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Abstract
Classification of data with imbalanced characteristics is an essential research problem as the data from most real-world
applications follownon-uniformclass proportions. Solutions to handle class imbalance dependonhow important one data point
is versus the other. Directed data sampling and data-level cost-sensitive methods use the data point importance information to
sample from the dataset such that the essential data points are retained and possibly oversampled. In this paper, we propose
a novel topic modeling-based weighting framework to assign importance to the data points in an imbalanced dataset based
on the topic posterior probabilities estimated using the latent Dirichlet allocation and probabilistic latent semantic analysis
models.We also propose TOMBoost, a topic modeled boosting scheme based on the weighting framework, particularly tuned
for learning with class imbalance. In an empirical study spanning 40 datasets, we show that TOMBoost wins or ties with 37
datasets on an average against other boosting and sampling methods. We also empirically show that TOMBoost minimizes
the model bias faster than the other popular boosting methods for class imbalance learning.

Keywords Boosting · Class imbalance learning · Data space weighting · Topic modeling · Topic posterior · Topic simplex ·
Weighting framework

1 Introduction

Classifying imbalanced datasets has become an important
research area, as all practical datasets have inherent imbal-
ance characteristics. Cyber-fraud classification, classifying
cancerous patients, network anomaly detection, factory pro-
duction defect classification and conversion of online ads
are examples of binary class imbalance problems. Multi-
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class problems such as disease classification using ICD-101

codes and job occupation classification using O*Net2 codes
suffer from severe class distribution skew in the order of
10000:1 (majority:minority), or worse, leading to hard mul-
ticlass imbalance problems.

Non-uniform class proportions lead to lower performance
[1], as most of the popular classifiers, at least in the-
ory, assume uniform class distribution. Several methods to
address the class imbalance condition are available in the
literature [2–4]; among those, sampling and cost-sensitive
methods dominate [5] the class imbalance learning research
landscape. Even in the era of deep learning, class imbalance
learning (CIL) problems require non-deep solutions since
enterprise-deployed machine learning systems use non-deep
methods.

Sampling-based methods modify the dataset distribution
by undersampling, oversampling or synthetic oversampling
to induce an artificial balance in the class proportions.
Random oversampling from minority class suffers from an
overfitting problem [6]. Synthetic oversampling is non-trivial

1 http://www.cdc.gov/nchs/icd/icd10cm.htm.
2 http://www.onetonline.org/.
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due to the additional effort required to identify and cleanse
synthetic samples that lead to overfitting.

The cost-sensitive methods amend their loss functions
withmisclassification cost assignment per class or data point.
Cost-sensitive methods at the data level [7] solve the imbal-
ance problem by resampling and feature selection based on
data-level misclassification cost assignment. Likewise, at the
algorithmic level [8], the objective is to develop a decision
boundary that minimizes the overall cost on the training data,
which is usually the Bayes conditional risk [9].

Random undersampling from the majority class is the
most popular technique for learning with class imbalance
because of its simplicity and speed. Albeit being simpler,
random undersampling suffers from the possibility of losing
a good portion of information about the majority class. How-
ever, instead of random undersampling, directed or informed
sampling methods perform a smart selection of candidate
data points [10] from themajority andminority classes based
on their data characteristics and domain-specific insights.

A few factors of the dataset characteristics that influence
directed sampling [11] are:

• Data cluster representatives, where a single represen-
tative point represents a cluster of data points, and the
others from the same cluster become redundant.

• Data points closer to the classifier decision boundary,
which serve as the key ingredient for the construction
of the decision boundary, while also making the other
data points that are away from the decision boundary
redundant.

• Misclassified data points, where an ensemble method
such as boosting, up-weights those data points to force
the classifier to learn from them.

• Noisy data points, where cleaning methods such as one-
sided sampling (OSS) and condensed nearest neighbors
(CNN) identify and prune them from the training dataset.

Topic models [12] are statistical models for discovering
latent factors that influence data distributions. Topic mod-
eling has been successful in discovering the latent topic
structures in a text corpus, where a text document is assumed
to be amixture of latent topics, and each latent topic generates
a vocabulary of terms.We interpret the latent topics estimated
by the topic modeling on multinomial data as special soft
clustering on the dataset [13]. Topic modeling induced soft
clusters are better than traditional clustering [14] as the topic
model allows us to study the characteristics of the underlying
data distribution through a generative unsupervised learning
approach.

Although widely adopted for text processing, the method
applies to other general domains such as computational biol-
ogy, RFID data modeling, transportation systems and traffic
surveillance video analysis [15], for instance i) genotype

data [16] is modeled as a Dirichlet distribution of admix-
ture proportions in applications of population genetics [17];
ii) scene understanding of traffic trajectories [18] is modeled
as Dirichlet process mixture models; iii) generation of RFID
data for solving RFID localization problems [19]; and iv)
detecting latent changes by decomposing the spatiotempo-
ral pattern using LDA into a mixture of activity patterns in
transportation systems [20]. Topicmodeling assumes that the
features are a mixture of conditionally independent multino-
mial distributions over different topics. In an enterprise data
environment, assuming features to be multinomial distribu-
tions is not a substantial limitation as most of the enterprise
data features are based on counting, Boolean indicators or
qualitative measurements.

Boosting methods belong to a class of meta-learning
ensemble, which iteratively reduces the bias by building an
additivemodelwith severalweak classifiers.AdaptiveBoost-
ing algorithm [21], in its original form, works better for
imbalanced datasets [22] than standard classifiers. When we
train a standard classifier on an imbalanced dataset, in many
cases, the decision boundary favors the majority class data
points due to the skewed population ratio. The standard clas-
sifiers need dataset and algorithmic modifications to force
the model bias toward the minority class data points.

Alternatively, whenwe train a boostingmodel with a class
imbalanced dataset, the algorithm increases the weight of the
misclassified data points, such that in the next iteration, the
newly learned weak classifier biases toward the misclassified
data samples. Even if the early iteration weak classifiers bias
toward the majority class data points, the boosting method
adjusts the model bias toward the misclassified minority data
points by increasing their representation in the training sam-
ples used in every iteration.

The boosting method ultimately achieves a low bias, but
it may take too many weak classifiers to get the final strong
additive classifier. Traditionally, boosting algorithms assume
equal initial weights [23] for all the data points in the given
training data. The data point weights get adjusted at every
iteration based on the exponential loss from the additive clas-
sifiers of the previous iterations. Instead of assuming equal
initial weights for the data points, if we assume weights
proportional to each data point’s importance, the boosting
algorithm might take lesser iterations to converge to the final
strong additive classifier.

We propose a novel topic modeling-based weighting
framework to assign the importance of the data points as
weights in a class imbalanced dataset. We compute the
weights based on the topic posterior probabilities estimated
using probabilistic latent semantic analysis (PLSA) [12] and
latent Dirichlet allocation (LDA) [24] methods. The topic
posterior probability is the distribution of topics (Z ) observ-
able in a given data point di , given by Pr(Z |di ), where Pr(Z)

is the topic distribution. Alternate methods [11] are available
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Fig. 1 Architecture of TOMBoost

that compute the data weights based on data clustering, fit-
ting a classifier decision surface, isolating noisy data points.
Their disadvantage is that they are typically time-consuming
and computationally expensive compared to the complexity
of topic modeling.

We propose TOMBoost, a TOpic Modeled Boosting
algorithm based on the proposed weighting framework,
particularly tuned for datasets with class imbalance charac-
teristics. We show the architecture of TOMBoost in Fig. 1.
TOMBoost computes the weights of the data sample using
the topic modeling-based weighting framework. The com-
puted weights initialize the data sample weights in the first
boosting iteration. The data points deemed essential by the
weighting framework have a higher chance of occurring in
the samples drawn during boosting iterations. TOMBoost
also balances the dataset at every iteration by undersampling
the majority class and resampling the minority class data
points. This modified initial bias helps the TOMBoost to
learn better weak classifiers during the early iterations and
hence leads to faster minimization of the upper bound on the
empirical training error [23]. The main contributions of this
work are summarized as follows:

• An unsupervised weighting framework for estimating
the data sample weights based on the computed topic
posterior probabilities using PLSA and LDA modeling
schemes.

