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Abstract
In big data science, the classic frequent pattern mining is fundamental to various pattern mining applications. Extensive
research on this mining has been undertaken for nearly 30 years but left with no reliable mining approach. One of the main
issues is the lack of study on the imperative pattern frequency distribution theory. With an emphasis on mining reliability
and methodological change, this paper makes up the absent theory, which consists of a bundle of findings on the frequency
distribution properties. The primary property is that the frequency distribution curves from different pattern generation modes
are quasi-concave and ultimately resultant bell-shaped curves over large datasets. All the findings are well-formed with no
exogenous input but rigorous mathematical proofs that every classic pattern mining approach should observe. This paper thus
builds up a solid block of the theoretical foundation for rational and ultimately reliable pattern mining. Moreover, the findings
inspire interesting rethinking and new conceptions not merely in pattern mining but also extended deeply to set theory and
combinatorics. With this inspiration plus the pure mathematic nature of the explorations presented, the contributions of this
study may not be restricted to pattern mining only but spring to data science in general or even broader.

Keywords Data analytics · Pattern frequency distribution · Combinatorial features · Concavity property · Classic pattern
mining · Selective pattern mining approach

1 Introduction

The classic frequent pattern mining starting from the itemset
mining [1] is a fundamental technology to retrieve informa-
tion from various classic datasets. Its applications include
general-purpose association-rule mining [2,3] or causality
mining [4,5], which in turn are foundations for diverse
domain-specific mining, such as medical [6–8], biologi-
cal [9,10], chemical [11–13], and genomic mining [14–16].
Meanwhile, the basic concepts and methods of the classic
mining are the starting points of the mining over nonclas-
sical datasets, e.g., the stream data [17,18], uncertain data
[19,20], or heterogeneous data [21,22].

As such, thousands of research articles related to clas-
sic pattern mining have been published over a quarter of a
century, and most of them focus on algorithm design and
implementation to pursue mining efficiency. However, none
of the previousmining approaches is reliable, as proved in the
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first stage of the author’s study [23].One of the reasons for the
unreliable mining is the lack of well-established mining the-
ories but mostly algorithms due to a seeming convention in
the pattern mining research circle. That convention requires
empirical results to prove one’s mining approach. As expe-
rienced by the present author, many journals explicitly or
implicitly refuse theoretic articles on pattern mining with-
out empirical results. Such a policy certainly hinders deep
theoretical studies, such that there is no generally accepted
mining reliability theory established in the literature to date.

We know it is important to require empirical results to ver-
ify an approach, but only if the results are reliable. However,
it is not the case in pattern mining up to now. Notice first
that, for an arbitrarily given dataset, we do not know how
many and what patterns exist in it beforehand. Then, without
a reliability theory, by what can we testify and trust a mining
result from a mining approach to be reliable? The important
convention and requirement then become spoiled, and the
reality is, without reliability testification, authors in an article
merely use empirical results produced from their own algo-
rithm to prove the advantages of that algorithm declared by
the authors. Such proof is indeed a “circular proof” only, but
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interestingly, few people noticed the phenomenon or wanted
to change it.

The above spoiled convention implies that people are
eager to head in the practical mining without much atten-
tion to the soundness of the mining theory thus reliability, or
they did not take there are critical issues of the mining theory
but only the mining efficiency. Instead, the author’s research
has proved andwill further prove that the unreliability of pre-
vious mining approaches is due to their embodied theoretical
fallacies. And there is a need to emphasize that an unreliable
mining approach is valueless or even harmful, however effi-
cient it is, because the unreliable information retrieved from
that approach may lead to a misunderstanding of a world or
even costly wrong decision making.

After we noticed the above, the issue now becomes how
to undertake the reliability study. The author finds that we
need first to fix some more fundamental issues. The thing is,
without a proper reliability theory, we could not determine
whether amining approach is reliable, but conversely, we can
tell if it is unreliable—by the rationality of its mining results.
That is, a mining approach must firstly be rational, then reli-
able. The author’s previous study has proved the irrationality
of the mining results from all previous approaches with two
critical issues, the probability anomaly and the dissatisfac-
tion of the equilibrium condition [23], which shall be briefly
iterated in the next section.

Another major theoretical miss is the pattern frequency
distribution theory. Without it, there is no rule to guide and
check if the central work—finding out the result patterns
and their respected frequencies over a dataset—is well done.
Accordingly, the main contribution of this paper is the estab-
lishment of the pattern frequency distribution theory to meet
the needs. This theory, the last study summarized in Sect.
2.2, and the theory to render the selective mining approach as
futurework are the imperative blocks of the theoretic founda-
tion toward the expected rational and ultimately the reliable
pattern mining.

The second contribution is the stimulating sooner real-
ization of reliable pattern mining through objective and
methodological change. The first change is prioritizing the
mining rationality and reliability over efficiency. An efficient
approach is significant only if it achieves reliability. This
change requires another change: to put theoretical study and
establishment before empirical mining techniques and algo-
rithms. The third is to pay more attention to intrinsic data
properties than exogenous input in the theoretical pursuance.
If people say previous works have developed some mining
theories, those theories are mostly approach-dependent and
often with exogenous inputs. They are thus not generally
applicable and at least unmatured since no reliable mining
approach has grown up from them yet. The studies presented
in this paper and before are wholly from the intrinsic natures
of the dataset to work on and with no exogenous input but

rigorous mathematic proofs that every classic pattern mining
approach should observe.

Another contribution is extensiveness and enlightenment.
The findings presented in this paper are purely mathematic
derivations.As inmany cases, a puremathematic formulation
may not find its immediate usage or all usages, but sooner or
later, peoplemay find its usefulness even in different subjects
or fields. This study thus means to open a new way to solve
the pattern mining problem fully mathematically, and as to
see soon, inspires some rethinking and new conceptions, not
merely in pattern mining itself but also extended deeply to
set theory and combinatorics. This inspiration and the pure
mathematic endowments would attract more people’s atten-
tion to and interest in pattern mining or big data science in
general, or even broader. More explicitly, compared with a
pattern consisting of singleton elements, the substances of
our world comprise quantum particles in modern physics.
Then, if we could solve the pattern mining problem mathe-
matically, why could not we find a similar way to understand
the world at large, particularly in the search for new genes or
innovation of new materials, for instance?

The structure and contents of this paper are: after a sum-
mary of the drawbacks of previous works on frequent pattern
mining in Sect. 2, Sect. 3 presents the properties of raw
pattern frequency distributions under the full enumeration
pattern generation regime. Section 4 is on the properties of
the distributions in the reduced pattern generation mode,
including their empirical verifications, followed by a brief
discussion in Sect. 5 and then is the conclusion part of this
paper.

2 Themining problem and previous work

The classic pattern mining is originally the itemset mining
[1] studied initially in the data mining history. The dataset,
such as Table 1, used for the mining is abstracted from mar-
ket transactions and typically presented in previous research
articles. Below presents the details of the dataset natures and
the mining problem.

2.1 The terminology and theminingmodel

Table 1 is a running example of the classic dataset to be used
in this paper and named as DBo. The table has u rows and
two columns, where column VID represents an application
domain Ω of n distinct elements, while TID means the key
attribute in database notation. Each row is a tuple with a
tuple ID, Ti (i = 1, 2, ..., u). The Vi (i = 1, 2, ..., n) in each
cell of column VID means a value from Ω . For example,
in a market itemset mining problem, a TID could represent
a transaction ID, while a Vi indicates an “item” from the
domainΩ of merchandise. A combination of k distinct Vi s is
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Table 1 A Database (DBo)

TID VID

T1 V1, V4, V7

T2 V2, V4, V7, V8

T3 V2, V6

T4 V1, V6, V8

T5 V1, V2, V3, V4, V7, V8

T6 V5

T7 V4, V7

T8 V5

T9 V1, V2

T10 V1, V2, V3, V8

named as a pattern Zk = (Vi Vj ...Vs) of length k. The process
to enumerate the patterns is called pattern generation.

In statistics terminology, the dataset DBo is a sample of
the real-world application at hand. The cardinality u of DBo
is the sample size; a record (tuple) is an original observation,
or a realized event of the sampling [24], hence a subset ofΩ .
A TID can be taken as a sample label or trial ID, and column
VID refers to the set of events [25].

In addition to the above attributes, Table 1 called a “classic
dataset” is abstract and characterized in the following [23]:

(a) The classical data nature: each Vi is of the same nature of
the element in set theory. That is, Vi is unique and atomic
(indivisible) in a tuple.

(b) The dataset is de-semantic, where each Vi is expressed
as a discrete (ID) number or a keyword to represent an
object (element or item).

(c) The dataset is static.
(d) No random walk in the dataset is presumed in previous

work since there is no pre-knowledge to assume which
tuple or which element (item) to be so.

Based on the above introduction of the dataset, the funda-
mental pattern mining problem can be stated as below:

Problem 1 Output all patterns of the elements of any length
k (k > 0) from the universe Ω given in DBo, such that the
frequentness sz of a pattern Z satisfies sz ≥ smin .

Conventionally, sz is called the “support” of pattern Z , and
smin is a user predefined frequentness threshold. sz is defined
as [1,2]:

sz = s(Z) = count(Z)/|DBo|
= F(Z)/u = S(Z)/u = Sz/u, (2.1)

where S(Z), or Sz or F(Z ) noted alternatively in the liter-
ature, is the number of occurrences of a pattern Z , called

“absolute support” or “absolute frequency” of Z over the
database; u = |DBo| is the total number of tuples, i.e.,
the cardinality of DBo. For instance, S(V1V2V3) = 2,
S(V1V2) = 3, and s(V1V2) = 3/10 = 0.3, from Table 1.

Problem 2.1 and the related dataset form the classic min-
ing problem. It acts as the simplest hence fundamental pattern
mining model. A sound solution for the model is thus of
particular importance since only after the simplest mining
problem has been well-solved could we properly proceed
to more complex mining problems. However, no reliable
mining approach has been developed after so many research
works being published. Everyonewould ask,why?The intro-
duction part above has answered the question principally,
while the following subsection presents further explanations.

2.2 The previous works and their drawbacks

As a continuation of the author’s previous work [23] (“the
last study,” hereafter), which has presented a review on
some known previous mining approaches, this paper does
not assume to make such a further review since this paper
is not on specific mining approaches. A more important rea-
son is that all previous approaches are unreliable. As such,
a summary of the causes of the unreliability as below would
be adequate instead. Readers who want to know more infor-
mation about the previous approaches can refer to several
surveys [1,2,26,27].

The last study investigated two fundamental issues of pre-
vious works: the ill-formed support measure (sz), with their
summation

∑
(sz) being much larger than 1 in an applica-

tion, thus a serious “probability anomaly” issue. The second
is the full enumeration pattern generation mode used, which
produces an excessive number of patterns from any mining
application. The two together lead to crucial overfitting issues
in previous approaches, where overfitting means a spurious
pattern being falsely taken to be a real frequent one.

The last study starts with a comparison between the
concerned patternmining problem and the classic frequency-
based probability problem, where each row (tuple) of the
sample dataset used stores only one event (pattern), with
an assumption that there is no correlation between any two
observations. As such, the accumulative event frequency
equals the cardinality of the dataset u, and the frequentness
(probability) of each event Z , f (Z), equals the ratio of its
total occurrences F with u, that is, f (Z) = F(Z)/u, which
indeed is the origin of the s(Z) stated in (2.1).

Now, in pattern mining, the only difference is that each
tuple of the dataset used, such as Table 1, may hold multiple
patterns. If we separate those patterns from each tuple and
store each pattern in a single tuple of a virtual dataset (DBv),
and suppose the cardinality ofDBvhad increased fromDBo’s
u to w, then the frequentness of a pattern expressed in (2.1)
should be changed into:
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s′
z = F(Z)/w = f (Z), (2.2)

which then not only explores the cause of probability
anomaly and overfitting problems but also is a remedy to
them: From (2.1) and (2.2), rs = sz/s′

z = w/u � 1 in real
applications, which then causes

∑
sz � 1 and probability

anomaly rises. Meanwhile, sz greatly inflates the real fre-
quentness of Z and overfitting comes up. rs is thus named
the primary overfitting ratio. From the running exampleTable
1,

∑
sz > 11, and the larger the datasets, the severer the

probability anomaly and the overfitting.
Another cause of the overfitting problem is the mode used

to separate the patterns from each tuple of a dataset. Con-
ventional approaches generally use or are based on the full
enumerationmode touse each element repeatedly in a tuple to
generate every possible pattern to fulfill the job, but thismode
is not feasible in classic pattern mining. It is just because, as
listed in Sect. 2.1, each element (item) in a tuple is a single-
ton, unique and indivisible, as reflected in the calculation of
pattern length and tuple length. That means an element could
not be used more than once to form different patterns since
no element could belong to more than one pattern within the
same tuple, and notice that the dataset is already historical
and static.

Meanwhile, the “downward closure property,” which says
any super-pattern could not be more frequent than its sub-
patterns, has almost been taken as a golden rule and widely
used in previous approaches. However, this property is not
intrinsic to any dataset but only a phenomenon of the full
enumeration mode. The profound reason for this property
is that shorter patterns recapture some frequencies of their
super-patterns. It thus leads to the biased frequentness eval-
uation toward short against long patterns and biases toward
generated against originally observed ones.

Indeed, previous researchers have felt the problem of too
many resultant patterns from mining applications and pro-
posed different reduction approaches to solve it. For instance,
to use the “interestingness” [28] or “weighted” [29]measures
and the like to modify the conventional sz . These measures,
especially the former, are rather complexwith various exoge-
nous inputs and hence not effective. Another example is the
use of a “concise” or “condensed” result set such as the “max-
imal” or “closed” [30] pattern set to represent the whole
mining result set, but these approaches are still based on
the full enumeration mode such that for any given pattern
Z , they produce the same S(Z) and s(Z). That is, although
various solutions were attempted, they did not sight into the
real problems as above and thus could not work well.

Instead, the solution proposed by the last study is the
selective mining mode. This mode means a partition of the
elements of each tuple. Each part of the partition then forms a
pattern. The key is in how to select a proper partition for each
tuple. That is how the mode is named so. This mode comes

out from systematic analysis and the establishment of sev-
eral theorems. The proposal first introduces the “equilibrium
condition” to guide and quantify the mining.

The primer equilibrium condition means, for each tuple,
the count C(ei ) of any given element ei in its result pattern
set cannot be more than the count S(ei ) of the same element
from that tuple. That is,

C(ei ) ≤ S(ei ), (2.3)

Aggregately, the sumof the lengths of all the resulted patterns
could not be more than that of the lengths of all the tuples of
an entire dataset. That is,

∑
(|Zi | ∗ F(Zi )) ≤

∑
b j , (2.4)

where Zi is the i th pattern in the pattern set, and b j is the
length of tuple j ; both i and j are cardinal numbers.

In the initial stage ofmining, because every element stands
equally (the 4th feature of the classic dataset, refer to the pre-
vious subsection), the above two formulas take strict equality.
A notice here is that (2.3) implies (2.4), but not vice versa.

Here are the three out of five theorems presented in the
last study for the birth of the selective mode. One is that the
number of possible patterns from a given data tuple can only
be less than linear to the tuple length, while conventionally,
it is exponential to the length, which means the number of
result patterns should have been much fewer even without
using any proposed reduction approach. At the end of Sect.
4, we will see an example of the difference in the mining
result sets between the new and conventional approaches.
The second is that the selective pattern generationmode is the
only feasible mode in classic pattern mining. The third is that
patterns produced from the selective mode are conjunction-
issue-free. It then further justifies the use of f (Z) (2.2) above
since it confirms that f (Z)s are directly additive and sum to
1. The probability anomaly issue is then automatically gone.
This theorem also clarifies that the super-sub patterns can
only be produced from different tuples of a dataset, another
major point not aware of in the previous literature.

Finally, the last study concluded that anymining approach
should satisfy at least the three rationality criteria: probabil-
ity anomaly free, the use of the selective pattern generation
mode, and compliance with the equilibrium condition. How-
ever, no previous approach did or could claim the satisfaction
of the above criteria. That means no mining approach to
date is rational yet, let alone reliable. This present paper will
present further criteria to see soon.

For the detailed reasoning of the above issues and their
solutions and other contents not presented above, interested
readers may refer to the original work [23].

We now turn back to the topic of the pattern frequency dis-
tribution theory, which affects the rationality thus reliability
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of the pattern mining approach either but virtually absent in
previous works.What we can find are few articles on estimat-
ing the number of patterns in applications [31,32]. However,
they are based on the full enumeration pattern generation
mode again. Their declared estimation accuracy thus could
not hold instead. Meanwhile, such an estimation problem is
not the focus of the present paper. That means we could not
get significant references from the literature to discuss the
main topic of this paper, and we finish this part here.

Hereunder we will get into the main body of this paper to
present the properties of patterns frequency distributions.We
will use the notation F(Z) instead of S(Z) to represent the
pattern frequency and use p(Z) or f (Z) rather than s′(Z) to
represent the probability (frequentness) of the pattern. Since
f (Z) is linear to F(Z) as defined in (2.2), the shapes of the
frequency and frequentness distribution curves will be the
same. As such, for simplicity, our discussion will be mainly
on the frequency distributions.

