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Abstract
Not all graphs are clusterable. Not all graphs have a clustered structure and can be meaningfully summarized through vertex
clustering. Clusterable graphs are characterized by pockets of densely connected vertices that are only sparsely connected to
the remaining graph. In this article, we re-introduce a very simple and intuitive, yet highly informative, statistical hypothesis
test for graph clusterability that is based on vertex and neighborhood samples. The goal of this test is to determine if a graph
meets the necessary structural conditions to be summarized meaningfully through vertex clusters. Our test is based on the
hypothesis that a clusterable graph will display, on average, a local neighborhood induced subgraph density that is greater than
the graph’s overall density. The test is also applied to graph comparisons, to test whether one graph has a stronger clustered
structure than another. Significance is assessed using the t-statistic. Since it is based on sampling, we provide a focused
examination of our test’s sensitivity to sample size. The main contribution of this article is a detailed examination of our test’s
accuracy, sensitivity to sample size, conclusion reproducibility and robustness. Our empirical results remain consistent with
our earlier conclusions and demonstrate the almost perfect accuracy of our test, even with very small samples of the graph.
They also reveal that our test remains robust even under severe departures from the null hypothesis.

Keywords Clusterability · Clustering · Graph clustering · Data sciences · Complex networks · Significance testing

1 Introduction

Not all graphs are clusterable. Not all graphs have a clus-
tered structure and can bemeaningfully summarized through
vertex clustering. Clusterable graphs are characterized by
pockets of densely connected vertices that are only sparsely
connected to the remaining graph. In this article, we re-
introduce a very simple and intuitive, yet highly informative,
statistical hypothesis test for graph clusterability that is based
on vertex and neighborhood samples [24]. The goal of this
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test is to determine if a graph meets the pre-requisite (nec-
essary) structural conditions to be summarized meaningfully
through vertex clusters. Our test is based on the hypothesis
that a clusterable graphwill display, on average, a local neigh-
borhood induced subgraph density that is greater than the
graph’s overall density. The test is also applied to graph com-
parisons, to test whether one graph has a more pronounced
clustered structure than another. Significance is assessed
using the t-statistic. Since it is based on sampling, we provide
a focused examination of our test’s sensitivity to sample size.
Themain contribution of this article is a detailed examination
of our test’s accuracy, sensitivity to sample size, conclusion
reproducibility and robustness. Our empirical results remain
consistent with our earlier conclusions [24] and demonstrate
the almost perfect accuracy of our test, even with very small
samples of the graph.

To determine if a graph meets the necessary structural
conditions to be summarized meaningfully through clus-
ters, we seek to answer a question posed in the literature
by Chiplunkar et al. [6], “(...) given access to a graph G =
(V,E), can we quickly determine whether the graph can be
partitioned into a few clusters with good inner conductance
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(...)?”, through sampling and statistical testing. Here, it is
important to specify that while graph “partitions” often des-
ignate fixed-sized subsets of vertices, our work focuses on
more general “clusters” which can have varying sizes.

Ensuring vertex clusters can provide a meaningful sum-
mary of the graph is the first step in any clustering exercise.
It is very important to ensure a graph meets the pre-requisite
(necessary) conditions for having a clustered structure, for
being meaningfully summarizable by vertex clusters, before
undertaking any vertex grouping effort. Clustering algo-
rithms will always group vertices, even when they arguably
do not form meaningful clusters. In such cases, the cluster-
ing process is not only a waste of time, it inevitably leads to
misleading conclusions.

In this article, we revisit our previous clusterability testing
procedure [24].While our test was shown to be very accurate,
our previous work did not examine sample size sensitivity.
Here, we complete our previous work, by assessing its sen-
sitivity to sample size, through an examination of statistical
power.

Our test relies on the fact that clusterable graphs are com-
posed of pockets of densely interconnected vertices with
sparse connections to the remaining vertices. By definition,
clusterable graphs will display mean neighborhood induced
subgraph densities that are higher than the graph’s overall
density. We sample a small subset of the graph’s vertices,
compute the density of the induced subgraphs formedby their
neighborhoods and compare the mean of these densities to
the graph’s global density. Our numerical experiments reveal
that our test is accurate even with very small vertex samples
and that it remains robust even under severe departures from
the null hypothesis.