• TOMBoost, a topic modeling-based boosting algorithm
for learning with class imbalance.

• A boosting method that minimizes the model bias faster
by taking lesser iterations to converge to a stronger addi-
tive classifier.

We organize the remainder of the paper as follows. In
Sect. 2, we present the prior work on class imbalance learn-
ing through sampling and boosting methods. In Sect. 3,
we describe the proposed topic modeling-based framework
for estimating the sample weights from the topic simplex
induced by LDA and PLSAmodels. In Sect. 3.2, wemotivate
the weight estimation through simplex model interpretation.
In Sect. 4, we describe TOMBoost, a boosting algorithm
based on the proposed weighting framework. In Sect. 5,
we describe the dataset selection, experiment setup and per-
formance comparison of the several cost-sensitive boosting
and sampling methods against TOMBoost algorithm. In
Sect. 5.3.1, we provide insights on tuning for the optimal
topic count. In Sect. 5.4, we describe the characteristics
of the induced weights for the majority and minority class
data points. In Sect. 5.7, we empirically prove the ability of
TOMBoost to minimize the training error in a lesser count
of boosting iterations. We present the concluding remarks in
Sect. 7.

2 Related work

A straightforward approach to solving the class imbalance
problem is to address the imbalance directly by either adjust-
ing the sample population through oversampling (sampling
with replacement) or undersampling (eliminating samples
to reduce population count). Random oversampling follows
naturally from its description by augmenting the original
minority set with replications of selected minority samples.
In this way, the number of total minority examples increases,
and the class distribution balance adjusts artificially. At first
glance, the oversampling and undersamplingmethods appear
to be functionally equivalent since they alter the size of the
original dataset. However, each technique introduces its own
set of problematic consequences that can potentially hinder
the learning process [6,25].

In the case of undersampling, removing examples from the
majority class may cause the classifier to miss essential con-
cepts about themajority class. In oversampling, the replicated
data from the original dataset become “tied,” leading to over-
fitting [6]. In particular, overfitting in oversampling occurs
when classifiers produce multiple clauses in an induced rule
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for multiple copies of the same example, which causes the
rule to become too specific. Although the training accuracy
may be higher in this scenario, the classification performance
on the unseen testing data is generally far worse [26].

SMOTE (Synthetic Minority Oversampling TEchnique)
[27] generates new synthetic examples along the line between
the minority examples and their selected nearest neigh-
bors. Although SMOTE makes the decision regions more
significant and less specific, the overfitting problem of over-
sampling persists. Graver yet is the possibility of synthetic
oversampling of the minority class noise. Only selected sub-
samples of the minority class are subjected to synthetic sam-
ple generation to overcome these issues. Borderline-SMOTE
[28] uses only the minority samples near the decision bound-
ary to generate new synthetic samples. MWMOTE [29]
identifies the hard-to-learn informative minority class sam-
ples and assigns them weights according to their Euclidean
distance from the nearest majority class samples.MWMOTE
then generates the synthetic samples from theweighted infor-
mative minority class samples using a clustering approach.
SCUT [11] oversamples minority class examples through the
generation of synthetic examples and employs cluster anal-
ysis to undersample majority classes. Also, it handles both
within-class and between-class imbalance.

Chen et al. [30] propose a topicmodel-basedoversampling
approach to improving text categorization under class imbal-
ance by exploiting the semantic context in text documents.
New samples of rare classes are synthetically generated by
using global semantic information of classes represented by
probabilistic topic models through a topic simplex. The dis-
advantage of this method is that the data samples generated
are unreal as they are drawn from the estimated topic simplex.
Having original data points in the data sample is essential for
the interpretation and explainability [31] of the learned clas-
sifier models.

Bellinger et al. [32] describe a general framework for
manifold-based synthetic oversampling that helps users to
select a domain-appropriate manifold learning method, such
as PCA or autoencoder, and apply it to model and generate
additional training samples. The work addresses the inap-
propriate generative bias of SMOTE for the broad class of
learning problems that conform to the manifold property.
The authors also propose amethod to test the conformance of
datasets to themanifold property to improve the framework’s
usability. The test determines whether the manifold-based
synthetic oversampling is ideal for the target domain.

In our earlier work [33], we propose a topic modeling-
based weighting framework based on the symmetric parame-
terization of PLSAmodeling. Theweighting framework uses
the topic conditional data distribution Pr(di |Z) and the topic
distribution Pr(Z) to derive the weights wi for a data point
di by marginalizing the joint distribution Pr(D, Z) on Z . As
the topics are marginalized, the topic count hyper-parameter

does not affect the estimated data weights. We describe the
detailed differences between our previous work and the pro-
posed work in Sect. 3.3.

Peng [34] describes a cost-sensitive data space sam-
pling method to adaptively oversample the positive minority
examples and undersample the majority negative examples.
Adaptive sampling forms different sub-classifiers using dif-
ferent subsets of training data with the best cost ratio that
is adaptively chosen. The sub-classifiers combine according
to their accuracy to create a robust classifier. The sample
weights are computed based on every sample’s prediction
probability, by a pair of induced SVM classifiers built on
two equal-sized partitions of the training instances.

Nekooeimehr et al. [35] propose an adaptive semi-
unsupervisedweighted oversamplingmethod (A-SUWO) for
imbalanced datasets, which clusters the minority instances
using a hierarchical clustering approach and adaptively deter-
mines the size to oversample each sub-cluster using its
classification complexity and cross-validation. The minor-
ity instances are weighted and oversampled based on their
Euclidean distance to the majority class.

Distribution-based MultiBoost (DBMB) [36] is a hybrid
machine learning method for imbalanced class problems,
which combines the distribution-based balanced sampling
with the MultiBoost algorithm to achieve better minor-
ity class performance. It minimizes the within-class and
between-class imbalance by learning and sampling differ-
ent distributions (Gaussian and Poisson) and reduces bias
and variance in error by employing the MultiBoost ensem-
ble. Therefore, DBMB outputs a robust learner that is a more
proficient ensemble of weak base learners for imbalanced
datasets.

The integration of sampling strategies with ensemble
learning techniques is also studied [37] in the literature.
For instance, the SMOTEBoost algorithm bases on the
idea of integrating SMOTEwith AdaBoost.M1. Specifically,
SMOTEBoost [38] introduces synthetic sampling at each
boosting iteration. In this way, each successive classifier
ensemble focuses more on the minority class. As each clas-
sifier ensemble is built on a different sampling of data, the
final voted classifier is expected to have a broadened and
well-defined decision region for the minority class. Another
integrated approach, the DataBoost-IM [39] method, com-
bines the data generation techniques with AdaBoost.M1
to achieve high predictive accuracy for the minority class
without sacrificing accuracy on the majority class. Briefly,
DataBoost-IM generates synthetic samples according to the
ratio of difficult-to-learn samples between classes.

RUSBoost [40] is a modification of AdaBoost.M1 for
solvingbetween-class imbalance problemsby randomunder-
sampling frommajority class. RUSBoost is shown to perform
better [40] than SMOTEBoost that solves class imbalance
by oversampling minority class. The RUSBoost algorithm
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performs random undersampling from the majority class at
every AdaBoost iteration to match the population size of the
minority class, prescribed by the data sample distribution
computed based on misclassification error and exponen-
tial loss estimates. CUSBoost [41], on the other hand, uses
clustering-based undersampling to balance the dataset at
every boosting iteration. The performance is better [42]when
the nearest neighbors of the majority class cluster centers are
also used during undersampling.

DYCUSBoost [43] is an AdaBoost-based approach that
uses dynamic clustering and undersampling for imbalanced
learning. DYCUSboost synchronizes with every iteration of
AdaBoost to cluster the data based on the weight assignment
of every data point at different iterations of AdaBoost, which
makes DYCUSBoost reflect the transformation of the data
distribution. The clusters are then undersampled proportional
to their assessed importance.