Since a pattern is naturally a combination of one or more
different elements, combinatorics will be a basic theory to
study the mining. In this paper, we use the notation Ck

i to
mean the number of combinations of k elements selected
from a set of i different elements. Another notice is that the
empty set ∅ could not be a pattern, and F(∅) be undefined.
The reasons will clear up before the end of Sect. 3.

Lastly, this paper does not consider the effect of a fre-
quentness threshold such as smin mentioned before. It is not
only because that the smin and its setting-up are problematic,
as addressed in the last study [23], but also notice that the
use of smin in previous works is mainly to reduce the size of
the resultant pattern set. An issue is that when a user wants
to look into the result set with a smaller smin, the only way
is to rerun the mining software, which could be very costly
and take up to dozens of hours to run over a large dataset.
With the new selectivemining approach, delivering the entire
result pattern set to the user will no longer be a big problem
since the set size will greatly decrease. It is then a trivial issue
for a user to look at the results with whatever smin s/he likes.
Since this paper is mainly a theoretical work, it is more than
needed but required to keep the generality and completeness
of our discussion, and we thus set the minimum frequency
(or the absolute support in conventional notation) F(Z) to
be 1 to cover all the patterns of an application in this paper.

3 The properties of raw pattern frequency
distributions

A pattern Z generated from the full enumeration mode is
named a raw pattern and its frequency F(Z) the raw fre-
quency. Although only the selective pattern generation mode
is feasible in the classic mining, there are still reasons we
need to study the raw pattern frequency distributions from the

full enumeration mode. Firstly, the full enumeration mode is
equal to the repeatable sampling covered in most probability
textbooks. In combinatorics, the mode represents the typical
question to get all possible combinations of any number of
elements from a set of different elements. In accordance, as
wewill see later, the study of the raw pattern frequency distri-
butions will not only fulfill theoretical completeness but also
lay a foundation for the distribution theory with the reduced
pattern generation mode. The reducedmodemay not be fully
the selectivemode, but it reduces the number of patterns from
the full enumeration mode. Secondly, in practice, it is a way
to find out the real patterns from a full set of all possible
patterns. Then the study of the raw pattern frequency distri-
butions is again imperative. For simplicity, the word “raw”
may be omitted hereafter.

In real applications, the number of possible patterns is
usually huge. It will thus be overwhelming in this paper
to look into each pattern and its frequency. Instead, this
paper presents an overall pattern frequency distribution the-
ory referring to every collection of patterns of the same
length. We start the discussion from a vertical pattern gener-
ation approach.

3.1 The vertical pattern generation approach

In the full enumeration pattern generation mode, the com-
mon way is horizontally to generate patterns from each tuple
of an original dataset DBo. For instance, from tuple T1 of
Table 1, we can generate patterns V1, V1V4, etc. However,
the vertical approach [33,34] is more helpful to derive the
basic formula to use in this paper. In this approach, we first
transform the original dataset DBo, e.g., Table 1, into its
“dual” table, named DBd, as shown in Table 2, such that:

DBo(T I D �⇒ V I D) 	→ DBd(V I D �⇒ T I D)

(3.1)

That is, the transformation exchanges the roles of TID and
VID such that VID in DBd acts as the key attribute, with each
Vi (i = 1, 2, ..., n) representing a set of Tj s that holds the
same Vi in the original database DBo. For example, in DBo
(Table 1), V1 is referred by T1, T4, T5, T9 and T10. So, inDBd,
V1 refers to those Tj s in turn. With this vertical approach, a
pattern Zk = (V pV q. . .V s) of length k is a combination
of k elements vertically from the column VID of DBd. The
frequency of a pattern of a single element Vi is the number
of corresponding Ti s held in row Vi of of DBd, while the
frequency of a pattern of k (k > 1) elements is the number
of the “intersected contents” (Ic), that is, the number of Ti s
commonly referred by each of the elements. More formally,
we define:

F(Zk) = |VpVq . . . V s| = |Ic(Zk)|. (3.2)
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Table 2 A Database (DBd) TID VID

V1 T1, T4, T5, T9, T10

V2 T2, T3, T5, T9, T10

V3 T5, T10

V4 T1, T2, T5, T7

V5 T6, T8

V6 T3, T4

V7 T1, T2, T5, T7

V8 T2, T4, T5, T10

Notice that, here we are not interested in what the inter-
sected contents are, but only in the number of such contents.

Another notice is the |V pV q. . .V s| above is not the length
of the pattern Zk but the count of its intersected contents Ic.

For instance, inDBd (Table 2), V1 refers to {T1, T4, T5, T9,
T10}, V4 refers to {T1, T2, T5, T7}. Then, Ic(V1V4) = {T1, T5},
and F(V1V4) = |Ic(V1V4)| = 2.

Recall that Ω represents the universe of Vi s in DBo, now
we use Ut to mean the universe of Tj s in DBd, i.e., Tj ( j =
1, 2, ..., u) becomes the element of Ut . Notice that the same
Vi may not present in every tuple of DBo. Otherwise, Vi is
removable from the dataset to simplify the problem. As such,
Vi refers to a proper subset of Ut , i.e., Vi ⊂ Ut . Then, the
correspondences of the DBo and DBd are:

|DBo| = u, |Ω| = n, (3.3)

|DBd| = n, |Ut | = u, (3.4)
∑

DBo

|Tj | =
∑

DBd

|Vi |, (3.5)

where |X |means the number of elements (the cardinality) of
X.

3.2 The inclusion–exclusion principle and the
pattern frequencies

From the above subsection and DBd (Table 2) where the
universe Ut = {T1, T2 . . . Tu} with |Ut | = u, and each Vi

(i = 1, 2 . . . n) represents a (overlapped) subset of |Ut |, then
by set theory, if n and u are finite, we have:

Ut ≡ V1 ∪ V2 ∪ · · · ∪ Vn = ∪n
1Vi , and (3.6)

|Ut | = u. (3.7)

From a very basic set operation (n = 2):

|V1 ∪ V2| = |V1| + |V2| − |V1V2|,

where V1V2 is a shorthand for V1 ∩ V2.

Extending the above into (3.6) and considering (3.7), we
have:

|Ut | = (|V1| + |V2| + · · · + |Vn|) − (|V1V2| + |V1V3| + . . .

+ |Vn−1Vn|) + (|V1V2V3| + · · · + |Vn−2Vn−1Vn|)
− · · · ± |V1V2 . . . Vn|

=
∑

i

|Vi | −
∑

i, j,i< j

|Vi Vj | +
∑

i, j,m (i< j<m)

|Vi Vj Vm |

− · · · ± |V1V2 . . . Vn|
= u. (3.8)

Formula (3.8) is referred as the “inclusion–exclusion
principle” [35] since the alternating signs presented in the
formula imply the compensations of possible excessive inclu-
sion or exclusion of the elements (Ic) involved in every
(VpVq...Vs) during the calculation. In this paper, we use
this principle as the starting point to explore more general
laws governing pattern frequency distributions under the full
enumeration regime.

In (3.8), each
∑

term represents a sum of the raw frequen-
cies of a “collective” of patterns of the same length. To avoid
the notation confusions and to simplify expression (3.8), we
introduce the following definitions:

Firstly,weuseΦk tomean a collection of patterns of length
k, and Hk to be the “sub-cumulative raw frequency” of the
Φk , andCk the number of patterns withinΦk . More formally:

Definition 1 The “collection of raw patterns of the same
length k” :

Φk = {Z j
k }, (3.9)

where j = 1, 2, ..., Ck , and Z j is the j th pattern within Φk .

Note that the number j above is for enumeration, i.e., j is a
cardinal but not an ordinal number.

For instance, from Table 1, Φ1 = {Vi |i = 1, 2, ..., 8},
Φ2 = {V1V2, V1V3..., V7V8}, and so on.

Definition 2 The “sub-cumulative raw frequency” of Φk :

Hk =
∑

p,q,...,t (p<q<...<t)

|VpVq . . . Vt |

=
∑

Φk

F(Z j
k ) = F(Φk). (3.10)

We will see examples of Hks in Table 3 later.
Then, (3.8) can be reformulated as:

|Ut | =
n∑

k=1

∑

Φk

F(Z j
k ) =

∑

k

Hk = u. (3.11)
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The “inclusion–exclusion principle” then becomes easy
to express by (3.11). The above concepts and formulas are
fundamental, based on which we shall explore a set of inter-
esting properties of the pattern frequency distributions in the
rest of this paper.

3.3 The calculation of Hks and the accumulative raw
frequencyw0

Asmentioned before,w is generally used as the accumulative
pattern frequency. In particular, we use w0 to mean the raw
accumulative in the full enumeration mode.

3.3.1 The basic formulas

Based on combinatorics, the basic formula for w0 would be:

w0 =
i=u∑

i=1

j=bi∑

j=1

C j
bi

=
i=u∑

i=1

(2bi − 1) =
i=u∑

i=1

2bi − u, (3.12)

where bi = |Ti | is the number of elements held by a tuple Ti

in the original dataset DBo, u = |DBo|, and note again, the
empty set∅ is not taken as a pattern, thus

∑ j=i
j=1 C j

i = 2i −1.
The computation cost ofw0 from (3.12) ismore than linear

to the data size u. As such, it may take hours or days to get
w0 in current desktop system when the concerned dataset u
is in trillions or even larger. For this, a cheaper formulae has
been developed in [23]:

w0 =
i=u∑

i=1

j=bi∑

j=1

C j
bi

=
i=α∑

i=1

gi

⎛

⎝
j=i∑

j=1

Ci
j

⎞

⎠ , (3.13)

where gi is the number of tuples each holding i elements in
the original datasets DBo, hence:

i=α∑

i=1

gi = u, (3.14)

and α = Max(Ti ), the longest tuple length.
The full series of gi s of a dataset is named the “gi distri-

bution” . For instance, the gi distribution of Table 1 is (2, 3,
2, 2, 0, 1).

Now, we define

Fi = gi

j=i∑

j=1

C j
i = gi (2

i − 1) (3.15)

as the sum of the frequencies of all patterns that can be gen-
erated from tuples of length i , then,

w0 =
i=α∑

i=1

Fi . (3.16)

Hereunder we present an even more efficient way to cal-
culate Hk and w0.

3.3.2 The vector-expression formulas

Since Hk represents the accumulated frequency of a collec-
tive of all patterns of the same length, then:

Hk =
i=α∑

i=k

gi C
k
i , (3.17)

and,

w0 =
k=α∑

k=1

Hk . (3.18)

(3.16) and (3.18) produce the same w0, but they represent
different pattern generation strategies. Equation (3.16) refers
to the case where patterns of different lengths ≤ i are gen-
erated in a loop i from tuples of same length i , while (3.18)
refers to the case where patterns of the same length k are
generated in a loop k from all tuples of length ≥ k.

Equations (3.17) and (3.18) can be in either vector or
matrix expressions, and we introduce the vector approach
first. For this, we define

Gk = (gk, gk+1, . . . , gα), (3.19)

as a “gathering vector” of dimension (α−k+1). In particular,
when k = 1, G1 is the entire series of gi distribution. And,

Θk = (Ck
k , Ck

k+1, . . . , Ck
α), (3.20)

as a “setup vector” of dimension (α − k + 1). In particular,
when k = 1, Θ1 is called an “initial setup vector” , and

Θ1 = (1, 2, . . . , α). (3.21)

In addition, we define a vector Ek as a “w-product” ofGk

and Θk, expressed as Ek = Gk ◦ Θk, where Ek, Gk and Θk

are of the same dimension, and each element ei of Ek being
the product of gi Ck

i , (i = k, k + 1, . . . , α). That is,

Ek = (ek, ek+1, . . . , eα) = Gk ◦ Θk

= (gkCk
k , gk+1Ck

k+1, . . . , gαCk
α). (3.22)
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Notice that (3.17) can be expressed as a dot product of Gk

and Θk:

Hk =
i=α∑

i=k

gi C
k
i = Gk · Θk. (3.23)

On the other hand, we can have:

Hk =
i=α∑

i=k

gi C
k
i = Bk · Ek. (3.24)

where Bk is termed as a “base vector” of dimension (α −k +
1), with all elements being 1:

Bk = (1, 1, . . . , 1). (3.25)

Among other significances, the use of the above vector
formulae enables the calculation of Hks recursively with-
out involving any exponent operation through the following
derivations.

Extending (3.17), we have:

Hk+1 =
i=α∑

i=k+1

gi C
k+1
i . (3.26)

Since, from combinatorics:

Ck+1
i = i − k

k + 1
Ck

i , (3.27)

then (3.26) becomes:

Hk+1 =
i=α∑

i=k+1

gi C
k+1
i =

i=α∑

i=k+1

i − k

k + 1
gi C

k
i

= 1

k + 1

i=α∑

i=k+1

(i − k)gi C
k
i

= 1

k + 1
Ak · E′

k, (3.28)

whereAk is named an “adoptive vector” , each of its element
being (i − k). Notice that i starts from k + 1, thus Ak =
(1, 2, . . . , α − k), which is exactly the first section of the Θ1

series up to (α − k). In programming point of view, Ak is a
result of right shift of Θ1 by (k − 1) positions, noted as:

Ak = Θk
1 .

Meanwhile, vector E′
k is a copy of Ek with its first element

being cutoff. For instance, if Ek = (2, 3, 5), then E′
k =

(3, 5). That is, each element of E′
k, (e

′
k)

i = ei
k , starting from

i = k + 1.

On the other hand, with the same formulation of (3.24),
we have:

Hk+1 = Bk+1 · Ek+1 =
∑

i

ei
k+1. (3.29)

Since Bk (similar to Bk+1) is a base vector of every element
being 1, the main issue of the computation of Hk (and Hk+1)
is now the computation of Ek (and Ek+1). Comparing (3.28)
with (3.29), we can easily see that any element ei

k+1 of Ek+1

is the computation result from (3.28):

Ek+1 = 1

k + 1
Ak · E′

k = 1

k + 1
Θk

1 · E′
k (3.30)

and elementally,

ei
k+1 = 1

k + 1
(i − k)ei

k, i = k + 1, k + 2, . . . , α.

Note that the superscript i of the above ei
k+1 is a global

index,which is easier than a local index to express the relation
of two vectors Ek and Ek+1 of different dimensions.

Now, (3.21), (3.22), (3.23), (3.29) and (3.30) form a recur-
sive program to compute all the Hks, starting from Θ1 and
G1 only. That is, from (3.22), we have:

E1 = G1 · Θ1, (3.31)

where G1 is the vector of the whole series of Gk starting at
k = 1, and Θ1 = (1, 2, . . . , α).

Then, by (3.30), E2, and similarly E3, and so on, will be
obtained recursively, and so the Hks, as described below.

3.3.3 The tabular recursive approach to compute Hks

Table 3 is an example of the use of the above formulae to
compute all Hks recursively as well as w0 over dataset DBo
(Table 1). The first row of Table 3 lists the elements of Θ1,
which is just an enumeration from 1 to α (here α = 6), while
the second row lists the elements of G1 (the full gi series).
These two lists are the only inputs.

The bold numbers in each of the following 6 rows of the
table are the elemental results of Eks, and they together form
an upper triangular matrix, named as “enumeration triangle
matrix”Λ. Each rowof theΛ forms anEk (k = 1, 2, . . . , α).
For instance, row 3 (k = 1) represents E1 (refer to 3.31),
resulted from multiplying the corresponding elements ofG1

and Θ1. Row 4 is corresponding to k = 2 globally, but in the
recursive approach, it means k + 1 = 2 where k = 1 preset.

To compute E2 and H2, right shift Θ1 by one column
and get A1, or left shift E1 by one column to get E′

1. Then
according to (3.30), the first element ofE2, e22 = 1/2(1∗6) =
3 (note the first element ofE2 starts from the second column,
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Table 3 The recursive computation of Hks (the Hk table)

Θ1 1 2 3 4 5 6 Hk

K \ G1 2 3 2 2 0 1

1 2 6 6 8 0 6 28

2 3 6 12 0 15 36

3 2 8 0 20 30

4 2 0 15 17

5 0 6 6

6 1 1

Fi 2 9 14 30 0 63 118(w0)

U-sum 2 3 2 2 0 1 10

which is reflected in the superscript of E2, e22). The whole
row 4 represents the elemental results of the w-product of (6,
6, 8, 0, 6) and (1, 2, 3, 4, 5) divided by 2. Similarly, row 5 is
the result of the w-product of (6, 12, 0, 15) and (1, 2, 3, 4)
divided by 3, and so on.

Finally, the sumof a rowof theΛ triangle gives a Hk , while
the sum of a column being an Fi (refer to 3.15). Additionally,
as a checkpoint, the main diagonal elements of the triangle
Λ are just a copy of the G1 (the second row)!

The above example well-demonstrates the beauty of for-
mulae (3.29) through to (3.31), and the tabular approach
developed is superb in both programming easiness and com-
putation efficiency. This approach involves no exponent or
combinatorics operations, and all the intermediate results in
Table 3 are reused. Efficiency is thus its most important fea-
ture. Notice that the maximum tuple length α is not linear
to the data size u but usually would not exceed a hundred
or thousand in an application. The computation cost of this
approach will thus be in only minutes and nearly constant
over any large dataset, while the cost of the preliminary for-
mula (3.12) could be in multiple hours, as stated before. In
other words, the above approach realizes the full scalability
of the calculation of Hk and w0. It would be even more sig-
nificant if this approach could develop a way to reach the
scalability of pattern mining in general, which is recognized
as a critical issue in pattern mining [36].

