299

bank32nh 32 8192 Car1 6 1728

Chess 36 3196 Churn 20 4999

Cmc21 10 1473 Coil2000 85 9822

Connect4 43 67, 557 Contraceptive1_1 9 1473

Adult 14 48, 842 Contraceptive1_3 9 1473

Data_banknote_auth 5 1372 Cpu_small 12 8192

Flare 11 1066 Default_of_credit 16 20, 000

Credit_card_clients 20 1000 Elevators 18 16, 599

Fried 11 40, 768 Hill valley 100 1211

HTRU_2 9 17, 898 Image desert 136 2000

Kdd_japaneseVowels 15 9961 kc1 21 2108

Kin8nm 9 8190 Kr-vs-kp 36 3196

Magic04 10 19, 020 Mushroom 22 5644

Musk2 170 6598 mv 10 40, 768

optdigits 64 5620 Page1 10 5472

Pc1 21 1107 Pendigits 16 10, 991

Phoneme 6 5404 Pizzacutter3 38 1043

Pollen 6 3848 Pol 48 15, 000

Puma32H 33 8192 Qsar_biodeg 42 1055

Quake 4 2178 Ring 20 7400

Satimage1 36 6435 Spambase 57 4597

Splice1 60 3190 Splice2 60 3190

Splice3 60 3190 Steel_plates 33 1940

Tic-tac-toe 10 957 Titanic 4 2200

Tokyo 45 959 Twonorm 20 7399

Vehicle31 18 845 Visualizing_soil 5 8641

Wind 15 6574 Waveform_5000 40 5000

4.1 Training phase

We use sixty (60) binary class datasets in Table 5 to build our
Automatic Model Selection system. We divide the datasets
into train and test partitions. We use the train partition to
build and tune our model selection system and the test par-
tition to report the performance results. We divide train
partition further into trainset and evalset partitions in a k-fold
cross-validation setting to tune our model selection system.
Each dataset from trainset and evalset partitions undergo
sub-sampling independently. This ensures that we do not
reuse any training data points during validation. Dataset sub-
sampling increases the number of data points for training
the mapper module (regressors) and exposes the underlying
regressor models to more data variances. In total, we create
11,190 subsamples from all the 60 datasets.

4.2 Evaluation phase

We evaluate the performance of our Automatic Model Selec-
tion system using two modes, such as A subsamples mode
and B single-shot mode. The subsamples mode mimics the
dataset preparation strategy of the Training Phase, where we
use only the subsamples of the datasets in the test partition
for running the performance evaluation. Each dataset from
the test partition gives out several test data points constructed
from several subsamples drawn from it.

We set up cross-validation on 60 datasets using their
respective subsamples. Traditionally, the sizes of the train-
ing and evaluation splits remain constant across all the
cross-validation folds. In our setting, the split sizes vary
proportionally to the population sizes of the datasets picked
under the training and evaluation splits. We explain the pro-
portionality inSect. 4.3.Weaim to construct the foldswithout

123

International Journal of Data Science and Analytics

any dataset spilling across folds. A fold may contain one or
more datasets, but a dataset restricts to only onefold.

An ideal configuration to run the evaluation is Leave-
One-(dataset)-Out. In our setting, the equivalent is run-
ning a 60-fold cross-validation. We observe that 60-fold
cross-validation on the subsamples of 60 datasets is time-
consuming. To speed up, we repeat the sixfold cross-
validation exercise several times to approximate the results
of 60-fold. Also, repeating the cross-validation several times
allows us to test our method with different combinations of
datasets in the training and testing folds.

On the contrary, we evaluate the single-shotmode through
Leave-One-Out 60-fold cross-validation. The single-shot
mode uses the entire dataset from the test partition as one
test record. The single-shot mode evaluation helps assess
the system’s usefulness in enterprise deployment settings.
An advantage of the subsamples mode is the ability to work
with large datasets, as the full dataset single-shot approach
might become resource-intensive for generating the cluster-
ing indices.

4.3 Hyper parameters

A few hyperparameters control the system’s behavior, which
we tune by trial and error.

4.3.1 Number of clusters

The number of clusters is a critical parameter for most clus-
tering algorithms. We set the number-of-clusters parameter
to 2 for the clustering algorithms listed in Table 4. Initially,
we allow a linear search for the number-of-cluster hyper-
parameter. Our linear search experiment achieves the best
results when the count is 2.

4.3.2 Subsamples

We set the subsample size as h = 500 after doing a linear
search with different subsample sizes when the size of the
dataset n is beyond 2000 points. We choose the following
h-value for smaller datasets depending on the dataset size
range.

h ←
⎧
⎨

⎩

100 n ≤ 500
300 500 < n ≤ 2000
500 n > 2000

The number of subsamples b is set proportional to the size
of the dataset n. The average bootstrap subsample contains
63.2% of the original observations and omits 36.8% [46].
When the subsample size is h, we get 0.63h data points from
the original dataset. The following equation helps us get the
number of subsamples to draw from the dataset to ensure

maximum coverage of dataset variances and more datasets
for training our internal models. The hyper-parameter α is
the oversampling constant, which we set to 5 based on trial
and error.

b ← α ×
⌈ n

0.63h

⌉

4.4 Scaling up

Our present design of the CIAMS system uses four (4) clus-
tering models on the datasets, six (6) classification model
classes, and sixty (60) binary class datasets. We can train
the underlying mapper module with more datasets D seam-
lessly to make the regressors robust for handling dataset
variances. We can also add more model classes to C to
increase the choices of classification methods for a given
dataset. For comparison, the Azure AutoML1 platform uses
about 12 classifiers2 from 8 model classes. Neural Networks
and Bayesian methods are the two extra model classes other
than the model classes listed in C. Likewise, we can further
expand the clustering indices feature space by adding other
clustering methods to the set A. The CIAMS system is scal-
able and extensible by design.

5 Evaluation

In this section, we evaluate the CIAMS system at different
granularity levels in a bottom-up style to answer the fol-
lowing questions that may challenge our proposed scheme’s
usefulness.

1. Is the dataset model-fitness a function of the dataset clus-
tering indices for a model class?

2. Does the Mapper module implemented using Regres-
sionmodels efficiently learn the relationship between the
dataset clustering indices and the expected classification
performance of a selected model class?

3. What is the correctness of the recommendation given by
the CIAMS system?

4. What is the performance of the end-to-end Classification
Modeling as a Service platform for enterprise deploy-
ments?

5.1 Mapper module evaluation

Firstly, we evaluate the performance of the mapper module
constructed using Regression models. Evaluating the regres-

1 https://docs.microsoft.com/en-us/azure/machine-learning/concept-
automated-ml.
2 https://docs.microsoft.com/en-us/azure/machine-learning/how-to-
configure-auto-train.

123

https://docs.microsoft.com/en-us/azure/machine-learning/concept-automated-ml
https://docs.microsoft.com/en-us/azure/machine-learning/concept-automated-ml
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-configure-auto-train
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-configure-auto-train

International Journal of Data Science and Analytics

sors helps us understand the validity of our model selection
hypothesis, which assumes that the clustering indices of a
dataset strongly correlate with the expected classification
performance of a chosen model class. We evaluate our idea
using the estimated R2 metric for every regressor built for
every classifier model class. We also study the usefulness
of the regressors through L1-norm, or Mean Absolute Error
(MAE) analysis between the predicted and actual dataset
model-fitness measured using F1 score. We run a small-
sample statistical significance test on the L1-norm estimates
to check if the systemcontains the errormarginwithin±10%.