AdaC1, AdaC2, AdaC3 [44] are cost-sensitive extensions
to AdaBoost, which directly incorporates the per-sample
misclassification cost to the data sample weight update equa-
tions. AdaCost [45] is a cost-sensitive boosting algorithm
based on the MetaCost [46] framework, where cost sensi-
tivity is built around a standard classifier within a boosting
method like AdaBoost. The cost sensitivity is achieved by
data space weighting, whose theoretical foundation is from
the Translation theorem [47]. The AdaCost algorithm allows
the assignment ofmisclassification cost per data point, which
gives a greater level of control during boosting iterations.

Yang et al. [48] propose an ensemble strategy to address
the binary classification imbalanced problem by assigning
higher weights to the hard-to-classify samples. The idea is to
use the XGBoost [49] classifier on the initial dataset to iden-
tify the difficult samples. The dataset is then resampled to
aggregate the random undersampled majority samples, diffi-
cult majority samples and SMOTE samples from on difficult
minority samples.

RHSBoost [50] addresses the imbalanced binary classifi-
cation problem by using random undersampling and ROSE
[51] sampling under a boosting scheme. ROSE algorithm
is a kernel-based method that performs oversampling by
generating artificial samples according to a smoothed boot-
strap approach. An ensemble framework called Adaptive
Ensemble Undersampling Boost for imbalanced learning is
proposed [52] that combines theEnsemble ofUndersampling
(EUS) technique,RealAdaBoost, cost-sensitiveweightmod-
ification and adaptive boundary decision strategy to build a
hybrid.

Tsai et al. [53] introduce an undersampling approach
called cluster-based instance selection (CBIS) that combines
clustering analysis and instance selection, where the clus-
tering analysis component groups similar data samples of
the majority class dataset into subclasses while the instance
selection component filters out unrepresentative data sam-

ples from each of the subclasses. The authors show that the
CBIS approach can make bagging and boosting-based MLP
ensemble classifiers perform better, regardless of what kinds
of clustering (affinity propagation and k-means) and instance
selection (IB3, DROP3 and GA) algorithms are used.

Value-aware resampling and loss (VARL) [54] tackles the
imbalanced classification problem by making the high-value
samples play a more critical role than low-value samples
in the model training process. The training value of each
training data point is assessed according to its predicted
probability of ground-truth label, then training samples are
resampled to produce a balanced training set, and finally, the
model training is further boosted by using an instance-level
value-aware loss function.

3 Topic modeling-based weighting
framework

In this section, we describe our improved topic modeling-
basedweighting framework for estimating the sampleweights
from the topic posterior probabilities estimated using LDA
and PLSA models. We introduce our weighting model in
Sect. 3.1 and compare it against our previouswork inSect. 3.3
to emphasize the improvements. We explain the interpre-
tation of the weights estimated from the L2 norm of the
respective topic posterior distribution in Sect. 3.2 using the
topic simplex representation. We describe the weighting
models through PLSA and LDA modeling in Sects. 3.4 and
3.5, respectively.

3.1 Weightingmodel

Aspect model [55] is a latent variable model for co-
occurrence data, which associates an unobserved class vari-
able with each observation. Probabilistic latent semantic
analysis (PLSA) [12] is an extension of aspectmodels for nat-
ural language processing (NLP) and machine learning tasks
for text data. Although the technique successfully applies for
text data, it can be applied to general multinomial data dis-
tributions also [17]. We interpret the latent topics estimated
by the topic modeling on multinomial data as some special
clustering [13] on the dataset. An alternate approach to topic
modeling is to factorize the datasetmatrix using latentDirich-
let’s allocation (LDA) [24]. LDA does not suffer from the
overfitting problem that arises with PLSA modeling. LDA is
a generative model on the join distribution of features and
latent topics, where it attempts to backtrack from the data
points to find a set of topics that are likely to have generated
the features. An important hyper-parameter for the PLSAand
LDA models is the number of latent topics denoted by k.

Consider a dataset D = {d1, d2, . . . , dM }, where every
data point di is represented as a p-dimensional feature vector
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Fig. 2 A simplex representation of the topic distribution of a dataset
with the topic count set to 3. Triangular cells approximate the data point
neighborhoods. The cells are color-coded based on the average L2 norm
of the data points in the neighborhood

from the set of featuresF = { f1, f2, . . . , f p}. The objective
is to estimate the weight wi for every data point di in the
dataset. Topic modeling assumes that every data point di is a
mixture of the latent topics from the setZ = {z1, z2, . . . , zk}.
Topic modeling also assumes that the data points di and the
features f j are independently conditioned on the state of the
associated latent topic zk . A topic zk can be regarded as a
concept, and every data point can be modeled as a mixture
of multiple concepts with different extents.

3.2 Simplexmodel interpretation

Let us consider a simple case with three topics z1, z2, z3,
where a�2 simplex represents the topic posterior distribution
Pr(Z|di ). Figure 2 shows the simplex representation of a
topic distribution of a data set with the topic count set to 3.We
subdivide the simplex into triangular neighborhood regions
that have similar topic distribution.We color-code the regions
based on the average L2 norm of all the data points in that
neighborhood region. We observe that the simplex’s central
neighborhood evaluates to a meager average L2 norm value,
while the neighborhood regions near the vertices evaluate to
a high average L2 norm values. The neighborhoods closest to
the simplex vertices are purer than the neighborhoods around
the simplex centroid.

When the data points align with one of many latent top-
ics, they seem to contain more discriminative information
than the data points that align with a mixture of latent top-
ics. We observe that the data points with more discriminative
information align themselves near the simplex vertices. On
the contrary, when a data point aligns with the centroid of
the simplex, we observe that the data point does not pos-

sess discriminative information to aid a classifier learning
the decision boundary. The topic posterior probability uni-
formly distributes across all the topics at the centroid of the
simplex, leading to the lowest L2 norm. The range of L2

norm for a �k+1 simplex is
[

1√
k
, 1

]
, where k is the number

of vertices of the simplex. We consider the norm value as a
weight indicating the importance of the data point based on
its position on the simplex.

An alternate approach to establish the importance of a
data point on the simplex is to study the entropy of the topic
posterior distribution Pr(Z|di ) for the data point di . When
we consider the entropy value as a weight, we observe the
estimated weights are very similar to the weights estimated
using the L2 norm. Yuta et al. [56] confirm the relation-
ships between the Shannon entropy and the Lα-norm for
n-dimensional probability vectors and showed that there are
sharp bounds on the Lα-norm with a fixed Shannon entropy,
and vice versa.

3.3 Our previous work

In our previous work [33], we propose a topic modeling-
based weighting framework based only on the symmetric
parameterization of PLSA modeling. The weighting frame-
work estimates the data point weight wi by marginalizing
the joint distribution Pr(D, Z) on Z . We compute the joint
distribution Pr(D, Z) from the topic conditional data distri-
bution Pr(di |Z) and the topic distribution Pr(Z) estimated
by the symmetric parameterization of PLSA modeling. The
marginalized topic distribution Pr(Z) makes the technique
nonparametric without the topic count hyper-parameter k.
We perform majority class random undersampling that fol-
lows the estimated data distribution to construct a balanced
data sample for building a classifier model.

Although we prefer using a nonparametric model, we
observe advantages in using the parameterized version of
topic modeling, where we have better control of the data
samples in terms of their importance in representing the full
population. In this extended work on the improved weight-
ing framework, we incorporate the LDAmodel inference and
the asymmetric parameterization of PLSA modeling to esti-
mate the data weight through a topic simplex construction.
We present a summary of the changes in the proposed work
in comparison with our previous work as follows:

• Uses LDA and asymmetric PLSA modeling to estimate
the topic posterior Pr(Z |D).