Additionally, this tabular approach is easily extensible
with the change of the dataset. For instance, if α increased,
we only need to add more required columns and rows on the
right and the bottom of the table. Secondly, if the gi distribu-
tion changed, we only need to update the affected columns
and Fi s and Hks.

3.4 The parity property of odd and even length
pattern frequencies

Besides the efficient Hk computations, there is an interesting
relation between the sums of the frequencies of odd and even

length patterns from (3.11).

k=α/2∑

k=1

H2k−1 =
k=α/2∑

k=1

H2k + u, (3.32)

where the upper bound “α/2” on the left side should be
changed into (α + 1)/2 and the right side to (α − 1)/2 if
α is odd. We use Hodd and Heven to mean the accumula-
tive of raw frequencies of patterns of odd lengths and even
lengths, respectively:

Hodd =
k=α/2∑

k=1

H2k−1, and Heven =
k=α/2∑

k=1

H2k .

Then, (3.32) becomes:

Hodd = Heven + u. (3.33)

Adding Hodd to both sides of (3.34), and notice that Hodd +
Heven = w0, we get:

2Hodd = Hodd + Heven + u = w0 + u.

That is,

Hodd = (w0 + u)/2, and, (3.34)

Heven = (w0 − u)/2. (3.35)

As measures of frequencies, Hodd and Heven each must be
an integer. We have the following proposition to guarantee
it:

Proposition 1 w0 + u or w0 − u is always even, and w0 is
of the same parity of u.

Proof From (3.12), w0 = ∑ j=u
j=1 2

b j − u, and let y =
∑ j=u

j=1 2
b j . Since b j = |Tj | > 0, it follows that y is always

even. Then, w0 + u = y − u + u = y, and w0 − u =
y − u − u = y − 2u. In both cases, the results are even, and
the first part of the proposition is proved. At the same time,
it is easy to see that, if u is even (or odd), w0 is then even (or
odd), and the second part of the proposition is proved. ��

The above formulas and results can be verified from Table
3. Following, we introduce significant laws governing all of
the Hk distributions.

123



52 International Journal of Data Science and Analytics (2023) 16:43–83

3.5 The Hk frequency distribution curve

If we plot the Hk distribution (k, Hk) and link all of the Hk

value points together as shown in Fig. 1, we get a curve of
“raw collective frequency distribution curve” , or simply “Hk

curve” . Interestingly, the curve can be expressed as a relation
between every adjacent Hk and Hk+1 as what follows:

Theorem 1 From the classic dataset and by full enumeration
pattern generation mode, the Hk curve can be expressed as:

Hk+1 = Rk
α − k

k + 1
Hk, (0 < k < α ≤ n) (3.36)

where n is the number of distinct elements presented in the
dataset; α is the maximum length of the tuples thus patterns;
Rk is a “collective frequency reducer” , or abbreviated as
“reducer” ; and

0 < Rk ≤ 1, (0 < k < α). (3.37)

The above theorem can be proved either qualitatively or
quantitatively. To save space, herewe present the quantitative
proof only.

Proof We start the proof with the simplest case of a dataset
of one tuple only, its length being α (scenario 1), then,

Hk = Ck
α.

According to combinatorics,

Ck+1
α = α − k

k + 1
Ck

α, (3.38)

we then have:

Hk+1 = Ck+1
α = α − k

k + 1
Ck

α = α − k

k + 1
Hk .

Now we extend the above to the case of a dataset of u
(u > 1) tuples of the same length α (scenario 2), then,

Hk = uCk
α. (3.39)

Accordingly,

Hk+1 = uCk+1
α = u

α − k

k + 1
Ck

α,

Comparing the above two equations, we get:

Hk+1 = α − k

k + 1
Hk .

The above two scenarios together represent the prelimi-
nary case featured with the same length of every tuple of a

Fig. 1 The Hk and hk curves

given dataset, and in this case Rk = 1. The top curve in Fig.
1 depicts the preliminary Hk curve.

Now in the general case that the tuple lengths may vary,
our primary work is to prove Rk < 1 . The proof runs with
matrix expressions.

From (3.23), Hk = ∑i=α
i=k gi Ck

i = Gk ·Θk, we now trans-
form it with the non-bold Gk andΘk as thematrix expression
for Hk :

Hk =
i=α∑

i=k

gi C
k
i = Gk IkΘk, (3.40)

where Gk is an 1 ∗ (α − k + 1) “gathering matrix” , starting
from gk : Gk = (gk, gk+1, . . . , gα); Θk is an (α − k + 1) ∗ 1
“setup matrix” , and Θk = (Ck

k , Ck
k+1, . . . , Cα

k)T , particu-
larly, when k = 1,Θ1 being an α ∗ 1 “initial setup matrix” ,
and Θ1 = (1, 2, ..., α)T ; Ik is an (α − k + 1) ∗ (α − k + 1)
identity (thus idempotent) matrix, with all elements of the
main diagonal being 1 while the rest being 0.

Similar to Hk, Hk+1 can be expressed as:

Hk+1 = Gk+1 Ik+1Θk+1. (3.41)

On the other hand, by (3.28),

Hk+1 =
i=α∑

i=k+1

gi C
k+1
i =

i=α∑

i=k+1

i − k

k + 1
gi C

k
i

= α − k

k + 1

i=α∑

i=k+1

gi
i − k

α − k
Ck

i

= α − k

k + 1
Gk+1AkΘ

′
k, (3.42)
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where Θ ′
k is a sub-matrix of Θk without the first row; simi-

larly Gk+1 is a copy of Gk without the first element; Ak is a
diagonal matrix of dimension (α − k)∗ (α − k) and called an
“adoptive matrix” , its main diagonal elements a j j = i−k

α−k
with j = i − k and starting from i = k + 1. As such, except
the last element att = 1, where t = α−k, all the rest a j j < 1.

Now, we define a diagonal matrix A+
k of dimension (α −

k + 1) ∗ (α − k + 1), with its first element a11 = 0, and
the rest submatrix of dimension (α − k) ∗ (α − k) being the
same as Ak . A better understanding of the above may refer to
the following examples of the matrixes related to the running
example with k = 3:

Ik =

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦ , Ak =

⎡

⎣
1/3 0 0
0 2/3 0
0 0 1

⎤

⎦ ,

A+
k =

⎡

⎢
⎢
⎣

0 0 0 0
0 1/3 0 0
0 0 2/3 0
0 0 0 1

⎤

⎥
⎥
⎦ ,

Gk = [
2 2 0 1

]
, Gk+1 = [

2 0 1
]
(refer to Table 3),

Θk = [
1 4 10 20

]T
, Θk+1 = [

4 10 20
]T

.

With the above formulas, (3.42) can be reformulated as:

Hk+1 = α − k

k + 1
Gk+1AkΘ

′
k = α − k

k + 1
Gk A+

k Θk, (3.43)

Now (3.43) and (3.40) Hk = ∑i=α
i=k gi Ck

i = Gk IkΘk

become comparable. Notice that the last element αt t of Ak

(the same to A+
k ) is always 1 as stated before, while ever other

element of A+
k is less than that of Ik , respectively. Notice also

that some element(s) of Gk can be zero (but never be nega-
tive), while the last element gα > 0 in any case (otherwise
the longest tuple length will not be α). There then have two
alternative outcomes of the comparisons between Gk A+

k Θk

and Gk IkΘk .
(1) In a general case ofmore than one element of Gk series

being positive, then compared with (3.40), there must be:

0 < Gk A+
k Θk < Gk IkΘk = Hk . (3.44)

It means there exists an Rk , such that

Gk A+
k Θk = Rk Gk IkΘk = Rk Hk < Hk, (3.45)

where 0 < Rk < 1 must be true to satisfy (3.45).
(2) In a special case of only gα being positive, then com-

pared with (3.40), both Gk A+
k Θk and Gk IkΘk degrade to the

same scalar value gαCk
α . That is, in this case,

Gk A+
k Θk = Gk IkΘk = Hk . (3.46)

The above means Rk = 1 compared with (3.45).

Consider the above two cases together, and referring to
(3.45), (3.43) can be generally presented as:

Hk+1 = α − k

k + 1
Gk A+

k Θk = Rk
α − k

k + 1
Hk

In summary, 0 < Rk ≤ 1 is always true in any case, and
the above formula is exactly (3-36). Theorem 3.1 is then fully
proved. ��

From the above proof, we can get further corollaries as
below.

Corollary 1 The distribution of original data tuples of lengths
less than k does not have effect on Rs with s ≥ k.

The above is obvious since Gk starts from its kth element.
Indeed, this corollary can be alternatively stated that Rk is
determined by all and only the gi s with (i ≥ k),

Corollary 2 The necessary and sufficient condition for Rk =
1 is that the kth through to the (α − 1)th members (inclusive)
of the Gk series equal to zero.

Corollary 3 If Rk = 1, then all Rs = 1, where k ≤ s < α

(note Rk series is ended at Rα−1).

The two corollaries above are related. The proof of Corol-
lary 2 is implied in the derivation of (3.46). The proof can
also be seen from Corollary 1. Since only gi s with i ≥ k can
affect Rk , but if all gi s = 0 except gα , then only gα determines
Hk and Hk+1, which then means no reducer exists between
Hk and Hk+1, hence Rk = 1.

Corollary 3 comes directly from Corollary 2 that, if there
are successive m 0s in the gi distribution from i = α − 1
backwardly, then there are m 1s in the right section of Rk

series. Particularly, at k = 1, if R1 = 1, then all Ri s = 1. It
turns to be the preliminary case stated before, where all the
original data tuples are of the same length α (that is, there is
only gα being nonzero).

We will see the verifications of the above in Example 1
soon, Tables 4 and 7 later.

The following subsections present other important prop-
erties of the Hk curve.

3.6 The quasi-concavity of the Hk curve

Theorem 2 (Hk quasi-concavity theorem) If Rk is non-
decreasing, then the Hk curve expressed in (3.36) is strictly
quasi-concave downward over 0 < k ≤ α, and it reaches its
apex value at k = q ≤ α/2.

“Quasi-concavity” is used in real-valued function study
[37]. If a function f (Z) is strictly quasi concave within a
domain E , then there exists a Z∗(Z∗ ∈ E) such that f (Z) is
increasing for Z < Z∗ and f (Z) is decreasing for Z > Z∗
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[37], where Z can be a vector of multidimensional variables.
We use this concept not only for better understanding but also
for formal applications of the properties of the Hk distribu-
tions. The only difference here is that the “quasi-concavity”
property applies to discrete Hk values (refer to Fig. 1).

Proof If all Rks = 1, it refers to the preliminary case that
all u tuples of a given dataset are in the same length α, and
Hk = uCk

α (3.39). The quasi-concavity property of the Hk

curve is identical to that of the curve formed by the full series
Ck

α (k = 1, 2, . . . , α). Notice in this case Hk is symmetric
since Cα−k

α = Ck
α . When α is an even number, Hk is strictly

quasi-concave and reaches its maximum value H∗ at k = α
2 .

When α is an odd number, Hk gets its two maximum values
at k = α−1

2 and k+1 = α+1
2 . However, since there is no other

integer between k and k +1, and since the preliminary case is
not much an issue in this study, we take that the preliminary
Hk curve is generally strict quasi-concave hereafter.

The strict quasi-concavity of the preliminary Hk curve
(3.19) can be viewed from the depiction of the top curve in
Fig. 1.

Nowwe prove the quasi-concavity property in the general
case with Rk < 1. Let us first look at the slope of the Hk

curve, ΔHk/Δk, with Δk = 1, which is the smallest interval
of k.

ΔHk

Δk
= Hk+1 − Hk

Δk
= Hk+1 − Hk

=
(

Rk
α − k

k + 1
− 1

)

Hk . (3.47)

Since Hk > 0, the sign of the slope ΔHk
Δk is determined by

(Rk
α−k
k+1 − 1). Notice that,

(i) (α−k)/(k+1) is a strictly decreasing function of k, since:

Δ[(α−k)/(k+1)]
Δk

= − α + 1

(k + 1)(k + 2)
< 0

(ii) Without the effect of Rk (thus in the preliminary case),
α−k
k+1 will be positive and leads Hk to increase until reach-

ing the apex at k = α
2 if α is even, or k = α+1

2 and
k = α−1

2 ifα is odd as stated before, where α−k
k+1 −1 = 0.

After that α−k
k+1 −1 becomes negative and Hk decreases.

(iii) With the effect of 0 < Rk < 1: At the early stage
(k � α), α−k

k+1 � 1, while Rk being non-decreasing
as given in the theorem, they then together lead Hk to
increase with k but at a reduced rate compared with that
in case ii above since Rk < 1. Ultimately (Rk

α−k
k+1 −

1) → 0 at a point q such that Hk reaches its apex value
Hq , but q can only be less than α

2 due to the reduction
effect of Rk , and the value Hq would become much
smaller than H∗ without the effect of Rk (as seen in

Fig. 1). Once the Hq has been reached, the slop factor
(Rk

α−k
k+1 − 1) becomes negative and keeps decreasing

with k increasing since α−k
k+1 decreases with k. It means

Hk will then be monotonically decreasing until the end,
regardless of α being odd or even.

In summary, with the given condition of the theorem, Hk

has one and only one apex at q with q ≤ α/2, and Hk is strictly
increasing for k < q but strictly decreasing for k > q. Hk is
thus strictly quasi-concave, and the theorem is fully proved.

��
Note, when α is not very large, Hk might get its maximum

value at k = 1 (refer to example case b in Table 4 later), but
such a case does not affect the soundness of the theorem.
Another point to note is that Theorem 3.2 stated a sufficient
condition of Rk to keep an Hk curve quasi concave, while
following are the more precise description of Rk against this
condition:

Corollary 4 If the Rk series is not decreasing, and q is the
apex point of a quasi-concave Hk curve, then:

k + 1

α − k
< Rk ≤ 1, (0 < k < q ≤ α/2) (3.48)

and

q

α − q + 1
< Rk ≤ 1. (q ≤ k < α) (3.49)

Proof Notice 0 < Rk ≤ 1 as specified in (3.37), and from
(3.36), we have k+1

α−k = Rk
Hk

Hk+1
, where Hk

Hk+1
< 1 for k < q

because of the Hk quasi concavity as given. Then, k+1
α−k <

Rk ≤ 1 beforeq, and (3.48) is proved.Meanwhile, notice that
k+1
α−k is an increasing functionof k before k = α

2 ,whileq ≤ α
2 .

We then take k = q − 1, such that k+1
α−k reaches its maximum

value before pint q as q
α−q+1 , which, however, is less than

Rk as specified in (3.48). Because of the monotonicity of Rk ,
q

α−q+1 < Rk will hold for the whole interval of [q, α), and
(3.49) is proved. ��
Example 1 From Table 1, the gi distribution is {2, 3, 2, 2, 0,
1} with α = 6; the Hk series is {28, 36, 30, 17, 6, 1} (from
Table 3), which is quasi-concave with its apex point at q =
2 < α/2 = 3. It then proves Theorem 2. The Rk series is
{0.514, 0.625, 0.756, 0.882, 1}, which well-demonstrate the
monotonicity of Rks. Notice also that g5 = 0, and R5 = 1,
which then verifies Corollary 2. k+1

α−k |k=1 = 2/5 = 0.4 <

R1 = 0, 514, q
α−q+1 = 2/5 = 0.4 < R2 = 0.625 , and

Corollary 4 is verified. Empirical results and verifications of
the above from real application datasets are given in Table 7
and “Appendix” of this paper.

Quasi-concavity is a significant property of the Hk curve.
At this point, a question may arise: would the condition of
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non-decreasing Rk hold in most of the classic pattern mining
applications, such that the property could be typical? The
following theorem answers it.

Theorem 3 For an ordinary gi distribution, the Rk series
is non-decreasing, and the smaller the k relative to α, the
stronger the condition Rk+1 ≥ Rk to hold.

Note that the requirement of “ordinary” distribution means it
is similar to many other distributions typically denser around
the middle of α while diminishing toward the two ends, but
with no requirement as of a normal N (μ, σ 2), or β distribu-
tion, or other quasi-concave distribution in general. It even
allows multimode and scattered distributions, as long as the
extramode does not appear in the right tail of the distribution.
The above will become evident in the proof below.

The proof can be done through the basic Hk expression
(3.17), the vector (3.24), or the matrix expression (3.40).
However, by any expression, the proof of the above theorem
could not be simple but intricate and lengthy. Hereunder we
use the matrix expression to prove the theorem.

Proof Notice that the preliminary case with only gα being
nonzero is a special case of the ordinary gi distribution, and
we already know in that case Rk = 1 for all ks. The proof is
thus on the general situation and starts from (3.40):

Hk = Gk IkΘk = GkΘk,

where Ik is omitted since Gk is a matrix of a single rowwhile
Θk a single column.