5.1.1 Regressor performance

We designate a regressor Ri for every classifier Ci from the
set ofmodel classes C. Each regressor function Ri : Î → Ô(i)

learns a mapping between the cluster indices Î and the tuned
classifier Ci performance Ô(i) measured in F1 metric for all
the training datasets D. We experiment with several regres-
sion models such as SVR, Random Forest, XGBoost, k-NN,
and Decision Tree.We select XGBoost as the best regression
model to learn the mapper through R2 analysis. We train the
regressormodels using two configurations, namely:A single-
shot, andB subsamplesmode as explained in Sect. 4.2. In the
single-shot mode, we run Leave-One-(dataset)-Out cross-
validation, and in the subsamples mode, we run six-fold
cross-validation with six repeats to report the performance
of the regressor models measured using R2 score. We tune
the XGBoost regressor models for best parameters by cross-
validating on the train partition that gets split further into
trainset and evalset partitions per fold. We repeat this exer-
cise for all the classifiers in C to find the best XGBoost
regression model parameters that maximize the R2 score.
Table 6 narrates the R2 scores of the tuned regressors Ri ∈ R;
we build for every classifier Ci ∈ C in Single-Shot and Sub-
samples modes. We observe an average of 84% R2 score for
bothmodes, which confirms the feasibility of learning amap-
ping between clustering indices andmodel fitness.Moreover,
the Validation Performance column confirms that the regres-
sors are near-optimally fit as the scores align closely with the
test performance numbers.

5.1.2 Prediction correctness

We validate the regressors by checking if the predicted clas-
sification performance is similar to a model class’s expected
classification performance on a dataset. Wemeasure the sim-
ilarity between the predicted and the expected classification
performance measured as the model-fitness score (F1) using
Mean Absolute Error (MAE) or L1-norm.

MAE ←
∥∥∥F expected

1 − F predicted
1

∥∥∥ (16)

For every model class Ci , we consider the prediction of the
mapper module (regressor Ri) to be a PASS if the absolute
difference between the predicted and the actual classification
performance is within 10% margin.

Correctness ←
{
PASS MAE ≤ 10%
FAIL MAE > 10%

Table 7 summarizes the MAE and PASS performance of
themappermodule. It is apparent from the table that theMAE
is contained within 10% for the majority of the datasets. In
the Subsamples mode, the average MAE is slightly off for
KNN, and SVM because of higher variance in the predicted
F1 scores. It is interesting to observe that the Mapping mod-
ule achieves 10% compliance for over 75% of the datasets
for the ensembling methods with lower variance. The large-
margin model class seems to have trouble with the stability
in performance across different subsamples. An average of
37 datasets have responded well to satisfy the 10% error mar-
gin constraint. When the average MAE for a model class is
within the 10% margin, we are accurate in our prediction for
over 61% datasets. Ignoring the low-performing SVM clas-
sifier, the truncated average PASS performance stands at 40,
which is two-thirds of the datasets. The result of the subsam-
pling mode is positively motivating to further this research
avenue into achieving higher performance with better sub-
sampling and model class tuning. On the other hand, in the
Single-shot mode, the average MAE estimates are generally
above the 10% margin. Although the error margin is higher
than 10%, theMappermodulemakes accurate predictions for
around 41% of 60 datasets. It is obvious from Table 7 that the
Subsamples mode is more appropriate than the Single-shot
mode for making predictions because the Mapper module
inherently uses only the subsamples for training.

We perform the statistical significance test on the MAE
estimate to check if the mapper module is indeed restricting
the MAE within the 10% margin. We use the following ver-
sion of the t and Z -statistic [47] to perform the significance
test. Suffixes e and p denotes the expected and predicted
model fitness (F1) scores, � is the hypothesized difference
between the population means x̄e, x̄ p (we set � = 0.1).

Z or t-statistic →
∥∥x̄e − x̄ p

∥∥ − �
√

σ 2
e
ne

+ σ 2
p

n p

(17)

We run t-test when the number of samples is≤ 30, and Z -
test when the sample count is> 30 at p = 0.05 significance.
Table 8 summarizes the performance of theMapper module
tested against 60 datasets, where the second column lists the
number of datasets where the MAE between expected and
predicted model-fitness (F1) score is within the 10% margin
at the statistical significance level of p = 0.05. The t/Z -

123

International Journal of Data Science and Analytics

Table 6 Performance of the
tuned Regressor functions
Ri ∈ R for each model class
Ci ∈ C measured using R2 score
in Single-Shot and Subsamples
modes

Model class Ci ∈ C Validation performance Single-shot 60-fold Subsamples sixfold

Decision tree 0.81 0.83 0.81

Random forest 0.85 0.89 0.86

Logistic regression 0.84 0.87 0.84

K-nearest neighbor 0.79 0.80 0.80

XGBoost 0.82 0.85 0.83

SVM 0.80 0.81 0.81

Average 0.81 0.84 0.83

Table 7 Mapper module
performance in terms of
prediction correctness using
MAE

Configuration Single-shot (60-fold) Subsamples (sixfold)

Model class #PASS MAE #PASS MAE

Decision tree 32 0.14 ± 0.11 38 0.09 ± 0.05

Random forest 22 0.13 ± 0.09 46 0.08 ± 0.04

Logistic regression 23 0.17 ± 0.13 37 0.10 ± 0.07

K-nearest neighbour 22 0.13 ± 0.09 31 0.12 ± 0.08

XGBoost 29 0.11 ± 0.08 46 0.08 ± 0.05

Support vector machine 23 0.15 ± 0.11 25 0.13 ± 0.08

Average 25 37

Table 8 Performance evaluation of the Mapper module using two-
sample Z -test & t-test in the Subsamplesmode at p = 0.05 significance

Model class #PASS

Decision tree 37

Random forest 33

Logistic regression 41

K-nearest neighbour 34

XGBoost 41

SVM 32

Average 36

test confirms our regressors’ ability to accurately predict the
expected classification performance for at least 60% of the
datasets.

An average of above 60% PASS datasets in Tables 7
and 8 is interesting because, in the subsamples mode, we
test the ability of the mappers to generalize on ten unseen
datasets per cross-validation fold.Out of 10 test-fold datasets,
the mappers correctly predict the model fitness for at least
six datasets on average. A recall of 61% demonstrates excel-
lent promise in the technique and increases the motivation to
improve this idea further to achieve even higher recall. It is
evident from the results in Tables 6, 7, and 8 that theMapper
module is efficient in learning the relationship between the
clustering indices of a dataset and the expected classification
performance of a model class. The results also empirically
prove the validity of our hypothesis that the binary class

dataset’s model fitness is indeed a function of the dataset
clustering indices for a model class.

5.2 Comparing with equivalent methods

We argue that the clustering indices features represent the
data characteristics. It is necessary to compare our approach
against similar methods from the literature, such as Land-
marking [34]. Landmarking determines the location of a
specific learning problem in the space of all learning prob-
lems by measuring the performance of some simple and
efficient learning algorithms. Landmarking attempts to char-
acterize the data properties by building simple classifiermod-
els. Similarly, classic statistical and information-theoretic
features directly represent the data characteristics. We com-
pare the ability of the Landmarking and classic statistical
and information-theoretic features against clustering indices
features to represent the data characteristics concerning a
classification task.

There is no straightforward method to compare two data
characteristics unless we use a downstream task to eval-
uate extrinsically. We describe our experiment below in
steps, which compares the effectiveness of clustering indices
against landmarking, statistical and information-theoretic
features through the performance evaluation of an extrinsic
regression task.

• Pick a subset of datasets from our experiment and frame
a fivefold cross-validation on the datasets.