The remainder of this article is organized as follows. After
a quick overview of the literature published since our previ-
ous work was completed, we present our test statistic for
single graphs and graph pairs. We then explore its distribu-
tion and show test results obtainedwith varying sample sizes.

2 Previous work

In light of the fact this article constitutes an update on the
topic of graph clusterability testing, we only consider devel-
opments since the submission of our earlier article [24].
However, just as in our past work, this follow-up remains
motivated and inspired by the statistical tests of Gao and
Lafferty [12,13]. In our earlier work, we demonstrated these
tests’ unresponsiveness to graph structure and described
their unsuitability to comparisons between graphs. Ourmuch
simpler test was demonstrated to be far superior, in all com-
parisons. It was also shown to be more transparent and not
reliant on restrictive underlying assumptions [24].

We are also motivated by the more recent work of Gao
and Ma [14]. In fact, these authors build upon the earlier
work of Gao and Lafferty [12,13]. This work also presents
a statistical test for graph structure. However, the suggested
test relies on more restrictive assumptions than ours. The test
is also less scalable than ours, as it relies on the graph in its
entirety. Ours only uses neighborhood samples.

While not focused on the specific topic of graph vertex
clustering but rather general (Euclidian space) clustering,
the work of Adolfsson et al. [2], is also a benchmark for
us. These authors establish the need for tests of clusterabil-
ity that are independent of clustering techniques. They begin
by asserting that “(...) an even more fundamental issue than
algorithm selection is when clustering should, or should not,
be applied.” They then go on to state that “Clustering with
realistic aims, which is our focus here, is only appropriate
when cluster structure is present in the data. Otherwise, the
results of any clustering technique become necessarily arbi-
trary and consequently potentially misleading.”

In spite of these very forceful statements, some authors
still go through the effort of clustering through trial and
error. For example, Filan et al. [9] cluster neural networks
using spectral clustering and then assess the quality of their
resulting clusters ex-post, using what they call “absolute
clusterability” and “relative clusterability”, measures that are
based on the normalized-cut (n-cut). This state of affairs in
clustering only illustrates the need to broadcast the impor-
tance of clusterability tests more widely.

We also note that graph testing and sampling from graphs
to infer various structural properties remain current topics
in the literature. For example, Bogerd et al. [5] test for the
presence of a planted community within a graph. Antunes et
al. [4] use sampling to estimate triangle distributions.

Another category of tests which continues to be studied
in the literature is the κ − φ family of tests, which was first
introduced by Czumaj et al. [7] and which was recently tai-
lored to signed graphs by Adriaens and Apers [3]. Tests in
this family are more restrictive than the test described in this
article. They seek to determine if a graph can be partitioned
into, at most, k sets with a conductance of at least φ.

In closing this short literature review, itmust bementioned
that graph testing was initially introduced by Goldreich et
al. [16] in the late 1990s. These authors’ seminal work
introduced the practice of sampling vertices and testing for
specific properties.

3 Statistical hypothesis test

While there is no formal definition of a cluster of vertices in
the literature, there is a clear agreement on its key charac-
teristics. Most authors describe a cluster (or community) as
a subset of vertices that exhibit a high-level of interconnec-
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tion between themselves and a low-level of connection to the
remaining vertices [10,11,25,26,28–30,33] (we quote these
authors, but their description is virtually universal across
the literature). Consequently, clusterable graphs are com-
posed of a non-trivial number of strongly inter-connected
sets of vertices which form dense induced subgraphs with
sparse connections to the remaining graph. On the contrary,
unclusterable graphs, graphs without clusters, display a con-
stant connectivity pattern. For example, this consistency is
very obvious in the case of Erdős-Rény-Gilbert (ERG) graph
[8,15]. It is also obvious in complete graphs. These graphs,
whose edge probability is constant for all vertex pairs are
arguably canonical cases of unclusterable graphs.