Similarly, Hk+1 = Gk+1 Ik+1Θk+1 = Gk+1Θk+1. On the
other hand, from (3.36),

Rk = (k + 1)

(α − k)

Hk+1

Hk
,

then,

Rk = (k + 1)Gk+1Θk+1

(α − k)GkΘk
, (3.50)

Anon-decreasing Rk meansΔRk/Δk ≥ 0.Take the smallest
Δk = 1, then the condition becomes ΔRk ≥ 0, and notice:

ΔRk = Δ[(k + 1)Gk+1Θk+1][(α − k)GkΘk] − Δ[(α − k)GkΘk][(k + 1)Gk+1Θk+1]
[(α − k)GkΘk]2 .

Since the denominator [(α−k)GkΘk]2 > 0,we can exam-
ine the numerator only, and note it as δRk :

δRk = Δ[(k + 1)Gk+1Θk+1][(α − k)GkΘk]
− Δ[(α − k)GkΘk][(k + 1)Gk+1Θk+1]

= [Gk+1Θk+1 + (k+1)Δ[Gk+1Θk+1]][(α− k)GkΘk]
− [−GkΘk + (α − k)Δ(GkΘk)][(k + 1)Gk+1Θk+1]

= [Gk+1Θk+1 + (k + 1)(Gk+2Θk+2 − Gk+1Θk+1)]
(α − k)GkΘk

− [−GkΘk + (α − k)(Gk+1Θk+1 − GkΘk)]
(k + 1)(Gk+1Θk+1)

= (k + 1)(α − k)[Gk+2Θk+2GkΘk − (Gk+1Θk+1)
2]

+ (α + 1)Gk+1Θk+1GkΘk . (3.51)

The above looks good, but it is still difficult to prove
whether δRk ≥ 0. For instance, it is not straightforward to
see whether Gk+2Θk+2GkΘk − (Gk+1Θk+1)

2 is positive or
not since the entries of each involved matrix are all variables
and the dimensions of the matrixes are variables too. A fea-
sible strategy to get around the problem is to simplify (3.51)
with reasonable approximations, since we only need to know
the sign of δRk rather than its exact value. Let

δRk = (k + 1)(α − k)(X1 − X2) + (α + 1)X3, (3.52)

where X1 = Gk+2Θk+2GkΘk, X2 = (Gk+1Θk+1)
2, and

X3 = Gk+1Θk+1GkΘk .
In block expression,

Gk = [
gk Gk+1

]
,

Gk+1 = [
gk+1 Gk+2

]
, and

Θk =
[
1

Θ ′
k

]

,

where Θ ′
k as stated before is the same Θk without the first

element 1 (note the initial element of Θk, θk = Ck
k = 1).

Meanwhile, let Θ+
k+2 be an extended Θk+2 with an added

element 1 in the beginning, that is, Θ+
k+2 =

[
1

Θk+2

]

.

Then, we look at X3 first:
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X3 = Gk+1Θk+1GkΘk

= Gk+1Θk+1[gk Gk+1][1 Θ ′
k]T

= Gk+1Θk+1(gk + Gk+1Θ
′
k)

> Gk+1Θk+1Gk+1Θ
′
k, (3.53)

which can be safely approximated to:

X3 ≈ Gk+1Θk+1Gk+1Θ
′
k . (3.54)

For X1, we reformulate it with an augmentation of Gk+2

into Gk+1 and Θk+2 into Θ+
k+2, but keep the value of X1

unchanged:

X1 = Gk+2Θk+2GkΘk

= [(gk+1 Gk+2)(1 Θk+2)
T − gk+1]

[(gk Gk+1)(1 Θ
′
k)

T ]
= (Gk+1Θ

+
k+2 − gk+1)(gk + Gk+1Θ

′
k). (3.55)

When k is not large relative to α, gk+1 would be much
smaller than the product of Gk+1Θ

+
k+2 since the result of it

is a sum of products of a series of gi s and a series of θks,
such that gk+1 can be ignored. Another reason is that the
discrepancy caused by the ignorance could be (partially or
fully) compensated by the ignorance of the positive gk in
(gk + Gk+1Θ

′
k) in both X1 (3.55) and X3 (3.53). That is, we

can take (3.55) to be:

X1 ≈ Gk+1Θ
+
k+2Gk+1Θ

′
k . (3.56)

With the above, (3.52) is approximated as:

δRk = (k + 1)(α − k)[Gk+1Θ
+
k+2Gk+1Θ

′
k − (Gk+1Θk+1)

2]
+ (α + 1)Gk+1Θk+1Gk+1Θ

′
k . (3.57)

Our second strategy of the simplification is to reduce the
number of Θ matrixes by representing both Θ+

k+2 and Θ ′
k

with Θk+1 only. To do so, we define:

Θk+1 = Nk+1Bk+1. (3.58)

where Nk+1 is a diagonal matrix of dimension (α−k)∗ (α−
k), each of its main diagonal entries being the corresponding
entry of the original single column matrixΘk+1, and Bk+1 is
a single column matrix of dimension (α − k) ∗ 1, with every
entry being 1.

Hereunder, for simplicity we use s and t to be the indices
of all the matrix entries, where t = i − k, and s = i − (k +
1) + 1 = i − k, such that both s and t start from 1 in the
following operations.

Now, let the single column matrix Θ+
k+2 = Nk+1Dk+1,

where Dk+1 is a single column matrix of dimension (α −
k) ∗ 1, with the first entry being d1 = 1 and the rest ds =
(s−1)/(k+2) = (i−k−1)/(k+2), (i = k + 2, k + 3, . . . , α), based
on the relation Ck+2

i = Ck+1
i ∗ (i−k−1)/(k+2).

Similarly, letΘ
′
k = Nk+1Ek , where Ek is a single column

matrix of dimension (α−k)∗1with each entry et = (k+1)/t =
(k+1)/(i−k), (i = k + 1, k + 2, . . . , α), based on the relation
Ck

i = Ck+1
i ∗ (k+1)/(i−k)).

Since Ck+1
i presents the same inCk+2

i andCk
i in the above

two paragraphs, it thus can be omitted in later operations.
Notice that the result of Gk+1Θk is a scalar value, so is

its transpose, Gk+1Θ
′
k = Θ ′τ

k Gτ
k+1 = Eτ

k N τ
k+1Gτ

k+1. Then,
(3.56) becomes:

X1 = Gk+1Θ
+
k+2Gk+1Θ

′
k

= (Gk+1Nk+1Dk+1)Ek
τ N τ

k+1Gτ
k+1

= Gk+1Nk+1(Dk+1Ek
τ )N τ

k+1Gτ
k+1

= Gk+1Nk+1Yk+1N τ
k+1Gτ

k+1, (3.59)

where

Yk+1 = Dk+1Eτ
k . (3.60)

In the same way, from (3.54), take

X3 = Gk+1Θk+1Gk+1Θ
′
k

= (Gk+1Nk+1Bk+1)Eτ
k N τ

k+1Gτ
k+1

= Gk+1Nk+1(Bk+1Eτ
k )N τ

k+1Gτ
k+1

= Gk+1Nk+1 Ẽk+1N τ
k+1Gτ

k+1, (3.61)

where Ẽk+1 = Bk+1Eτ
k is a squarematrix of (α−k)∗(α−k),

each row of it being the replication of Eτ
k , that is, ẽst = et .

Similarly,

X2 = (Gk+1Θk+1)
2 = Gk+1Θk+1Gk+1Θk+1

= (Gk+1Nk+1Bk+1)Bτ
k+1N τ

k+1Gτ
k+1

= Gk+1Nk+1(Bk+1Bτ
k+1)N τ

k+1Gτ
k+1

= Gk+1Nk+1 Ĩ τ
k+1N τ

k+1Gτ
k+1, (3.62)

where Ĩk+1 = Bk+1Bτ
k+1 is a square matrix of (α − k) ∗

(α − k), with every entry being 1 as a result of the matrix
multiplication.

We now can further simplify the condition of δRk in (3.51)
into the following:

δRk = (k + 1)(α − k)[Gk+1Θ
+
k+2Gk+1Θ

′
k

−(Gk+1Θk+1)
2] + (α + 1)Gk+1Θk+1Gk+1Θ

′
k

= (k + 1)(α − k)[Gk+1Nk+1Yk+1N τ
k+1Gτ

k+1
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−Gk+1Nk+1 Ĩ τ
k+1N τ

k+1Gτ
k+1]

+(α + 1)Gk+1Nk+1 Ẽk+1N τ
k+1Gτ

k+1

= (k + 1)(α − k)Gk+1Nk+1Pk+1N τ
k+1Gτ

k+1

+(α + 1)Gk+1Nk+1 Ẽk+1N τ
k+1Gτ

k+1

= Gk+1Nk+1Mk+1N τ
k+1Gτ

k+1

= Gk+1Qk+1Gτ
k+1

where

Pk+1 = Yk+1 − Ĩk+1, (3.63)

Mk+1 = (k + 1)(α − k)Pk+1 + (α + 1)Ẽk+1, (3.64)

and,

Qk+1 = Nk+1Mk+1N τ
k+1. (3.65)

That is, with the above manipulations we now reach a neat
expression of the condition δRk as:

δRk = Gk+1Qk+1Gτ
k+1. (3.66)

Equation (3.66) represents a typical quadric equation
q(x) = X AX τ = ∑

s
∑

t ast xs xt in matrix operation theory
[38] where x is an array of variables (xi s), and A is a coef-
ficient matrix. Here A = Qk+1, and x = Gk+1, such that
x1 = gk+1, x2 = gk+2, and xs = gk+s in general. Notice
that every xs is nonnegative in this case.

The proving of δRk ≥ 0 is now equal to proving if q(x) ≥
0. In matrix theory, for the above quadratic form, matrix A
can always be manipulated into a symmetric matrix [39], and
the proving of q(x) ≥ 0 is equal to identifying whether A is
semi-positive definitive. For this, a couple of methods, e.g.,
eigenvalue and principle minors approaches [38,40], have
been developed, but none of them is applicable to our case,
simply because those approaches apply to the constantmatrix
A only. However, we are dealing with the problem applicable
to any possible k and α. As such, each entry of Qk+1 in
(3.66) is a function of the variable k, s and t and so are the
dimensions of Gk+1 and Qk+1. Nevertheless, we can still
manage to prove δRk ≥ 0 analytically as below.

From the above elaboration, the key issue to prove δRk ≥
0 is to prove the positivity of Qk+1, which in turn is to prove
the positivity of Mk+1. It is because Nk+1 is a diagonalmatrix
with each diagonal entry θss being positive; then, from (3.65),
the positivity of Qk+1 is determined by the positivity of the
matrix Mk+1. We now trace back from (3.64):

Mk+1 = (k + 1)(α − k)Pk+1 + (α + 1)Ẽk+1

= (k + 1)(α − k)(Yk+1 − Ĩk+1) + (α + 1)Ẽk+1

= (k + 1)(α − k)(Dk+1Eτ
k − Ĩk+1) + (α + 1)Ẽk+1

Recall that Dk+1 is a single column matrix of (α − k)

rows, with d1 = 1 and the rest entry ds = (s−1)/(k+2). Eτ
k is a

single row matrix of (α − k) columns, with its general entry
et = (k+1)/t. Then, their product Yk+1 is an (α−k))∗ (α−k)

square matrix. The general entry of Yk+1 is:

yst = ds ∗ et = s − 1

k + 2

k + 1

t
. (3.67)

A primer feature of (3.67) is yrt > ypt if r > p, except
y1t , the first row of Yk+1 since d1 = 1. That is, the row y1t

is just the Ek+1 itself:

y1t = d1 ∗ et = et = (k + 1)

t
. (3.68)

Particularly, the first entry y11 = 1 ∗ (k + 1) ≥ 2. In
general, y1t > yst unless s > k + 2, which means yrt is
more favorable than what is generally expressed in (3.67) to
lead δRk ≥ 0. As such, we can safely consider the general
entry yst as expressed in (3.67) only in the rest analysis.

Consequently, the matrix Pk+1 = Yk+1 − Ĩk+1 is also a
square matrix of dimension (α − k), and its first entry being
p11 ≥ 1, while the general entry being:

pst = yst − 1 = s − 1

k + 2

k + 1

t
− 1. (3.69)

Similarly, Mk+1 = (k + 1)(α − k)Pk+1 + (α + 1)Ẽk+1

is again a square matrix of dimension (α − k), with its first
entry being certainly positive. The general entry of Mk+1 is:

mst =(k + 1)(α − k)pst + (α + 1)ẽst

=(k + 1)(α − k)(
s − 1

k + 2

k + 1

t
− 1) + (α + 1)

k + 1

t

= k + 1

(k + 2)t
{[(s − 1)(k + 1) − t(k + 2)](α − k)

+ [(α + 1)(k + 2)]}
= k + 1

(k + 2)t
{[s(k + 1) − t(k + 2)](α − k)

+ [(α + 1)(k + 2) − (k + 1)(α − k)]}
= k + 1

(k + 2)t
{[s(k + 1) − t(k + 2)](α − k)

+ [(α + 1) + (k + 1)2]}
= k + 1

(k + 2)t
z. (3.70)

where

z = [s(k + 1) − t(k + 2)](α − k) + [(α + 1) + (k + 1)2].
(3.71)
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Fig. 2 The positivity distribution of ms,t s

Notice that, from (3.68), yst can never be equal to 1, thus
pst and mst can never be zero but only negative or positive.
Since (k + 1)/[(k + 2)t] > 0, to see whether mst ≥ 0 we
only need to see the positivity of z.

Set z ≥ 0, we get:

t ≤ k + 1

k + 2
s + [(α + 1) + (k + 1)2

(α − k)(k + 2)
], (3.72)

which can be simplified as:

t ≤ a ∗ s + b, (3.73)

where a = (k + 1)/(k + 2), which is near to 1 when k is
relatively large, and

b = [(α + 1) + (α + 1)2]/[(α − k)(k + 2)] > 0.
In analytic geometry, (3.71) represents a 3D (s, t, z) plane,

while the strict equation of (3.73), i.e., t = a∗s+b, represents
an intersection line AB between that plane and the plane
z = 0, as depicted in Fig. 2, where the number a is the slope
of the line, and the angle ϕ is in the range of 33◦ < ϕ < 45◦
since 2/3 ≤ a < 1. The number b is the intersect of the line
AB with the axis Ot, and notice b > 0, which means line
AB can only be apart upwardly from the diagonal line t = s
within the matrix area.

In our case, line AB in Fig. 2 means a boundary line such
that all the matrix entries on the left side of the line are posi-
tive, while only those entries above the line (the dashed area
of Fig. 2) are negative, which is inferable from (3.72). The
balance of the aggregative positivity and negativity of the
Mst s then determines the positivity of the δRk . We are now
approaching the point to prove the theorem with the follow-
ing observations.

Observation 1:

ΔMst

Δs
= (k + 1)

(k + 2)t
[(k + 1)(α − k)] > 0.

That is, Mst is increasing along the direction s in Fig. 2. It
means that the matrix entries around the left bottom corner
are the most positive.

Observation 2:

ΔMst

Δt
= (k + 1)2(α − k)

(k + 2)
s − 2(k + 1)(k + 2)(α − k)t

+ (α + 1) + (k + 1)2

k + 2
.

For the above, notice that the second term
2(k + 1)(k + 2)(α − k)t

is a cubic of k, it is thus more dominant than other ones.
Meanwhile, notice that “t > s” is the plane equation of the
upper triangle in Fig. 2. As such, ΔMst/Δt < 0 holds, which
can also be numerically verified, although we do not have
to do so here to save space. As follows, Mst is decreasing
with t increasing. It is the primary reason that the Mst s in
the upright area above the line AB in Fig. 2 are negative as
stated before, and the closer to the upright corner, the more
negative of the Mst s.

Observation 3:
Now, look at the elements of the δRk :

δRk = Gk+1Qk+1GT
k+1 =

∑

s

∑

t

gsqst gt

=
∑

s

∑

t

gs(θsmstθt )gt , (3.74)

where the θs (or θt ) series is the lower section (from i = k+1)
of the s (or t) column of Pascal’s triangle (refer to Table 5
in subsection 3.9), θs (or θt ) is then increasing with s (or t)
increasing.

Observation 4:
The ordinary gi distribution is dense in themiddle section.
Now, if we use the Mst matrix as shown in Fig. 2 to repre-

sent the elemental positivity distribution of the δRk , from the
above observations, we will see that the elements at the left
bottom corner will be the most positive, then the middle part,
while those in the rest area above line AB being negative.

Finally, notice that the boundary line AB is upper apart
from the diagonal line, as shown in Fig. 2.

With all of the above observations, we can conclude that
not only the area but also the degree of the positivity of the
elemental δRk distribution is dominant over that of the neg-
ativity. That is, aggregately δRk ≥ 0 would generally hold
in the case of an ordinary gi distribution.

However, in the case of an unordinary gi distribution, we
need to consider two possible exceptions of the above general
conclusion.