123

International Journal of Data Science and Analytics

Table 9 Statistical and information-theoretic and landmarking meta-
features

Classic statistical features

Basic statistics Number of points

Number of attributes

Number of classes

Feature-based F1-maximum Fisher’s discriminant ratio

F1v—directional vector maximum
Fisher’s discriminant ratio

F2—volume of the overlapping region

F3—maximum individual feature
efficiency

F4—collective feature efficiency

Neighborhood N1-fraction of borderline points

T1—fraction of hyper-spheres covering
cardinality

LSC—local set average cardinality

Network Density

Hubs

Dimensionality T2—average number of features per
dimension

T3—average number of PCA dimensions

T4—ratio of PCA dimension to original
dimension

Class imbalance C1—entropy of classes proportions

C2—imbalance ratio

Landmarking features

Linear linear_discr—score of linear discriminant
classifier

Naive Bayes naive_bayes—score of Naive Bayes
classifier

Nearest neighbour elite_nn—score of elite nearest neighbor

one_nn—score of the 1-nearest neighbor
classifier

Decision tree best_node—score of the best single
decision tree node

random_node—score of a single node
model induced by a random attribute

worst_node—score of a single node
model induced by the worst attribute

• Every dataset in the fold shall undergo subsampling indi-
vidually.

• Prepare the model-fitness scores (dependent variable) for
each subsample.

• Clustering indices.

– Prepare the clustering indices (features) from Table 3
for each subsample.

– Learn regressors for eachmodel class from clustering
indices to model-fitness.

• Classic statistical features.

– Collect a list of statistical and information-theoretic
features [48, 49] as listed in Table 9.

– Generate the statistical features for each subsample.
– Learn regressors for each model class from statistical
features to model-fitness.

• Landmarking features.

– Collect a list of landmarking features [50, 51] as listed
in Table 9.

– Generate the landmarking features for each subsam-
ple.

– Learn regressors for eachmodel class from landmark-
ing features to model-fitness.

• Measure the average cross-validation performance using
R2 score for the testing and training folds across model
classes.

Table 10 summarizes the performance of the extrinsic
regression task through (i) clustering indices features, (ii)
classic statistical features, and (iii) landmarking. It is appar-
ent from the table that the clustering indices features are better
than the other two strategies for capturing the dataset charac-
teristics, at least with respect to an extrinsic regression task.
The performance numbers show that the generalization error
is higher for classic statistical features, although the training
performance is reasonable. Landmarking, on the other hand,
is unable to capture the dataset characteristics during train-
ing. As a result, the landmarking features generalize poorly
during validation.

5.3 Ablation Study

Clustering indices reflect the ability of a clustering algo-
rithm to formmeaningful clusters over a dataset. A clustering
algorithm may inherently suffer shortcomings due to its
hypothesis and algorithmic limitations. For example, K-
means cannot form non-convex clusters, but methods such
as Spectral clustering overcome this shortcoming. Like-
wise, Hierarchical clustering is very sensitive to outliers,
but density-based methods such as HDBSCAN are resilient
against outliers. This mentioned observation sets the premise
for extracting clustering indices of a dataset using differ-
ent clustering methods and concatenating them to create
extended feature representation.

We perform our ablation study by dropping clustering
indices from one or more specific clustering methods. We
ablate the clustering indices to assess their relative contribu-
tion to an optimal build of the Mapper module. We also
extend our ablation study to measure the contribution of
internal vs. external cluster indices listed in Table 3. The per-

123

International Journal of Data Science and Analytics

Table 10 Regressor R2

performance comparison
Methods Clustering indices Statistical features Landmarking

Training Testing Training Testing Training Testing

DT 0.90 0.89 0.75 0.57 0.61 0.48

RF 0.91 0.91 0.76 0.58 0.62 0.48

LR 0.89 0.89 0.77 0.61 0.62 0.59

KNN 0.90 0.89 0.75 0.59 0.61 0.44

XG 0.89 0.89 0.72 0.53 0.59 0.49

SVC 0.88 0.88 0.74 0.58 0.60 0.33

Mean 0.90 0.89 0.75 0.58 0.63 0.47

The columns list the cross-validated training and testing performance of regressors when we use cluster
indices, statistical and information-theoretic, and landmarking meta-features from the literature, respectively

Table 11 Performance of the Mapper module for different configurations of clustering indices

Choice of Clustering Indices DT RF LR KNN SVC XG

Internal Indices External Indices 0.58 0.47 0.35 0.38 0.51 0.76
Internal Indices External Indices 0.77 0.82 0.81 0.73 0.74 0.77

K-means Hierarchical Spectral HDBSCAN 0.72 0.84 0.70 0.72 0.67 0.78
K-means Hierarchical Spectral HDBSCAN 0.81 0.85 0.75 0.75 0.76 0.79
K-means Hierarchical Spectral HDBSCAN 0.81 0.86 0.74 0.76 0.76 0.81
Kmeans Hierarchical Spectral HDBSCAN 0.79 0.83 0.74 0.73 0.73 0.79
K-means Hierarchical Spectral HDBSCAN 0.79 0.81 0.66 0.74 0.69 0.74
K-means Hierarchical Spectral HDBSCAN 0.8 0.86 0.76 0.74 0.73 0.80
K-means Hierarchical Spectral HDBSCAN 0.78 0.80 0.73 0.73 0.75 0.77
K-means Hierarchical Spectral HDBSCAN 0.76 0.79 0.62 0.74 0.64 0.76
K-means Hierarchical Spectral HDBSCAN 0.76 0.80 0.62 0.73 0.65 0.62
K-means Hierarchical Spectral HDBSCAN 0.69 0.68 0.72 0.67 0.61 0.67
K-means Hierarchical Spectral HDBSCAN 0.77 0.80 0.74 0.71 0.72 0.66

K-means Hierarchical Spectral HDBSCAN 0.82 0.87 0.85 0.80 0.81 0.83

Method indicates the ablation of the clustering indices from that specific clustering method while building the Mapper module. The Mapper
model performs best when we use all clustering indices (internal and external) from all four families of clustering methods

formance of the Mapper module for different configurations
of cluster indices is summarized in Table 11.

In Table 11, the first column lists the choices of clustering-
indices-groups that we choose to ablate for the study. The
grayed & struck-out group is ablated during the perfor-
mance evaluation to observe the changes in the regression
R2 score. The Table lists the R2 score at different ablation
configurations. The first group of rows in the Table shows
the performance when we ablate all the internal indices or
external indices together as a large group. The second group
of rows ablates the clustering indices from one clustering
method at a time to study the performance variation. The third
group of rows ablates pairs of clustering methods, and the
fourth uses only one clusteringmethod to generate clustering
indices. The last row indicates the performance when all the
clustering indices are used. The column-wise high scores are
bold-faced. Interestingly, all the scores shown in the last row
of the table with nothing ablated are indeed the high scores

for each model class. Ablation, either internal vs. external or
based on the choice of clusteringmethod(s), is observed to be
performing lower than the non-ablated scenario. In summary,
we conclude that theMappermodel performs best (with high
scores) only when we use all the internal & external cluster-
ing indices from all four families of clustering methods.