In accordancewith this quasi-universal agreement on clus-
ter characteristics, we devise a statistical test to detect the
presence of a non-trivial amount of dense induced subgraphs
with sparse connections to the remaining vertices. Naturally,
this heterogeneity (or lack of) in connectivity is reflected in
local (neighborhood) densities that are (are not) significantly
greater than the graph’s overall density, on average. There-
fore, we posit that clusterable graphs, graphs composed of
clusters, will contain a non-trivial amount of locally dense
induced subgraphs of non-trivial size. Our test rests on the
hypothesis that, on average, a clusterable graph will have
neighborhoods that form induced subgraphs with a density
greater than the graph’s overall density figure. Conversely,
unclusterable graphs are expected to have a mean local den-
sity that is indistinguishable from the graph’s global density.
This fully transparent and intuitive hypothesis is the only
underlying assumption of our test. Unlike other tests in the
literature, we do not impose restrictive assumptions on the
tested graph’s generative model, on the null distribution or
on the number of clusters.

We also extend our test to graph pairs. In this case, the
question we attempt to answer is whether a graph is more
significantly clustered than another.We attempt to answer the
question “Are the nodes of graph G more strongly clustered
than those of graph H?”.

3.1 Sampling and sampling statistics

To conduct our test, we only sample a small portion of the
graph. We sample a portion s ∈ (0, 1) (ideally with s � 1)
of all nodes, for a total of L = �s × |V |� node samples. We
then focus on the induced subgraphs formed by each sampled
node’s neighborhood and compute the density of each of
the L induced subgraphs. For each of the L subgraphs, we
denote the local density as κi , where i ∈ {1, 2, . . . , L}. To
gain a graph level view, we examine the mean neighborhood
density (κ̄). By convention, we set the neighborhood induced
subgraph density to zero, for sampled vertices with less than
two neighbors.

Fig. 1 Sampling example

Figure 1 provides an illustration of our sampling proce-
dure and summary statistic. Assuming we sample verices v1
(green) and v2 (red), we take the induced subgraphs formed
by each sampled node’s neighborhood. In this specific case,
we take the graph formed by vertices v11, v12, v13 (cyan)
and all edges connecting them. For convenience, we label
this graph g1 = (vg1 , eg1). We also obtain the graph formed
by vertices v21, v22, v23, v24 (pink) and all edges connecting
them. We label this graph g2 = (vg2 , eg2). We then com-
pute the induced subgraph densities for g1 and g2, which are
denoted by κ1 and κ2, respectively. In the equations below,
the set of nodes in g1 (g2) is denoted as vg1 (vg2). The set of
edges connecting nodes in g1 (g2) is denoted as eg1 (eg2).

κ1 = |eg1 |
0.5 × |vg1 | × (|vg1 | − 1)

= 3

0.5 × 3 × 2
= 3

3
= 1

κ2 = |eg2 |
0.5 × |vg2 | × (|vg2 | − 1)

= 3

0.5 × 4 × 3
= 3

6
= 0.5

With,

vg1 = {v11, v12, v13} ⇒ |vg1 | = 3

eg1 = {(v11, v12), (v11, v13), (v12, v13)} ⇒ |eg1 | = 3

vg2 = {v21, v22, v23, v24} ⇒ |vg2 | = 4

eg2 = {(v21, v22), (v22, v23), (v22, v24)} ⇒ |eg2 | = 3

To obtain a graph-wide picture, we compute the mean
neighborhood induced subgraph density, which we denote
as κ̄ . In the example in Fig. 1, we have

κ̄ = 1

2
(κ1 + κ2) = 1

2
(1 + 0.5) = 0.75.

3.2 A probabilistic interpretation of density

Graph and neighborhood induced subgraph densities can be
interpreted as the probability that two vertices are connected
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by an edge. A graph’s global density can be understood as
the probability that two arbitrarily selected vertices are con-
nected by an edge. Similarly, at the neighborhood level, local
density can also be interpreted as a probability. It can be
understood as the conditional probability that two nodes are
connected, given they are both in the same induced subgraph
formed by their common neighborhood.

The equations below present a mathematical description
of this probabilistic interpretation.Equation1 shows the com-
putation of a graph’s global density, which we denote as K.
The set of edges is denoted by the usual E and the set of
vertices by V .

K = P(ei j ) = |E |
0.5 × |V | × (|V | − 1)

(1)

κν̃ = P(ei j |νi = ν j = ν̃) = |e|
0.5 × n × (n − 1)

(2)

In Eq.2, we compute the neighborhood density for an arbi-
trary neighborhood ν̃ containing n vertices. The probability
two nodes i and j with a neighborhood νi = ν̃ and ν j = ν̃

respectively are connected in the induced subgraph formed
by this neighborhood is given by the ratio of the total num-
ber of edges in this subgraph (|e|) over the total number of
possible connections.