• Applies L2 norm on the topic posterior distribution
Pr(Z |D) to derive the data point weights W as ∀di ∈
D, wi = ‖Pr(Z |di )‖2
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Fig. 3 Graphical model of the symmetric and asymmetric parameteri-
zation schemes of PLSA

• Uses the Simplex interpretation of the topic posterior to
choose the best value for the hyper-parameter k (topic
count).

• Implements a Boosting method that converges faster due
to initialization with the estimated data weights instead
of a uniform distribution.

• Uses majority class undersampling and minority class
resampling to construct the balanced data sample in every
boosting iteration.

3.4 PLSAmodeling

PLSA modeling comes in two parameterization schemes,
namely symmetric and asymmetric models. Figure 3 shows
the graphical model representation of the symmetric and
asymmetric parameterization models of PLSA. Given a
dataset represented as a joint distribution of the data pointsD
and feature termsF , the symmetric PLSAmethod factorizes
Pr(D,F) using EM algorithm into: i) topic conditional den-
sity of terms Pr(F |Z), ii) topic conditional density of data
points Pr(D|Z) and iii) topic priors Pr(Z). The asymmetric
parameterization of PLSA factorizes Pr(D,F) into: i) topic
conditional density of terms Pr(F |Z) and ii) topic posterior
probability distribution of data points Pr(Z|D). The quantity
of interest is the topic posterior probability from where we
propose to derive the weight wi for every data point di in the
corpus D.

We adopt the PLSA model, despite its property of overfit-
ting the data, as our objective is to only estimate the weights
for the given dataset and not a generalization to unseen data.
PLSA generates soft clusters of data points by estimating the
membership of every data point in a cluster [13], where each
cluster is a representation of a latent topic. Since we are only
interested in rank ordering only the training data points, it is
sufficient to fit the PLSA model to give the best clusters on
the training data alone.

We define a generative model for the observation pair
〈di , f j 〉 by the following scheme, as suggested in PLSAmod-
eling. The joint probability model over D × F is:

Pr(D,F) = Pr(D)Pr(F |D) (1)

Pr(D,F) = Pr(D)
∑
z∈Z

Pr(F |z)Pr(z|D) (2)

Let us consider the topic posterior probability distribution
Pr(Z|D) as our resource for finding the importance of a data
point di ∈ D. We estimate the importance weight wi for a
data point di using the L2 norm of the topic vector Pr(Z|di ).
We then compute the weight wi for every data point di as:

wi = ‖Pr(Z|di )‖22 ∀di ∈ D (3)

We defineWPLSA as the set of weights assigned for every
data point in our dataset D.

WPLSA =
{
w

∣∣∣ w = ‖Pr(Z|di )‖22 ∀di ∈ D
}

(4)

We estimate the data distribution Pr(D) by normalizing
the weights WPLSA.

Pr(di )
PLSA

= wi∑M
j=1 w j

∀wi ∈ WPLSA (5)

3.5 LDAmodeling

LDA model [57] hypothesizes that the data points are ran-
dom mixtures over latent topics, where a distribution over
feature terms characterizes every topic. Figure 4 shows the
graphical model representation of LDA. In its original form,
LDA assumes that a text document is a sequence of terms,
so, within the LDA framework, a corpus of several docu-
ments is just different sequences of terms. In Fig. 4, term f
as in fi j represents the i th term in the j th document that is
represented as a sequence of terms. LDAmodels the joint dis-
tribution of F and Z as Pr(F ,Z) and factorizes it to Pr(Z)

and Pr(F |Z). The quantity of interest is the topic posterior
probability Pr(Z|d) for a given data point d. Unlike PLSA,
the topic posterior is not a part of themodel estimation,which
instead, we get by model inference on the estimated LDA
model for every data point d from the input dataset D repre-
sented as a sequence of features as di = { fi j }Ni

j=1.
We define a generative model for the observation pair

〈di , f j 〉 by the following scheme suggested in LDA mod-
eling.

1. Choose θi ∼ Dir(α), where i ∈ {1, . . . , M}
2. Choose φk ∼ Dir(β), where k ∈ {1, . . . , K }
3. For every term positions i, j ,

where i ∈ {1, . . . , M}, j ∈ {1, . . . , Ni }
(a) Choose a topic zi j ∼ Multinomial(θi )
(b) Choose a term fi j ∼ Multinomial(φzi j )

A joint probability model over F × Z is given by:
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Fig. 4 Graphical model representation of LDA: M is the number of
documents, Ni is the number of terms in a i th document, α and β are
the parameters ofDirichlet priors on the per-document topic distribution
and per-topic term distribution, respectively, θi is the topic distribution
of the i th document, φk is the term distribution for topic k, zi j is the
topic for the j th term in i th document, and wi j is a term

Pr(Z,F) = Pr(Z)Pr(F |Z) (6)

The fully parameterized model is given by:

Pr(Z,F ,�,�;α, β) =
K∏

k=1

Pr(φk;β)

M∏
i=1

Pr(θi ;α)

×
Ni∏
j=1

Pr(zi j |θi )Pr( fi j |φzi j )

(7)

Upon integrating �, � out from Eq (7) using collapsed
Gibbs Sampling [58], we get

Pr(Z,F;α, β) =
∫

�

∫

�

Pr(Z,F ,�,�;α, β) (8)

We compute the topic posterior probability distribution
Pr(Z|di ) for a data point di ∈ D by running LDA model
inference with the data point represented as a set of features
given by di = { fi j }Ni

j=1. We can compute the topic poste-
rior distribution by using Bayesian inference on Eq (8) given
by

Pr(Z|F;α, β) = Pr(Z,F;α, β)

Pr(F |α, β)
(9)

As the denominator term in Eq (9) is intractable to com-
pute, topic modeling algorithms form an approximation by
forming an alternative distribution over the latent topic struc-
ture that is adapted to be close to the true posterior. Topic
modeling algorithms generally fall into two categories: i)
sampling-based algorithms such as Gibbs Sampling [59] and
ii) Variational algorithms [60]. We use the Variational EM
algorithm to compute the topic posterior probability Pr(Z|di )
for every data point di . We compute the weight wi for every
data point di as:

wi = ‖Pr(Z|di )‖22 ∀di ∈ D,

where di = { fi1, fi2, . . . , fi Ni }, fi j ∈ F .
(10)

The set of weights WLDA for the dataset D becomes:

WLDA =
{
w

∣∣∣ w = ‖Pr(Z|di )‖22 ∀di ∈ D
}

. (11)

We estimate the data distribution Pr(D) by normalizing
the weights WLDA.

Pr(di )
LDA

= wi∑M
j=1 w j

, wi ∈ WLDA (12)

4 TOMBoost: TOpic Modeled Boosting
algorithm

We introduce TOMBoost, a boosting scheme based on our
proposed topic modeling-based weighting framework. Our
weighting framework assigns a weight to every data point
based on its importance as per its position on the estimated
topic simplex. The framework assigns the initial weights to
the data points based on the topic model weights. The ini-
tial weights bias the weak classifiers produced by the earlier
iterations significantly toward the essential data points iden-
tified through topic modeling. Subsequently, the algorithm
reweights the data points based on the additive classifier per-
formance.

TOMBoost differs from traditional boosting, which
assumes that every data point is equally important. Although
boosting algorithms shall ultimately reduce the training error
over boosting iterations, it may take several weak classi-
fiers to achieve a low bias. The modified initial bias helps
TOMBoost to learn better weak classifiers during the early
iterations and hence leads to faster minimization of the upper
bound on the empirical training error. The modified initial
bias also helps to reduce the number of iterations to cover the
hard-to-learn data points, as we already set a higher weight
for the hard-to-learn discriminative data points.

