
International Journal of Data Science and Analytics (2024) 17:189–201
https://doi.org/10.1007/s41060-022-00376-3

REGULAR PAPER

Learning attentive attribute-aware node embeddings in dynamic
environments

Nourhan Ahmed1 · Ahmed Rashed1 · Lars Schmidt-Thieme1

Received: 1 July 2022 / Accepted: 20 November 2022 / Published online: 3 December 2022
© The Author(s) 2022

Abstract
Learning node embeddings is fundamental for numerous applications, such as link prediction and node classification. Node
embeddings seek to learn a low-dimensional representation for each node in the graph. Many existing node representation
learning methods for dynamic attributed graphs focus on preserving the temporal proximity of the nodes with relatively
shallow models. However, real-life graphs are complex and usually exhibit evolutionary patterns of node attributes and graph
structure. Therefore, the current state-of-the-art models fail to capture the information in the dynamic attributed graphs and
settle for sub-optimal results. In this paper, we propose a novel model for embedding nodes in dynamic attributed graphs that
captures the full extent of all relevant node information and the graph interrelations as well as graph evolutionary patterns.
During model training, attribute-aware node embedding is learned using both graph and node properties in a dynamic context.
Experiments demonstrate that our proposed method is superior to the state-of-the-art models in link prediction tasks. In
addition, it introduces a novel way of learning richer representations by fully exploiting node attributes, graph structure, and
evolutionary patterns in dynamic attributed graphs.

Keywords Attributed network · Dynamic network · Graph embedding · Unsupervised feature extraction · Self-attention

1 Introduction

Graph structures are the basis of many objects, concepts, and
processes we use everyday. They appear spontaneously in
a wide diversity of real-world environments since they are
valuable in illustrating how objects are physically or logi-
cally connected. The Internet is one clear example. When
we access the Internet, we implicitly enter a graph structure
comprised of billions of nodes and edges. The graph topology
has gained significant popularity in recent years because they
help simplify complex systems of information into accessible
representations.

B Nourhan Ahmed
ahmed@ismll.uni-hildesheim.de

Ahmed Rashed
ahmedrashed@ismll.uni-hildesheim.de

Lars Schmidt-Thieme
schmidt-thieme@ismll.uni-hildesheim.de

1 Information Systems and Machine Learning Lab, University
of Hildesheim, 31141 Hildesheim, Lower Saxony, Germany

Graph embedding is an efficient strategy that allows for
the use of machine learning models with graph-structured
data by preserving nodes, edges, and their properties into
lower-dimensional embedding vectors [1–3]. Early literature
on graph embedding has paid the most attention to fac-
torization methods, such as Laplacian eigenmaps and node
proximity matrix factorization. Different approaches were
proposed to find the matrix approximation such as singular
value decomposition (SVD) [4,5]. This technique is, how-
ever, computationally costly, especially when working with
large networks [6]. More recently, scholars have employed
random-walk-based methods to calibrate local knowledge.
These methods—the first of which was Deepwalk [1]—learn
node embedding by increasing the log-likelihood of a node
given its neighboring nodes. Several research works, such as
Node2vec [2] and LINE model [7], reported in the literature
are variants of the Deepwalk approach.

Later, the research focus has turned to the question of how
temporal information can be manifested into graph embed-
ding. This strand of the literature was based on the idea that
several tasks such as node classification and link prediction
could be enhanced by incorporating graph dynamics [8,9]. In
addition to evolutionary patterns, adding auxiliary informa-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s41060-022-00376-3&domain=pdf

190 International Journal of Data Science and Analytics (2024) 17:189–201

tion such as node attributes in graph embedding has drawn
further attention in recent years [10,11]. However,mostmod-
els preserve many but not all essential characteristics in the
dynamic attributed network, resulting in sub-optimal perfor-
mance.

In this paper, we propose a novel node embedding model
that connects two lines of research: node attributes and
dynamic representation, yielding a model explicitly trained
to preserve the full extent of node information in a rather
dynamic fashion. We propose a novel architecture named
deep attributed dynamic self-attention model (DADSAT) to
learn latent node representation. First, in addition to self-
attention layers that capture both structural and dynamic
information in the graph, we introduce an unsupervised fea-
ture extraction module using the BERT model [12]. This
module explicitly empowers the model to capture feature
information for each node in the graph. This takes advantage
of the fact that the training data contain more information
than the structural information in the network; as result, we
can expressly learn more informative node representations.
Second, we use a recursive skip connection in conjunction
with layer normalization to improve information delivery
and integration between node latent representations at dif-
ferent levels. This relies on the assumption that the recursive
skip connection, in conjunction with layer normalization,
improves optimization and allows for more expressive infor-
mation to be included. At different time steps, the recursive
skip connection along with layer normalization is used to
connect different self-attention layers—it is specifically used
to support DADSAT in learning more informative latent rep-
resentations. The key contributions of the current paper can
be represented as follows:

• We propose a novel architecture for dynamic attributed
graph representation learning to solve the challeng-
ing problem of embedding nodes in dynamic attributed
graphs which convey more information.

• We develop a node representation learning algorithm
that is not only capable of efficiently capturing both
structural and dynamic information in a graph but is
also supported by an unsupervised feature extraction
module to fuse node features. The proposed model
encodes the graph topological structure, temporal pat-
terns, and node attributes into a reduced-dimensional
representation.

• We conduct extensive experiments on real-world
attributed dynamic networks. The findings indicate that
our proposed approach consistently outperforms all base-
line models in link prediction tasks. In addition, our
approach generally exhibits superior stability over dif-
ferent time steps in comparison with baseline models.

2 Related work

This section provides an overview of the existing graph
embedding models. We divide them into three main types:
static, dynamic, and self-attention embedding models. In
what follows, we discuss them consecutively.

2.1 Static network embeddingmodels

Static graph representation learningdates back to factorization-
based graph embeddingmodels such asLaplacian [13], graph
factorization [14], and nonnegative matrix factorization [11].
However, factorization-basedmodels only focus on the trans-
ductive setting and cannot handle large-scale networks since
they are computationally expensive.

Later, a variety of random walk-based methods have been
proposed such as Deepwalk, Node2vec, LINE, DGI and
BRNLE [1,2,7,15,16]. Deepwalk, for example, was inspired
by the way languagemodeling algorithms learn node embed-
ding from the local information obtained through a random
walk [1]. The Node2vec model [2]—which can be consid-
ered an extension ofDeepwalk—controls the randomwalk to
provide richer node representation. In a similar fashion, the
LINE model [7] is designed to address the problem of gen-
erating graph embeddings for large networks with millions
of nodes in low-dimensional vector spaces. Moreover, SEAL
[17], developed for link prediction tasks, is another approach
that learns from sub-graph structures as well as latent and
explicit node characteristics to encompass the whole scope
of information. Additionally, HM-LDM [18] is an unsuper-
vised embedding approach that combines the non-negativity
constrained eigenmodel with the latent distance model. One
main feature of HM-LDM is that it integrates soft and hard
community detection with network embeddings to explore
the whole scope of information in the embedding space.

