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Abstract
This study proposes a discrete probability model for the modeling of count datasets. Some important properties are derived,
including characteristic and moment-generating functions, mean, variance, index of dispersion, skewness, kurtosis, and risk
measures (actuarial measures). The maximum likelihood estimation approach has been used to estimate parameter estimates
for the proposed distribution. The convergence of the estimators is assessed via a simulation study. In the end, applications to
four practical datasets are given to show the usefulness of the proposed distribution over famous discrete distributions. It is
manifest that the proposed model provides a better fit than competitive models.

Keywords XLindley distribution · Discretization · Inference · Count data · Data analysis

1 Introduction

Count data occur in a variety of sectors, such as the num-
ber of patients, medical visits, catastrophic earthquakes each
year, traffic accidents in a month, trees in the forest, num-
ber of fires, and the number of microorganisms growing in
an hour. The Poisson distribution is a standard distribution
for modeling count observations. Sometimes the existing
models do not follow the properties of datasets and do not
provide efficient results. So, a more flexible probability dis-
tribution is required to analyze count datasets with varying
behavior. Several probability models are introduced using
different discretization approaches. The reader can consult
a comprehensive review by [9] on discrete models, datasets,
and discretization techniques. Some examples are: Poisson
Lindley [25], discrete Pareto [19], discrete Lindley [15],
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discrete inverse Weibull [17], Poisson Ailamujia [16], dis-
crete Ramus-Louzada [13], Poisson XLindley [3], Poisson
moment exponential [2], discrete power-Ailamujia [5], dis-
crete moment exponential [1], Poisson Mirra [21] and new
discrete Ramos-Louzada [4].

Assume a random variable X having XLindley distribu-
tion [10] with the probability density function (PDF) and
cumulative distribution function (CDF), respectively:

f (x) � θ2(2 + θ + x)e−θx

(1 + θ)2
, x , θ > 0 (1)

and

F(x ; θ) � 1 −
(
1 +

θx

(1 + θ)2

)
e−θx , x , θ > 0 (2)

The XLindley distribution attracted a lot of attention due
to its adaptability. Various authors further generalized it
for more complicated and different types of datasets. For
example, for unit interval datasets, the Unit-XLindley [14]
distribution; for count observations, the Poisson XLindley
[3]; and for continuous datasets, the Power XLindley [22].

Let a random variable X follow a continuous random vari-
able with PDF over range R, then the resulting probability
mass function (PMF) for a new discrete random variable Y
is obtained using relation:
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Fig. 1 PMF graphs of the DXLD for various parameter settings

P(y; θ) � fX (y, θ )∑∞
i�−∞ fX (i , θ )

, yεZ (3)

In this study, we used the discretization approach given
in Eq. (3) to propose a new discrete XLindley (DXL)
distribution. The DXLmodel included some intriguing char-
acteristics, including closed-form formulas for the mean,
variance, and moment-generating function. It is an excellent
candidate for modeling over-dispersed nature datasets. In the
end, we validated the importance of the proposed distribution
using four datasets from diverse fields.

The structure of the study is as follows:Weproposed a new
probability model in Sect. 2. In Sect. 3, statistical properties
are derived. The proposed distribution’s parameter estima-
tion is covered inSect. 4. InSect. 5, the adaptability of the new
distribution is demonstrated by the analysis of four datasets.
Finally, Sect. 6 brings our research to a conclusion.

2 Derivation of new distribution

A new discrete probability distribution is derived using the
discretization methodology stated in Eq. (3). The PMF of

DXL distribution is given below:

P(y; α) � (1 − α)2(2 − ln(α) + y)αy

[(2 − ln(α))(1 − α) + α]
, y � 0, 1, 2, . . . .

(4)

where 0 < α � e−θ < 1. The DXL PMF behavior for
different values of a parameter is given in Fig. 1.

It is found that the PMF exhibits declining, increasing and
then, decreasing and unimodal form. So asymmetric datasets
can be modeled using the suggested approach. The DXL
model’s CDF can be written as follows:

F(y) � 1 − αy+1[(2 − ln(α) + y)(1 − α) + 1]

[(2 − ln(α))(1 − α) + α]
; y � 0, 1, 2, . . .