TOMBoost also performs dataset balancing in every
iteration by undersampling the majority class and resam-
pling the minority class based on the weights at a particular
iteration. Resampling the minority class data points based
on the estimated data distribution allows us to do con-
trolled oversampling of discriminative minority data points.
TOMBoost differs fromRUSBoost [40] and SMOTEBoost
[38] in the sense that RUSBoost does only the majority class
undersampling, and SMOTEBoost does synthetic minority
oversampling. TOMBoost avoids synthetic oversampling
to ensure that every data point in the sample at every boost-
ing iteration, is an original data point. Having original data
points in the sample is essential for the interpretation and
explainability [31] of the learned classifier models.
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Algorithm 1 TOMBoost for Binary Classification
Require: D → Dmaj ∪ Dmin
Ensure: W ∈ {WPLSA,WLDA},
1: if mode = PLSA then
2: W ← WPLSA
3: else
4: W ← WLDA
5: end if /*normalize the weights to make it a

probability distribution*/
6: Now Pr(di ∈ D) = wi

M , where the Normalization constant
M = ∑

w j ,∀w j ∈ W /*split the probabilities
into majority and minority subsets*/

7: Pr(D) → Priors(Dmaj ) ∪ Priors(Dmin) /*set of priors
from majority class*/

8: Priors(Dmaj ) = {
Pr(d j ) | ∀d j ∈ Dmaj

}
/*set of priors

from minority class*/
9: Priors(Dmin) = {Pr(dk) | ∀dk ∈ Dmin} /*Min–Max

normalize Priors(Dmin), Priors(Dmaj )

independently*/
10: Wmin ← MinMaxNorm(Priors(Dmin))

11: Wmaj ← MinMaxNorm(Priors(Dmaj )) /*Merge the
sample weights*/

12: Wad j ← Wmin ∪ Wmaj
13: Normalize the weights Wad j to make it a probability distribution

Wnorm
14: Execute AdaBoost.M1(D;Wnorm) with Balancing

Algorithm 1 describes TOMBoost, a boosting scheme
based on our topic modeling-based weighting framework.
Steps 1-5 select the appropriate weighting scheme from
{WPLSA,WLDA} based on the hyper-parameter mode. Step
6 computes the data point probabilities (priors) by normaliz-
ing the weights estimated from the topic simplex. Steps 7-9
split the prior probability set into partitions of priors from
the minority and majority classes. Steps 10-11 apply min–
max normalization on the majority and minority probability
sets to scale the probability values in the 0 − 1 range. Step
10 ensures that the essential data points of minority class
are assigned higher weight irrespective of their positions in
the dataset weights plot, as explained in the Shadowing and
Reweighting section. Step 12merges the normalized weights
of the majority and minority classes into one set. The set of
weights computed bymin–max normalization is not a proba-
bility distribution, so step 13 normalizes the weights again to
make it a probability distribution. Step 14 invokes the stan-
dard AdaBoost.M1 [61] method on the given dataset with the
estimated normalized weight distribution, instead of assum-
ing equal weights. We also modify the AdaBoost method
to balance the dataset in every boosting iteration by major-
ity class undersampling and minority class resampling. We
describe the balancing method in Algorithm 2. Balancing the
dataset in every boosting iteration helps to bias the decision
boundary toward the minority class, leading to faster conver-
gence.

Algorithm 2 describes the steps involved in balancing the
dataset based on the weights recomputed in every boost-
ing iteration. The algorithm’s primary input is the dataset

Algorithm 2 Method for drawing a balanced sample dur-
ing Boosting iterations by majority class undersampling and
minority class resampling
Require: D = Dmaj ∪ Dmin
Ensure: W
1: Wmaj = {wi | wi ∈ W ∧ di ∈ Dmaj }, Pr(Dmaj ) =

Normali ze(Wmaj ) /*extract the majority weights*/
2: Wmin = {wi | wi ∈ W ∧ di ∈ Dmin}, Pr(Dmin) =

Normali ze(Wmin) /*extract the minority weights*/
3: DRS

min = ∅ /*resample the minority class*/
4: for k = 1 to ‖Dmin‖ do
5: d ∼ Pr(Dmin) /*sample a data point d from

Pr(Dmin)*/
6: DRS

min ← DRS
min ∪ d /*add the sample to the set*/

7: end for /*add the missed out minority data
points to the resampled set*/

8: DRS
min ← DRS

min ∪ (Dmin \ DRS
min)

9: DUS
maj = ∅ /*undersample the majority class*/

10: for k = 1 to ‖DRS
min‖ do

11: d ∼ Pr(Dmaj ) /*sample a data point d from
Pr(Dmaj )*/

12: DUS
maj ← DUS

maj ∪ d /*add the sample to the set*/
13: end for
14: DBalanced ← DUS

maj ∪ DRS
min

15: return DBalanced

weight computed by the boosting method based on the mis-
classification error of the additive classifiers induced in the
previous iterations. Steps 1-2 splits the weights into majority
class and minority class data weights and normalizes them
to probability distributions. Step 3 sets up the placeholder
DRS

min for the resampled minority class dataset. Steps 4-7 per-
form resampling from the minority class dataset following
the minority class data distribution Pr(Dmin) and adds the
sampled data point to DRS

min . Step 8 collects the missed out
minority class data points and adds them to the resampled
minority class dataset container DRS

min . Step 9 initializes the
undersampled majority class container DUS

maj . Steps 10-13
draw samples from the majority class data following the
distribution Pr(Dmaj ) and adds them to the undersampled
majority class container. Step 14 combines both the resam-
pled minority class dataset and the undersampled majority
class dataset tomake a balanced dataset for learning theweak
classifier in the next boosting iteration.

5 Experiments and results

In this section, we perform experiments to validate our
algorithm and its performance by answering the following
questions,

1. What is the optimal value of topic counts (k) in the topic
model? (Sect. 5.3)

2. What is the effect of resampling and normalization of the
instance weights? (Sect. 5.4)
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Table 1 UCI datasets used for
the performance evaluation with
their respective topic modeling
preprocessing time (column PP)
in seconds

Dataset Code Dims Total Ratio PP

abalone19 A2 8 4173 129.41 12.59

abalone7 A3 8 4176 9.68 7.46

analcatdata_halloffame A5 17 1340 9.72 16.64

balloon B1 2 2001 3.15 2.84

car1 C1 6 1727 24.03 4.33

cmc21 C2 9 1472 3.42 6.16

contraceptive1 C3 9 1472 1.34 13.43

contraceptive2 C4 9 1472 3.42 33.92

contraceptive3 C5 9 1472 1.88 29.77

ecoli-0-1-3-7_vs_2-6 E1 7 280 39.00 4.54

ecoli1 E2 7 335 3.35 0.64

ecoli2 E3 7 335 5.44 0.56

ecoli3 E4 7 335 8.57 0.59

ecoli4 E5 7 335 8.57 0.31

flare F1 10 1065 4.85 3.68

glass2 G2 9 213 11.53 2.58

glass4 G4 9 213 15.38 2.25

glass6 G5 9 213 6.34 8.32

haberman2 H1 3 305 2.77 1.07

kc1 K1 21 2108 5.47 20.16

ozone O1 72 2533 14.83 47.82

pima1 P4 8 767 1.87 6.05

pizzacutter3 P5 37 1042 7.20 22.72

poker-8_vs_6 P6 10 1476 85.82 9.58

poker-8-9_vs_5 P7 10 2074 81.96 13.77

satimage1 S1 36 4434 9.68 82.90

segment5 S2 19 2309 6.00 10.78

spectfheart S3 44 266 3.84 1.94

vehicle1 V1 18 845 2.99 9.40

vehicle3 V3 18 845 2.99 9.52

vowel V4 13 990 10.00 6.43

winequality-white-3-9_vs_5 W1 11 1481 58.24 7.11

wisconsin1 W2 9 682 1.85 6.03

yeast_0_5_6_7_9_vs_4 Y1 8 527 9.33 2.18

yeast_1_4_5_8_vs_7 Y3 8 692 22.07 2.41

yeast_1_vs_7 Y4 7 458 14.27 1.49

yeast_2_vs_4 Y5 8 513 9.06 1.99

yeast1 Y7 8 1483 2.46 5.56

yeast2 Y8 8 513 9.06 1.54

yeast4_vs_8 Y10 8 527 9.33 2.19

3. How does the proposed TOMBoost algorithm perform in
the task of imbalanced classification against other meth-
ods in the literature? (Sect. 5.5)

4. What is the effect on the classification performance based
on the choice of topic model? (Sect. 5.6)

5. Does the proposed TOMBoost algorithm converge faster
than the other boosting methods? (Sect. 5.7)

5.1 Datasets and experimental setup

Inmany practical enterprise scenarios, the datasets are count-
based, Boolean indicators or qualitative measurements that
we can model as a mixture of multinomial distributions. The
assumption holds good for numeric features when we treat
the numeric values as ordinals by binning them into different
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ranges. It is not easy to verify the conditional independence
assumption on the features ahead of the usage in topic mod-
eling. Still, we can assume conditional independence for
ordinals, counts and qualitative measurements type features
in datasets. The assumption may become invalid with trans-
formed datasets such as embedding as the data dimensions
are no longer necessarily independent.