On theother hand, a different, yet related, set of approaches
combines GNNs with recurrent architectures. The most
explored GNNs in this context are graph convolutional net-
works (GCNs) [19,20]. GCNs employ convolution over the
graph to aggregate the features of all neighboring nodes
for each node, followed by a linear transformation to con-
struct node-specific representations more efficiently. Graph
isomorphismnetwork (GIN) [21], on the other hand, is a fully
spatial-based GCN network with superior discriminatory
power over existingGCNs for neighbor aggregation.Another
work, GraphSAGE [5], can be viewed as a generalization of
the aggregation function presented in the GCN architecture.
LSPE [22] expands the capabilities of GNN architectures by
incorporating positional encoding and injecting it into the
input layer. Consequently, this method retrains the structural
and positional information, leading to significantly improved
performance as a result.

123

International Journal of Data Science and Analytics (2024) 17:189–201 191

Although these models have significantly advanced the
quality of node embeddings, they are not flawless. Specifi-
cally, the aforementioned models do not integrate evolution-
ary patterns and only operate on the graph structure in the
static state. This shortcoming degrades the quality of the gen-
erated embeddings.

2.2 Dynamic network embeddingmodels

Dynamic graphs can be classified into snapshot sequences or
timestamped graphs depending on how they can be modeled
with respect to time signals. A snapshot sequence refers to
a series of static graphs captured at multiple discrete time
steps. On the other hand, the timestamped graph refers to a
single graph with a time stamp on each link [9]. The majority
of dynamic graph embedding models adopt the snapshot-
sequence approach [9,23].

There are several examples of the snapshot-sequence
approach in the literature. For instance, DynamicTriad [24]
retains both structural and evolution information by model-
ing how closed triads evolve in a given network. Another
approach is Dyngraph2vec [25] which models the temporal
patterns in the network using a recurrent deep architecture.
Similarly, DySAT [9] learns node embeddings using joint
self-attention to preserve structural and temporal properties
in graphs.

Recently, research has focused on how to improve these
models by adding auxiliary information such as node
attributes and node embedding’s uncertainty such as DNE
[10], DANE [11], Online-Node2vec [26], weg2vec [27] and
DynG2G [28]. For instance, weg2vec adopts an unsuper-
vised embedding approach that concurrently considers past
and future context for node (event) embedding learning.
Another work is DynG2G [28] which is an autoencod-
ing stochastic dynamic embedding method that adopts node
triplet energy-based ranking loss to capture the node embed-
ding’s uncertainty.

A few papers have explored the problem of node embed-
ding from a continuous-time perspective. For instance,
CTDNE [29] tackles the problem of modeling graphs as a
sequence of snapshots by introducing a novel architecture
which extends the random walk notion by necessitating that
walks maintain the temporal order for learning continuous-
time preserving embeddings.

Another category of approaches generalizes the static
models to maintain the temporal information. For exam-
ple, Dynnode2vec [30] is a modified skip-gram model [31]
in which the authors provide a more dynamic version by
using evolving random walks to update the trained skip-
gram model. GloDyNE [32] is another computationally
efficient variant of the skip-grammodel that selects represen-
tative nodes across a network to better maintain the overall
global topology of the graph. Another work that generalizes

Node2vec [2] is tNodeEmbed [33]. tNodeEmbed utilizes the
temporal information by applying a joint loss function that
embeds nodes based on their historical temporal embeddings,
therefore preserving the network’s structure and dynamics.
FLDNE [34] is a generic method that can be applied to any
static embedding technique. It integrates temporal informa-
tion by aggregating embeddings across several time steps
using a convex combination function. EvolveGCN [35] is
an extension of the GCN architecture that utilizes an RNN
module to update the GCN parameters in order to address the
problem of lacking temporal characteristics. Despite the fact
that these models have substantially improved the quality of
node embeddings, they are incapable of capturing the whole
range of associated node information and complex network
interactions in dynamic contexts.

2.3 Self-attention embeddingmodels

The graph attention network (GAT) is the first method that
adopts self-attention layers to generate graph embeddings
[36]. In particular, the GAT model employs stacked self-
attention layers for node classification tasks in the static
state. On the other hand, the SANNE architecture introduced
an unsupervised embedding algorithm based primarily on
the GAT architecture [37]. DySAT [9] model is yet another
variant of the GAT model in the dynamic setting. Specif-
ically, this work employs a self-attention-based model to
retain structural and temporal dimensions. However, despite
the promising performance, thesemodels are still insufficient
for constructing powerful embedding that takes into account
all relevant auxiliary information in networks.

3 Problem setting

Weconsider the problemof inferringmissing links.More for-
mally, let’s define a dynamic attributed graph as a sequence of
observed static graphsG = {G1, . . . ,GT}, where T denotes
the total number of time steps. Each graph Gt = (Vt,Et) is
a weighted undirected graph with a set of nodes Vt and a set
of edges Et at time step t . We presume that nodes are asso-
ciated with D-dimensional attributes Mt ∈ R

|V |×D , where
mt

i denotes the attributes for node i at time step t . Links can
be added and removed over time. In our case, the goal is to
predict the missing or formed links at time t + 1 given the
link data at time t . In the literature, this is known as temporal
link prediction [38].

Themain goal is to learn latent representations zti ∈ R
f for

each node i ∈ V at time steps t = 1, 2, ..., T that preserves
the structure properties, node attributes, and temporal pat-
terns, where f is a small number of latent dimensions. Thus,
our target will be to learn and extract node feature informa-
tion in an unsupervised fashion from the input graph. Next,

123

192 International Journal of Data Science and Analytics (2024) 17:189–201

we fuse the features to self-attention layers to hierarchically
capture all relevant information, which finally learns node
embeddings to help boost the temporal link prediction task.

4 The proposedmodel: DADSAT

Here, we propose an architecture named deep attributed
dynamic self-attention network (DADSAT), a novel model
for learning node embeddings. Our algorithm learns node
representations in dynamicgraphs by employing self-attention
layers. We argue that integrating network structure and
semantic information in the proposed architecture by an early
fusion on the input layer is the key to learning more infor-
mative node representations.

4.1 BERT for feature extraction

When operating with graphs, we usually have unstructured
text defining the nodes’ relevant information. Therefore,
considering the graph structure without paying attention to
textual features is insufficient to learn node embedding. To
address this issue, we used Bidirectional Encoder Represen-
tations fromTransformers (BERT) for feature extraction in an
unsupervised manner to extract meaningful representations
of node attributes as input for the DADSAT architecture.

The BERT model is built on the original implementation
of Transformer developed by Vaswani et al. [12]. The pro-
cess of training theBERTmodel consists of twomain phases:
the pre-training stage and fine-tuning stage. The first phase
is the pre-training stage, which allows the model to lever-
age knowledge by making use of unlabeled data in multiple
tasks. The second phase is the fine-tuning stage in which the
already pre-trained parameters are fine-tuned using labeled
data in different tasks. There are many variants of the BERT
model such asRoBERTa [39],ALBERT[40] andDistilBERT
[41]. Insofar as the text defining the nodes’ information is
clear, we avoid the degradation of performance caused by
excessive parameters. To this end, we use DistilBERT as a
lighter transformer model based on the BERT architecture.
Accordingly, we use DistilBERT to extract feature embed-
dings where fixed features are extracted from the pre-trained
model to be fed into our architecture without fine-tuning on
a downstream task.