(5)

where α > 0. The corresponding survival function is:

S(y) � αy+1[(2 − ln(α) + y)(1 − α) + 1]

[(2 − ln(α))(1 − α) + α]
; y � 0, 1, 2, . . . . (6)

The hazard function (HF) is:
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Fig. 2 Visualization of HF for various parameter values

h(y) � (1 − α)2(2 − ln(α) + y)

α[(2 − ln(α) + y)(1 − α) + 1]
; y � 0, 1, 2, . . . .

(7)

Figure 2 makes available the HF visualization of the DXL
distribution for some choices of parameters. We observe that
the failure rate pattern of the proposed model is increasing.

3 Statistical properties

In this section, some statistical properties ofDXLdistribution
are derived and studied.

3.1 Moment-generating function (mgf)

The mgf of DXL distribution with parameter α is given by:

My(t) � (1 − α)2
[
(2 − ln(α))

(
1 − αet

)
+ αet

]
[(2 − ln(α))(1 − α) + α](1 − αet )2

. (8)

The first four moments about the origin of DXL are:

μ
′
1 � α(3 − α − ln(α) + αln(α))

(1 − α)[(2 − ln(α))(1 − α) + α]
,

μ
′
2 � α

(
α2ln(α) − α2 + 4α − ln(α) + 3

)
(1 − α)2[(2 − ln(α))(1 − α) + α]

,

μ
′
3 � α

(
α3 − 3 − 17α − 5α2 − (α − 1)

(
1 + 4α + α2

)
ln(α)

)
(α − 1)3(2 − α + (α − 1)ln(α))

,

and

μ′
4 �

α(α4ln(α) − α4 + 10α3ln(α) + 6α3 + 66α2

+46α − 10αln(α) − ln(α) + 3)

(1 − α)4[(2 − ln(α))(1 − α) + α]
.

The first four moments about the mean can be derived
using the following relation μr � E

(
Y − μ

′
1

)r
.

The Dispersion Index and Coefficient of variation can be
obtained by using formulas:

DI � Variance
Mean and CV � SD

Mean
The formula to calculate the coefficient of skewness and

kurtosis are:

CS � μ′
3 − 3μ′

2μ + 2μ3

(
σ 2

) 3
2

, CK � μ′
4 − 4μ′

3μ + 6μ′
2μ

2 − 3μ4

(
σ 2

)2 .

Thedescriptivemeasures given inTable 1 compute numer-
ically using some parameter values to illustrate the behavior
of the DXL distribution.
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Table 1 Some computational
statistics for different choices of
parameter

α E(X) Var CS CK DI CV

0.2 0.33097 0.42740 2.40895 10.47247 1.29135 1.97528

0.3 0.59712 0.89685 2.09107 8.90658 1.50197 1.58599

0.4 0.97678 1.73853 1.90051 8.01228 1.77987 1.34988

0.5 1.54154 3.33136 1.76276 7.38359 2.16106 1.18401

0.6 2.43497 6.61571 1.65232 6.89955 2.71696 1.05632

0.7 3.99171 14.4250 1.56044 6.52114 3.61375 0.95148

0.8 7.21381 38.5957 1.48633 6.24025 5.35025 0.86120

0.9 17.1042 178.302 1.43447 6.06248 10.4244 0.78068

0.95 37.0511 758.151 1.41960 6.01594 20.4623 0.74315

According to the results tabulated in Table 1, the DXL
model can be an appropriate choice to investigate asymmetric
“positively skewed” and dispersion data having a leptokurtic
shape.

3.2 Actuarial measures

One of the most difficult challenges in the field of actuarial
sciences is estimating market risk. When buying and sell-
ing anything, a risk estimate is necessary. A risk estimate is
required when purchasing and selling anything. We evalu-
ated the value at risk (VaR) and tail value at risk (TVaR), two
significant actuarial variables for the DXL distribution.