We further verify the result of the ablation studybyobserv-
ing the correlation between the feature importance andmodel
fitness. We extract the feature importance in terms of gain
score [59] from the tree-based regressor (XGBoost) that
learns the mapping between the clustering indices feature
and themodel fitness.We analyze the correlation between the
extracted high-gain cluster indices and the expected classifi-
cation performance to estimate the magnitude and direction
of the influence. Table 12 narrates the list of critical cluster-
ing indices (features) that influence the dataset model fitness
estimated using Spearman correlation measure. It is reassur-
ing from the table that the critical features are distributed

123

International Journal of Data Science and Analytics

Table 12 Top 10 critical
features estimated using
Spearman correlation score
estimation between the
clustering indices and the
estimated classification
performance on a dataset

Clustering index Type Spearman co-eff

Completeness—HDBSCAN [52] External 0.51

Russel Rao—spectral [53] External −0.51

Purity—spectral [54] External −0.49

Davies Bouldin—spectral [55] Internal 0.47

Silhouette—spectral [56] Internal −0.46

Precision—HDBSCAN External −0.43

C-index—Kmeans [57] Internal −0.40

Entropy—Kmeans External 0.35

Dunn—hierarchical [58] Internal 0.31

Phi—spectral [11] External 0.28

The top features clearly indicate that they are spread across all the variations of clustering indices as analyzed
by the Ablation study

Table 13 Confusion matrix of the true and predicted top3 model classes in Single-shot and Subsampling modes

Single-shot (60-fold) Subsamples (6-fold ×6)
Cpred

A Cpred
B Cpred

C Total Hit Cpred
A Cpred

B Cpred
C Total Hit

Ctrue
A 19 16 12 47 78% 157 68 41 266 74%

Ctrue
B 12 10 12 34 55% 66 73 82 221 61%

Ctrue
C 13 9 8 30 50% 28 66 58 152 42%

Total 44 35 32 60 251 207 181 362

Hit 74% 58% 53% 70% 58% 50%

across all the variations of clustering indices, as suggested
by the ablation study.

5.4 Evaluating end-to-end CIAMS system

We successfully validate our hypothesis that classification
performance is a function of the binary class dataset clus-
tering indices for every model class by evaluating the
performance of the Mapper module of CIAMS. Given a test
dataset, we now study the end-to-end CIAMS system for
the correctness of model-class recommendations. We use a
20–80 train-test split to mimic the real-world production sce-
nario where we get a limited labeled dataset to build models.
This splitting also gives us an insight into the ability of the
model to generalize with the availability of limited labeled
data. As explained in Sect. 4.2, we validate the CIAMS sys-
tem in both Single-shot and Subsamples mode. Given a test
dataset D′, we generate the feature vector I′ in the clustering
indices feature space I using the procedure in Sect. 3.3.3 as
F(D′;A) : D′ → I′. We supply the clustering indices fea-
ture vector I′ as input to regressors R j ∈ R to predict the

classification performance F1
pred
j asO′(j) ← R j (I′;C j) for

everymodel classC j . In the subsamplingmode, the resulting

F pred
1 scores are of dimension b × c, where b is the number

of subsamples drawn from the dataset D′ and c is the num-
ber of model classes. In the Single-shot mode, the dimension
is 1 × c. The Subsamples model output is collapsed using
Eq. (13) into a 1 × c vector.

We now have the predicted model-fitness F1 scores for
the test dataset D′ for each model class C j ∈ C. Sort-
ing the model fitness F1 scores in descending order gets us
the ranked recommendation of suitable model classes for
the given test dataset D′. We call the top3 model classes
as C pred

A ,C pred
B ,C pred

C in the higher to lower classification
performance order (CA ≥ CB ≥ CC). We compare the pre-

dicted rank order C pred
A ,C pred

B ,C pred
C with the true rank

order Ctrue
A ,Ctrue

B ,Ctrue
C . To get the “true” rank order of

the model classes, we build tuned classifier models for all
the model classes using the same dataset D′ that we feed to
the Recommendation pipeline. We tune all the classification
models through cross-validation.We use the evaluation score
for the model classes to rank-order the classifiers, which in
turn yields us Ctrue

A ,Ctrue
B ,Ctrue

C .

123

International Journal of Data Science and Analytics

Table 14 Performance
comparison of the top3
classifiers recommended by
CIAMS

Dataset Dims Count Cpred
A Cpred

B Cpred
C Cpred

voting

australian 15 689 0.61 0.84 0.83 0.83
bankruptcy 7 250 0.51 0.97 0.96 0.92
christine 1637 5417 0.65 0.71 0.70 0.70
cleve 14 302 0.68 0.66 0.78 0.77
haberman 4 305 0.32 0.35 0.43 0.52
jm1 22 10879 0.42 0.51 0.50 0.46
mfeat-morphological 7 1999 0.70 0.82 0.99 0.98
monk-2 7 431 0.80 0.98 0.98 0.98
nba logreg 20 1328 0.66 0.65 0.60 0.63
no2 8 499 0.54 0.55 0.56 0.56
ozone 73 2533 0.37 0.42 0.31 0.43

philippine 309 5831 0.72 0.68 0.66 0.73
phisingwbsite 31 11054 0.92 0.92 0.95 0.95
piechart3 38 1076 0.34 0.46 0.20 0.37
saheart 10 461 0.58 0.58 0.60 0.60
scene urban 300 2406 0.95 0.90 0.97 0.95
segment 20 2309 0.97 0.98 0.97 0.98
speech 401 3685 0.34 0.46 0.20 0.37
UniversalBank 13 4999 0.41 0.51 0.48 0.48
wine4 12 1598 0.12 0.03 0.13 0.12
amazon emp access* 9 32769 0.05 0.18 0.26 0.11
clickpred small* 12 39948 0.15 0.43 0.41 0.42
namoa* 120 34465 0.94 0.91 0.92 0.93
FOREX eurgbp* 11 43825 0.49 0.37 0.50 0.50
run or walk info* 8 88588 0.98 0.98 0.99 0.98

The best overall score is bold-faced and underlined. The second-best score is in italics. The performance of
the Weighted Voting Classifier is higher than the top3 classifiers in three highlighted datasets

Table 15 A limited list of commercial and open-source AutomatedML
platforms

Automated ML platform Name

Auto-sklearn A-SKL

Auto-WEKA A-Weka

TPOT TPOT

Microsoft Azure automated ML Azure

Amazon SageMaker SageMaker

H2O AutoML H2O

FLAML FLAML

5.4.1 Validation

We validate the performance of CIAMS using the corpus
of 60 datasets. Table 13 presents the confusion matrix of
the predicted and actual top3 model class recommendation
by the CIAMS system in both the Single-shot and Subsam-
pling modes. Although the ranks are not exact matches,

we observe a strong overlap between the true and the pre-
dicted top3 model classes. From the table, we observe that
CIAMS can recall (highlighted in YELLOW) the true top1
model class among the predicted top3 model class with
recall scores of 78% and 74% in the Single-shot and Sub-
sampling modes respectively. Likewise, the top1 prediction
fromCIAMS can recall the true top3model classeswith recall
scores of 74% and 70% in the Single-shot and Sub-sampling
modes, respectively. The ability to recall the top1model class
in three-fourths of the test datasets is remarkable.

5.4.2 Testing

We test CIAMS’s top3 recommend model classes using a
separate hold-out set of public domain binary class datasets
listed in the first column of Table 14. We compare the actual
classification performance of the top3 model classes and
tabulate the results in Table 14. We report the fivefold cross-
validation performance of the top3 classifiers on the test
datasets. The top3 recommended classifiers win in 22 of 25

123

International Journal of Data Science and Analytics

Table 16 Weighted F1 score achieved by different automated ML methods for various public domain binary class datasets (as production datasets)
in the Single-shot setting