This module receives the text of the relevant information
for each node as input. To obtain a single vector for each
node, we averaged the hidden states of the last hidden layer
of each token and compressed them into a single 768-length
vector {xi ∈ RF ,∀i ∈ V }, where F is the dimension of
the vector representation that captures the essential features
related to each node. Therefore, our graph embedding model
is built on top of this rich representation generated using the
DistilBERT model.

4.2 Graph self-attentionmodule

The graph self-attentionmodule aims to fuse the node’s infor-
mation with its neighbors’ information to handle structural
and temporal dependencies in the graph, respectively. The
graph self-attention module consists of two main layers to
process structural and temporal information. The first layer
consists of a stack of self-attention layers and a positional
encoding layer. In particular, in the first layer, we use a setup
similar to Bahdanau additive attention [42]. This layer takes
as an input the vector representation of node attributes gener-
ated using DistilBERTmodel {xi ∈ RF ,∀i ∈ V }. This layer
generates a different set of features {x ′

i ∈ RF ′
, ∀i ∈ V }.

We perform a linear transformation using a LeakyReLU acti-
vation function to each node, which is parameterized by a
weight matrixW , to convert the nodes’ vector representation
into higher-level latent space. Then, we compute the atten-
tion coefficient that reflects the contribution of node i to node
j which are finally used to find the final representation for
every node. The resulting representation preserves both node
and structural characteristics of each snapshot with shared
parameters, as presented in Fig. 1:

αi j = LeakyReLU
(
Ai j

[
Ws xi ‖ Ws x j

])

∑
wεNi

LeakyReLU
(
Ai j

[
xi ‖ x j

]) (1)

x ′
i = σ

⎛

⎝
∑

jεNi

αi j W
s x j

⎞

⎠ , ∀(i, j) ∈ E (2)

Here, ‖ denotes the concatenation operation; Ni = { j ∈
V : (i, j) ∈ E} represents the set of directly connected
neighbors of node i in snapshot G; Ws is a shared weight
transformation; σ(.) represents the activation function; and
the coefficient αi j reflects the importance of node i to node j
at each snapshot. In addition, Ai j represents the weight of the
link (i, j) in the present snapshot. The number of interactions
between a pair of nodes in each snapshot defines the weight
of the connection.

We then add position-dependent signals to the final output
representation of the first layer to incorporate the temporal
position of snapshots [9]. These positional embeddings suc-
cessfully represent the absolute temporal position of each
snapshot {x ′1

i + p1, x ′2
i + p2, . . . , x ′T

i + pT },∀i ∈ V , where
pt represents each snapshot’s temporal position. Positional
encoding uses the sine and cosine functions to compute the
position vectors, as it normalizes the position between -1 to
1. Let’s consider that the position is denoted by pos, and the
embedding size is d. The q-th dimension of the sinusoidal
positional encoding is then considered as follows [43]:

p(pos,2q) = sin

(
pos

10000
2q
d

)

123

International Journal of Data Science and Analytics (2024) 17:189–201 193

Fig. 1 Overall architecture of the DADSAT model. The input of the architecture is the node and attribute embeddings at time t

p(pos,2q+1) = cos

(
pos

10000
2q
d

)

In the second layer, we adopt the scaled dot-product atten-
tion [9,43] to compute the output representation of node i at
different time steps, {h1i , h2i , . . . , hTi } ,∀i ∈ V . The multi-
head attention mechanism is adopted in both layers in the
architecture to capture graph evolution from different sub-
spaces as in the transformer framework [43].

4.3 Recursive skip connections with layer
normalization

We construct a recursive skip connection along with layer
normalization between the output of the first layer and the
output of the second layer in the graph self-attention module
at each time step t which proved its capability to promote

the performance of deep neural networks in different con-
texts compared to the plain version [44,45]. The main reason
behind employing recursive skip connections is that these
connections ensure better delivery and integration of infor-
mation between the different components of the DADSAT
model than abstract information. Accordingly, these recur-
sive skip connections can be defined as follows:

sλ
i = LN

(
ci + sλ−1

i

)

s.t. s1i = LN (ci + hi) , ∀i ∈ V (3)

Here, LN denotes layer normalization, ci denotes the out-
put of the first layer in the graph self-attention module of a
node i , hi represents the output of the second layer in the
graph self-attention module of a node i , and λ is a modulat-
ing scalar. According to the equation mentioned above, the

123

194 International Journal of Data Science and Analytics (2024) 17:189–201

model is empowered to use recursive skip connection with
layer normalization repeatedly to enhance optimization.

4.4 Position-wise feed-forward networks

The outputs of the graph attention module after employing
recursive skip connection, {s1i , s2i , . . . , sTi } ,∀i ∈ V , transfer
through the position-wise feed-forward layer. Accordingly,
it is applied to each position to get the final node represen-
tation, {z1i , z2i , ..., zTi } ,∀i ∈ V . This comes with two linear
transformations using ReLU activation function [43].

4.5 Training DADSAT

To train the DADSAT model, we sample both positive and
negative cases following the Deepwalk strategy [1]. Here,
the DADSAT model is optimized using the following binary
cross-entropy loss function:

L =
T∑

t=1

∑

j∈V

⎛

⎜
⎝

∑

i∈walkt
(j)

− log
(

σ
(

< zti , z
t
j >

))

−wn .
∑

i ′ ∈ Pt
n

log
(
1 − σ

(
< zti ′ , z

t
j >

))
⎞

⎟
⎠ (4)

Here, σ denotes the sigmoid function, the inner prod-
uct operation is represented by < . >, walkt indicates the
selected positive instances in randomwalks of fixed length at
snapshotGt , Pt

n represents the sampled negative instances in
snapshotGt , andwn is a constant fine-tuned hyper-parameter
to determine the negative sampling ratio. This loss function
enables the learned representations to present the local struc-
ture properties around a node in a dynamic configuration by
promoting neighbor-similar representations [9].

5 Experiments

In this section, we present the performance of the proposed
architecture on four real-world datasets. We also provide a
comparison with different baselines along with a detailed
analysis.