The premise of topic modeling is to represent every data
point as a topic distribution. The general intuition is to expect
a similar topic distribution for every data point belonging to
a particular class. Combining data points from multiple clas-
sification groups into one large class may affect the validity
of this intuition. Our method is not affected by this caveat as
we do not use the class information of data points when we
estimate the topic posterior distribution. We hypothesize that
the data points represented in the topic space form soft clus-
ters, where each cluster is a representation of a latent topic
or a concept found in the dataset.

We select the datasets for experimentation from the stan-
dard benchmarks that class imbalance learning researchers
have used in the literature. We could not find any online
data repository that is exclusive for class imbalance learning
research.We consider 40 binary andmulticlass datasets from
the UCI repository.3 We also convert themulticlass problems
into binary classification by using one-vs-rest or one-vs-set
or set-vs-set as the transformation. We consider the “one”
in one-vs-rest or one-vs-set as the positive (minority) class
and the aggregate of the rest, or the set of classes as negative
(majority) class. In the set-vs-set problem transformation, the
notion of minority andmajority classes go by their respective
cardinality. This transformation results in imbalanced binary
class datasets, which are of interest to our problem setting.

Table 1 lists the selected datasets with their meta informa-
tion. We present the maximum time taken for topic modeling
preprocessing for all the datasets in column “PP.”We choose
several directed sampling and boosting methods counting to
24 and list them in Table 2 for benchmarking our methods.
We select the candidates of directed sampling and boosting
methods based on their popularity in the enterprise deploy-
ments, availability of code base and the simplicity of the
model hypotheses. We take each of the datasets and perform
twenty (20) random 80-20 splits by running fivefold cross-
validation splits four times. We run 20 iterations of boosting
and abort it early if the loss exceeds 0.5 for five continuous
iterations.

5.2 Performancemetric

We use the classification performance as the surrogate mea-
sure for evaluating the effectiveness of the topic modeling
induced weights assigned to the data instances during the

3 http://archive.ics.uci.edu/ml.

Table 2 Sampling and boosting methods used for the empirical study

Method Code

AdaBoost [21] AB

AdaCost [45] AC

ADASYN [62] AS

Borderline-SMOTE [28] BS

ClusterCentroids [63] CC

CondensedNearestNeighbour [64] CNN

InstanceHardnessThreshold [65] IHT

KMeansSMOTE [66] KMS

NearMiss1 [67] NM1

NearMiss2 [67] NM2

NearMiss3 [67] NM3

OneSidedSelection [68] OSS

TODUS [33] TOD

RandomOverSampling ROS

RandomUnderSampling RUS

RUSBoost [40] RB

SMOTE [27] SM

SMOTEBoost [38] SMB

SMOTETomek [69] STK

TomekLinks [70] TL

WithoutSampling WS

TOMBoostPLSA (Proposed) TB

TOMBoostLDA (Proposed) LTB

initialization step of the TOMBoost algorithm. We assume
that the effectiveness of the data point weights correlates
positively with the classification performance. In most of the
practical applications, theminority class performance ismore
critical than the majority class. However, the majority class
performance should not be traded off for changing the bias
toward minority class. When the Maj:Min imbalance ratio
is R : 1 and the scores are Fmaj

1 and Fmin
1 , we compute the

weighted average F1 (WAF1) as:

WAF1 = Fmaj
1 + R ∗ Fmin

1

1 + R
(13)

We use the two-sample t-test to estimate the statistical
significance of weighted average F1-score measured from
the results of our methods against the other listed methods.
We use decision trees as the weak classifier in TOMBoost
for simplicity, as it does not require any special parameter
tuning.

5.3 Effect of topic count (k)

We plot the data point probabilities computed from the topic
simplex induced weights after normalization and sorting
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Fig. 5 Topic simplex weights (probabilities P(d) after normalization)
computed from LDA modeling on contraceptive3-1 and yeast-2-vs-4
datasets, sorted in descendingorder.When k = 2, the plot is horizontally
flat, and upon gradually increasing k, the regions of horizontal flatness
tend to decrease

in descending order. Figure 5 shows the plot of descend-
ing sorted topic simplex weights (which are probabilities
P(d) after normalization) computed from LDA modeling
on contraceptive3-1 and yeast-2-vs-4 datasets. We expect
an exponential decay like curvature in the plot; instead, we
observe flatness at different regions of the plot, and some-
times, the entire plot is relatively flat (low variance). We
define flatness as a characteristic of a region, where the piece-
wise local gradients are near zero, or the piecewise local
variance is low, for that region.

Figure 5 shows the flatness observed in different sections
of the data point probabilities (or weights before normaliza-
tion) Pr(d) curve for a couple of datasets at different topic
count k values. When the topic count is low (k = 2), all the
data points cluster around the center of the simplex leading
to a horizontally flat curvature. When we increase the topic
count k gradually to 30, flatness regions tend to decrease.
It becomes necessary to find the optimal topic count k to
ensure that the weights from the topic simplex have suffi-

Fig. 6 Slope variations on the plots of the data point probabilities (or
weights before normalization) at different topic count k choices in topic
modeling. The observable slope of the weights plot guides the process
of tuning the hyper-parameter k. A more significant slope implies good
variance, and hence, the weights become more useful for sampling

cient variance. We interpret the flatness characteristic using
the following hypotheses:

1. Topic count is lesser than optimal The data points cluster
excessively near the simplex centroid leading to a low
L2 norm weight for the data points. When several data
points cluster near the simplex centroid, the variance in
the weights becomes low, leading to a flatter curvature of
the weights plot (or probabilities after normalization).

2. Topic count is optimal The data points distribute through-
out the simplex leading to different L2 norm weights for
data points. The variance in theweights allows us to apply
data space weighting [47] and ensures importance to the
essential data points with class-discriminative informa-
tion.

3. Topic count is greater than optimal The data points align
near the simplex vertices leading to a high L2 norm
weight for the data points.When several data points clus-
ter near the vertices of the simplex, the variance in the
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induced weights becomes low, leading to once again a
horizontally flatter curvature of the weights plot.

Partial flatness is an exciting phenomenon where several
data points in the dataset evaluate to a similar topic simplex
weight predominantly because of their placement near the
simplex vertices. When the topic count k = 2 for the LDA
plot in Figure 5, the scenario we observe is a complete flat-
ness, where all the data points cluster around the center of
the simplex to score a low L2 norm weight. On the contrary,
when the topic count is k = 5, we observe partial flatness,
where the plotted curve is flat for three-fourths of the data
points. Partial flatness is different from complete flatness,
where the partially flatter region evaluates to a higher L2

norm weight in comparison with the weights in the complete
flatness scenario. Data points participating in partial flatness
are equally critical as they align near the simplex vertices but
more important than the ones aligning elsewhere.

5.3.1 Model tuning

We originally tune the model using a line search to find the
best topic count for our experimentation. However, when
we study the weights plots in conjunction with the sim-
plex model interpretation, we recognize the usefulness of the
weights correlating to the slope of the weights plot. Figure 6
shows the weights plot at different topic counts k for both
PLSA and LDA models built with the ecoli-0-1-3-7-vs-2-6
dataset. The plot curvature tends to flatten in both the mod-
eling schemes for smaller topic counts. A flatter P(d) plot
implies equally weighted data points leading to non-viability
of directed or informed sampling due to low variance in the
estimated weights.