Dataset CIAMS FLAML H2O TPOT A-WEKA AzureML SageMaker A-SKL

Australian 0.84 0.84 0.85 0.84 0.82 0.87 – 0.85

Bankruptcy 0.97 0.98 0.97 0.94 0.91 – – 0.75

Christine 0.71 0.68 0.71 0.70 0.65 0.70 0.68 0.70

Cleve 0.78 0.70 0.77 0.78 0.68 0.27 – 0.75

Haberman 0.43 0.38 0.40 0.55 0.47 0.26 – 0.32

Jm1 0.51 0.36 0.50 0.45 0.43 0.37 0.55 0.22

Mfeat-morphological 0.99 0.99 0.99 0.99 0.99 0.99 – 0.99

Monk-2 0.98 0.99 0.98 0.98 1.00 0.99 – 1.00

Nba_logreg 0.66 0.57 0.62 0.65 0.67 0.67 – 0.65

No2 0.56 0.58 0.50 0.56 0.55 0.58 – 0.58

Ozone 0.42 0.29 0.42 0.37 0.37 0.20 0.43 0.40

Philippine 0.72 0.73 0.68 0.73 0.58 0.73 0.71 0.72

Phisingwbsite 0.95 0.95 0.96 0.94 0.94 0.96 0.93 0.95

Piechart3 0.46 0.31 0.27 0.39 0.30 0.23 – 0.36

Saheart 0.60 0.60 0.60 0.57 0.56 0.59 – 0.62

Scene_urban 0.97 0.92 0.56 0.97 0.33 0.91 – 0.97

Segment 0.98 0.98 0.98 0.98 0.96 0.99 – 0.99

Speech 0.46 0.02 0.27 0.39 0.04 0.02 0.15 0.36

UniversalBank 0.51 0.47 0.49 0.49 0.43 0.45 0.36 0.45

Wine4 0.13 0.06 0.03 0.03 0.06 0.03 – 0.13

Amazon_emp_access* 0.26 0.05 0.23 0.22 0.15 0.15 0.37 0.26

Clickpred_small* 0.43 0.15 0.44 0.37 0.21 0.16 – 0.22

Namao* 0.94 0.21 0.94 0.93 0.92 0.94 0.91 0.93

FOREX_eurgbp* 0.50 0.34 0.45 0.50 0.50 0.50 – 0.51

Run_or_walk_info* 0.99 0.34 0.98 0.98 0.95 0.98 – 0.98

#Top1 performance 10 4 5 5 3 8 3 8

#Top2 performance 22 10 12 14 5 5 3 15

#Top3 performance 25 12 17 21 11 15 4 20

Average rank 1.68 3.36 2.64 2.4 3.64 3.3 3.11 2.56

The best score is presented as underlined and bold-faced, the second best is bold-faced, and the next best is italicized. The average rank is the
average of the rank order position scored by each AutomatedMLmethod, where a low number means higher performance. Datasets with a * marker
are larger in size

datasets. By running cross-validation, we use the best of top3
recommended classifiers for a given test dataset. Essentially,
we bring the complexity down from running an exhaustive
model search to choosing the best from only three choices.
We use the best classifier from the recommended list as the
underlying model of the end-to-end Automated ML system
to expose a SaaS API for automatic dataset classification.

As an exercise, we also ensemble the top3 classifiers into
a Weighted Voting Classifier Cvoting . We list the ensemble’s
performance in the last column of Table 14. The voting clas-
sifier works best for 9 of 25 datasets. When we consider the
top2 scores from the column, we find that the voting classi-
fier performs well for 21 of 25 datasets. The voting classifier
abstracts the top3 models, simplifying the Automated ML

pipeline with one final prediction model. Of the 9 (nine) best
scores, we also observe that the voting classifier ensemble is
marginally better than the constituent classifiers in 3 (three)
datasets highlighted in YELLOW in Table 14. As the perfor-
mance improvement is insignificant, we skip ensembling the
top3 model classes.

5.5 Validating CIAMS-based end-to-end automated
ML system

Automated Machine Learning platforms provide signif-
icant cost savings to businesses, focusing on complex
processes such as product innovation, market penetration,
and enhanced client satisfaction. Automated ML platforms

123

International Journal of Data Science and Analytics

Table 17 Student’s t-test results
with a significance level of 0.02
for the comparison of CIAMS
against other automated ML
methods

Dataset FLAML H2O TPOT A-WEKA A-SKL AVG

Australian WIN WIN LOSE WIN WIN

Bankruptcy WIN WIN WIN WIN WIN

Christine WIN WIN WIN WIN LOSE

Cleve LOSE LOSE LOSE WIN LOSE

Haberman WIN WIN LOSE WIN WIN

Jm1 WIN LOSE WIN WIN WIN

Mfeat-morphological WIN LOSE LOSE WIN WIN

Monk-2 WIN WIN WIN WIN LOSE

Nba_logreg WIN WIN WIN WIN WIN

No2 WIN WIN WIN WIN WIN

Ozone WIN LOSE LOSE WIN WIN

Philippine WIN WIN WIN WIN WIN

Phisingwbsite WIN WIN WIN WIN LOSE

Piechart3 WIN WIN WIN WIN WIN

Saheart WIN LOSE LOSE WIN LOSE

Scene_urban WIN WIN WIN WIN WIN

Segment WIN WIN WIN WIN WIN

Speech WIN LOSE WIN WIN WIN

UniversalBank WIN WIN WIN - WIN

Wine4 WIN LOSE LOSE WIN WIN

Amazon_emp_access* WIN WIN WIN WIN WIN

Clickpred_small* WIN LOSE LOSE WIN WIN

Namao* LOSE LOSE WIN WIN LOSE

FOREX_eurgbp* WIN WIN LOSE WIN LOSE

Run_or_walk_info* WIN WIN WIN - WIN

WIN % 92% 64% 64% 100% 72% 78.4%

LOSE % 8% 36% 36% 0% 28% 21.6%

decrease the energy spent on time and resource-consuming
processes such as model selection, feature engineering, and
hyper-parameter tuning. The major cloud players such as
Microsoft and Amazon have their version of the Automated
ML platforms. In responding to the demand for accessible
and affordable automatic machine learning platforms, open-
source frameworks are also available to put the data to use
as quickly and with as little effort as possible. Table 15
lists a limited set of commercial and open-source Automated
ML platforms, with which we compare performance against
CIAMS-based Automated ML system.

Automated machine learning frameworks generally apply
standardized techniques for feature selection, feature trans-
formation, and data imputation on datasets developed over
the years. However, the underlying methods used to auto-
matemachine learning tasks are different.We experimentally
assess these methods in an end-to-end style across various
datasets. We perform a quantitative comparison of the per-
formance of CIAMS measured using F1 score with the other
Automated ML candidate methods listed in Table 15.

Commercial and noncommercial Automated ML plat-
forms apply different model ensembling techniques to boost
performance. In our design, we use the top3 CIAMS rec-
ommended model classes and build the classifiers using the
labeled part of theProductiondataset and tune the constituent
classifiers using fivefold cross-validation. We compare the
evaluation (or test) set performance of the best-performing
model among the top3 CIAMS against the performance of
the other Automated ML methods in Table 16.