5.1 Datasets

Weworkwith four datasets:DBLP [46],Epinions [47], Enron
[48] and Yelp [49] for experimental evaluation as illustrated
in Table 1. All of these datasets represent real-world dynamic
attributed graphs. DBLP is our first dataset; it comprises
bibliographic details to track the work of colleagues and to

Table 1 Summary statistics of the experimental datasets

DBLP Epinions Enron Yelp

#Nodes 328,080 163,543 143 6,569

#Edges 979,866 582,613 2,347 95,361

#Attributes 21,597 24,182 18,462 28,242

#Time steps 14 15 12 12

access their bibliographical information [46]. DBLP is a sci-
entific collaboration network where actors are the authors of
an article and edges are the co-authorship relationship [47].
The second dataset is Epinions which is a website where
users can review different products such as items and ser-
vices [50]. All trust relationships connect and form the trust
web where the edges indicate a trust relationship. Enron is
our third dataset. Enron is a corpus of employee interactions
in which the actors are employees and the edges represent
email interactions between them [48]. Finally, we make use
ofYelp as a fourth dataset. Yelp is awebsitewhere businesses
and users represent the actors, and the edges are the reviews
[49].

5.2 Datasets preprocessing

In this work, we take into account both the attributes of
the nodes and the network properties. The node attributes
are represented in the four datasets as follows: the articles’
titles in the DPLB dataset; user reviews of different items of
businesses in the Epinions and Yelp datasets; and finally the
employees’ email messages in the Enron dataset. In sum, we
relied on the textual data associated with each node as our
node attributes. The process of text representation using the
feature-based approach of DistilBERT is done by feeding the
text input into DistilBERT. The text input is tokenized before
being fed into DistilBERT. Here, we use the token-level rep-
resentation from last hidden states as extracted features from
text. Then, we created snapshots for each dataset separately.
For the DBLP data, we generated 4-year coauthorship record
snapshots (i.e., our window size) amounting overall to 14
snapshots in the period 1959 to 2015. For Epinions, a tem-
poral window of 8 months is selected to create 15 snapshots
between 2001 and 2011. For Enron, a three-month temporal
windowwas selected tomake 12 snapshots between 1999 and
2002. For Yelp, a 7-month time period was chosen to create
12 snapshots between 2009 and 2016. Finally, we split the
datasets using tenfold cross-validation and we reserved 10%
of the data as our testing set following Sankar et al. and Li et
al. [9,51].

123

International Journal of Data Science and Analytics (2024) 17:189–201 195

5.3 Evaluation protocol

We assess the effectiveness of the suggested graph embed-
dingmodel on the temporal link prediction task.Accordingly,
we present the link prediction task in the dynamic settings
in this section. Consider a series of observed graph snap-
shots G1, ...,Gt , where each snapshot is represented by
Gt = (Vt , Et). Here, Vt represents the nodes in the graph
at time step t , and E ⊆ (V × V) represents the set of
observed links across entities in the network. The goal of
temporal link prediction is to predict the missing or formed
links at time t + 1 given the link data at time t [9,38].

In other words, the link prediction problem can be formu-
lated by classifying each pair of nodes into two groups: links
and non-links. For this purpose, we used logistic regression
classifier to predict links in Gt+1. After obtaining the latest
embedding zti ,∀ i ∈ V , a binary classifier is used to predict
the links at Gt+1. Accordingly, the effectiveness of the pro-
posed model is evaluated at t + 1 after training the model at
each snapshot t . For evaluation, micro- and macro-averaged
AUC is used as evaluation metrics for this purpose. Micro-
AUC is measured over all link instances which weighs all
links equally. On the other hand, macro-AUC is measured
by calculating the AUC score at each time step indepen-
dently and then taking the average which weighs time steps
equally [9]. Finally, micro- and macro-AUC scores are aver-
aged across different snapshots.

5.4 Baselines

• Deepwalk [1]: A static embedding model that learns
node embeddingusing local informationobtained through
random walk sampling.

• Node2vec [2]: A static embedding model that adopts
biased random walks for providing richer node repre-
sentation.

• LINE [7]: A model that produces node embeddings that
retain first- and second-order proximity in the network.

• GraphSAGE [5]: An inductive embedding model that
utilizes an embedding function that can be applied to
unseen nodes in the training data. We compare the find-
ings of various aggregators such as GCN, meanpool,
maxpool, and LSTM and report the highest AUC scores
following [9].

• GCN-AE [52]:AGCNautoencodermodel that addresses
the link prediction problem in graphs.

• GAT-AE [36]: A GAT autoencoder for link prediction.
• SEAL [17]: This embedding method was designed for
link prediction tasks. It learns from subgraph structures
as well as the implicit and explicit features of nodes to
incorporate the whole spectrum of information.

• GatedGCN-LSPE [22]: This embedding approach is a
vanillaGCNarchitecture that has been updatedwith node

positional encoding and a soft-attention mechanism, as
well as an edge gating mechanism, to enhance message
aggregation in GCNs [53].

• DynamicTriad [24]: A dynamic embedding model that
preserves both structural and temporal information by
modeling how closed triads evolve in a given network.

• DANE [11]: A dynamic graph embedding model that
makes use of the matrix perturbation theory to preserve
the graph structure and node attributes.

• DySAT [9]: A dynamic graph embeddingmodel that cap-
tures structural and temporal properties by employing
joint self-attention.

• GloDyNE [32]: This work extends the static network
embeddingmethod-Skip-Gram[31] to copewith dynamic
networks. GloDyNE selects representative nodes across
a network to preserve the graph’s global topology.

• DynG2G [28]: An autoencoding dynamic embedding
method that learns probabilistic temporal graph repre-
sentations through adopting node triplet energy-based
ranking loss to capture node embedding uncertainty.

5.5 Experimental settings

We employed two self-attention sub-layers with the sizes
256 and 128 in both self-attention layers. As self-attention
layers consist of multiple attention heads, we used 16 and
8 heads, respectively, for each layer. The proposed model
is trained for 200 epochs with the option of early stopping
with a default batch size of 256 nodes. In addition, we used
a final embedding dimension of 128. For training, the objec-
tive function explained in Equation 4 uses node pairings that
co-occur in random walks of fixed length as positive sam-
ples and those that do not co-occur as negative samples. We
adopted the strategy described in Deepwalk [1] to sample
unbiased random walks with the following parameters: 10
walks of length 40 for each node, and each walk has a con-
text window size of 10. In addition, we utilize 10 negative
samples for each positive pair [1,9]. For optimization, mini-
batchgradient descentwithAdamoptimizer [54] is employed
for training. For regularization, L2 regularizer with a penalty
of 5 × 10−4 and dropout rates of 0.1 and 0.5 are applied to
self-attention layers, respectively. For recursive residual con-
nections, we searched for the best value for λ in the range
{1,2,3}.We configured the learning rate in the range {0.0001,
0.001, 0.01} using the validation set following the DySAT
model [9].

We evaluated the effectiveness of DADSAT with dif-
ferent state-of-the-art algorithms for static and dynamic
graph embedding, with the goal of predicting temporal links.
Regarding the static baseline models, we ran them on each
snapshot. After that, in order to incorporate access to the
temporal information in order to make an accurate com-

123

196 International Journal of Data Science and Analytics (2024) 17:189–201

parison, we aggregated the graph up to the time t , and the
weight of each link was defined as the cumulative weight
up until time t following the DySAT model [9]. All of the
codes for the aforementioned approaches can be found on
the authors’ websites. The parameters for these 13 compar-
ative algorithms are either set to the default values provided
by the authors, or they are fine-tuned via experimentation to
get the optimal values. In addition, the embedding dimen-
sionality is adjusted to either 128 or the default parameters
recommended by the authors.1

5.6 Results and analysis

In this section, we compare the performance of DADSAT
with other baseline models. We reckon that this comparative
investigation will render our analysis and evaluation of the
DADSAT performance more comprehensive.