Our statistical test is grounded in this probabilistic inter-
pretation. We posit that a clusterable graph will have a
non-trivial amount of densely connected neighborhoods.
Under our postulate, vertices of a clusterable graph have a
higher probability of sharing an edge with vertices having
common neighbors than with those with which they don’t.
In the average case, we expect that random vertex samples
drawn from a given neighborhood will have a greater con-
nection probability than vertices that are arbitrarily sampled
across the graph.

3.3 Trivially dense subgraphs and sizes and test
limitations

Before proceeding further with our presentation, it is impor-
tant to note that even an ERG graph, arguably a prototypical
unclusterable graph, will often contain a non-trivial number
of trivially dense induced subgraphs. For example, the num-
ber of triangles (T ) in an ERG graph with N vertices and
edge probability p can be very large for even moderate sized
graphs. Indeed, its expected value, expressed as

E(T ) =
(
N

3

)
× p3,

is a non-trivial quantity, inmost cases. Similarly, the presence
of other dense motifs is also likely.

Our test, by design, does not detect such small-scale
motifs, regardless of their internal density. It is designed
to detect the existence of a statistically significant number
of dense subgraphs that are on the scale of neighborhood
sizes. It also does not detect statistically insignificant num-
bers of dense subgraphs. Our test is designed to detect graphs
whose structure can be summarized in a meaningful way
by dense neighborhoods that are only sparsely connected to
the remaining graph. Arguably, a graph containing a small
number of dense neighborhoods in an otherwise uniformly
connected graph is notmeaningfully summarized by clusters.
Similarly, a randomly connected graph (e.g., ERG) con-
taining a non-trivial amount of dense motifs (e.g., triangles
or other cliques) within broader neighborhoods is also not
meaningfully summarized by these features.

As in our previous work, our test rests on the hypothesis
that, on average, a clusterable graphwill have neighborhoods
that form induced subgraphs with a density greater than the
graph’s global density figure. Figure2 illustrates this idea. In
Fig. 2a, we see a graph composed of two clusters (C1,C2).
While the graph’s global density is K = 0.43, the induced
subgraph formed by the nodes in cluster C1 has a density of
κ1 = 0.83. The induced subgraph formed by the nodes in
cluster C2 has a density of κ2 = 1. In contrast, Fig. 2b dis-
plays a graph that is arguably not formed by clusters, in spite
of it containing several triangles and other dense motifs. In
fact, that graph was generated using the Erdős-Rényi-Gilbert
G(n, p) random graph model (ERG) [8,15].

3.4 Single graph test statistic and null hypothesis

Under the null hypothesis, the mean local density (κ̄) is sta-
tistically indistinguishable from the graph’s global density
(K). This sameness indicates a uniform density structure and
the absence of a clustered structure which would be charac-
terized by pockets of strong density. Under this hypothesis,
the graph is categorized as not clusterable. In the alterna-
tive, where κ̄ is significantly greater than K, we classify the
graph as probably clusterable because it meets the prerequi-
site conditions for being clusterable. In such cases, the graph
displays heterogeneous local densities which are, on average,
greater than the graph’s overall density.

Formally, we test whether themean density over the popu-
lation of local subgraphs is equal toK. For this comparison of
the densities, we use the δ statistic, which transforms κ̄ into
a scaled value that follows a distribution centered at zero.
For a sample of L = �s × |V |� neighborhoods, where s rep-
resents the proportion of nodes sampled, our test statistic δ

measures the difference between between the mean density
of the L samples of neighborhood induced subgraphs (κ̄) and
the graph’s overall density (K), as a proportion of the graph’s
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Fig. 2 Graphs Displaying Clustered and Unclustered Structure

overall density.

δ = κ̄

K − 1 (3)

Where,

κ̄ = 1

L

L∑
i=1

κi (4)

It is expressed as a centered ratio of mean local densities
over global density, in order to make comparisons across dif-
ferent graphs possible. Because it is a scaled and centered
mean, we assume δ approximately follows a Gaussian distri-
bution centered at 0, under the null hypothesis. For samples
of L > 30 neighborhoods, this assumption is justified by
the Central Limit Theorem (CLT) [32]. Under the alterna-
tive hypothesis, we expect the δ statistics to still follow a
Gaussian distribution, but one that is not centered about 0.