While comparing the performance ofCIAMS against other
Automated ML methods, we provide the test dataset in full
as input to all the systems evaluated in this experiment. We
observe from Table 16 that CIAMS is winning against the
other methods with an average rank of 1.68, followed by
Auto-weka scoring an average of 2.4. It is interesting to
observe the CIAMS method scoring a definite top3 position
in all 25 test datasets. The clear win also reflects in the num-
ber of top2 positions at 22 of 25. This observation gives
us a strong validation that CIAMS-based end-to-end Auto-
matedML system is at par if not better than other commercial

123

International Journal of Data Science and Analytics

Table 18 Comparison of time taken (in seconds) by CIAMS and other Automated ML methods for different binary class datasets

Dataset CIAMS FLAML H2O TPOT A-WEKA AzureML SageMaker A-SKL

Australian 10.9 11.1 13.8 30.5 184.0 1064.6 – 3745.3

Bankruptcy 9.2 9.4 34.3 30.0 197.0 – – 4699.3

Christine 586.8 606.9 1181.7 209.6 290.0 1273.4 2832.7 3705.9

Cleve 9.7 9.9 101.9 65.8 196.0 1111.5 – 4699.3

Haberman 16.3 16.6 18.2 28.8 206.0 1089.3 – 3668.3

Jm1 388.8 3120.5 35.2 157.2 178.0 1110.2 1835.7 3605.0

Mfeat-morphological 20.9 21.1 34.5 33.2 171.0 1102.0 – 3644.9

Monk-2 9.3 9.4 24.6 24.0 169.0 1128.1 – 3811.9

Nba_logreg 19.1 19.2 14.2 29.1 165.0 1156.2 – 3664.9

No2 9.8 10.0 19.0 35.0 173.0 1117.0 – 3641.8

Ozone 71.5 71.9 51.5 70.3 212.0 1152.9 1805.6 3620.4

Philippine 534.4 536.1 156.4 358.9 202.0 1179.3 1986.9 3604.5

Phisingwbsite 367.0 3224.0 45.3 67.9 417.0 1131.8 1745.4 3621.4

Piechart3 24.4 24.7 20.1 25.3 180.0 1141.4 – 3706.5

Saheart 15.6 15.7 16.8 30.7 184.0 1133.5 – 3716.7

Scene_urban 93.4 94.0 111.4 210.2 180.0 1165.7 – 3618.7

Segment 32.0 32.3 68.4 29.5 158.0 1092.4 – 3741.8

Speech 24.4 25.3 20.1 25.3 197.0 1170.7 2168.1 3706.5

UniversalBank 268.6 268.7 19.2 64.9 170.0 1154.1 1835.7 3611.9

Wine4 18.0 18.2 19.3 26.3 188.0 1161.3 – 7188.5

Amazon_emp_access* 340.7 341.1 53.0 86.7 171.9 1150.9 2046.8 3624.7

Clickpred_small* 278.3 279.2 53.7 63.7 5139.0 1131.4 – 3614.6

Namao* 649.7 651.4 528.7 124.9 325.0 1137.7 2077.5 3737.3

FOREX_eurgbp* 403.7 515.7 50.8 117.7 205.0 1112.8 – 3754.0

Run_or_walk_info* 615.2 403.9 188.0 83.4 13920.0 1145.4 – 3648.7

#Fastest performance 12 0 9 4 0 0 0 0

#Faster performance 14 12 11 10 3 0 0 0

The shortest time is presented as underlined and bold-faced and the second shortest is bold-faced. Datasets with a * marker are larger in size

and open-source automated machine learning methods even
without any explicit feature engineering incorporated by the
other methods.

We further study the statistical significance of the per-
formance of CIAMS against other Automated ML methods
using two samples t-test in Table 17. It is evident from the
table thatCIAMSwinsover theothermethods in an averageof
three-fourths (78%) of the test datasets. The next best meth-
ods in the comparison are TPOT and H2O, where CIAMS
wins in two-thirds (64%) of the test datasets population. It
is remarkable to observe CIAMS ruling over FLAML and
Auto-WEKAwith 92% and 100%wins. From Tables 16 and
17, we conclude that CIAMS is a great contender for becom-
ing an Automated ML system for dataset classification in
production settings.

Table 18 shows the time taken by each of the auto-
mated machine learning methods for building models and
making predictions end-to-end. Amazon SageMaker and
Auto-sklearn are the slowest methods consuming over an
hour for each dataset. Azure AutomatedML is the next slow-

est method, consuming over 15 mins for each dataset on
average. TPOT is reasonably faster, with an average time of
less than a minute. FLAML and H2O AutoML are the sec-
ond fastest methods to make CIAMS the fastest method for
automated machine learning in a limited dataset experiment.
CIAMS scores the top1 fastest position on 12 and top2 faster
position on 14 datasets out of 25.

6 Conclusion

CIAMS is a scalable and extensible method for automatic
model selection using the clustering indices estimated for
a given dataset. We build an end-to-end pipeline for rec-
ommending the best classification model class for a given
production dataset based on the dataset’s characteristics
as represented in the clustering index feature space. Our
experimental setup with 60 different binary class datasets
confirms the validity of our hypothesis that the classifica-
tion performance of a dataset is a function of the dataset

123

International Journal of Data Science and Analytics

clustering indices with R2 > 80% score for all the model
classes included in the setup. We also observe that our
mapper module predicts the expected classification perfor-
mance within 10% error margin for an average of two-thirds
of 60 datasets in the subsampling mode. While evaluating
the rank-order prediction, we observe that our automatic
model selection method scores precise top3 predictions for
three-fourths of 60 datasets. We also develop an end-to-end
automatic machine learning system for data classification.
A user can send a test dataset and acquire the classifica-
tion labels without worrying about the classification model
selection and building processes. When we compare against
popular commercial and open-source automatic machine
learning platforms with another set of 25 binary class
datasets,weoutperformotherswith an average rankof1.68 in
classification performance, even in the absence of the explicit
feature engineering performed by other platforms. Regarding
running time, we show thatCIAMS is significantly faster than
the other methods. The next step for CIAMS is to extend the
platform for multi-class classification and regression tasks to
make it a complete AutomatedML suite.Whilst successfully
and objectively establishing the relationship between cluster-
ing indices and model fitness, it is compelling to also study
how such relationships translate into human-understandable
interpretations to enable story-telling on the dataset-model
fitness. So, we envision building the next generation of the
platform with explainability that provides the reasoning for
why a model class is best suited for the given dataset. The
codebase for this work is available in Github.3

Acknowledgements This work was supported by Claritrics Inc. d.b.a
BUDDI AI under the Grant number RB1920CS200BUDD008156. On
behalf of all authors, the corresponding author states that there is no
conflict of interest.

Data Availability The datasets generated during and/or analyzed during
the current study are available from the corresponding author upon
reasonable request.

References

1. Brazdil, P.B., Soares, C., Pinto da Costa, J.: Ranking learning algo-
rithms: using IBL and meta-learning on accuracy and time results.
Mach. Learn. 50(3), 251–277 (2003)

2. Vainshtein, R., Greenstein-Messica, A., Katz, G., Shapira, B.,
Rokach, L.: A hybrid approach for automatic model recommenda-
tion. In: Proceedings of the 27th ACM International Conference on
Information and Knowledge Management, CIKM 2018, pp. 1623–
1626. Association for ComputingMachinery, NewYork, NY, USA
(2018). https://doi.org/10.1145/3269206.3269299

3. Cohen-Shapira, N., Rokach, L., Shapira, B., Katz, G., Vainshtein,
R.: Autogrd: model recommendation through graphical dataset
representation. In: Proceedings of the 28thACMInternationalCon-
ference on Information and KnowledgeManagement, pp. 821–830
(2019). https://doi.org/10.1145/3357384.3357896

3 https://github.com/BUDDI-AI/CIAMS.