As shown in Table 2, it is interesting to see that the
DADSAT model consistently outperforms all baseline mod-
els. Moreover, we can notice from Table 2 that considering
node attributes information in DANE and DADSAT yields
a large boost in the performance when compared to models
that only consider structural properties. The findings have
demonstrated that the DADSAT model has contributed by
around 3% improvement to all data-sets.

We finally compare the DADSAT with the baseline mod-
els over time. Figure 2 depicts the overtime change of the
performance of all models. The X-axes represent the time
steps, defined as the time-interval snapshots, while the Y-
axes represent the average AUC scores. The figure depicts
the differences between the DADSAT and baseline models
discussed above.As explained earlier, DADSAToutperforms
baselines models. Only DySAT’s performance is compara-
ble to DADSAT over some time steps. In addition, Fig. 2
indicates that DADSAT generally exhibits superior stabil-
ity over different time steps in comparison with baseline
models. As for the Epinions dataset, DADSAT is the most
stable of all. The findings, therefore, demonstrate that DAD-
SAT is not only achieving the highest performance but also
exhibiting the highest overtime stability. Taken together, the
findings demonstrate that theDADSATmodel yields promis-
ing improvements to node representation learning.

6 Ablation study

DADSAT is distinguished by its (1) feature extraction
module, (2) graph self-attention module, and (3) recursive
residual connections. In order to assess the significance of
each contribution, we provide the micro-AUC and macro-

1 In the appendix, we elaborate on experimental settings and baselines
hyper-parameter tuning in detail. Ta

bl
e
2

Pe
rf
or
m
an
ce

co
m
pa
ri
so
n
of

m
ic
ro
-
an
d
m
ac
ro
-A
U
C
sc
or
es

(%
)
ob
se
rv
ed

fr
om

di
ff
er
en
tb

as
el
in
es

w
he
n
te
st
ed

on
ou
r
da
ta
se
ts

D
at
as
et
s

M
od
el

D
B
L
P

E
pi
ni
on
s

E
nr
on

Y
el
p

M
ic
ro
-A
U
C

M
ac
ro
-A
U
C

M
ic
ro
-A
U
C

M
ac
ro
-A
U
C

M
ic
ro
-A
U
C

M
ac
ro
-A
U
C

M
ic
ro
-A
U
C

M
ac
ro
-A
U
C

D
ee
pw

al
k[
1]

72
.9

±0
.1

69
.1

±0
.1

46
.9

±0
.1

47
.9

±0
.1

81
.6

±0
.3

81
.2

±0
.3

67
.4

±0
.1

63
.7

±0
.1

N
od
e2
ve
c[
2]

73
.3

±0
.2

69
.6

±0
.1

47
.7

±0
.1

49
.2

±0
.1

83
.7

±0
.2

83
.1

±0
.2

67
.4

±0
.1

65
.1

±0
.1

L
IN

E
[7
]

69
.2

±0
.2

67
.3

±0
.1

49
.8

±0
.1

51
.4

±0
.1

81
.5

±0
.2

79
.8

±0
.2

66
.2

±0
.3

66
.9

±0
.1

G
ra
ph
SA

G
E
[5
]

74
.8

±0
.3

73
.9

±0
.2

71
.7

±0
.1

71
.2

±0
.2

78
.5

±0
.2

78
.3

±0
.2

67
.4

±0
.1

66
.8

±0
.1

G
C
N
-A

E
[5
3]

72
.7

±0
.2

72
.4

±0
.2

69
.8

±0
.1

71
.5

±0
.2

73
.5

±0
.2

74
.1

±0
.2

65
.2

±0
.1

64
.4

±0
.1

G
A
T-
A
E
[3
6]

73
.5

±0
.3

73
.4

±0
.3

68
.7

±0
.1

69
.5

±0
.2

75
.5

±0
.2

75
.7

±0
.2

67
.8

±0
.1

68
.2

±0
.1

SE
A
L
[1
7]

75
.8

±0
.3

76
.8

±0
.4

72
.3

±0
.1

72
.7

±0
.2

74
.4

±0
.2

74
.7

±0
.2

70
.2

±0
.3

70
.9

±0
.3

G
at
ed
G
C
N
-L
SP

E
[2
2]

76
.8

±0
.3

77
.2

±0
.3

84
.6

±0
.1

84
.5

±0
.3

79
.5

±0
.2

79
.7

±0
.2

70
.8

±0
.3

71
.3

±0
.4

D
yn
am

ic
T
ri
ad
[2
4]

76
.7

±0
.2

76
.2

±0
.2

74
.5

±0
.1

75
.7

±0
.2

81
.5

±0
.2

81
.8

±0
.2

69
.2

±0
.1

69
.4

±0
.1

D
A
N
E
[1
1]

75
.9

±0
.2

76
.2

±0
.2

58
.1

±0
.2

57
.9

±0
.2

79
.5

±0
.2

81
.5

±0
.2

68
.2

±0
.1

68
.7

±0
.1

D
yS

A
T
[9
]

76
.3

±0
.2

76
.2

±0
.2

85
.1

±0
.2

85
.9

±0
.2

85
.7

±0
.3

86
.6

±0
.2

70
.2

±0
.1

69
.9

±0
.1

G
lo
D
yN

E
[3
2]

74
.3

±0
.2

74
.6

±0
.2

77
.1

±0
.2

77
.5

±0
.3

82
.4

±0
.3

82
.6

±0
.2

70
.1

±0
.3

70
.3

±0
.2

D
yn
G
2G

[2
8]

76
.9

±0
.2

77
.2

±0
.3

84
.6

±0
.2

84
.8

±0
.2

86
.1

±0
.3

86
.4

±0
.2

70
.5

±0
.3

70
.8

±0
.3

D
A
D
SA

T
(o
ur
s)

79
.9
±0

.2
79
.4
±0

.2
87
.3
±0

.2
87
.6
±0

.2
87
.6
±0

.2
88
.4
±0

.2
73
.1
±0

.2
73
.6
±0

.2

T
he

bo
ld

va
lu
es

in
di
ca
te
th
e
be
st
re
su
lts

123

International Journal of Data Science and Analytics (2024) 17:189–201 197

Fig. 2 Performance comparison
of micro-AUC and macro-AUC
scores (%) observed from
different baselines on different
time steps

DADSAT

DADSAT

DADSAT

DADSAT

Epinions Yelp

DBLP Enron

2 3 4 5 6 7 8 9 10 11 12 2 3 4 5 6 7 8 9 10 11 12

40

50

60

70

80

90

40

50

60

70

80

90

Time steps

AU
C

 %

DADSAT

DANE

Deepwalk

DynamicTraid

DynG2G

DySAT

GAT−AE

GatedGCN−LSPE

GCN−AE

GloDyNE

GraphSAGE

Node2vec

SEAL

AUC scores with the following changes to DADSAT: (1)
without the feature extraction module, (2) without recursive
residual connections, and (3) with varied embedding sizes.