One is that, when k → α, if some gi (s) is (are) outstanding
in the right tail, then ultimately δRk < 0 may happen. It is
because, recall that the X1 Eq. (3.56) is an approximation of
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(3.55)when k is not close toα.When k → α, we need to look
at the original Eq. (3.55) X1 = [Gk+1Θ

+
k+2 − gk+1](gk +

Gk+1)Θ
′
k again. In this case, the dimension (α − k) of the

matrix becomes small with a large k, and so does the product
of Gk+1Θ

+
k+2. As such, a large gk+1 may lead X1 to become

negative, and ultimately δRk < 0 may take place. We call
this phenomenon an “island exception,” or “exception 1.”

The other case is, when k becomes small relative to α, so
does the intercept b of line AB in Fig. 2. That means the line
will shift leftwards, and the ratio of the positive area over
negative one of the elemental δRk distribution will decrease.
If at this time one or more gi s falling deeply in the left tail
of the gi distribution, then the positivity of the δRk will be
further undermined, and δRk < 0 may happen. We call this
a “cliff exception,” or “exception 2.”

However, the adverse effect of the cliff exception is much
weaker than that of the island exception. It is because a
smaller k means a larger dimension (α − k) of the matrix.
Meanwhile, the angle ϕ in Fig. 2 will become smaller with
a smaller k. Thirdly, the most positive Mst area (the left bot-
tom corner) remains unchanged. All of these aspects together
mean it will be much harder to overthrow a positive δRk into
a negative one than that in the island exception.

At this point, one may ask, what effect would be if the two
exceptions happen together? A brief answer is, since shorter
tuples do not affect the Rks of larger k as stated before, the
cliff exception then does not reinforce the effect of the island
exception. Similarly, the island exception will not increase
but reduce the adverse effect of the cliff exception sincemore
short patternswill be generated frommore long tuples.Notice
why Rk = 1 holds in the preliminary case but Rk < 1 in the
other cases, simply because of the reduced number of long
tuples.

Finally, we have two important notices from empirical
studies (refer to Table 7 in Sect. 4). Firstly, the situation of
δRk < 0 is rear to happen even if either of the exceptions
happens (if not too severely). Secondly, even if some case(s)
of δRk < 0 took place in an application, the quasi-concavity
of the concerned Hk curve may still hold.

A conclusion is then: in an ordinary gi distribution, δRk ≥
0 will generally hold, and the smaller the k, the easier to
maintain δRk ≥ 0 . Theorem 3.3 is now fully proved. ��
Example 2 For a better understanding, the following is a
small example based on the running example to demonstrate
the related operations and the degree of the discrepancymade
by the approximation in the above proof. As given, α = 6,
and take k = 3 with other information as below:

Gk = (
2 2 0 1

)
, Gk+1 = (

2 0 1
)
, Gk+2 = (

0 1
)
,

Θk = (
1 4 10 20

)τ
, Θ ′

k = (
4 10 20

)τ
,

Θk+1 = (
1 5 15

)τ
, Θk+2 = (

1 6
)τ
,

Θ+
k+2 = (

1 1 6
)τ

,

Dk+1 = (
1 1/5 2/5

)τ
, Eτ

k = (
4 2 4/3

)
.

Then, by (3.51), the original formula:

δRk =(k + 1)(α − k)[Gk+2Θk+2GkΘk − (Gk+1Θk+1)
2]

+ (α + 1)Gk+1Θk+1GkΘk

= 4 ∗ 3 ∗ [6 ∗ 30 − 172] + 7 ∗ 17 ∗ 30 = 2262 > 0.

By the approximated (3.57),

δRk ≈ (k + 1)(α − k)[Gk+1Θ
+
k+2Gk+1Θ

′
k − (Gk+1Θk+1)

2]
+ (α + 1)Gk+1Θk+1Gk+1Θ

′
k .

= 4 ∗ 3 ∗ [8 ∗ 28 − 172] + 7 ∗ 17 ∗ 28 = 2552 > 0.

The above demonstrates that the approximation keeps
the same sign of δRk , and the discrepancy between the
precise and the approximated numerical values of δRk is
around 12% in this small dimension matrix example. More
appreciably, the approximation significantly simplified the
proof of Theorem 3. Due to space limitations, we can
only leave the exercise of the operations to reach (3.66)
δRk = Gk+1Qk+1GT

k+1, through (3.67)–(3.70) to the inter-
ested readers.

Example 3 Followed are a few illustrative examples (cases)
to see the main points of theorem 3 and the relations between
the gi and the Rk distributions, as well as the quasi-concavity
of the Hk curves, as shown in Table 4. Case a as the base
case refers to the original data of Table 1, which results in
an increasing Rk series and a quasi-concave Hk curve. Cases
b to d demonstrate the minimum change of gk(s) required
to have a decreased Rk from the base case, where the bold
numbers indicate the position k in column 2, the gk in column
3, the Rk in column 4, and the apex of a concerned Hk curve
in column 5. Column 2 and 3 demonstrate that the smaller
the k, the more significant change of gks is required to get
a decreased Rk . Case b gives a typical example of the “cliff
exception”.

Note that, since the Hks are integers, the Rks should be
fractions, but for an easier comparison of the magnitudes of
the Rks, the decimals are used in the table.

The above examples demonstrate the resilience of the
quasi-concavity of the Hk curve that minor decreasing Rk(s)
may not alternate the concavity. The former four Hk series
in Table 4 remain strict quasi-concave, despite the (sharp)
changes of their gi distributions and the decreasing Rks.

Case e of Table 4 is purposely constructed to give an exam-
ple of the “island exception” and a non-quasi-concavity Hk

curve. However, from this case, we see how odd the under-
lying gi distribution is and how persistently the decreasing
Rks hold such that the non-concavity of Hk could take place.

In real applications, if decreasing Rks are observable occa-
sionally, the non-quasi-concave Hk curve is seldom to see.
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Table 4 Demonstrations of the Hk and Rk properties

Case k gi series Rk seires Hk series

a 2, 3, 2, 2, 0, 1 0.514, 0.625, 0.756, 0.882, 1 28, 36, 30, 17, 6, 1

b 2 2, 50, 2, 2, 0, 1 0.272, 0.271, 0.756, 0.882, 1 110, 83, 30, 17, 6, 1

c 3 2, 3, 12, 2, 0, 1 0.4551, 0.4545, 0,567, 0.882, 1 58, 66, 40, 17, 6, 1

d 4 2, 3, 2, 2, 3, 1 0.614, 0.682, 0.711, 0.703, 0.667 43, 66, 60, 32, 9, 1

e 3, 9 50, 100, 300, 0, 0, 0, 0, 0, 6, 3 0.244, 0.323, 0.680, 0.909, 0.900, 0.889,
0.875, 0.857, 0.833

1234, 1351, 1164, 1386,
1512, 1134, 576, 189, 36, 3

Table 7 and “Appendix” of this paper presents empirical evi-
dence in this regard, where a few out of hundreds of Rks
are decreasing, while all the concerned Hk curves maintain
quasi-concavity.

The above indicates that the condition of monotonic Rk

specified in Theorem 2 to have a quasi-concave Hk curve is
stronger than required. A conclusion is that quasi-concavity
is a typical property of the Hk curves.

After we have seen the quasi-concavity property, one may
ask if a Hk curve can be (full) concave. The following part
answers.

3.7 The full concavity interval of the Hk curve

Theorem 4 An Hk curve can be strictly concave downward
within an interval E = [a, b], if the following condition
holds:

Rk+1Rk
(α − k)

k + 1

(α − k − 1)

k + 2
− 2Rk

α − k

k + 1
+ 1 < 0, (3.75)

where α is the maximum length of all the data tuples, and the
leftmost boundary of the interval can reach at a = 1, while
the rightmost boundary

b = 1

2
(α + 2 + (α + 2)1/2). (3.76)

For the proof, notice first the definition of the “concav-
ity”: if a function f(z) is concave over an interval E , then
for any three points z1, z2, z3 within E , such that z2 =
λz1 + (1 − λ)z3, where λ ∈ (0, 1), and z can be a vector
of multidimensional variables, then the following relation
holds [37]:

λ f (z1) + (1 − λ) f (z3) ≤ f (z2). (3.77)

Alternatively, set λ = 1
2 , the above becomes [37]:

1

2
( f (z1) + f (z3)) ≤ f (z2). (3.78)

where z2 is in the middle of z1 and z3: z2 = 1
2 (z1 + z3).

Notice that the function f(z) is “strict concave” if the above
weak inequality functions change into strict inequality. This
paper will mainly use the strict concave function, but the
words “strict” may be dropped. On the other hand, we may
add the word “full” to the concavity for readers to reflect the
difference between it and the quasi-concavity. Intuitively, the
full concave curve is rounder than a quasi-concave onewithin
the same interval in their depictions. Following is the proof
of the above theorem.

Proof We use (3.78) and take any three consecutive points
k, k + 1 and k + 2 of the domain of the Hk curve to check
whether they satisfy (3.78). In this case, λ = 1

2 and k + 1 =
1
2 (k + (k + 3)). Then, the related Hk values must satisfy:
1
2 (Hk + Hk+2) < Hk+1. By (3.36), it means:

1

2
(Hk + Rk+1

α − k − 1

k + 2
Hk+1) < Rk

α − k

k + 1
Hk, or ,

1

2
(Hk + Rk+1

(α − k − 1)

k + 2
Rk

(α − k)

k + 1
Hk) < Rk

α − k

k + 1
Hk .

Manipulating the above and removing Hk sinceHk > 0,
we get the condition for Hk concavity:

Rk+1Rk
(α − k)

k + 1

(α − k − 1)

k + 2
− 2Rk

α − k

k + 1
+ 1 < 0,

which is the necessary and sufficient condition (3.75) speci-
fied in the theorem. In other words, (3.75) is a specification
of (3.78) in the case of Hk curve.

To get the solution of k in terms of α, we consider the
preliminary case first, whereRk = Rk+1 = 1, and (3.75)
becomes:

(α − k)

k + 1

(α − k − 1)

k + 2
− 2

α − k

k + 1
+ 1 < 0, (3.79)

Solution (of k) from the above inequality is p < k < r ,
where

p = 1

2
(α − 2 − (α + 2)1/2), (3.80)

r = 1

2
(α − 2 + (α + 2)1/2). (3.81)
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Since p and r each must be an integer, the above should
be precisely expressed as

p =
⌈(

1

2
(α − 2 − (α + 2)1/2

)

,

r =
(
1

2
(α − 2 + (α + 2)1/2

)⌋
.

where �(x)means the ceiling of x , aminimum integer p ≥ x ;
(y)� means the floor of y, a maximum integer r ≤ y.

After we have specified the above, however, we will
mainly use (3.80) and (3.81) in the following context for
simplicity.

In the preliminary case, p is the left end of the concavity
interval of the Hk curve, but r is not the ultimate right bound-
ary yet, since, based on the above formulations, if k = r is a
solution to (3.79), then k + 1 and k + 2 will be included in
the concave interval as well. That is:

b = r + 2 = 1

2
(α − 2 + (α + 2)1/2) + 2

= 1

2
(α + 2 + (α + 2)1/2), (3.82)

which is then the rightmost boundary of the full concave
interval, as specified in (3.76) of Theorem 4.

It is easy to find out from (3.80) and (3.81), in the prelimi-
nary case the two boundaries, p and b, are symmetric against
α/2 (the middle of the maximum tuple length), which is con-
sistent with what introduced before that the preliminary Hk

curve is symmetrical, and for α ≤ 4, the above solution cov-
ers the full range of the Hk curve. However, for α > 4 in the
preliminary case, only the middle section of the Hk curve is
full concave, while its right and left tails are quasi-concave
only.

Now, in the general case where the uniformed data tuple
length does no longer hold, and Rk < 1 takes the role. An
interesting question is then, whether the full concavity inter-
val will increase or decrease in this case. To find out the
precise answer directly from the problem (3.75) is impos-
sible since there are three variables k, Rk, Rk+1 within one
function. Nevertheless, we can have a pretty good approxi-
mate solution for it as below.

Notice that, despite the monotonic property of Rk , in gen-
eral, Rk+1 may only be slightly larger than Rk , considering
there is a series of Rks in an application. We then take an
approximation of Rk+1 = Rk , such that (3.75) becomes:

R2
k
(α − k)

k + 1

(α − k − 1)

k + 2
− 2Rk

α − k

k + 1
+ 1 < 0,

After manipulation, the above becomes:

(α − k)(α − k − 1)R2
k − 2(α − k)(k + 2)Rk

+ (k + 1)(k + 2) < 0. (3.83)

The approach to solve the above is firstly to find the two
roots of the corresponding equation of the above:

(α − k)(α − k − 1)R2
k − 2(α − k)(k + 2)Rk

+ (k + 1)(k + 2) = 0. (3.84)

Let the two roots of the above be r1 and r2 in terms of k.
Since 0 ≤ Rk ≤ 1, there will be the relation 0 < r1 < Rk <

r2 ≤ 1 to satisfy (3.83).
Equation (3.84) is a typical quadratic function, andwe can

get its two roots as below:

r1 = (α − k)(k + 2) − [(α − k)(k + 2)(α + 1)]1/2
(α − k)(α − k − 1)

> 0,

(3.85)

r2 = (α − k)(k + 2) + [(α − k)(k + 2)(α + 1)]1/2
(α − k)(α − k − 1)

≤ 1,

(3.86)

where r1 and r2 represent the two concavity boundaries in
terms of k. Our job is then to find out the satisfactory ks in
terms of α.

The solution for (3.85) is every k, 0 < k < α − 1 (recall
again that Rk series ends at α − 1). That is, the left bound-
ary theoretically can be anywhere before the right boundary,
which further implies that the left boundary can stretch left-
most such that a = k = 1 as declared in the theorem in the
most favorable case.

Now, for r2, after manipulating (3.86), we will get
(α − k)(2k − α + 3)2 − (k + 2)(α + 1) ≥ 0.
It is complex to solve the above cubic function (of k), and

the available method [41] could not reach a neat solution
for it. Nevertheless, after hard work, the author finds that
r expressed in (3.81) is also a solution to the above thus
(3.86). It is not a coincident indeed, since, (3.86) implies Rk

approaching 1, while (3.81) means it for Rk = 1. It thus just
rightly reflects the fact that (3.81) is a special case of (3.86).

Finally, in the same reason as that in the preliminary case,
k + 1 and k + 2 need to be included in the concave interval
in the general case as well, and the ultimate right boundary
is again:
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b = r + 2 = 1

2
(α − 2 + (α + 2)1/2) + 2

= 1

2
(α + 2 + (α + 2)1/2).

Notice that b expressed above is the rightmost boundary of
the concavity interval in the general case since, as mentioned
before and depicted in Fig. 1, the right tail of the Hk curve,
in this case, could not be rounder than it in the preliminary
case.Hereafter,we term [p, b] expressed in (3.80) and (3.82),
respectively, as the “theoretical concavity interval” of the Hk

curve.
As a summary, the concavity interval in the general case

can be either smaller or larger than that in the preliminary
case. What we do know now is that the left boundary of the
concavity of the Hk curve can stretch to 1 in a case, while the
right boundary of it cannot be beyond that in the preliminary
case as given in (3.82), which is what stated in the theorem.
On the other hand, since both the real p and b can be smaller
than their respective theoretical value, a “left-shift” of the
theoretical interval may happen in an application.

Theorem 4 is now fully proved. ��
Example 4 In Table 7 of Sect. 4, the exact Hk concave inter-
val from each real application dataset is no smaller than its
corresponding theoretical interval. The situation of the left-
shifted intervals also shows there. The difference between
the real and theoretical intervals leaves another interesting
research point to see how the interval boundaries and their
shifts are determined by the concerned Rk distribution and,
ultimately, the underlying gi distribution in an application.

The quasi- and full concavity properties are of fundamen-
tal importance in pattern frequency distribution theory, and
this will become further clearer in the latter part of this paper.
At this point, onemay askwhat the semantics of the concavity
is, why the full concavity takes place on the left section of the
Hk curve, and particularlywhy the left boundary a can stretch
to 1, while the right boundary b cannot stretch rightwards
further. The next subsection presents a brief explanation for
these questions.

3.8 The semantics of and the reasons for the Hk
concavity

Hereafter we will not distinguish the quasi- and full con-
cavities unless required, since a full concavity implies
quasi-concavity, though not vice versa.

From real-number theory, the area enclosed by a concave
function and the horizontal axis is convex, whichmeans there
is no holewithin that area and nokink or cave on the boundary
of the area. That is, intuitively concavity implies the fullness.

Now, in the classic pattern mining with the full enumer-
ation mode, the concavity property of the Hk curve reflects

not just the fulness but more exactly the “excessiveness” phe-
nomenon in this mode because this mode produces much
more than realizable patterns and their frequencies from a
given dataset. The higher and stricter concave the Hk curve
is, the heavier the excessiveness. Theorem 4 reflects this and
implies that the full concavity can hold only within the left
section of the Hk curve in the general case. The reason for it
is that that section corresponds to the short-length patterns.
Such short patterns can be either the short-length tuples them-
selves or generated from longer tuples, but longer patterns
could not be from the shorter ones. As such, the left section
of the Hk curve is higher and rounder than the right section
of it, as shown in Fig. 1.