4. Drori, I., et al.: Automatic machine learning by pipeline synthesis
using model-based reinforcement learning and a grammar. CoRR
arXiv:1905.10345 (2019)

5. Thornton, C., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Auto-
weka: combined selection and hyperparameter optimization of
classification algorithms. In: Proceedings of the 19th ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 847–855 (2013). arXiv:1208.3719

6. Feurer, M., et al. In: Efficient and robust automated machine
learning In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama,
M., Garnett, R. (eds.) Advances in Neural Information Pro-
cessing Systems, vol. 28, pp. 2962–2970. Curran Asso-
ciates, Inc. (2015). http://papers.nips.cc/paper/5872-efficient-and-
robust-automated-machine-learning.pdf

7. Olson, R.,Moore, J.: TPOT: a tree-based pipeline optimization tool
for automating machine learning. In: JMLR, pp. 151–160 (2019)

8. Chen, B., Wu, H., Mo, W., Chattopadhyay, I., Lipson, H.:
Autostacker: a compositional evolutionary learning system. CoRR
arXiv:1803.00684 (2018)

9. Real, E., Liang, C., So, D.R., Le, Q.V.: Automl-zero: evolv-
ing machine learning algorithms from scratch. arXiv:2003.03384
(2020)

10. Li, L., Jamieson, K.G., DeSalvo, G., Rostamizadeh, A., Talwalkar,
A.: Efficient hyperparameter optimization and infinitely many
armed bandits. arXiv:1603.06560 (2017)

11. Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., Hornik, K.:
Cluster: cluster analysis basics and extensions. TheComprehensive
R Archive Network (2019). R package version 2.0.8

12. Ho, T.K.: A data complexity analysis of comparative advantages
of decision forest constructors. Pattern Anal. Appl. 5(2), 102–112
(2002). https://doi.org/10.1007/s100440200009

13. Das, P., et al.: Amazon sagemaker autopilot: a white box automl
solution at scale (2020). arXiv:2012.08483

14. Mishra, A. Amazon SageMaker, Ch. 16, pp. 353–385. Wiley
(2019). https://doi.org/10.1002/9781119556749.ch16

15. LeDell, E., Poirier, S.: H2O AutoML: scalable automatic machine
learning. In: 7th ICMLWorkshop onAutomatedMachineLearning
(AutoML) (2020). https://www.automl.org/wp-content/uploads/
2020/07/AutoML_2020_paper_61.pdf

16. H2O.ai. H2O AutoML (2017). http://docs.h2o.ai/h2o/latest-
stable/h2o-docs/automl.html. H2O version 3.30.0.1

17. Mukunthu, D., Shah, P., Tok, W.: Practical automated machine
learning on Azure: using Azure machine learning to quickly build
AI solutions. O’Reilly Media, Incorporated 2019. https://books.
google.co.in/books?id=CgB4xgEACAAJ

18. Fusi, N., Sheth, R., Elibol, M.H.: Probabilistic matrix factorization
for automated machine learning. NIPS 2018 (2018). https://www.
microsoft.com/en-us/research/publication/probabilistic-matrix-
factorization-for-automated-machine-learning/. Preprint posted
to Cornell University Library

19. Wang, C., Wu, Q., Weimer, M., Zhu, E.: Flaml: a fast and
lightweight automl library. In: FLAML: a fast and lightweight
AutoML library (2021)

20. Brazdil, P.B., Soares, C.: Ranking classification algorithms based
on relevant performance information. In: Proceedings of the
ECML-2000 Workshop on Meta-Learning: Building Automatic
Advice Strategies for Model Selection and Method Combination.
Springer, Berlin, Heidelberg (2000)

21. Poulakis, Y., Doulkeridis, C., Kyriazis, D.: A framework for auto-
mated clustering based on cluster validity indices. In: Proceedings
of the 20th IEEE International Conference on Data Mining (2020).
https://www.ds.unipi.gr/prof/cdoulk/papers/icdm20.pdf

22. Sahni, D., Pappu, S.J., Bhatt, N.: Aided selection of samplingmeth-
ods for imbalanced data classification. In: 8th ACM IKDD CODS
and 26th COMAD, pp. 198–202 (2021). https://doi.org/10.1145/
3430984.3431029

123

https://doi.org/10.1145/3269206.3269299
https://doi.org/10.1145/3357384.3357896
https://github.com/BUDDI-AI/CIAMS
http://arxiv.org/abs/1905.10345
http://arxiv.org/abs/1208.3719
http://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning.pdf
http://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning.pdf
http://arxiv.org/abs/1803.00684
http://arxiv.org/abs/2003.03384
http://arxiv.org/abs/1603.06560
https://doi.org/10.1007/s100440200009
http://arxiv.org/abs/2012.08483
https://doi.org/10.1002/9781119556749.ch16
https://www.automl.org/wp-content/uploads/2020/07/AutoML_2020_paper_61.pdf
https://www.automl.org/wp-content/uploads/2020/07/AutoML_2020_paper_61.pdf
http://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html
http://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html
https://books.google.co.in/books?id=CgB4xgEACAAJ
https://books.google.co.in/books?id=CgB4xgEACAAJ
https://www.microsoft.com/en-us/research/publication/probabilistic-matrix-factorization-for-automated-machine-learning/
https://www.microsoft.com/en-us/research/publication/probabilistic-matrix-factorization-for-automated-machine-learning/
https://www.microsoft.com/en-us/research/publication/probabilistic-matrix-factorization-for-automated-machine-learning/
https://www.ds.unipi.gr/prof/cdoulk/papers/icdm20.pdf
https://doi.org/10.1145/3430984.3431029
https://doi.org/10.1145/3430984.3431029

International Journal of Data Science and Analytics

23. Santhiappan, S., Shravan, N., Ravindran, B.: Is it hard to learn
a classifier on this dataset? In: 8th ACM IKDD CODS and 26th
COMAD, pp. 299–306 (2021). https://doi.org/10.1145/3430984.
3430997

24. Katz, G., Shin, E.C.R., Song, D.X.: Explorekit: automatic feature
generation and selection. In: 2016 IEEE 16th International Confer-
ence on Data Mining (ICDM), pp. 979–984 (2016)

25. Engels, R., Theusinger, C.: Using a data metric for preprocessing
advice for data mining applications. In: Proceedings of the Euro-
peanConference onArtificial Intelligence (ECAI-98), pp. 430–434
(1998)

26. Li, L., Abu-Mostafa, Y.: Data complexity inmachine learning. Cal-
tech Computer Science Technical Report (2006)

27. Orriols-Puig, A., Macià, N., Ho, T.: Dcol: data complexity library
in c++ (documentation) (2010)

28. Mollineda, R.A., Sánchez, J.S., Sotoca, J.M.: Marques, J.S., Pérez
de la Blanca, N., Pina, P. (eds.): Data characterization for effective
prototype selection. In: Marques, J.S., Pérez de la Blanca, N., Pina,
P. (eds.) Pattern Recognition and Image Analysis. Springer, Berlin,
Heidelberg, pp. 27–34 (2005)

29. Peng, Y., Flach, P.A., Soares, C., Brazdil, P.: Improved dataset
characterisation for meta-learning. In: Proceedings of the 5th Inter-
national Conference on Discovery Science, pp. 141–152 (2002)

30. Bensusan, H.: Odd bites into bananas don’t make you blind: learn-
ing about simplicity and attribute addition. Tech. Rep., University
of Bristol, GBR (1998)

31. Bensusan, H., Giraud-Carrier, C., Kennedy, C.: A higher-order
approach to meta-learning. Tech. Rep., University of Bristol, GBR
(2000)

32. Hoekstra, A., Duin, R.P.W.: On the nonlinearity of pattern classi-
fiers. In: Proceedings of 13th International Conference on Pattern
Recognition, vol. 4, pp. 271–275 (1996)

33. Bensusan, H., Giraud-Carrier, C.: Discovering task neighbour-
hoods through landmark learning performances. In: Proceedings of
the 4th European Conference on Principles and Practice of Knowl-
edge Discovery in Databases, pp. 325–330 (2000)

34. Pfahringer, B.: Meta-learning by landmarking various learning
algorithms. In: Proceedings of the 17th International Conference
on Machine Learning (2001)

35. Fürnkranz, J., Petrak, J., Giraud-Carrier, C., Lavrac, N., Moyle,
S. Kavsek, B. (eds.): An evaluation of landmarking variants. In:
Giraud-Carrier, C., Lavrac, N., Moyle, S. Kavsek, B. (eds.) Pro-
ceedings of the ECML/PKDDWorkshop on Integrating Aspects of
DataMining, Decision Support andMeta-Learning (IDDM-2001),
pp. 57–68 (2001). http://tubiblio.ulb.tu-darmstadt.de/51703/