In the first experiment, we investigated the impact of con-
sidering node attribute information on the performance of the
DADSAT model. Here, we have tried to determine how big
the difference is between retaining both the structural prop-
erties and the node attributes and just considering network
structure. Generally, it can be concluded that in all cases,
considering node attributes in the DADSAT model yields
improvements of 1–3% over the initial model in the four
datasets as shown in Table 3. It is clear that considering the
high-quality representation of node attributes achieves higher
performance, manifested by higher AUC scores, compared
to just considering structural properties. Hence, we can infer
that just considering structural properties does not convey
node information properly.

In Table 4, we explore the influence of using residual
connections on the DADSAT model. The findings indicate
that employing residual connections can improve the per-
formance of the DADSAT model by around 0.7–1.2%. This
provides empirical evidence that these residual connections
could be efficient in enhancing the DADSAT architecture.
Moreover, this improvement is better shown in the DADSAT
model when considering node attributes. A possible explana-
tion for this improvement is that the DADSAT model holds
two advantages: (1) It learns a meaningful representation of
node attributes, and (2) it includes more detailed information
about the network properties.

Finally, we investigate the effect of various embedding
sizes on the DADSAT model. The findings show that a
small embedding dimension does not incorporate enough
information, resulting in poor DADSATmodel performance;
increasing the size improves performance, as shown in

Table 5. However, increasing the embedding dimension
beyond a certain point lowers the model’s performance.

7 Computational complexity analysis

DADSAT consists of the BERT model as a module for fea-
ture extraction and a graph self-attention module. Thus, we
separate the time complexity of DADSAT into the time
complexity of the graph self-attention module and the time
complexity of the BERT model. In the graph self-attention
module, the nodes are encoded via a transformer backbone.

According to the analysis in [9], the graph self-attention
module has a time complexity of O(|V |T 2d + |V |d2T +∑T

t=1 Et) where V is the node set; d is the embedding
dimension; and Et is the link set per snapshot t over T snap-
shots. The computational complexity of the feature extraction
module is O(|V |T 2F + |V |F2T), where F is the latent
dimension. In summary, the DADSAT’s computational com-
plexity is O(|V |T 2d + |V |d2T + |V |T 2F + |V |F2T +∑T

t=1 Et). Since the DADSAT architecture is fully paral-
lelizable, it is scalable for larger datasets compared to CNN-
and RNN-based methods.

8 Conclusion and future work

In this paper, we propose a node embedding model from
a different perspective, namely DADSAT. To extract mean-
ingful representations of node attributes, motivated by the
intuition that node attribute information should be highly
correlated to graph dynamics and structural information, we
preserve the node attributes by employing an unsupervised
feature extraction module that captures node feature infor-

123

198 International Journal of Data Science and Analytics (2024) 17:189–201

Ta
bl
e
3

Pe
rf
or
m
an
ce

co
m
pa
ri
so
n
of

m
ic
ro
-
an
d
m
ac
ro
-A
U
C
sc
or
es

(%
)
ob
se
rv
ed

fr
om

di
ff
er
en
tb

as
el
in
es

w
he
n
te
st
ed

on
ou
r
da
ta
se
ts

D
at
as
et
s

M
od
el

D
B
L
P

E
pi
ni
on
s

E
nr
on

Y
el
p

M
ic
ro
-A
U
C

M
ac
ro
-A
U
C

M
ic
ro
-A
U
C

M
ac
ro
-A
U
C

M
ic
ro
-A
U
C

M
ac
ro
-A
U
C

M
ic
ro
-A
U
C

M
ac
ro
-A
U
C

D
A
D
SA

T
w

/
o
D
is
ti
lB

E
R
T

77
.6
2±

0.
2

77
.7
1±

0.
2

86
.1
5±

0.
2

86
.5
9±

0.
2

86
.6
0

±0
.2

87
.2
0±

0.
2

71
.5
7±

0.
2

71
.1
6±

0.
2

D
A
D
SA

T
W
or
d
2V

ec
78
.2
4±

0.
2

78
.2

±0
.2

86
.4
5±

0.
1

86
.8
1±

0.
1

86
.9
3±

0.
2

87
.4
9

±0
.2

72
.1
9±

0.
2

71
.9
1±

0.
2

D
A
D
SA

T
D
is
ti
lB

E
R
T

79
.9
3±

0.
1

79
.3
5

±0
.2

87
.2
5±

0.
1

87
.5
9±

0.
1

87
.6
0±

0.
2

88
.4
0±

0.
2

73
.1
0±

0.
2

73
.6
0±

0.
2

T
he

bo
ld

va
lu
es

in
di
ca
te
th
e
be
st
re
su
lts

Ta
bl
e
4

T
he

ef
fe
ct
of

re
cu
rs
iv
e
re
si
du
al
co
nn
ec
tio

ns
on

D
A
D
SA

T
m
od
el
in

te
rm

s
of

m
ic
ro
-A
U
C
an
d
m
ac
ro
-A
U
C
sc
or
es

(%
)

D
at
as
et
s

M
od
el

D
B
L
P

E
pi
ni
on
s

E
nr
on

Y
el
p

M
ic
ro
-A
U
C

M
ac
ro
-A
U
C

M
ic
ro
-A
U
C

M
ac
ro
-A
U
C

M
ic
ro
-A
U
C

M
ac
ro
-A
U
C

M
ic
ro
-A
U
C

M
ac
ro
-A
U
C

D
A
D
SA

T
w

/
o
R
es
id
ua

l
78
.7
9±

0.
2

78
.9
3±

0.
2

86
.7
5±

0.
2

86
.8
9±

0.
2

86
.9

±0
.2

87
.4

±0
.2

72
.7

±0
.2

72
.9

±0
.2

D
A
D
SA

T
R
es
id
ua

l
79
.9
3±

0.
1

79
.3
5

±0
.2

87
.2
5±

0.
1

87
.5
9

±0
.1

87
.6
0±

0.
2

88
.4
0±

0.
2

73
.1
0±

0.
2

73
.6
0±

0.
2

T
he

bo
ld

va
lu
es

in
di
ca
te
th
e
be
st
re
su
lts

123

International Journal of Data Science and Analytics (2024) 17:189–201 199

Ta
bl
e
5

T
he

ef
fe
ct
of

em
be
dd
in
g
si
ze

(d
)
on

D
A
D
SA

T
m
od
el
in

te
rm

s
of

m
ic
ro
-A
U
C
an
d
m
ac
ro
-A
U
C
sc
or
es

(%
)

D
at
as
et
s

E
m
be
dd
in
g
si
ze

(d
)