On the contrary, we observe valuable variance on the
curve when the topic count increases. The observable slope
of the plotted curve guides the process of tuning the hyper-
parameter k. A more significant slope implies good variance,
and hence, the estimated weights become more useful for
sampling. We also observe that the slope flattens when the
topic count increases beyond the optimal value, as explained
in the effect of topic count (k) section.

Choosing the best topic count k by visually observing the
slopes is a subjective approach. Instead, we can estimate the
area under the P(d) curve shown in Fig. 6 to choose the topic
count that covers at least 90%of the total area under the curve.
Aflatter curve requiresmore topics to cover the required 90%
area under the curve. The linear search for topic count can
choose the minimum k value that satisfies the required area
under the curve. Alternately, we can use perplexity [71] as
a measure for choosing the topic count that optimizes the
model fit for the data. OCTIS,4 a popular Python library is

4 https://github.com/mind-Lab/octis.

Fig. 7 Relative positions of the minority and majority points on the
data point probabilities P(d) plot induced by LDA and PLSA topic
simplex weights, generated for four different datasets with topic count
set to k = 10. Larger bullets denote the minority points. The X-axis
is the data point instances sorted by data point probabilities P(di ) in
descending order
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Fig. 8 Distribution of the majority andminority class data points on the
data point probabilities P(d) plotted curve, before and after reweight-
ing. The first plot in each row shows the distribution of minority and
majority data points on the original P(d) curve. We observe that the
majority class data points dominate the top portion of the plots. The
second plot in each row shows the data point weights for the major-
ity and minority classes estimated independently as a function of the
respective data point probabilities. The second plots in each row use
Y-axes separately for the majority and minority class data points

available for selecting the best topic count k using a Bayesian
optimization (BO) [72,73] to optimize the hyper-parameters
of the models and thus guarantee a fairer comparison.

5.4 Minority andmajority points on the plotted
curve

We visualize the relative positions of the majority and
minority class data points on the weights plot (data point
probabilities P(d) plot after normalization). Figure 7 shows
the positions of the minority and majority data points on the
P(d) plot induced by LDA and PLSA topic simplex weights
for four different datasets, namely ecoli4, glass6, poker-8-9-
vs-5 and yeast-2-vs-4 from the UCI repository [74]. Larger
bullets denote theminority class data points, and smaller ones
denote themajority class data points.Wegenerate all the plots
with the topic count set to k = 10. Irrespective of whether
we use LDA or PLSA modeling, the minority points tend to
cluster near the tail of the P(d) plot for some datasets such as
poker-8-9-vs-5 whose imbalance ratio is high (81.96). When
the imbalance ratio is not so high in cases such as yeast-2-
vs-4, glass6 and ecoli4, the minority data points cluster near
the head of the curve, this clustering behavior is consistent
across different topic count k choices for a chosen dataset
and a modeling scheme. We observe that the imbalance ratio
plays a vital role in the placement of minority points on the
P(d) plot. When the imbalance ratio is high, minority points
tend to be pushed to the tail by the majority points due to
their overpopulation.

5.4.1 Shadowing and reweighting

When the minority class points cluster near the head of
the P(d) weights plot, the data points get a high chance
of appearing the directed random sample compared to the
majority class points; alternately, if the minority class points
cluster near the tail of the plot, the directed random sample
might have poor representation of the minority class data
points. We call this problem as shadowing. To overcome
the shadowing problem, we propose reweighting, where we
extract the weights assigned to the majority and minority
class data points individually and normalize them inde-
pendently. Figure 8 shows the distribution of majority and
minority class data points on the P(d) weights plot, before
and after reweighting for the poker-8-9-vs-5 dataset. The first
plot in each row shows the distribution ofminority andmajor-
ity data points, with the top portion of the plots dominated by
the majority class data points. The second plot in each row
shows the data point weights for the majority and minority
classes estimated independently as a function of the respec-
tive data point probabilities. Reweighting allows theminority
data points to get higher weights irrespective of their posi-
tions in the original P(d) weights plot.
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Table 3 Classification performance measured by the weighted average
F1-score metric for the boosting methods evaluated in our experimen-
tation. We use a dash “-” to report that a particular run did not complete
within our set time limits. We color-code the scores based on the t-test

outcome against TOMBoostLDA. Green marks the wins, red marks the
losses and yellow marks the ties of TOMBoostLDA in blue against the
other methods

5.5 Performance of TOMBoost

Table 3 presents the W AF1 scores achieved by all the meth-
ods compared in our experimental setup. In Table 3, we
show that the performance of the TOMBoost algorithm
is superior to the other popular boosting methods, such as
AdaBoost, AdaCost, RUSBoost, SMOTEBoost and several
other sampling methods. We observe that the variance in
the F1 scores across different cross-validation folds is rea-
sonably low, which proves the stability of our method. We
also perform a two-sample t-test to validate the significance
of our proposed TOMBoost algorithm against the other
methods. Table 3 also color-codes the scores based on the
t-test outcome of every other method against the LDA vari-
ant of TOMBoost . Tables 4 and 5 show the t-test results of
LDA and PLSA variants of TOMBoost against all the other
methods compared in our experiments. We observe that the
PLSA and LDA variants of the TOMBoost algorithm are
statistically similar, as they share 34 ties over 37 datasets.
The LDA variation of TOMBoost is marginally better than
the PLSA variation by registering three wins and no losses.

Table 3 shows that the TOMBoost (LDA) is statisti-
cally similar to RUSBoost. We do an empirical study of this

hypothesis in Sect. 5.7. It is interesting to observe that the
SMOTEBoost method has not performed well against the
PLSA and LDA variants of TOMBoost . The best SMOTE-
Boost scored was nine wins against the LDA variant and
eight wins against the PLSA variant. A possible reason is
that the synthetic samples induced in every SMOTEBoost
iteration do not create different classifier decision bound-
aries when compared to the decision boundaries induced by
the oversampling/undersampling of data points in boosting
iterations.

The PLSA variant scores eight wins against RUSBoost
and SMOTEBoost; at the same time, it has also suffered eight
defeats against each of them, leading to a debatable clear
winner performance. PLSA variant of TOMBoost outper-
forms AdaBoost clearly with seven wins and just one loss.
Both TOMBoost variants lead AdaCost with 17 wins out of
23 datasets compared. The LDA variant of the TOMBoost
algorithms outperforms RUSBoost and SMOTEBoost by
considerable margins.

The improved performance of TOMBoost is due to the
directed sampling at the initial stages of the boosting, to
bias the classifiers significantly toward the essential data
points from the minority and the majority classes during
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Table 4 Summary of two sample t-test on weighted average F1-score of the LDA variant of TOMBoost against other boosting methods with
significance level at p = 0.05. The last three rows summarize the wins, losses and the ties

the early iterations. Subsequently, the boosting iterations
reweight the data points based on the classification perfor-
mance of the additive classifiers induced from the previous
iterations. The dataset balancing method in TOMBoost
ensures that the classifiers learned in every boosting itera-
tion are exposed only to the essential data points that contain
class-discriminative information.

5.6 Choice of topic modeling approach

As we have two variants (PLSA & LDA) of the topic
modeling-based weighting framework, we attempt to unify
the weights induced by both the variants into a single weight-
ing scheme. We combine the weights induced by the PLSA
and LDA modeling into a single weighting scheme as per
Eq (14). λ is a hyper-parameter to bias the ensemble weight-
ing scheme from LDA to PLSA.