The VaR of DXL distribution is attained as yp � F(y),
where y is gained by solving the nonlinear equation given
below:

αy+1[(2 − ln(α) + y)(1 − α) + 1]

[(2 − ln(α))(1 − α) + α]
� 1 − p

TVaR stands for conditional tail expectation and is calcu-
lated as follows:

T VaR � 1

1 − F
(
yp

)
∞∑

y�yp

yp(y)

T VaR �
αyp (2yp(α − 1) − yp2(α − 1)2 + (α − 3)α

+(yp(α − 1) − α)(α − 1)ln(α))

((α − 1)(2 − α + (α − 1)ln(α)))(1 − F(yp))
.

(9)

Table 2 shows the values of Value at Risk and Tail Value
at Risk for some choices of parameters.

Table 2 Some VaR and TVaR values for the DXL distribution

A Significance level VaRp T VaRp

0.2 0.75 0.005170 1.334776

0.80 0.163748 1.967961

0.85 0.367160 2.794348

0.90 0.652068 3.975490

0.95 1.134926 6.030100

0.99 2.240058 10.91669

0.4 0.75 0.996260 3.910052

0.80 1.297106 4.546909

0.85 1.679901 5.373250

0.90 2.211287 6.544759

0.95 3.102234 8.557670

0.99 5.112269 13.24370

0.6 0.75 3.089965 7.477126

0.80 3.659892 8.328814

0.85 4.379046 9.420512

0.90 5.369009 10.94754

0.95 7.013888 13.52952

0.99 10.68628 19.41472

0.8 0.75 9.694302 17.58379

0.80 11.03643 19.13533

0.85 12.72116 21.10695

0.90 15.02889 23.84066

0.95 18.84439 28.41909

0.99 27.31835 38.73834

0.9 0.75 23.11139 37.50574

0.80 25.97005 40.46149

0.85 29.55440 44.21034

0.90 34.45917 49.39851

0.95 42.56035 58.07059

0.99 60.53395 77.57300
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4 Parameter estimation

Assume y1, y2, . . . , yn to be a random sample of size n from
the DXL distribution. The Log-likelihood function is given
by:

(10)

𝓁 � 2nln (1 − α) − nln [(2 − lnα) (1 − α) + α]

+ lnα
n∑

i�1

yi +
n∑

i�1

ln (2 − lnα + yi ) ,

The log-likelihood equation is obtained by differentiating
the above equation with respect to the parameter α:

(11)

∂𝓁
∂α

� −2n

(1 − α)
+

n (1 − αlnα)

α [(2 − lnα) (1 − α) + α]

+
1

α

n∑
i�1

yi − 1

α

n∑
i�1

1

(2 − lnα + yi )
.

It is noted that Eq. (11) cannot have an explicit solution.
This goal must be solved numerically using an iterative tech-
nique like Newton–Raphson. For this purpose, we use the
fitdistrplus (version 1.1–8) package of the R (version 4.2.2,
2022) software [23].

5 Simulation study

We run a simulation study with finite sample sizes to test the
long-term correctness of the MLEs of the DXLD parameter.
Using various parameter values, we created samples of n �
5, 10, 25, 50, 100, and 200 from the DXLD.We study the five
parameter scenarios as follows: α� 0.2, 0.4, 0.6, 0.8, and 0.9.
In this scenario, the iteration is repeated 10,000 times. As a
result, we computed the average estimate (AVEs), absolute
average bias (AABs), and mean square error (MSEs) given
by

AABSα �
N∑
i�1

∣∣̂α j − α
∣∣

N
, andMSEα �

N∑
i�1

(̂
α j − α

)2
N

Table 3 summarizes the findings. As can be observed, the
MSEs associated with each estimate fall as the sample size
increases. This demonstrates the MLEs’ consistent perfor-
mance.

On the basis of simulation criteria, the MLE approach
performs well in estimating the DXL distribution parameter.