D
B
L
P

E
pi
ni
on
s

E
nr
on

Y
el
p

M
ic
ro
-A
U
C

M
ac
ro
-A
U
C

M
ic
ro
-A
U
C

M
ac
ro
-A
U
C

M
ic
ro
-A
U
C

M
ac
ro
-A
U
C

M
ic
ro
-A
U
C

M
ac
ro
-A
U
C

d
=
64

76
.2
9±

0.
2

76
.6
6±

0.
2

85
.5
5±

0.
2

85
.8
4±

0.
2

85
.8
7±

0.
2

86
.2
3±

0.
2

70
.8
7±

0.
2

71
.1
1±

0.
2

d
=
12
8

79
.9
3±

0.
1

79
.3
5±

0.
2

87
.2
5±

0.
1

87
.5
9±

0.
1

87
.6
0±

0.
2

88
.4
0±

0.
2

73
.1
0±

0.
2

73
.6
0±

0.
2

d
=
25
6

78
.6
4±

0.
2

78
.7
2±

0.
2

85
.8
5±

0.
1

86
.2
1±

0.
1

86
.4
7±

0.
2

86
.8
9±

0.
2

71
.5
9±

0.
2

71
.9
6±

0.
3

T
he

bo
ld

va
lu
es

in
di
ca
te
th
e
be
st
re
su
lts

mation. After node feature extraction, we employ the graph
self-attention module to hierarchically extract structural and
temporal information in the graph. Ourmodel captures graph
structure, temporal patterns, and node attribute informa-
tion and thus learns high-quality node representations in
dynamic attributed graphs. The experimental results show
that preserving attribute information while preserving net-
work properties and temporal patterns effectively enhances
the quality of node representations. Our approach proves
promising for downstream applications.

Learning node embeddings on dynamic attributed graphs
is still an open question, and there are several techniques and
application-related aspects that might be investigated. For
instance, learning about attribute-missing graphs might be
considered for this problem. In addition, more sophisticated
graph data, such as heterogeneous dynamic attributed graphs,
might potentially be an intriguing topic to solve. These will
be the subject of future research.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s41060-022-00376-
3.

Author Contributions NA and AR conceived of the presented idea. NA
developed the theory and the methodology. NA performed the experi-
ments, and NA, AR and LST verified the proposed methodology. All
authors discussed the findings and contributed to the final manuscript.

Funding Open Access funding enabled and organized by Projekt
DEAL. The authors received no financial support for the research and
the authorship of this manuscript.

Declarations

Conflict of interest The authors declare that there are no conflicts of
interest to disclose.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of
social representations. In: Proceedings of the 20th ACM SIGKDD
international conference on knowledge discovery and data mining,
pp. 701–710 (2014)

123

https://doi.org/10.1007/s41060-022-00376-3
https://doi.org/10.1007/s41060-022-00376-3
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

200 International Journal of Data Science and Analytics (2024) 17:189–201

2. Grover, A., Leskovec, J.: node2vec: scalable feature learning for
networks. In: Proceedings of the 22ndACMSIGKDD international
conference on knowledge discovery and data mining, pp. 855–864
(2016)

3. Cai, H., Zheng, V.W., Chang, K.C.-C.: A comprehensive survey
of graph embedding: problems, techniques and applications. IEEE
Trans. Knowl. Data Eng. 30(9), 1616–1637 (2018)

4. Lenßen, J.: Including attributes in graph embeddings (2018)
5. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation

learning on large graphs. In: Advances in neural information pro-
cessing systems, pp. 1024–1034 (2017)

6. Buford, J., Yu, H., Lua, E.K.: P2P Networking and applications,
pp. 131–210 (2009)

7. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line:
Large-scale information network embedding. In: Proceedings of
the 24th international conference on world wide web, pp. 1067–
1077 (2015)

8. Zhang, Z., Yang, H., Bu, J., Zhou, S., Yu, P., Zhang, J., Ester, M.,
Wang, C.: Anrl: attributed network representation learning via deep
neural networks. In: IJCAI, vol. 18, pp. 3155–3161 (2018)

9. Sankar, A., Wu, Y., Gou, L., Zhang, W., Yang, H.: Dysat: deep
neural representation learning on dynamic graphs via self-attention
networks. In: Proceedings of the 13th international conference on
web search and data mining, pp. 519–527 (2020)

10. Du, L., Wang, Y., Song, G., Lu, Z., Wang, J.: Dynamic network
embedding: an extended approach for skip-gram based network
embedding. In: Proceedings of the 27th international joint confer-
ence on artificial intelligence, pp. 2086–2092 (2018)

11. Li, J.-H., Wang, C.-D., Huang, L., Huang, D., Lai, J.-H., Chen,
P.: Attributed network embedding with micro-meso structure. In:
International conference on database systems for advanced appli-
cations, pp. 20–36 (2018). Springer

12. Devlin, J., Chang,M.-W., Lee,K., Toutanova,K.: Bert: pre-training
of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805 (2018)

13. Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral tech-
niques for embedding and clustering. In: Nips, vol. 14, pp. 585–591
(2001)

14. Ahmed, A., Shervashidze, N., Narayanamurthy, S., Josifovski, V.,
Smola, A.J.: Distributed large-scale natural graph factorization. In:
Proceedings of the 22nd international conference on world wide
web, pp. 37–48 (2013)

15. Veličković, P., Fedus, W., Hamilton, W.L., Liò, P., Bengio, Y.,
Hjelm, R.D.: Deep graph infomax. In: International conference
on learning representations (2018)

16. Rashed, A., Grabocka, J., Schmidt-Thieme, L.: Multi-relational
classification via bayesian ranked non-linear embeddings. In: Pro-
ceedings of the 25th ACM SIGKDD international conference on
knowledge discovery & data mining, pp. 1132–1140 (2019)

17. Zhang, M., Chen, Y.: Link prediction based on graph neural net-
works. Advances in neural information processing systems, 31
(2018)

18. Nakis, N., Çelikkanat, A., Mørup, M.: Hm-ldm: A
hybrid-membership latent distance model. arXiv preprint
arXiv:2206.03463 (2022)

19. Welling, M., Kipf, T.N.: Semi-supervised classification with graph
convolutional networks. In: J. International conference on learning
representations (ICLR 2017) (2016)

20. Gao,H.,Wang, Z., Ji, S.: Large-scale learnable graph convolutional
networks. In: Proceedings of the 24th ACMSIGKDD International
conference on knowledge discovery& datamining, pp. 1416–1424
(2018)

21. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph
neural networks? In: International conference on learning repre-
sentations (2018)

22. Dwivedi, V.P., Luu, A.T., Laurent, T., Bengio, Y., Bresson, X.:
Graph neural networks with learnable structural and positional
representations. In: International conference on learning represen-
tations (2021)

23. Barros, C.D.T., Mendonça, M.R.F., Vieira, A.B., Ziviani, A.: A
survey on embedding dynamic graphs (2021)

24. Zhou, L., Yang, Y., Ren, X., Wu, F., Zhuang, Y.: Dynamic network
embedding by modeling triadic closure process. In: Proceedings of
the AAAI conference on artificial intelligence, vol. 32 (2018)