In general, the full concave interval [p, b] as given in the
proof of Theorem 4 is a small portion of the whole Hk curve
in the preliminary case, and the larger the α, the smaller
the relative portion becomes. It is because, from (3.80) and
(3.82), (b−p+1)/α = ((α+2)1/2+2)/α decreases against α. For
instance, α = 100, in the preliminary case, p = 44, b = 56,
and (b−s+1)/α ≈ 13%, a small portion. In the general case,
the full concave interval could be increased to as large as
[1, 56] since p can left stretch to 1 as specified in Theo-
rem 3.4, and the percentage of the interval is now increased
to (56−1+1)/α = 56%, a fivefold increase! A more concrete
example can be given here with α = 10, and the gi distribu-
tion = {2, 3, 52, 10, 8, 6, 5, 3, 2, 3}. In this case, the related
Hk curve gets its maximum concavity interval [1, 7] against
[3, 7] in the preliminary case. However, notice importantly,
the maximum full concave interval is only possible but not
often to see, as the empirical examples shown in Table 7.

As we know, concave or quasi-concave functions are
widely used in modern economics, operation research, and
other related domains. The Hk concavity and its under-
lying theories explored in this section would have many
applications in pattern mining, especially in the pattern fre-
quency distribution under the reduced pattern generation
mode, which shall be presented in Sect. 4. Before that, we
look at some interesting “byproducts” from the Hk study, as
seen below.

3.9 The extended conceptions from the Hk study

This part presents some conceptions out of but stemming
from the Hk study. These include the Hk expression power
as an aggregation of concave functions, the relation and com-
parisons of the Hk function with some previously established
distribution functions, and a rethinking of some concepts in
set theory and combinatorics.
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3.9.1 The merits of the Rk and the expression power of the
Hk function

The Rk created in this paper plays a critical role in the estab-
lishment of the Hk theory. On the one hand, Rk acts as a
smooth converter that transforms a scatter gi distribution into
a quasi-concave Hk curve. On the other hand, Rk works as
a powerful assembler of the different quasi-concave curves
into a single Hk curve. It is because, as stated before, each
single data tuple can form a preliminary quasi-concave Hk

curve (of u = 1), then the Hk curve from a large dataset is
an aggregation of those individual quasi-concave curves. In
general, a summation of a set of quasi-concave curves is not
necessarily quasi-concave, and how to organize such a set
of quasi-concave curves into a single quasi-concave curve is
an interesting topic in many applications [37]. Rk is thus a
perfect solution in this regard, and it makes Hk a powerful
expression of the superposition of the quasi-concave curves
of different lengths.

3.9.2 The Hk and other combinatorics-based probability
distribution functions

Frommany textbooks, we can see a couple of combinatorics-
based probability distribution functions, e.g., the binomial
distribution B(n, p) : P(k) = Ck

n pn(1 − p)n [42], where p
is a probability andCk

ns (k = 0, 1, . . . , n) are called binomial

coefficients; the Poisson distribution P(λ)= λk

k! e−λ [43], and
the like. There have been many studies of these distributions
and their relationships. For instance, when p is small thus
not close to 1

2 (e.g., p < 5%) while n is large, the B(n, p)

distribution can be approximated as a Poisson distribution
with parameter λ = np [44,45]. What we would notice here
is, these distribution functions are all quasi-concave, and each
can be approximated as a normal distribution N (e, σ 2) [46]
when n or λ is large. For example, if p is not far apart from
1
2 , the B(n, p) distribution can be approximated as a normal
distribution N (np, (np(1 − p)

1/2) [42].
In comparison, as stated before, divided by the accumu-

lative frequency w0, the Hk curve becomes a probability
distribution function, noted as p(Φk) = Hk/w0 (whereΦk is a
collection of patterns of the same length k, refer to Definition
1). Then, p(Φk)will be quasi-concave andwith its apex value
near themiddle ofα.Now, let us look into the problemdeeper.
Since each tuple (of length m > 1) of a dataset corresponds
to a simple preliminary Hk frequency distribution {Ck

m}, if we
multiply each term by pm(1 − p)m , we then get a binomial
distribution, noted as H(m) = B(m, p) = Ck

m pm(1 − p)m ,
from each tuple. However, from the previous part of this
section, we could not conclude that the aggregation of the
H(m)s over an entire dataset of u > 1 would be a nor-
mal distribution, simply because of nonsymmetric of the Hk

curve in a general case. On the other hand, with the selective
pattern generation mode, the result p(Φs

k ) distribution will
ultimately converge to a normal distribution when the dataset
is large. It will be formally proved in the next section.

3.9.3 Some humble rethinking on the concept of the empty
set in set theory

Set theory by now is widely viewed as fundamental for math-
ematics [47], yet disagreements or objections of this view are
also noticeable in the literature [48–51]. Particularly, ques-
tions and critiques on the concept of the empty set have been
raised from philosophers [52], first-order logic and free logic
experts [53]. If those critiques are mostly theoretical, what
we will discuss hereunder would be a little bit more specific
and originating from pattern mining practice. The problem
starts from the proposition that the empty set ∅ be a subset
of any nonempty set S, that is,

∅ ⊆ S, (3.87)

as generally presented in textbooks today.
There have been some proofs of the above statement [53],

but those proofs are controversial. To save space, here we
look at only one typical proof as quoted below [53,54]:

The proof is by contradiction and starts with the definition
that if all elements of set B are in set A, then B is a subset of
A [47]. Now, let B be the empty set ∅. If ∅ is not a subset of
A, then it means there is some element in ∅ that is not in A.
But ∅ has no elements and hence a contradiction. The proof
is then done.

The above proof looks strong at first glance, but with
deeper insight, we will see that the proof has a serious flaw
of an incomplete list of the “not” aspects. Based on De Mor-
gan’s law: not (X and Y) = not(X) or not(Y) [55], the full
negation of the statement “all elements of B are in A” must
be:

“No element of B is in A (case 1),” or,
“some element of B is not in A (case 2).”
Only with the above two cases together, could the whole

universe in question be maintained, where case 1 applies to
the empty set and those nonempty sets exclusive to A, while
case 2 implies other nonempty sets but unexclusive to A.
However, the above proof picks up case 2 only but neglects
case 1.

Indeed, there are more profound reasons to disprove ∅ ⊆
S. Firstly, the establishment of the set theory does not involve
fuzziness. As such, by the formal concept theory [56], any
concept should have its clear intension and extension to dis-
tinguish from other concepts. Then,∅ ⊆ S certainly violates
this requirement. It is because the empty and nonempty sets
are a pair of opposite concepts and equal counterparts. They
thus ought to be mutually exclusive instead. We can but do
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not give more theoretical proofs to support the above argu-
ment to save space. Another reason is that the uprightness of
a concept or theory should also be justifiedwith the outcomes
of its applications. Following are examples of the side effects
of the extension or applications of the relation ∅ ⊆ S.

The first is in the permutation theory, where ∅ is taken to
be a legal output in any permutation problem due to ∅ ⊆ S,
and

0! = 1, (3.88)

which is forcefully defined in addition to the principal defi-
nition of factorial. We do not have to discuss the reasons for
the above definition as given in the literature [57], but only
notice that

1! = 1, (3.89)

which is a natural result of the principal factorial definition.
From the above two, an immediate conclusion is that 0 =

1, but interestingly, people accept and maintain the collision
between 0! = 1 and 1! = 1 for so long!

What follows is in combinatorics, the empty set is again
taken to be a legal output in any combinatoric problem. Since
0! is defined, and so is C0

n (C0
n = n!

0!(n−0)! = 1). However,

semantically C0
n = 1 is controversial since it means there is

a nonzero number of combinations of no element selected,
but a combination of no element means no combination!

Now, it gets into our topic on pattern mining, where each
tuple of a classic dataset represents a set of elements, thus
each tuple includes the empty set∅ based on (3.87), and con-
ventional mining approaches generally take ∅ as a pattern.
Especially,∅ is eternally a generator in the generator mining
approach [26] since ∅ is the most frequent pattern, where
F(∅) equals u, the cardinality of any classic dataset. How-
ever, such the most frequent pattern is valueless and helps
nothing in any serious mining but wastes computation cost
and memory space. There are several reasons to prove so, but
for space limitations, we give only one as below:

Notice that the empty set exists vacuously only [47]. That
is, ∅ is imaginable only but not physically observable. In
this sense, F(∅) = u means that we had observed an unob-
servable thing for u times, such a self-contradiction! Lastly,
could we have ∅ as a pattern from the entire dataset instead
of each tuple? The answer is still firmly no. Among other
issues, by the nature of pattern mining, every result pattern
must have its specified frequency (or frequentness), but as
just analyzed, F(∅) is not properly specifiable.

Readers would have seen now from the above that there
is such a strong reason and logic that we could not take the
empty set as a pattern and that we can only leave F(∅) being
undefined, as stated at the beginning of this paper (refer to

Sect. 2.2). In turn, the above disproves the general applica-
bility of ∅ ⊆ S (3.87).

As we know, the modern set theory is developed from the
Zermelo set theory [58], but from the above practical obser-
vations and those mentioned critiques presented in previous
literature, we need to admit that the development has not
reached its full soundness stage. As such, the solution for the
issue of ∅ ⊆ S will be meaningful in the further perfection
of the set theory. The solution is indeed alreadymanifested in
the above analysis: replace ∅ ⊆ S (3.87) with the following:

∅ � S, and S � ∅, (3.90)

where S is a nonempty set.
In accordance,weneed to leave the factorial 0!beingunde-

fined, simply because the empty set is not permutable, thus
quantifying the permutation is meaningless. Indeed, if we
could accept 1

0 being undefined, why could not take 0! being
undefined?With this solution, the problem of 0 = 1will then
be automatically eliminated. The resolution of the C0

n prob-
lem is to be seen in the next subsection. For other possible
problems caused by the obsoletion of 0! = 1 and ∅ ⊆ S, we
believe that the respective domain experts will find solutions
for them.

3.9.4 Some findings in combinatorics

(1) The U-sum sequence and the redefinition of Co
n

It is an interesting and commonly discussed topic in math-
ematical analysis and calculus about the convergence of real
number sequences, for instance,

S(xk) =
k=n∑

k=1

(−1)k−1xk,

where xk is a nonnegative real number. In general, if xk ≥ 1,
e.g., S = 1−1+1− . . . , the sequence is divergent since it is
not a Cauchy sequence and thus does not satisfy the known
Cauchy criterion.1

However, in the course of pattern mining study of this
paper, a special sequence that disregards that criterion but
converges has been discovered, as defined below:

U -sum(Ck
n ) =

k=n∑

k=1

(−1)k−1Ck
n .

That is, the U -sum(Ck
n ) is a sum of the consecutive

but alternatively signed binomial coefficients except C0
n and

1 Note: A real number sequence (sn) is a Cauchy sequence if ∀ε >

0, ∃t ∈ N , such that if m, n ≥ t , then |sn − sm | < ε. The Cauchy
criterion says that any Cauchy sequence is convergent, and vice versa,
any convergent series of real numbers is a Cauchy sequence [59–61].
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starting with positive C1
n . The property of the above U -sum

is given below:

Theorem 5 As given, the U-sum sequence is not only con-
vergent but also of a fixed sum of value 1, irrespective of the
magnitude of the natural number n. That is:

U-sum(Ck
n ) =

k=n∑

k=1

(−1)k−1Ck
n = 1. (3.91)

Proof The proof of the above theorem is simple. From (3.11):∑k=n
k=1(−1)k−1Hk = u, where u is the cardinality of a classic

dataset, and Hk = ∑
Ck

n . Now, suppose a dataset of only
one tuple of n elements, then Hk = Ck

n , and u = 1. As such,∑k=n
k=1(−1)k−1Ck

n = 1, and the theorem is proved.
Alternatively, we can prove (3.91) through the binominal

formula (a + b)n = ∑n
k=0 Ck

n an−kbk . Now, set a = 1 and
b = −1, we get

∑n
k=0(−1)kCk

n = 0, or
∑n

k=1(−1)k−1Ck
n =

1. ��
Extendedly, we note U−sum(Hk) = u for an entire

dataset of cardinality u as stated above.
The interestingness of the U-sum sequence defined above

is not only in its exception to the Cauchy criterion but also
in solving the problem of C0

n addressed in the previous part
by defining:

C0
n =

k=n∑

k=1

(−1)k−1Ck
n = U -sum(Ck

n ) = 1. (3.92)

With the above approach, the definition of C0
n is no longer

based on that of 0! = 1. The new definition is justifiable
with the following. Firstly, the reason to separate C0

n from
the sequence of other Ck

ns is that the superscript “0” of C0
n

is not a natural number while other ks are. Furthermore, the
number “0” does not have to mean “nothing” in many cases
but a reference value of something. C0

n thus does not have
to refer to the empty set any longer. Lastly, the semantics of
(3.92) can interestingly reflect a philosophy that, in a colorful
world, when all colors come together, the world becomes
white if we took (3.92) as a light wave equation.

As such, there is no aftermath with the proposed obsole-
tion of the assertion ∅ ⊆ S and the definition of 0! = 1,
especially if 0! =1 does not have many other applications
except for C0

n and Cn
n . At the same time, the numerical value

of C0
n does not change, such that we can still keep the legacy

of previous literature in the use of C0
n .

The only notice here is that, with the obsoletion of 0! = 1,
we take the general formula for Ck

n as

Ck
n = n(n − 1) . . . (n − k + 1)

k! ,

Table 5 A left-justified Pascal’s triangle

Row\Col. 0 1 2 3 4 5 6

0 1

1 1 1

2 1 2 1

3 1 3 3 1

4 1 4 6 4 1

5 1 5 10 10 5 1

6 1 6 15 20 15 6 1

such that the formula for Cn
n does not have to involve with 0!

as well.
Meanwhile, in comparison, we call the arithmetic sum of

the same binomial coefficient sequence (excludingC0
n ) as the

“A-sum,” and we know that

A-sum(Ck
n ) =

n∑

k=1

Ck
n = 2n − 1.

(2) A Naïve approach to build Pascal’s triangle
The tabular approach presented in Sect. 3.3.3 is efficient

not merely in calculating the Hks and the accumulative fre-
quency w0 but also in building Pascal’s triangle.

Table 5 is an example of Pascal’s triangle, and we refer the
triangle formed by the boldface numbers as the “W triangle”
(matrix) after the removal of the first row and first column of
the Pascal triangle. Interestingly, the “enumeration triangle”
Λ, as seen in Table 3, is indeed a product of the transpose of
W and the gi distribution. More formally:

Λ = W τ G, or , Λτ = Gτ W = GW . (3.93)

where W is an α ∗ α triangle matrix as shown in Table 5,
while G is an α ∗ α diagonal matrix with the main diagonal
elements being the gi numbers and the rest being 0s:

G =

⎡

⎢
⎢
⎢
⎣

g1 0 . . . 0
0 g2 . . . 0
...

...
. . .

...

0 0 . . . gα

⎤

⎥
⎥
⎥
⎦

.

To see the above clearer, we transpose Table 3 and form
an extend Hk Table 6. In this table, the first row (except the
newly added U−sum and A−sum cells) holds the ks (from
1 to α), which also represents theΘ1 series as in Table 3. The
row (U ) is the row 0 of the Pascal triangle and thus contains
the only number (1), while the first column of Table 6 under
(U) being the gi distribution. The boldface numbers are those
from the transposed Λ. Compared with the W triangle in
Table 5, we see that each row i of Λτ in Table 6 is the same
row of W times gi , and the sum of each row is an application
of (3.15): Fi = gi

∑ j=i
j=1 C j

i . That is why collectively Λτ is
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Table 6 The extended Hk Table

G/K 0 (U -sum) 1 2 3 4 5 6 Fi (A-sum)

(U ) (1)

2 2 2 2

3 3 6 3 9

2 2 6 6 2 14

2 2 8 12 8 2 30

0 0 0 0 0 0 0 0

1 1 6 15 20 15 6 1 63

(10) Hk 28 36 30 17 6 1 118

the product of G and W as specified in (3.93). Meanwhile,
notice that the A−sum column holds exactly the Fi s.

Now, in a special case with every element of gi s being
1, the matrix G becomes the identity matrix, and the Λτ

becomes W :
Λτ = I W = W .
It is then simple to build up Pascal’s triangle. Take Table

6 as an example and follow the following steps: set the table
size as (α + 3) ∗ (α + 3), initiate the first row from column
3 to (α − 1) with (1, . . . , α), the first column from row 3 to
(α − 1) with all 1s, and the same for column 3. Then, follow
the procedure to build Λτ as described in 3.3.3 (with an only
change of the rows into columns and vice versa in computer
programming), we then get Pascal’s triangle.

Additionally, notice that the U−sum and A−sum
columns included in Table 6 can be used for parity checks of
the W triangle to ensure the correctness of the construction
of the table.

The above approach is naïve and also efficient, compared
with the conventional approach [62].

On the other hand, (3.93) means, if a Pascal triangle of
size (α + 1) is available, then the corresponding W triangle
can be used to build the Λ triangle to fulfill the same job,
i.e., to compute the Hks as done by Table 3. However, this is
only theoretically fine. In practice, this way may not be more
efficient than the original approach to build Table 3 directly.
It is because, for an arbitrarily given α, the needed Pascal’s
triangle may not be readily available, and even if it be, we
need a function call to link or to copy the entire W triangle in
a program and then multiply it by the matrix G. The whole
process thus may not be cheaper than the original approach
presented in 3.3.3.