Because the true variance of δ is unknown and estimated
empirically from the data, we approximate the Gaussian dis-
tribution of the δ statistic using a t distribution (centered at
0). Therefore, our significance test uses a one-tailed t-test.
The t-statistic is computed as follows:

t = δ

s.e(δ)
,

s.e(δ) =
√
Var(κ)/(K2)

L
.

3.5 Two graph test statistic and null hypothesis

In the two graph case, we are given two graphs G and H
and we want to determine if one displays a more clusterable
structure than the other. As in the single-graph case, our test
begins with the scaled and centered mean local density, δ.

We compute this statistic for each graph. We denote these
summary statistics δG and δH . They are computed exactly as
in the single graph case. Here again, they are the scaled and
centered local mean densities for graphs G and H , respec-
tively.

Under the null hypothesis, both graphs have the same
structure, one is not significantly more clustered than the
other. Therefore, the difference dGH = δG − δH is sta-
tistically indistinguishable from zero. Under the alternative
hypothesis, the difference dGH is statistically significant.
Once again, we assume that, under the null hypothesis,
the differences dGH follow a Gaussian distribution centered
at zero. Correspondingly, we also assume that, under the
alternative, the differences dGH also follow a Gaussian dis-
tribution, but one that is not centered at zero. Here too, we
approximate theseGaussian distributions through aStudent’s
t distribution and assess the statistical significance of the
differences using a t-test. In this case, however, we use a two-
sample test (unpaired with unequal variance), which makes
its computation a bit more convoluted.

In this two-sample case, with neighborhood sample of
sizes LG and LH , the t-statistic for the difference dGH is
computed as follows:

t = dGH

s.e(dGH )
,

s.e(dGH ) =
√
s2p

(
1

LG
+ 1

LH

)
.

Here, s2p is the pooled sample variance of the neighborhood
densities κ of each graph scaled by each graph’s squared
density. For each graph, these sample variances are computed
just as in the one-sample case (i.e., s2 = Var(κ)/K2).

123



384 International Journal of Data Science and Analytics (2023) 15:379–390

3.6 Test algorithm

As mentioned in the previous section, our δ test statistic can
be used to answer two related but distinct questions:

1. Does a graph display heterogeneity in its density?
2. Does a graph G have a more heterogeneous density than

a graph H?

In the first question, we ask whether a graph meets the nec-
essary condition to have a clustered structure. In the second,
we ask if one graph meets this condition more strongly than
another. These questions can be answered by following these
steps:

• Sample L = �s×|V |� vertices and extract the L induced
subgraphs formed by the neighborhood of each sampled
node; (s is the percentage of nodes sampledwhose neigh-
borhoods’ densities are computed in the next step)

• Compute the local densities κi = |Ei |
0.5×ni (ni−1) for each

of the L subgraphs (ni is the number of nodes in the i-th
subgraph);

• Compute graph density K = |E |
0.5×|V |(|V |−1) , for graph

G = (V , E);
• Compute themean of the local densities: κ̄ = 1

L

∑L
i=1 κi ;

• Normalize the mean and obtain the test statistic: δ =
κ̄
K − 1;

• Under the null, the test-statistic δ follows a Gaussian
distribution centered at 0, which is approximated by a
Student’s t distribution;

• Under the alternative hypothesis, we expect the δ statis-
tics to still follow a Gaussian distribution, but one that is
not centered about zero;

• In the case of a single-graph test, perform a one-tailed
t-test; the null hypothesis is E(δ) = 0, the alternative is
E(δ) > 0;

• In the case of a two-graph test, perform a two-sample
(unpaired with unequal variance) one-tailed t-test on the
difference dGH = δG − δH . In this case, the null hypoth-
esis is E(δG) = E(δH ) ⇔ E(dGH ) = 0, the alternative
is E(δG) > E(δH ) ⇔ E(dGH ) > 0

4 Empirical results

We repeatedly apply our test to several synthetic graphs
whose clusterability (or lack of) is known a-priori. The goal
of these repetitions is to empirically assess the probability
of rejecting the null under various scenarios. We apply our
test to samples (sampled without replacement) of 0.5, 1 and
10% of nodes of each graph and, again, repeat the process
for 500 iterations. We thus obtain empirical estimates of the

Table 1 Graph details

K (density) |E | |V |
CC 4.90E-03 245,000 10,000

SBM 0.30 21,043,009 11,752

ERG 0.33 16,647,645 10,000

CM 2.46E-04 12,315 10,000

probability of rejecting the null hypothesis, for each sample
size and under various graph structures.