WENS = λWLDA + (1 − λ)WPLSA, 0 ≤ λ ≤ 1 (14)

We observe that the ensemble weighting does not pro-
duce competitive results in comparison with the individual
weighting schemes. In our experiments with the LDA and
PLSA weights using classification performance as a surro-
gate measure for assessing the effectiveness of the weights,

we observe through t-test that the classification performance
with the respective weighting schemes is statistically simi-
lar. The t-test results in Table 4 indicate that the weights are
also statistically similar.When theweights estimated through
LDAand PLSAmodeling are statistically similar, the ensem-
ble of weights also becomes similar to the original weights
making the ensemble less effective.

5.7 Faster minimization of model bias

Wenow study the effect of ourweighting scheme on reducing
the number of boosting iterations required to minimize the
model bias. Figure 9 shows a comparison study on the trend
ofmodel bias observed over several iterations of the proposed
methods against the popular RUSBoost and SMOTEBoost. It
is evident from the figure that the model bias of TOMBoost
(both variants) is lower than that of RUSBoost and SMOTE-
Boost after a few iterations. We observe that the model
bias trend of RUSBoost starts to converge back to that of
TOMBoost as the iterations increase.

Figure 10 shows the model bias minimization trend for
the “A3,” “E2” and “B1” datasets, which depict the clear
advantage TOMBoost method has over RUSBoost and
SMOTEBoost. RUSBoost and SMOTEBoost start at a higher
bias error and continue to increase for a few more iterations.
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Table 5 Summary of two sample t-test on weighted average F1-score of the PLSA variant of TOMBoost against other boosting methods with
significance level at p = 0.05. The last three rows summarize the wins, losses and the ties

Fig. 9 Comparing the model bias minimization trend of the boosting
methods for the “yeast” (Y3) dataset

The trend reaches a plateau, followed by a decrease in the bias
error in the boosting iterations to come for RUSBoost. Fig-
ure 10 also establishes that the TOMBoost method quickly
minimizes the model bias relative to the others and continues
to decrease the training error further almost linearly. Fig-
ures 9 and 10 show that the trend line of SMOTEBoost is
not decreasing even after the plateau region. One possible

reason for this behavior is the boosting iterations might be
synthesizing noisy data points [28,29,75].

There are also cases where RUSBoost model bias keeps
increasing with more boosting iterations. Figure 11 demon-
strates such scenarios for the “C2” and “C5” datasets, where
the training error for RUSBoost keeps increasing while
TOMBoost continues to minimize the model bias. One
reason for this behavior is due to the randomness in under-
sampling during the boosting iterations. If the randomsample
goes wrong, the effect takes more iterations to stabilize. Ulti-
mately, RUSBoost will converge with TOMBoost but may
take several more iterations to do so.

Table 6 lists the rank of the compared method for faster
minimization of training error. We observe the training error
for every dataset at the end of the 20th iteration for each com-
pared method. As the training error for different datasets and
different methods follow different scales, aggregating them
into averages may not be appropriate. We propose to look at
the rank of a method for every dataset instead of the absolute
training error. An average convergence rank closer to 1 indi-
cates that the method obtained the least training error among
the compared methods. On the other hand, a value closer to
4 indicates a relatively higher training error at the end of the
last iteration. Table 6 clearly shows that both TOMBoost
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Fig. 10 Comparing the model bias minimization trend of the boost-
ing methods for the “Abalone” (A3), “Ecoli” (E2) and “Baloon” (B1)
datasets, where SMOTEBoost training error keeps increasing

variations minimize the training error faster than the popular
SMOTEBoost and RUSBoost methods.

In summary, we empirically show that TOMBoost facil-
itates faster minimization of training error (model bias) by
finding a favorable starting point through topic modeling-
based directed sampling. Also, TOMBoost balances the
data sample by majority class undersampling and minority

Fig. 11 Comparing the model bias minimization trend of the boosting
methods for the “CMC” (C2) and “Contraceptive” (C5) datasets, where
RUSBoost training error keeps increasing

Table 6 Average convergence rank across datasets of the various meth-
ods on the train error at the end of the last iteration of the boosting

Method Average convergence rank

TOMBoostLDA 1.80

TOMBoostPLSA 1.83

SMOTEBoost 2.97

RUSBoost 3.82

class resampling to facilitate appropriate biasing of the deci-
sion boundary induced by the additive classifier.

6 Discussion

In this work, we apply topic modeling to draw represen-
tative samples from a dataset that preserves the properties.
We use topic modeling to estimate the relative importance
of every data point (as weight) in the dataset based on its
respective topic simplex representation. We use the weights
to undersample from the majority class dataset and resample
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the minority class dataset to balance the class proportions
of a data sample artificially. We propose a boosting method
that initializes the data distribution with the estimated data
weights and uses the artificial data balancing strategy in
every boosting iteration. We show that our boosting method
outperforms other sampling and boosting techniques in clas-
sification performance and takes fewer iterations to converge
to a lower training error.

Topic modeling is proposed initially for text analytics,
but the mixture of multinomials is a mathematical structure
that can also apply to other problem domains. Topic mod-
eling inherently clusters the dataset softly into latent topics
that share similar dataset characteristics. Our study lever-
ages the estimated soft clusters to draw stratified samples
from the formed topic clusters. We use the topic simplex
representation to study whether a data point is topic-diffused
or topic-focused by measuring its L2 norm. A topic-focused
point has a higher L2 norm, whereas a topic-diffused point
has a lower L2 norm. By tuning the topic count hyper-
parameter, we maximize the ability of topic modeling to
create the required number of latent topic clusters and hence
the posterior probability Pr(Z |di ) for a data point di .

A representative sample should notmiss the topic-focused
data points as they carry more information about the dataset
characteristics. This way, topic modeling allows us to pre-
serve the necessary information of a dataset in a sample
despite its smaller size. When we apply data weights on the
majority and minority class data individually, we avoid the
shadowing effect of majority class points over the minority
data points. We conceive a robust classifier that can work
well even with a severely imbalanced dataset by combining
the strategic sampling with a boosting scheme. When we use
the estimated weights to initialize the boosting method, we
allow the boosting method to start with a better initial con-
dition leading to faster convergence of model bias.

Our empirical study on the application of topic model-
ing to data sampling and boosting validates the ability of
the multinomial mixture models to solve diverse problems
other than text analytics. We believe that topic modeling as a
generic technique has several different applicationswhich are
yet to be explored. Although topic models work well for data
modeling and sampling, building and tuning the topic model
hyper-parameter is time-consuming for very large datasets.
In such scenarios, We have a choice to trade off between
speed and accuracy by lowering the number of EM (or Gibbs
sampling) iterations while building the model. The data pre-
processing time (model building time) is worthy because it
also reduces the number of boosting iterations required to
achieve lowermodel bias. Another limitation of the proposed
system is that the topic modeling approach may not work
with embeddings as they do not strictly follow the mixture
of multinomial distributions. To overcome this limitation, we

prescribe using the dataset from the original space instead of
the reduced-dimensional embedding space.

7 Conclusion

We propose a topic modeling-based weighting framework
for data points that efficiently processes class imbalanced
data. We develop our weighting framework using LDA and
PLSA modeling to assign a weight for every data point in
a dataset based on the estimated topic posterior probabil-
ity with a simplex model-based interpretation. TOMBoost
algorithm improves performance against all other techniques
compared in our experimental setup for binary classification
datasetswhile being simple to implement and requiring fewer
iterations to converge. The algorithm outperforms the popu-
lar SMOTEBoost, RUSBoost and the cost-sensitive AdaCost
algorithms, clearly with more wins. Between TOMBoost
variants, the LDA variant is marginally better than the PLSA
variant. TOMBoost also shows the ability to minimize the
training error in a fewer boosting iterations than RUSBoost
and SMOTEBoost. The algorithm consistently decreases the
model bias over boosting iterations across datasets unlike
RUSBoost and SMOTEBoost. Although topic modeling was
originally proposed for text applications, we successfully
demonstrate its use with generic multinomial datasets in
boosting and directed sampling applications. Our next step
is to extend the weighting framework application to multi-
class imbalanced datasets. The source code, curated datasets,
results and reports are available in GitHub.5
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