After the above presentation of the extended fruitage of
the Hk study, we now turn back to the study of the pattern
frequency distributions with the reduced pattern generation
mode in the next section.

4 The reduced pattern frequency
distributions

The previous section has introduced a set of interesting prop-
erties governing raw pattern frequency distributions under
the full enumeration mode. This mode produces all “pos-
sible” patterns, many of which could not be realizable and
thus “redundant.”We have also known that the effective rem-
edy to the problem is the selective pattern generation mode.
However, no approach is ready to render that mode. A critical
reason is that we do not know what and howmany redundant
patterns to remove in an application.

Yet, with the study presented in the previous section, we
know precisely about the sub-cumulative frequency Hk of
each collection. We also see that a redundant pattern means
to bring up superfluous frequencies. That implies we can
reduce the patterns’ frequencies first, bywhich some patterns
may become abolishedwhen their frequencies being reduced
to zero. Meanwhile, we know from the previous study [23]
about the biased frequentness of shorter patterns due to their
adding up frequencies of their supper (hence longer) patterns.
That further enlightens us to adjust first the frequencies of
shorter patterns by that of longer ones, as described below.

4.1 The initial adjusted Hk, hk

Definition 3 The “initial adjusted collection frequency” (of
all patterns of length k) is:

hk = Hk −
α∑

j=k+1

(−1) j−k−1Hj , (k ∈ [1, α)) (4.1)

starting from hα = Hα , and (4.1) can be further simplified
as:

hk = Hk − hk+1, (k ∈ [1, α)) (4.2)

Notice that hα = Hα is a natural boundary condition since
Hα+1 does not exist,

To be a measure of frequency, hk must be nonnegative.
Indeed, the following theorem guarantees it:

Theorem 6 If the underlying Hk curve is strictly quasi-
concave, then hk defined in (4.1, or 4.2) is always positive.

Note in the previous section, we have proved that in gen-
eral Hk curve is strictly quasi-concave, and abnormal cases
scarcely happen thus being ignored hereafter. Following we
prove the above theorem by induction.

Proof Since Hk is strictly quasi-concave, we examine the
problem in two intervals, [1, q] and (q, α], respectively,
where q is the maximum point of Hk , and α is the longest
pattern (tuple) length.
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For k ∈ [1, q], take the initial case k = 1, we see the right-
hand side of (4.1) is exactly the right-hand side of (3.11) itself,
thus

h1 = u. (4.3)

It means the theorem holds at k = 1 since h1 > 0.
At k = 2 and by (4.2),

h2 = H1 − h1 =
∑

i

|Ti | − u > 0, (4.4)

which is because that at least one tuple length |Tj | > 1,
( j ∈ [1, u]), such that H1 = ∑

i |Ti | > u. Otherwise, there
is no pattern generation, and no problem to solve.

Now, suppose the theorem holds at k = t (1 < t < q),
such that ht > 0, we check if ht+1 > 0 would still hold.

Since the theorem holds at k = t , it thus holds at k = t −1
as well, that is, ht−1 > 0. Notice also that Ht − Ht−1 > 0
for t ∈ [1, q] (because of the Hk concavity as given). Then,
by (4.2), it means:

ht+1 = Ht − ht = Ht − (Ht−1 − ht−1)

= (Ht − Ht−1) + ht−1 > 0, (4.5)

and the theorem is proved for k ∈ [1, q].
For k ∈ (q, α], we start at k = α as the initial case and

prove the theorem in a reverse direction. Notice at k = α,
the theorem holds, since ha = Ha as given.

At k = α − 1, the theorem also holds, since, by (3.37),

Hα−1 = (
1

Rk

k + 1

α − k
Hα)|k=α−1 = α

Rα−1
Hα,

then:

hα−1 = Hα−1 − hα = Hα−1 − Hα

= (
α

Rα−1
− 1)Hα > 0, (4.6)

which results from α > 1, 0 < Rα−1 ≤ 1, and Hα > 0.
Now, suppose the theorem hold at k = t (q < t < α),

such that ht > 0, we check if ht−1 > 0 would still hold.
Since the theorem holds at k = t , it thus holds at k = t +1

as well, that is, ht+1 > 0; notice that Ht−1 − Ht > 0 for
t ∈ (q, α]. Then, by (4.2), it means:

ht−1 = Ht−1 − ht = Ht−1 − (Ht − ht+1)

= (Ht−1 − Ht ) + ht+1 > 0. (4.7)

That is, the theorem holds for k ∈ (q, α] as well, and the
theorem is fully proved. ��

Theorem 4.1 qualifies the hk to be a frequency function
with the required positivity. hk also fulfills the primer objec-
tive of the overall pattern frequency reduction, particularly of
the shorter patterns, as indicated in (4.2). It thus mitigates the
overfitting problem. Ideally, we would expect hk to further
get around the drawbacks of the full enumeration mode with
the following merits.

(a) On average, the adjustment shall be relatively evenly dis-
tributed over different collectives to avoid bias as much
as possible, such that the collectives of larger number
of raw frequencies ( Hks) would be adjusted more than
those of fewer frequencies.

(b) Avoid over-adjustment. Mathematically, it means the hk

curve should maintain the quasi-concavity property.

We will see if the above properties would be realized from
the analysis presented in the following subsections.

4.2 The hk curve and its quasi-concavity

Similar to the Hk curve, by connecting all of the hk values
together, we get an hk curve as shown in Fig. 1. This curve
is also quasi-concave, as specified in the following theorem:

Theorem 7 (hk quasi-concavity theorem) If
∑

i |Ti | > 2u,
and if the corresponding Hk curve is strictly quasi-concave
with its apex value at q, then the hk curve will also be quasi-
concave with its apex value at k = q ′, where q ′ = q or q +1,
and |Ti | is the length of tuple i .

Note the condition of
∑

i |Ti | > 2u, or equally average
|Ti | > 2, is symbolic only since anypracticalminingproblem
would satisfy it. Another implication of this condition is the
maximum tuple length α = max(|Ti |) ≥ 3.

Proof We look at the following relations first:

hk+1 − hk = (Hk+1 − hk+2) − (Hk − hk+1), or ,

hk+2 − hk = Hk+1 − Hk . (4.8)

On the other hand, we have:

hk+1 − hk = (Hk − hk) − (Hk−1 − hk−1), or ,

hk+1 − hk−1 = Hk − Hk−1. (4.9)

Now, for k ∈ [1, q], based on Theorem 2, Hk − Hk−1 > 0,
(4.8) and (4.9) are consistent, and we get:

hk+2 > hk (from (4.8)), (Case I)
and, hk+1 > hk−1 (from (4.9)). (Case II)
Furthermore, refer to (4.4), andnotice H1 = ∑

i |Ti | > 2u
as given, we have:

123



68 International Journal of Data Science and Analytics (2023) 16:43–83

h2 = H1 − h1 > 2u − u > u. That is

h2 > h1. (4.10)

Since k can be any number within [1, q], to have (4.10) and
both cases I and II to be applicable to every k within this
interval, the only way is:

hk+2 > hk+1 > hk > hk−1. (4.11)

Now, for k ∈ (q, α], (4.8) and (4.9) remain the same but
notice Hk+1 − Hk < 0, the sign of Case I and II should then
be reversed. By shifting back k by 1 from the two cases such
that k could start from q + 1, we get:

hk+1 < hk−1, (Case I’)
and, hk < hk−2. (Case II’)
Refer to (4.6): hα−1 = Hα−1 − hα = ( α

Rα−1
− 1)Hα , and

notice Hα = hα , α ≥ 3, and 0 < Rα−1 ≤ 1, then:

hα−1 > hα (4.12)

That is, within (q, α], for every k to maintain (4.12) and the
cases I’ and II’ together, the only way is:

hk+1 < hk < hk−1 < hk−2. (4.13)

Now, we note the apex point of the hk curve as q ′ and see
its relation with q. On the left side of q, we know from (4.11),
hq > hq−1, which, however, is not applicable to (4,13). We
then need to look into the two basic formulas (4.8) and (4.9)
again.

From (4.8), hq+2 < hq , and from (4.9),

hq+1 > hq−1. (4.14)

Then, there are three situations: hq−1 < hq < hq+1,
hence q ′ = q +1; or hq > hq+1, then q ′ = q; or hq = hq+1,
then q ′ takes both q and q + 1. Notice even if hq = hq+1,
it does not affect the quasi-concavity property since no other
integer exists between q and q + 1.

We can now conclude that, hk curve reaches its apex
value at q ′, and it is strictly increasing within [1, q ′] (based
on (4.11)) and strictly decreasing within [q ′, α] (based on
(4.13)), hk curve is thus quasi-concave, and the theorem is
fully proved. ��
Example 5 From the real application datasets as shown in
Table 7, there is a case of q ′ at both q and q + 1, a case of
q ′ = q + 1, and the rest cases of q ′ = q.

4.3 The derived hk reduction properties

From the above theorem and its proof, we can get further
implications as follows:

The calculus function of hk

From Eq. (4.8):
(hk+1 − hk) + (hk+2 − hk+1) = Hk+1 − Hk ,

or, Δhk + Δhk+1 = ΔHk ,
or, Δhk/ΔHk +Δhk+1/ΔHk = 1, which is taken

to be the calculus function of hk over Hk .

Corollary 5 (The reverse theorem of Theorem 7) If an hk

curve is quasi-concave, so must be the underlying Hk curve.

The above can be easily inferred from Theorem 7 and its
proof: if the concerned Hk curve is not quasi-concave, then
the quasi-concavity of the hk curve is not guaranteed.

Corollary 6 If an Hk curve gets its apex value at k = 1, then
the related hk curve will definitely reach its apex value at
k = 2.

This is obvious, since h2 > h1 is always true (refer to (4.10))
and q ′ = q + 1 applies.

Corollary 7 The difference function h̃k between theHk and
hk curves is also quasi-concave.

In general, a difference of two quasi-concave functions
may not necessarily be quasi-concave. This corollary then
represents a special “quasi-concavity invariant” property of
the difference function between the Hk and the hk curves.
Indeed, the proof of this corollary is rather straightforward:
the difference function is the shifted hk curve itself since
from (4.2):

h̃k = Hk − hk = hk+1. (4.15)

Since hk represents the patterns frequencies after a reduc-
tion of the number of redundant patterns and frequencies,
hereafter, we call the hk curve the “partial retainable (fre-
quency) curve,” while the difference h̃k curve the “partial
removable curve.”

Corollary 8 The adjustments correct and redistribute the fre-
quencies from shorter patterns toward longer ones, such that:

hk <
1

2
Hk, k ∈ [1, q ′) (4.16)

hk >
1

2
Hk, k ∈ (q ′, α]

(4.17)

and, hq ′ ≈ 1

2
Hq .

(4.18)

Proof Since hk = Hk − hk+1, or Hk = hk + hk+1, and with
the hk quasi-concavity, hk < hk+1 for k ∈ [1, q ′), they then
together prove Hk > 2hk , or hk < 1

2 Hk (4.16). Similarly we
can prove (4.17). And (4.18) is a natural consequence of the
former two. ��
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In addition to the above corollary and its proof, the general
relation hq+1 > hq−1 (4.14) and the possible apex shift from
q to q ′ = q + 1 are other signals of the redistribution and a
characteristic of the hk curve.

Corollary 9 (The “law of half”) The sum of hks is around
half of that of Hks.

Proof This corollary is an extension of the previous one and
gives us an overall awareness of the hk reductions, while the
formal proof comes below.

From (4.2) to (4.5), we have:
h1 = H1 − h2

h2 = H2 − h3

...
hα−1 = Hα−1 − hα

ha = Ha

and, −u = −h1 (refer to (4.3))
Summarize the above equations together, we get:

α∑

k=1

hk − u =
α∑

k=1

Hk −
α∑

k=1

hk,

or , 2
α∑

k=1

hk − u =
α∑

k=1

Hk (4.19)

Set the “adjusted accumulative frequency” as w1, and
notice that

∑α
k=1 Hk = w0 (the raw accumulative fre-

quency). Then from (4.19), we get:

w1 =
α∑

k=1

hk = (w0 + u)/2, (4.20)

which is a coincidence with (3.35), i.e., w1 = Hodd .
Equation (4.20) tells that about a half of the raw frequen-

cies will be reduced from Hk to hk regime since normally
u � w0 in real applications. We thus call it a “law of half.”
This law will become precise in terms of a “net” account of
the generated frequencies to be seen in Sect. 4.5. ��

The above law then enables the predetermination of
the adjusted accumulative frequency. It is what that many
approaches pursue, but no significant finding has been
reported to the author’s knowledge.

In summary, Theorem 7 and the above properties for-
mally describe the hk adjustment functionality as expected
at the end of Sect. 4.1. Firstly, hk does reduce the pat-
terns’ frequencies substantially. Figure 1 presents an intuitive
understanding, where the hk curve is entirely underneath
the Hk curve, while the “law of half” gives more precise
information about the reduction. Since every increment of
frequency comes from a pattern generation, the law also
means the number of pattern generations will be reduced by

half. Accordingly, the number of patterns would be reduce-
able proportionally to the frequencies reduced. It is thus
another important implication from the reduction model. On
the other hand, the law of half and the hk quasi-concavity
theorem indicate no over-reduction since, by the selective
generation mode, the accumulative pattern frequency will be
far less than half of wo. We will see this in Example 9 later.
Thirdly, the model realizes a remedy of the biased frequency
distribution toward the short patterns under the full enumer-
ation mode, as described by Corollary 8. Meanwhile, the
remedy is not an overkill but relatively evenly distributed over
different collectives, as seen from formulae (4.16) through
to (4.18), the larger the Hk , the larger the adjustment.

4.4 The full concavity interval of the hk curve

Similar to the Hk curve, after we have proved the hk quasi-
concavity and other accompanied properties, we have the hk

full concavity property as well.

Theorem 8 If an Hk curve is full concave downward over an
interval E = [a, b] and |[a, b]| > 3, then the corresponding
hk curve would also be full concave over the interval E1 =
[a1, b1], subject to the only condition of:

(Hk−1 + Hk) > 2(hk−1 + hk+1), (4.21)

for every k within interval E1 = [a1, b1], where E and E1 are
comparable, while the degree of hk concavity will be reduced
from that of the Hk concavity.

Proof According to the definition of full concavity (under
Theorem 4 and formula (3.78), if an hk distribution curve is
full concave over an interval E1, then for any three consec-
utive integers (k − 1, k, k + 1) ∈ E1, the following relation
must hold:

hk >
1

2
(hk−1 + hk+1).

The above can be expressed as:

Xk = 2hk − (hk−1 + hk+1) > 0. (4.22)

Our task is then to prove how (4.22) could hold over the
interval [a1, b1] stated in the theorem. Because of the full
concavity of Hk curve as given in the theorem, there exists:
Hk − 1

2 (Hk−1 + Hk+1) > 0. We then define:

A = 2Hk − (Hk−1 + Hk+1) > 0. (4.23)

From the definition of hk , we know Hk = hk +hk+1, then
(4.23) becomes:

A = 2Hk − (Hk−1 + Hk+1)

123



70 International Journal of Data Science and Analytics (2023) 16:43–83

= 2(hk + hk+1) − [(hk−1 + hk) + (hk+1 + hk+2)]
= [2hk − (hk−1 + hk+1)] + [2hk+1 − (hk + hk+2)]
= Xk + Xk+1 > 0, (4.24)

where

Xk+1 = 2hk+1 − (hk + hk+2). (4.25)

From the above, we see that Xk+1 is a forwardly shifted
Xk . Then, Xk > 0 represents the general condition of the hk

concavity. For Xk > 0, it means the following:

Xk = 2hk − (hk−1 + hk+1) = (hk − hk−1) + (hk − hk+1)

= [(Hk−1 − hk−1) − hk−1] + [(Hk − hk+1) − hk+1]
= (Hk−1 − 2hk−1) + (Hk − 2hk+1)

= (Hk−1 + Hk) − 2(hk−1 + hk+1) > 0,

which is the condition (4.21) stated in the theorem for the hk

concavity.
Back to (4.24), A = Xk + Xk+1 > 0, which means

once A > 0 holds, then either Xk or Xk+1 or both would
be positive. However, notice that Xk+1 is easier than Xk to
be positive. It is based on what is implied in Corollary 8 and
as shown in Fig. 1 that the hk curve is a bit right-skewed
compared with the concerned Hk curve. Consequently, once
Xk > 0 holds, so does Xk+1 > 0, then Xk+2 > 0, and so on,
as long as the ks are within the interval E .

Now, for the comparisons of the boundaries between the
two intervals E and E1.

With A = Xk + Xk+1 > 0, and |[a, b]| > 3 as given,
it means the Hk concavity starts from k = a through to
at least k + 3. And from the above analysis, for A > 0,
Xk+1 = Xa+1 > 0 must be true, while Xa > 0 is not
ensured. That is, a1 may or may not be as small as a, i.e.,
a1 ≥ a. For the right boundary b1, notice that from (4.23)
A > 0 covers k + 1, while from (4.25) Xk+1 > 0 covers
k + 2, then it is safe to note b1 ≥ b.