After determining that samples of 0.5% of nodes provide
adequate results, we also apply our test to two-graph trials.
Here again, we repeat the process for 500 iterations on each
graph pair. These trials yield empirical estimates of the prob-
ability of rejecting the null hypothesis, under two different
scenarios with known clusterability.

On the basis of our results with samples of 0.5% of
nodes, we also estimate our null rejection probabilities on
five so-called real-world graphs. Graph details and results
are reported in Sect. 4.5.

4.1 Synthetic graphs

To assess the sensitivity of our test to various graph struc-
tures and sample sizes, we begin with four synthetic graphs.
These graphs, whose clusterability (or lack of) is known a-
priori, were simulated using the Python NetworkX library
[17]. We generate two clusterable graphs. One is a connected
cave man graph (CC) [31], the other has a stochastic block
model structure (SBM) [18]. We also generate two unclus-
terable graphs. The first is a G(n, p) Erdős-Rényi-Gilbert
graph (ERG) [8,15] and the second a configuration model
graph (CM) [27]. For clarity, generative model details are
listed below.

• CC: |V | = 10, 000 nodes divided in 200 cliques with
50 vertices per clique (one randomly selected edge is
reassigned to connect to another clique)

• SBM:

– Mean intra-cluster edge probability Pintra = 0.75
(range [0.68, 0.99])

– Mean inter-cluster edge probability Pinter = 0.30
(range [0.27, 0.33])

– Meanvertices per clusters of n̄i =100 (range[80,120])
• ERG: Edge probability p = 0.333, n (|V |) = 10, 000
• CM: |V | = 10, 000, exponent = 3

Resulting graph characteristics are listed in the Table 1.
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Table 2 Synthetic graph test
statistics (δ) distributions, by
sample size expressed as pct of
total nodes (s)

Graph Mean Stdev Min Max Pct sampled (s)

Clusterable

CC 202.56 0.05 202.38 202.70 10

CC 202.56 0.15 202.00 202.89 1

CC 202.56 0.22 201.91 202.90 0.5

SBM 6.73E−04 2.49E−05 5.85E−04 7.50E−04 10

SBM 6.70E−04 7.33E−05 3.99E−04 8.80E−04 1

SBM 6.71E−04 1.01E−04 3.62E−04 1.00E−03 0.5

Unclusterable

ERG −1.02E−05 1.86E−05 −6.49E−05 4.23E−05 10

ERG −8.21E−06 5.58E−05 −1.87E−04 1.56E−04 1

ERG −6.66E−06 8.30E−05 −2.32E−04 2.79E−04 0.5

CM 0.73 2.46 −1.00 11.71 10

CM 0.54 7.27 −1.00 46.36 1

CM 0.34 9.59 −1.00 80.19 0.5

Fig. 3 Synthetic graph test statistic (δ) distributions, clusterable structure
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Fig. 4 Synthetic graph test statistic (δ) distributions, clusterable structure

4.2 Test statistic distribution

As mentioned earlier, we empirically examine the effect of
sample size onour test statistic δ under the null and alternative
hypotheses, using synthetic graphs whose clusterability is
known a-priori.We apply our sampling and testing algorithm
500 times (500 iterations), to each graph. At each iteration,
we compute the δ statistic and record its value.We then exam-
ine the resulting distribution of these 500 trials. The process
follows the algorithm described in Sect. 3.6. This process is
repeated with samples of 10%, 1% and 0.5% of vertices.
Under the null hypothesis, these distributions are expected
to be Gaussian and centered at zero. Under the alternative
hypothesis, these distributions are also expected to be Gaus-
sian, but centered at a point significantly greater than zero.