25. Goyal, P., Chhetri, S.R., Canedo, A.: dyngraph2vec: capturing
network dynamics using dynamic graph representation learning.
Knowl.-Based Syst. 187, 104816 (2020)

26. Béres, F., Kelen, D.M., Pálovics, R., Benczúr, A.A.: Node embed-
dings in dynamic graphs. Appl. Netw. Sci. 4(1), 1–25 (2019)

27. Torricelli, M., Karsai, M., Gauvin, L.: weg2vec: event embedding
for temporal networks. Scientif. Rep. 10(1), 7164–7164 (2020)

28. Xu, M., Singh, A.V., Karniadakis, G.E.: Dyng2g: an efficient
stochastic graph embedding method for temporal graphs. IEEE
Trans. Neur. Netw. Learn. Sys. (2022). https://doi.org/10.1109/
TNNLS.2022.3178706

29. Nguyen, G.H., Lee, J.B., Rossi, R.A., Ahmed, N.K., Koh, E., Kim,
S.: Continuous-time dynamic network embeddings. In: Companion
proceedings of the the web conference 2018, pp. 969–976 (2018)

30. Mahdavi, S., Khoshraftar, S., An, A.: dynnode2vec: Scalable
dynamic network embedding. In: 2018 IEEE International con-
ference on big data (Big Data). IEEE, pp. 3762–3765 (2018)

31. Lazaridou, A., Baroni, M., et al.: Combining language and vision
with a multimodal skip-gram model. In: Proceedings of the 2015
conference of the North American chapter of the association for
computational linguistics: human language technologies, pp. 153–
163 (2015)

32. Hou, C., Zhang, H., He, S., Tang, K.: Glodyne: global topology
preserving dynamic network embedding. IEEETrans. Knowl. Data
Eng. (2020). https://doi.org/10.1109/TKDE.2020.3046511

33. Singer, U., Guy, I., Radinsky, K.: Node embedding over temporal
graphs. In: 28th international joint conference on artificial intelli-
gence, IJCAI 2019, pp. 4605–4612 (2019)

34. Bielak, P., Tagowski, K., Falkiewicz,M., Kajdanowicz, T., Chawla,
N.V.: Fildne: a framework for incremental learning of dynamic
networks embeddings. Knowl.-Based Sys. 236, 107453 (2022)

35. Pareja, A., Domeniconi, G., Chen, J., Ma, T., Suzumura, T.,
Kanezashi, H., Kaler, T., Schardl, T., Leiserson, C.: Evolvegcn:
Evolving graph convolutional networks for dynamic graphs. In:
Proceedings of the AAAI conference on artificial intelligence, vol.
34, pp. 5363–5370 (2020)

36. Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P.,
Bengio, Y.: Graph attention networks. In: 6th International confer-
ence on learning representations, ICLR 2018, Vancouver, Canada,
Conference Track Proceedings (2018)

37. Nguyen, D.Q., Nguyen, T.D., Phung, D.: A self-attention network
based node embedding model. In: Machine learning and knowl-
edge discovery in databases - European Conference, ECMLPKDD
2020, Ghent, Belgium, 2020, Proceedings, Part III, pp. 364–377
(2020)

38. Divakaran, A.,Mohan, A.: Temporal link prediction: a survey. New
generation computing, 1–46 (2019)

39. Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O.,
Lewis, M., Zettlemoyer, L., Stoyanov, V.: RoBERTa: a robustly
optimized bert pretraining approach (2019)

40. Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., Soricut,
R.: ALBERT: a lite BERT for self-supervised learning of language
representations (2020)

41. Sanh, V., Debut, L., Chaumond, J.,Wolf, T.: DistilBERT, a distilled
version of BERT: smaller, faster, cheaper and lighter (2020)

42. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by
jointly learning to align and translate. In: 3rd International con-

123

http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/2206.03463
https://doi.org/10.1109/TNNLS.2022.3178706
https://doi.org/10.1109/TNNLS.2022.3178706
https://doi.org/10.1109/TKDE.2020.3046511

International Journal of Data Science and Analytics (2024) 17:189–201 201

ference on learning representations, ICLR 2015, San Diego, CA,
USA, May 7-9, 2015, Conference track proceedings (2015)

43. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,
Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need.
In: Advances in neural information processing systems, pp. 5998–
6008 (2017)

44. He,K., Zhang,X., Ren, S., Sun, J.:Deep residual learning for image
recognition. In: Proceedings of the IEEE Conference on computer
vision and pattern recognition, pp. 770–778 (2016)

45. Liu, F., Ren, X., Zhang, Z., Sun, X., Zou, Y.: Rethinking skip
connection with layer normalization. In: Proceedings of the 28th
international conference on computational linguistics, pp. 3586–
3598 (2020)

46. Ley, M.: Dblp: some lessons learned. Proceed. VLDB Endowm.
2(2), 1493–1500 (2009)

47. Yang, J., Leskovec, J.: Defining and evaluating network communi-
ties based on ground-truth. Knowl. Inf. Sys. 42(1), 181–213 (2015)

48. Klimt, B., Yang, Y.: Introducing the enron corpus. In: CEAS (2004)
49. Luca,M.: Reviews, reputation, and revenue: The case of yelp. com.

Com (March 15, 2016). Harvard business school nom unit working
paper (12-016) (2016)

50. Meyffret, S., Guillot, E., Médini, L., Laforest, F.: Red: a rich epin-
ions dataset for recommender systems (2012)

51. Li, J., Dani, H., Hu, X., Tang, J., Chang, Y., Liu, H.: Attributed
network embedding for learning in a dynamic environment. In:
Proceedings of the 2017 ACM on conference on information and
knowledge management, pp. 387–396 (2017)

52. Zitnik, M., Agrawal, M., Leskovec, J.: Modeling polypharmacy
side effects with graph convolutional networks. Bioinformatics
34(13), 457–466 (2018)

53. Bresson, X., Laurent, T.: Residual gated graph convnets. arXiv
preprint arXiv:1711.07553 (2017)

54. Ruder, S.: An overview of gradient descent optimization algo-
rithms. arXiv preprint arXiv:1609.04747 (2016)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://arxiv.org/abs/1711.07553
http://arxiv.org/abs/1609.04747

	Learning attentive attribute-aware node embeddings in dynamic environments
	Abstract
	1 Introduction
	2 Related work
	2.1 Static network embedding models
	2.2 Dynamic network embedding models
	2.3 Self-attention embedding models

	3 Problem setting
	4 The proposed model: DADSAT
	4.1 BERT for feature extraction
	4.2 Graph self-attention module
	4.3 Recursive skip connections with layer normalization
	4.4 Position-wise feed-forward networks
	4.5 Training DADSAT

	5 Experiments
	5.1 Datasets
	5.2 Datasets preprocessing
	5.3 Evaluation protocol
	5.4 Baselines
	5.5 Experimental settings
	5.6 Results and analysis

	6 Ablation study
	7 Computational complexity analysis
	8 Conclusion and future work
	References