6 Empirical study

The DXL distribution will be examined via four datasets
originating from various domains. We evaluate our model’s
effectiveness by contrasting it with the Poisson distribution
(PD), the Poisson XLindley distribution (PXLD) [3], the dis-
crete inverted Topp–Leone distribution (DITLD) [12], the
discreteBilal distribution (DBD) [6], the discreteBurr–Hatke
distribution (DBHD) [11], the discrete Rayleigh distribu-
tion (DRD) [24], and the discrete Pareto distribution (DPrD)
[19]. The MLE approach is used to estimate the parame-
ters. Moreover, different discrimination criteria, such as the
Akaike information criterion (AIC) and Bayesian informa-
tion criterion (BIC), are employed to identify the best-fit
probability distribution. Furthermore,Kolmogorov–Smirnov
(KS) statistics and Chi-Square are used to assess the suitabil-
ity of competing models. The mathematical expressions of
Chi-Square and Kolmogorov–Smirnov statistics are given as
follows:

χ2 �
∑m

k�1

(ok − ek)2

ek
, KS � max

{
k

m
− zk , zk − k − 1

m

}
,

where ek and ok are expected and observed frequencies of
the kth class, respectively.

Example I The first dataset is about a biological experi-
ment, originally analyzed [7]. The data are given in Table
5. In an experiment conducted at random on 8 hills with 15
repetitions, the investigator tallies the number of borers per
hill of corn. Table 4 portrays MLEs with respective standard
errors (SE) of competitive distributions.We also compute the
95% confidence intervals (CI) for the estimates. Moreover,
to get a closer picture, we reported the observed frequencies
(OF) and empirical expected frequencies (EF) with respec-
tive goodness-of-fit (GF) measures in Table 5.

According to Table 5, our proposed distribution provides
the minimum values of the mentioned discriminant criteria
and the highest p values for the biological experiment dataset.
Figures 3 and 4 show the fitted PMF, CDF, and PP plots,
which back up the empirical data.

Example II The second application is associated with the
failure of 15 electronic machines during an accelerated life
examination [20]. The data are: 1, 5, 6, 11, 12, 19, 20, 22, 23,
31, 37, 46, 54, 60, and 66. Table 6 provides the MLEs with
their SE for all fitted models along with their 95% CI. Fur-
thermore, in Table 7, the observed and empirically expected
frequencies with respective GF measures are reported.

From the findings listed in Table 7, it is found that the
DXL distributions work quite well for discussing the second
dataset. The fitted CDF and PP plots are displayed in Fig. 5,
which supports the empirical results provided in Table 7.
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Table 3 Simulation results for
different choices of parameter Measures n α � 0.2 α � 0.4 α � 0.6 α � 0.8 α � 0.9