Mean, standard deviation, minimum and maximum of the
δ statistic are reported for each distribution, in Table 2. His-
tograms for the sampling distributions of the 0.5% and 10%
of nodes experiments are shown in Fig. 4 (known unclus-

terable graphs) and Fig. 3 (known clusterable graphs). In
reviewing these comparisons, it is important to note that these
are the distributions of a sample of 500 δ statistics (one per
iteration). The histograms, means, standard deviations, min-
ima and maxima are for these 500 δ statistics. They are not
summaries of the L (= �s × |V |�) randomly selected κi data
points (local densities) used to compute each of the δ statis-
tics.

In the cases of the SBM (clusterable) and ERG (uncluster-
able) graphs, we observe a very strong distributional stability
of the δ statistics across sampling sizes. Indeed, as observed
in Table 2, Figs. 3 and Fig. 4, the distributions of the δ statistic
do not appear to be sensitive to sampling sizes. In contrast,
in the cases of the CC (clusterable) graph and especially
the CM (unclusterable) graph, we note a greater variation in
the distributions. However, while the symmetry of the CC
graph’s distribution diminishes with sampling size, the mean
and min-max range remain unaffected. Meanwhile, the case
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Table 3 Empirical rejection probabilities based on 500 trials, by sample
size expressed as pct of total nodes (s)

Graph Num rejects Pct sampled (s) P(reject)

Clusterable

CC 500 10% 1

CC 500 1% 1

CC 500 0.5% 1

SBM 500 10% 1

SBM 500 1% 1

SBM 500 0.5% 1

Unclusterable

ERG 7 10% 0.01

ERG 9 1% 0.02

ERG 20 0.5% 0.04

CM 1 10% 0.00

CM 0 1% 0

CM 0 0.5% 0

Table 4 Empirical rejection probabilities based on 500 trials, 2 graph
test

G H Ideal Num rejects P(reject)

CC ERG Reject 500 1

SBM ERG Reject 500 1

CM Cave No reject 0 0

CM SBM No reject 0 0

Table 5 Real-world graph characteristics

K (density) |E | |V |
DIMACS10 1.84E−04 48,436 22,963

LFR 2.44E−04 1,220,023 100,000

Astro 1.12E−03 198,110 18,772

Enron 2.73E−04 183,831 36,692

DBLP 2.09E−05 1,049,866 317,080

Table 6 Real-world graph test-statistic (δ) distribution for 500 trials
with 0.5% of nodes sampled, summary

Graph Mean Stdev Min Max

DIMACS10 1269.30 203.21 722.51 1894.40

LFR 304.88 12.40 266.24 339.84

Astro 564.62 33.22 458.46 656.13

Enron 1824.80 114.48 1479.20 2204.70

DBLP 30,302.00 499.13 28,647.00 31,534.00

of the CM graph is notable. The distribution of its δ statistic
varies quite sharply across sampling size experiments.

4.3 Null rejection probability (single graph)

To obtain empirical estimates of rejection probabilities under
various scenarios, we repeat our test for 500 iterations. At
each iteration, we record the acceptance or rejection con-
clusion of our test. We also examine the sensitivity of these
rejection probabilities to sample size. Results are reported in
Table 3.

Results in Table 3 demonstrate that our test’s conclusions
are unaffected by sampling size. We also note that our null
hypothesis rejection probabilities for the case of uncluster-
able graphs are slightly less than the expected 0.05. Indeed,
given that under the null hypothesis the δ should follow a
Gaussian distribution centered at zero, we expect erroneous
rejections of the null (type I errors) in approximately 5% of
cases.

This unexpectedly low type I error rate is especially
marked for the CM graph. It is likely attributable to the
very wide deviation from the Gaussian null hypothesis of its
δ statistic’s distribution. In fact, this strong departure from
the Gaussian null hypothesis is clearly observable in Fig. 4
(subfigures c and d). In contrast, the null distribution has a
Gaussian-like distribution, in the case of the ERG graph. In
this latter case, we attribute the slightly lower than expected
type I error rate to random noise and sampling error.

Meanwhile, we note a consistently high power, for all
sample sizes. At all sampling levels, type II error remains
non existent. Indeed, the null hypothesis is always correctly
rejected in all clusterable graph experiments.

4.4 Null rejection probability (graph pairs)

We also perform the same probability estimation exercise
with graphpairs.Here, the goal is to determine the probability
that the null hypothesis that graphs G and H are equally
clusterable. Given the strong results obtained with a sample
of 0.5% of nodes in the single-graph case and in the interest
of brevity, we only report results with samples of 0.5% of
nodes of each graph. Results are reported in Table 4.