36. Petrak, J.: Fast subsampling performance estimates for classi-
fication algorithm selection. In: Proceedings of the ECML-00
Workshop on Meta-Learning: Building Automatic Advice Strate-
gies for Model Selection and Method Combination, pp. 3–14
(2000)

37. Garcia, L.P., de Carvalho, A., Lorena, A.: Effect of label noise in
the complexity of classification problems.Neurocomputing (2015).
https://doi.org/10.1016/j.neucom.2014.10.085

38. Morais, G., Prati, R.: Complex network measures for data set
characterization. In: Proceedings—2013 Brazilian Conference on
Intelligent Systems, BRACIS 2013, pp. 12–18 (2013). https://doi.
org/10.1109/BRACIS.2013.11

39. Zöller, M.-A., Huber, M.F.: Benchmark and survey of automated
machine learning frameworks (2021). arXiv:1904.12054

40. Santu, S., et al.: Automl to date and beyond: Challenges and oppor-
tunities. ACM Comput. Surv. (2022). https://doi.org/10.1145/
3470918. Publisher Copyright: © 2021 Association for Computing
Machinery

41. He, X., Zhao, K., Chu, X.: Automl: a survey of the state-of-the-art
(2021). arXiv:1908.00709

42. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J.
Mach. Learn. Res. 9, 2579–2605 (2008)

43. Hotelling, H.: The generalization of Student’s ratio. Ann.
Math. Stat. 2(3), 360–378 (1931). https://doi.org/10.1214/aoms/
1177732979

44. Desgraupes, B.: Clustering indices. Tech. Rep., The Comprehen-
sive R Archive Network (2013). https://cran.r-project.org/web/
packages/clusterCrit/vignettes/clusterCrit.pdf

45. Chen, T., Benesty, M., He, T.: Understand your dataset with
XGBoost. XGBoost R package (2018)

46. Chernick, M.R., LaBudde, R.A.: An Introduction to Bootstrap
Methods with Applications to R, 1st edn. Wiley Publishing (2011)

47. Bluman, A.G.: Elementary statistics: a step by step approach.
McGraw-Hill Education, New York, NY, USA (2014)

48. Lorena, A., Garcia, L.P., Lehmann, J., de Souto, M., Ho, T.: How
complex is your classification problem?: A survey on measuring
classification complexity. ACM Comput. Surv. 52, 1–34 (2019).
https://doi.org/10.1145/3347711

49. Komorniczak, J., Ksieniewicz, P.: Problexity—an open-source
python library for binary classification problem complexity assess-
ment (2022). arXiv:2207.06709

50. Alcobaça, E., et al.: Mfe: Towards reproducible meta-feature
extraction. J. Mach. Learn. Res. 21(111), 1–5 (2020). http://jmlr.
org/papers/v21/19-348.html

51. Alcobaça, E., et al.: pymfe: python meta-feature extractor. https://
github.com/ealcobaca/pymfe

52. Rosenberg, A., Hirschberg, J.: V-measure: a conditional entropy-
based external cluster evaluation measure. In: Proceedings of the
2007 Joint Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Language Learning
(EMNLP-CoNLL), pp. 410–420 (2007). https://www.aclweb.org/
anthology/D07-1043

53. Rao, C.R.: The utilization of multiple measurements in problems
of biological classification. J. R. Stat. Soc.: Ser. B (Methodol.)
10(2), 159–193 (1948). https://doi.org/10.1111/j.2517-6161.1948.
tb00008.x

54. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Infor-
mation Retrieval. Cambridge University Press, Cambridge (2008).
http://nlp.stanford.edu/IR-book/information-retrieval-book.html

55. Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE
Trans. Pattern Anal. Mach. Intell. PAMI–1(2), 224–227 (1979).
https://doi.org/10.1109/TPAMI.1979.4766909

56. Rousseeuw, P., Rousseeuw, P.J.: Silhouettes: agraphical aid to
the interpretation and validation of cluster analysis. J. Com-
put. Appl. Math. 20, 53–65 (1987). https://doi.org/10.1016/0377-
0427(87)90125-7

57. Hubert, L., Schultz, J.: Quadratic assignment as a general data
analysis strategy. Br. J.Math. Stat. Psychol. 29(2), 190–241 (1976).
https://doi.org/10.1111/j.2044-8317.1976.tb00714.x

58. Dunn†, J. C. Well-separated clusters and optimal fuzzy partitions.
Journal of Cybernetics 4(1), 95–104 (1974). https://doi.org/10.
1080/01969727408546059

59. Elith, J., Leathwick, J., Hastie, T.: A working guide to boosted
regression trees. J. Anim. Ecol. 77, 802–813 (2008). https://doi.
org/10.1111/j.1365-2656.2008.01390.x

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123

https://doi.org/10.1145/3430984.3430997
https://doi.org/10.1145/3430984.3430997
http://tubiblio.ulb.tu-darmstadt.de/51703/
https://doi.org/10.1016/j.neucom.2014.10.085
https://doi.org/10.1109/BRACIS.2013.11
https://doi.org/10.1109/BRACIS.2013.11
http://arxiv.org/abs/1904.12054
https://doi.org/10.1145/3470918
https://doi.org/10.1145/3470918
http://arxiv.org/abs/1908.00709
https://doi.org/10.1214/aoms/1177732979
https://doi.org/10.1214/aoms/1177732979
https://cran.r-project.org/web/packages/clusterCrit/vignettes/clusterCrit.pdf
https://cran.r-project.org/web/packages/clusterCrit/vignettes/clusterCrit.pdf
https://doi.org/10.1145/3347711
http://arxiv.org/abs/2207.06709
http://jmlr.org/papers/v21/19-348.html
http://jmlr.org/papers/v21/19-348.html
https://github.com/ealcobaca/pymfe
https://github.com/ealcobaca/pymfe
https://www.aclweb.org/anthology/D07-1043
https://www.aclweb.org/anthology/D07-1043
https://doi.org/10.1111/j.2517-6161.1948.tb00008.x
https://doi.org/10.1111/j.2517-6161.1948.tb00008.x
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
https://doi.org/10.1109/TPAMI.1979.4766909
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1111/j.2044-8317.1976.tb00714.x
https://doi.org/10.1080/01969727408546059
https://doi.org/10.1080/01969727408546059
https://doi.org/10.1111/j.1365-2656.2008.01390.x
https://doi.org/10.1111/j.1365-2656.2008.01390.x

	CIAMS: clustering indices-based automatic classification model selection
	Abstract
	1 Introduction
	2 Related work
	3 Our approach to automatic model selection
	3.1 Clustering indices of subsamples vs. population
	3.2 Automatic model selection system architecture
	3.3 Training pipeline
	3.3.1 Preprocessing
	3.3.2 Estimating model-fitness
	3.3.3 Data construction
	3.3.4 Mapper for model selection

	3.4 Recommendation pipeline
	3.5 Configuration
	3.6 Classification modeling as a service

	4 Experimental setup
	4.1 Training phase
	4.2 Evaluation phase
	4.3 Hyper parameters
	4.3.1 Number of clusters
	4.3.2 Subsamples

	4.4 Scaling up

	5 Evaluation
	5.1 Mapper module evaluation
	5.1.1 Regressor performance
	5.1.2 Prediction correctness

	5.2 Comparing with equivalent methods
	5.3 Ablation Study
	5.4 Evaluating end-to-end CIAMS system
	5.4.1 Validation
	5.4.2 Testing

	5.5 Validating CIAMS-based end-to-end automated ML system

	6 Conclusion
	Acknowledgements
	References