AVEs 5 0.1699 0.3593 0.5612 0.7756 0.8875

10 0.1817 0.3761 0.5766 0.7862 0.8931

20 0.1896 0.3833 0.5847 0.7908 0.8960

50 0.1935 0.3890 0.5889 0.7933 0.8972

100 0.1957 0.3911 0.5901 0.7943 0.8977

200 0.1961 0.3918 0.5910 0.7946 0.8981

AABs 5 0.0301 0.0407 0.0388 0.0244 0.0125

10 0.0183 0.0239 0.0234 0.0138 0.0069

20 0.0104 0.0167 0.0153 0.0092 0.0040

50 0.0065 0.0110 0.0111 0.0067 0.0028

100 0.0043 0.0089 0.0099 0.0057 0.0023

200 0.0039 0.0082 0.0090 0.0054 0.0019

MSEs 5 0.0164 0.0205 0.0144 0.0054 0.0016

10 0.0086 0.0096 0.0067 0.0022 0.0006

20 0.0044 0.0047 0.0031 0.0010 0.0003

50 0.0017 0.0018 0.0012 0.0004 0.0001

100 0.0009 0.0009 0.0006 0.0002 0.0001

200 0.0004 0.0005 0.0004 0.0001 0.0000

Table 4 MLEs, SE, and 95% CI for the first dataset

Parameter Model

DXLD PXLD DBD DBHD DRD DPrD DITLD PD

α MLE 0.4915 0.8661 2.3767 0.8655 1.8743 1.1112 1.9840 1.4833

SE 0.0242 0.0822 0.1598 0.0385 0.0874 0.1027 0.1832 0.1112

95% CI LCI 0.4441 0.7050 2.0635 0.7900 1.7030 0.9099 1.6249 1.2653

UCI 0.5389 1.0272 2.6899 0.9410 2.0456 1.3125 2.3431 1.7013

Table 5 Observed, expected, and GF for the first dataset

Expected frequencies

X OF DXLD PXLD DBD DBHD DRD DPrD DITLD PD

0 43 44.979 47.124 32.741 68.070 15.920 64.451 52.189 27.227

1 35 30.264 29.231 39.589 21.966 36.171 20.149 30.424 40.385

2 17 18.884 17.796 24.275 10.514 34.577 9.6859 14.112 29.952

3 11 11.252 10.679 12.505 5.9829 21.025 5.6470 7.4663 14.809

4 5 6.4988 6.3345 5.9678 3.7540 8.8891 3.6801 4.3900 5.4916

5 4 3.6701 3.7225 2.7359 2.5074 2.7044 2.5797 2.7906 1.6291

6 1 2.0378 2.1706 1.2256 1.7488 0.6021 1.9040 1.8811 0.4027

7 2 1.1166 1.2574 0.5414 1.2588 0.0990 1.4603 1.3271 0.0853

8 2 1.2978 1.6861 0.4193 4.1983 0.0133 10.443 5.4195 0.0189

Total 120 120 120 120 120 120 120 120 120

−l 200.42 200.63 204.68 214.05 235.23 220.62 205.15 219.19

AIC 402.84 403.26 411.35 430.10 472.45 443.24 412.30 440.38

BIC 405.63 406.04 414.14 432.89 475.24 446.02 415.09 443.16

Chi-Square 1.4628 1.8289 9.6431 25.196 60.049 36.243 6.9771 21.760

p value 0.8332 0.7672 0.0469 0.0000 0.0000 0.0000 0.0000 0.0000
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Fig. 3 Fitted PMF for the first dataset

Fig. 4 Fitted CDF (left panel)
and PP (right panel) plots for the
first dataset

Example III The next discrete dataset is about the number
of epileptic seizure tallies [8]. Similarly, the MLEs, SE, and
95%confidence interval for this dataset are presented inTable
8. The observed and expected frequencies and GF are given
in Table 9.

According to Table 8, it is found that the DXL distribution
appears to be the best among all the competitive models con-
sidered. The fitted PMF is graphically displayed in Figs. 6
and 7 which supports the results provided in Table 9.

Example IV The fourth dataset is related to the number of
forest fires in Greece between July 1 and August 31, 1998.
This dataset is reported in [18]. Table 10 shows the MLEs
for the competing models, standard errors, and 95% CI for

the estimations. Table 11 shows the GF measures for the
distributions that were examined.

From Table 11, it can be observed that the DXL distribu-
tion appears to be the best choice for analyzing the fourth
dataset. In Fig. 8, the fitted CDF and PP plots are plotted,
which also supports the findings listed in Table 11.

7 Conclusion

The discrete XLindley distribution is a novel discrete distri-
bution derived in this article. The proposedmodel may be the
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Table 6 MLEs, SE, and 95% CI
for the second dataset Parameter Model