Our test has perfect accuracy. Here again, it does how-
ever have a lower than expected (under the Gaussian null
hypothesis) type I error. Here again, we attribute this unex-
pected power to a severe departure from the Gaussian
null-hypothesis. As highlighted earlier, the distribution of
the CM graph’s δ are highly non-Gaussian.

4.5 Illustrative examples using real-world graphs

As mentioned earlier, we also estimate our null rejection
probabilities on five different so-called real-world graphs,
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Fig. 5 Real-world graph test-statistic (δ) distribution for 500 trials with 0.5% of nodes sampled
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Table 7 Null rejection probabilities based on 500 trials, single real-
world graphs

Graph Num reject nodes sampled P(reject)

DIMACS10 500 0.5% 1

LFR 500 0.5% 1

Astro 500 0.5% 1

Enron 500 0.5% 1

DBLP 500 0.5% 1

using distributions of samples of 0.5% of nodes. Graph
details are listed below and also summarized in Table 5:

• dimacs10-as-22july06 network (DIMACS10, “(...) snap-
shot of the structure of the Internet at the level of
autonomous systems, reconstructed from BGP tables
postedby theUniversity ofOregonRouteViewsProject”)
[1,21]

• Lancichinetti, Fortunato, Radicchi (LFR) graph [22]
• Astro Physics collaboration network (Astro, “Arxiv
ASTRO-PH (Astro Physics) collaboration network (...)”)
[19]

• Enron email network (Enron, “Enron email communica-
tion network”) [20,23]

• DBLPcollaborationnetwork (DBLP, “(...) a co-authorship
network where two authors are connected if they publish
at least one paper together (...)”) [33]

Here again, we repeated our sample and test algorithm
for 500 iterations. Table 6 and Fig. 5 show the distribution
of the test statistic δ. In all five cases, we observe Gaussian-
like distributions of δ that are centered about means that are
significantly greater than zero, indicating strong support for
the rejection of the null hypothesis of these graphs being
not clusterable. Indeed, our repeated significance test results
shown in Table 7 confirm these observations.

Finally, we also conduct two-graph tests for 500 repeated
trials. We use the known unclusterable ER and CM graphs as
comparison benchmarks. To avoid redundancy, we restrict
the pairwise (graph pairs) comparisons to the “dimacs10-
as-22july06” (DIMACS10) [1,21] and LFR [22] graphs. In
the first set of experiments, we test if the ER and DIMACS10
graphs are equally clusterable. In these experiments, the alter-
native hypothesis, whichwe know to be false, is that the ERG
graph is more clusterable than the DIMACS10 graph (ER
isn’t clusterable, DIMACS10 is). Therefore, we realistically
expect the null not to be rejected. In the second set of exper-
iments, the null hypothesis, which we know to be to be false
and expect to be rejected, is that the LFR and CM graphs are
equally clusterable (in fact, LFR is clusterable, CM is not).

Once again, these experiments show that our test has per-
fect accuracy, as reported in Table 8. Given the very sizable

Table 8 Null rejection probabilities based on 500 trials, two-graph test

G H Ideal Num rejects P(reject)

ERG DIMACS10 No reject 0 0

LFR CM Reject 500 1

difference between the means and moderately sized standard
deviations of the δ test statistics of each graph experiments,
this accuracy is completely expected. These summary statis-
tics are shown in Table 2 (synthetic graph experiments) and
Table 6 (real-world graph experiments). (Once again, we
wish to highlight that these are the means and standard devi-
ations of 500 δ statistics, one per iteration. They are not the
sample statistics used to compute each of the the δ statistics.)

5 Conclusion

We have subjected our δ test statistic to several experiments,
in order to assess its accuracy under various scenarios. Our
experiments also aimed at determining the test statistic’s sen-
sitivity to sampling size.

Our results reveal that our test offers valid conclusions,
evenwith very small samplings of the graph’s vertices.We do
note, however, that under certain scenarios our Gaussian null
hypothesis is not accurate. Nevertheless, our experiments
demonstrate that our test’s conclusions remain valid, even
under severe departures from this null hypothesis. In fact,
under such departures, our test has been shown to be more
accurate than expected.
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