DXLD DITLD DBHD PD DPrD DBD DRD

α MLE 0.9343 0.4178 0.9992 25.533 0.3283 0.9707 24.382

SE 0.0116 0.1079 0.0076 1.3548 0.0847 0.0054 3.1481

95% CI LCI 0.9116 0.2063 0.9843 24.878 0.1622 0.9602 18.212

UCI 0.9571 0.6293 1.0000 30.188 0.4946 0.9812 30.552

Table 7 GF measures for the
second dataset Statistic Model

DXLD DITLD DBHD DP DPrD DBD DRD

−l 64.429 74.491 91.368 151.21 77.402 64.784 66.394

AIC 130.86 150.98 184.74 304.41 156.80 131.57 134.79

BIC 131.57 151.69 185.44 305.12 157.51 132.28 135.50

KS 0.1070 0.3590 0.7910 0.3810 0.4061 0.1140 0.2160

p value 0.9900 0.0310 0.0000 0.0180 0.0098 0.9710 0.4300

Fig. 5 Fitted CDF (left panel)
and PP (right panel) plots for the
second dataset

Table 8 MLE, SE, and 95% CI for the third dataset

Parameter Model

DXLD PXLD DBD DBHD DRD DPrD DITLD PD

α MLE 0.5007 0.8361 2.4564 0.8702 1.8678 1.0787 1.9045 1.5441

SE 0.0140 0.0459 0.0964 0.0220 0.0510 0.0582 0.1027 0.0663

CI LCI 0.4732 0.7463 2.2675 0.8271 1.7678 0.9646 1.7032 1.4142

UCI 0.5281 0.9259 2.6453 0.9133 1.9678 1.1928 2.1058 1.6740

best solution for modeling asymmetric data with overdisper-
sion phenomena. Several properties of the new model have
been derived. It was discovered that all of its attributes can
be stated in closed forms, which makes the new model more
appealing because it can be used inmany studies, particularly

time series and regression. To estimate the model parame-
ter, the maximum likelihood estimation approach is applied.
Actuarial indicators such as the value at risk and tail value
at risk of the proposed distribution are calculated to quan-
tify market risk in a portfolio of instruments. To illustrate the
flexibility of the proposed discrete model, four distinctive
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Table 9 GF measures for the third dataset

Expected frequencies

X OF DXLD PXLD DBD DBHD DRD DPrD DITLD PD

0 126 127.69 134.01 91.510 198.28 46.867 184.81 148.06 74.940

1 80 87.683 84.746 113.87 64.122 106.28 58.874 88.349 115.71

2 59 55.795 52.559 72.068 30.775 101.22 28.629 41.886 89.338

3 42 33.891 32.113 38.301 17.569 61.198 16.832 22.551 45.982

4 24 19.951 19.390 18.847 11.063 25.678 11.042 13.452 17.750

5 8 11.482 11.595 8.9033 7.4179 7.7386 7.7831 8.6560 5.4816

6 5 6.4965 6.8783 4.1075 5.1946 1.7034 5.7714 5.8972 1.4107

7 4 3.6270 4.0530 1.8678 3.7549 0.2764 4.4446 4.1996 0.3112

8 3 4.3888 5.6536 1.5216 12.824 0.0365 32.807 17.947 0.0722

Total 351 351 351 351 351 351 351 351 351

−l 594.98 596.77 606.76 644.90 672.30 664.41 620.06 636.05

AIC 1192.0 1195.5 1215.5 1291.8 1346.6 1330.8 1242.1 1274.1

BIC 1195.8 1199.4 1219.4 1295.7 1350.5 1334.7 1246.0 1278.0

Chi-Square 5.3145 8.0562 30.006 110.86 174.61 136.03 46.659 80.913

p value 0.5042 0.2340 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Fig. 6 Fitted PMF for the third dataset
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Fig. 7 Fitted CDF (left panel)
and PP (right panel) plots for the
third dataset

Table 10 MLEs, SE, and 95% CI
for the fourth dataset Parameter Model

DXLD DITLD DBHD DRD DPrD DBD PD

α MLE 0.7540 0.8976 0.9837 5.6794 0.6047 7.0506 5.3984

SE 0.0137 0.0810 0.0127 0.2567 0.0546 0.4598 0.2095

CI LCI 0.7272 0.7388 0.9588 5.1763 0.4977 6.1494 4.9878

UCI 0.7809 1.0564 1.0086 6.1825 0.7117 7.9518 5.8090

Table 11 GF measures for
dataset IV Statistic Model

DXLD DITLD DBHD DRD DPrD DBD PD

−l 339.80 367.52 407.16 385.25 389.64 346.90 467.83

AIC 681.60 737.05 816.31 772.49 781.27 695.80 937.65

BIC 684.42 739.86 819.12 775.31 784.08 698.62 940.47

KS 0.1060 0.2880 0.5470 0.2190 0.3550 0.0965 0.2550

p value 0.1300 0.0000 0.0000 0.0000 0.0000 0.2000 0.0000

Fig. 8 Empirical CDF (left
panel) and PP (right panel) plots
for the fourth dataset

123



International Journal of Data Science and Analytics (2024) 17:323–333 333

real datasets are utilized in various fields. Finally, we hope
that the DXL distribution attracts a wider set of applications
in various fields.
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