The above means that the hk and Hk curves would have
comparable full concavity intervals.On the other hand, notice
that the height of the hk curve is lower down from that of the
Hk curve, as visibly shown in Fig. 1, it means that the degree
of the hk concavity is lower down from the Hk concavity.
Theorem 8 is now fully proved. ��

Notice that the condition |[a, b]| > 3 is symbolical only
since any serious mining application will satisfy it, which
thenmanifests the general applicability of the above theorem.
Meanwhile, the lower-down of the hk concavity is rightly
a reflection of the reduction of the “excessiveness” of the
pattern generations from the full enumeration to the reduced
mode.

Example 6 For an illustration, we continue the example pre-
sented in Sect. 3.8, with α = 10, and the gi distribution = {2,
3, 52, 10, 8, 6, 5, 3, 2, 3}, themaximum Hk concavity interval
is [1, 7]. Here we can find that the corresponding hk curve
maintains this concavity interval without a change. Table 7
(Sect. 4.6) gives some empirical examples of comparisons of
the intervals E and E1, as well as their boundaries.

The next subsection revealswhy the hk curve exhibits sim-
ilar concavity and quasi-concavity features as the Hk curve.

4.5 The combinatoric equivalence of the hk function

With the above hk properties presented, an interesting ques-
tion would be whether hk could be expressed with similar
combinatorics formula as that for Hk . The following theo-
rem answers:

Theorem 9 (the equivalence theorem) hk is effectually equiv-
alent to collective frequency of patterns generated with a
reduced dimension. That is, compared with Hk = ∑i=α

i=k
gi Ck

i ,

hk =
i=α∑

i=k

gi C
k−1
i−1 (4.26)

Proof The proof of (4.26) is in induction again and starts
from k = α backwardly to k = 1 since hk = Hk − hk+1.

(1) At k = α,

hα =
i=α∑

i=α

gi C
α−1
i−1

= gαCα−1
α−1 = gα = Hα,

while we know hα = Hα as given in Theorem 6. That
is, at k = α, Theorem 9 and (4.26) hold.

(2) Suppose at k = t (1 < t ≤ α), the theorem holds,
i.e., ht = ∑i=α

i=t gi C
t−1
i−1 , we prove if the theorem and

(4.26) would still hold at k = t − 1:

ht−1 = Ht−1 − ht =
i=α∑

i=t−1

gi C
t−1
i −

i=α∑

i=t

gi C
t−1
i−1

= (gt−1 +
i=α∑

i=t

gi C
t−1
i ) −

i=α∑

i=t

gi C
t−1
i−1

= gt−1 +
i=α∑

i=t

gi (C
t−1
i − Ct−1

i−1)

= gt−1C (t−1)−1
(t−1)−1 +

i=α∑

i=t

gi C
(t−1)−1
i−1
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=
i=α∑

i=t−1

gi C
(t−1)−1
i−1 .

The above means (4.26) still holds at k = t − 1, and the
theorem is fully proved. ��
Note that the above proof used the formula Ct

m − Ct
m−1 =

Ct−1
m−1, which can be found in many mathematics textbooks,

while here is how it comes:

Ct
m − Ct

m−1 = m!
t !(m − t)! − (m − 1)!

t !(m − t − 1)!
= (m − 1)!(m − (m − t))

t !(m − t)! = t(m − 1)!
t !(m − t)!

= (m − 1)!
(t − 1)!(m − t)! = Ct−1

m−1. (4.27)

For a later reference and as a double check of the above
proof, particularly note at the end point k = 1:

h1 = H1 − h2 =
i=α∑

i=1

gi C
1
i −

i=α∑

i=2

gi C
2−1
i−1

= (g1 +
i=α∑

i=2

gi C
1
i ) −

i=α∑

i=2

gi C
1
i−1

= g1 +
i=α∑

i=2

gi (i) −
i=α∑

i=2

gi (i − 1)

= g1 +
i=α∑

i=2

gi =
i=α∑

i=1

gi = u, (4.28)

which is conformable with that specified in (4.3) again.
Meanwhile, notice from the above that we do not have to
use C0

i−1 but get the result properly.
Moreover, h1 = ∑

gi = u is exactly the count of the
tuples of the dataset without pattern generation. On the other
hand, notice that w0 includes the cardinality u either in the
full enumeration mode. It is because w0 includes all the Ci

i s,
while each Ci

i (i = 1, 2, . . . , α) means to take each entire
tuple as a pattern, and

∑α
i=1 gi Ci

i = ∑α
i=1 gi = u, which

gives the same value and semantics of h1.With these insights,
the “law of half” (4.20) now becomes precise as following:

Corollary 10 (The “precise” law of half) The net count of
pattern frequencies from the hk (and h̃k) model is exactly a
half of that from the Hk model.

Proof Let w′
0 and w′

1 be the “net” counts of pattern frequen-
cies in the full and reduced generation regimes, respectively,
i.e., w0 = w′

0 + u, and w1 = w′
1 + u, then substitute them in

(4.20), such that: w1 = w′
1 + u = (w′

0+u+u)

2 = w′
0
2 + u, or

w′
1 = w′

0

2
, (4.29)

which is the precise “law of half.” In accordance, the sum of

the net reduced frequencies (represented by h̃k) is also
w′
0
2 ,

and the corollary is proved. ��
The above law means equally that, if ever tuple length is

reduced by 1, then the net number of the pattern generations
from a dataset will decrease by half.

We see now it is the similar formulations of Hk and hk

that lead to the similar quasi- and full concavity properties
of the corresponding Hk and hk curves.

4.6 The empirical verifications

After the Hk and hk properties have been theoretically
revealed in the previous sections, Table 7 presents their
empirical verifications with seven datasets, thanks to the
dataset providers [36,63]. These datasets have been used
in multiple research articles, and as benchmarks used in
FIMI 2003/04. These datasets represent different types of
data sources. For instance, in gi distributions, there are two
preliminary cases that all data tuples within a dataset keep
the same length, three datasets in ordinary distributions,
and other two less ordinary, where the “Accident” and the
“Pummsb*” have 17 and 48 consecutive zeros in the left tails
of their respective gi distributions. The datasets are empir-
ically collected, except the last two being generated ones.
More information on these datasets can be found in the arti-
cle [63].

Despite the variations of the dataset, the results from
them well conform with the theories developed hereto. In
Hk related properties, we see from Table 7 that all Hk curves
keep strict quasi-concavity, except for the preliminary case
(mushroom dataset) with an odd u, such that the curve has
two adjacent apex values (refer to the proof of Theorem
2). The results also show precisely that all the correspond-
ing apex points satisfy q ≤ α

2 . Notably, for the datasets
“Accident,” “Pumsb*,” and “T1014D100k,” theirq values are
significantly smaller than α

2 , a reflection of their left skewed
distributions (this can be more evident from the compari-
son between the last two datasets). The intervals of the full
concavity of the Hk curves as described in Theorem 4 in
both preliminary and ordinary cases are well demonstrated
either. In the preliminary cases, the intervals obtained from
formula (3.81 and 3.82) are the same as that numerically
computed from the empirical datasets. The theoretical and
actual concave intervals from other datasets also conform to
the conclusion of Theorem 4.

The Rk properties are verified too. For instance, Rk keeps
1 for all ks in the two preliminary case datasets, and the
number of 1s of the Rk series is equal to the number of 0s
in the right tails of the gi distributions of other datasets, as
stated in Corollaries 1, 2 and 4. The Rks always monotoni-
cally increase in the ordinary cases, except for two cases with
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consecutive zeroes in the left section of their gi distributions,
which leads to slight Rk decreases only (less than 1%).

The results of w0, Hodd and Heven and their relations are
also given in the table. A note here is that, except those from
the first and the last datasets, the three measures could not be
precisely presented due to computation overflows with their
vast magnitudes.

The hk related properties are well verified too. For
instance, the quasi-concavity nicely remains over every
dataset, despite some fluctuations of the Rks as stated above.
The results also precisely demonstrate the apex point q ′ of
every hk series compared with that of the related Hk series,
such that q ′ equals q or q + 1. More interestingly, there is
a case (the Pumsb*) that shows two adjacent apex values at
q ′ = q and q ′ = q ′ + 1, as have been mentioned in the proof
of Theorem 7. The results verifiedCorollary 8 that hk < 1

2 Hk

before q ′, hk > 1
2 Hk after q ′, and hk ≈ 1

2 Hk at q ′. The com-
parisons of the concavity intervals of the Hk and hk curves
are also presented in the last two rows of Table 7.

For a better understanding, “Appendix” of this paper
presents the details of the above results of the “Retail” dataset,
while the details for the other datasets are available from the
author upon request.

4.7 The higher-order reductions

From the equivalence Theorem 9 and Eq. (4.26), we see
that hk is numerically equal to that from a full enumeration
mode, with both the selection base and the pattern length
being reduced by 1. Alternatively, hk (4.26) can be seen as
a new Hk function after the removal of an identified (part
of) pattern of length-1 from each tuple. In either interpreta-
tion, the reduction through hk is only partial, and that is why
hk is noted previously as a partial retainable and h̃k partial
removal function (Sect. 4.3). That means further reductions
are in need. For this, we call hk the “initial reduction” (Sect.
4.1) or the first-order reduction of Hk . In the same way, we
use h2

k, h3
k, . . . , hm

k (1 < m < α) to mean the higher-order
reductions.

For the second-order reduction h2
k , wewill follow the same

idea as that for hk but in a reversed direction. That is, we
reduce frequencies of longer patterns from that of the shorter
ones. It is because, if we keep the same way to define h2

k
and any other order hm

k as to define hk , it will then lead a
biased frequentness evaluation toward the longer patterns,
and particularly, hm

α = Hα will maintain forever. Secondly,
for the same reason as for hk reduction, once a short pattern
is determined, then the number of longer patterns and their
frequencies will decrease. Consider these aspects together,
we define:

h2
k+1 = hk − h2

k, (4.30)

which, however, can be rearranged as:

h2
k = hk − h2

k+1. (4.31)

Interestingly, (4.31) is of similar formulation of (4.2):
hk = Hk − hk+1, while the roles of h2

k and h2
k+1 are altered

from that of hk and hk+1. That is, h2
k+1 now represents the

partial retainable function, while h2
k being the partial removal

function h̃2
k . However, hereafter we shall not emphasize the

difference between the partial retainable and partial removal
functions but use hm

k (with any feasible m) to represent either
partial retainable or removal function for simplicity. The
basic reason for it is that partial retainable and removable
in a way are synonyms in this context. Particularly, notice
that the net frequency reduction represented by hk and h̃k is
the same (refer to Corollary 10). Furthermore, both hk and
h̃k curves are quasi-concave. These properties would extend
to the higher-order reductions due to the similar formulations
of hk and hm

k , as seen below.

h2
k = hk − h2

k+1 =
i=α∑

i=k

gi C
k−2
i−2 . (4.32)

The above can be easily proved by the application of
(4.27).

In the same way by applying (4.27) repeatedly, we can get
hm

k as below:

hm
k = hm−1

k − hm
k+1 =

i=α∑

i=k

gi C
k−m
i−m , 0 ≤ m < k ≤ i ≤ α.

(4.33)

Now, we need to notice that the gi distribution, the tuple
length i andα are originally constants,which thusmaintained
in the above derivations, but they should be changed with
every reduction done. With this consideration, we define:

k′ = k − m; (k > m)

i ′ = i − m; (i > m)

α′ = α − m; (α > m)

Meanwhile, the gi distribution will become new g′
i ′ dis-

tribution. We now rename hm
k as ĥm

k , and (4.33) becomes:

ĥm
k = ĥm

k′+m =
i ′=α′
∑

i ′=k′
g′

i ′C
k′
i ′ . (0 ≤ m < k′ ≤ α − m)

(4.34)

With the above reestablishment, interestingly, Hk become
a special case of (4.34) at m = 0, ĥm

k is thus a neat general
reduction model with the following merits.
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Firstly, similar to Hk and hk curves, there will be ĥm
k curve

for any order m. Due to the formulation similarity of the Hk

and ĥm
k , we can easily reach the following:

Corollary 11 After a reduction of any order m, the corre-
sponding ĥm

k curve, representing either the retainable or the
removable curve, is quasi-concave.

Secondly, sine ĥm
k is applicable to any order m, it can be

directly computed without a need of computing from ĥm−1
k

to ĥm
k , for instance.

Thirdly, the computation of ĥm
k s can be easily done with

the tabular approach as presented before for Hks. However,
we do not present a demonstration of it here due to space
limitations.

After having seen the beauties of the ĥm
k model, we notice

that the source of ĥm
k , the formula of hm

k (4.33) reads a uni-
form reduction of the same order m over every tuple of the
original dataset. It is just because (4.33) is an outcome of uni-
form derivation from Hk and hk . That is, the reduction theory
itself does not assume such uniformity, and in real applica-
tions, the reduction can be in different orders over different
tuples at a time. Even so, the pattern frequency distribution
curve will maintain to be quasi-concave. The reason for it
and how the above theoretical reduction model transfers to
the final selectiveminingmode shall become clear in the next
part.

4.8 The decomposition law and the final Hs
k curve

The discussions presented in the previous sections pave the
way toward the establishment of the theory on the final pat-
tern frequency distributions in the classic pattern mining. For
this, we first define the following:

Definition 4 The rational result pattern set in the classic
pattern mining is a set of “mathematically right” patterns
from a given dataset with the selective pattern generation
mode.

The primer reason for the above definition is that the clas-
sic dataset to mine is de-semantic (refer to Sect. 2.1).The
basic requirement for the rational result set is the satisfaction
of the equilibrium condition and other mathematical proper-
ties revealed in this paper and the last study [23], as well as
other criteria to be presented in a future work.

Definition 5 The final result pattern set is a complete
and concise set of not only mathematically right but also
connotationally correct patterns (when the dataset becomes
semantical) after reliability tests and evaluations, where the
completeness means no loss of a real pattern, while the con-
ciseness means redundancy free.

This paper shall only approach the rational result set since
the dataset used is de-semantical and since the reliability
theory on pattern mining is little-studied to date and can only
be discussed in other papers.

Now, for the rational result set, we use notation Hs
k to rep-

resent the “sub-cumulative frequency” of Φs
k , where Φs

k is
a collection of patterns of the same length k (Φs

k = {Zs
k}),

and the superscript s in both notations means the solution of
the classic pattern mining with the selective pattern genera-
tion mode. Accordingly, the curve connecting all the Hs

k s is
named as the Hs

k curve.
To reach Hs

k from Hk , notice that the nature of pattern
mining is to decompose each tuple of a dataset to recover
the merged patterns. In accordance, the Hk curve out of the
given dataset can be decomposed as well. The functions of
Hk (3.11) and ĥm

k (4.34) and Corollary 11 together imply a
decomposition law of the Hk curve, as seen below.

Proposition 2 (The decomposition law) The Hk curve over
a given dataset can be decomposed into at least two quasi-
concave curves.

The decomposition can be in different kinds:
The “block decomposition” is a simple horizontal decom-

position by dividing an original dataset DBo into b blocks,
where 1 ≤ b ≤ u = |DBo|, and each block contains one or
more tuples of the DBo. The grand Hk curve over the DBo
will then be decomposed into b separated quasi-concave H ′

k
curves from those blocks. As such, the block decomposi-
tion is lossless. That is, under the full enumeration mode,
no reduction of the total number of enumerable patterns and
their frequencies out of those blocks together.

The “general tuple partition-based decomposition” par-
titions the number (i) elements held in a tuple of a given
dataset into r groups, where 0 < r ≤ i (if r = 1, no parti-
tion). This operation transforms the full enumeration into a
reduced enumeration mode. For instance, with a tuple of 30
elements, over a million possible patterns could be enumer-
ated out, but the number will be reduced to less than 800 if
that tuple were partitioned into 3 tuples, each containing 10
elements.

The “theoretical reduction decomposition” is a special
case of the above decomposition represented by the ĥm

k
model, which partition and remove m elements uniformly
from each applicable tuple of a dataset, while the retained
ĥm

k curve maintains quasi-concave.
The “generalized theoretical decomposition” is the gener-

alization of the above model, such that different numbers of
elements could be removed from different tuples while the
retained Hk curve maintains quasi-concave. The simple rea-
son is that the retained dataset becomes a new dataset, from
which a new quasi concave Hk curve will come into being,
as specified in Theorem 2.
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Table 8 DBv T Pattern

t1 V1

t2 V2V8

t3 V2V6

t4 V1V6V8

t5 V1V2

t6 V5

t7 V4V 7

t8 V5

t9 V1V2

t10 V1V2

t11 V4V7

t12 V4V7

t13 V4V7

t14 V3V8

t15 V3V8

The “proper decomposition” is an evolution from the
generalized theoretical tuple partition-based decomposition,
such that a partition does not break a real pattern within a
tuple. It then ensures that the annulled patterns from the full
enumeration mode after the decomposition are truly redun-
dant, a very precious feature!

The “objective decomposition” is a recursive application
of the above proper decompositions until no partitioning of
each tuple is needed. Each group of elements after all the
partition operations is then a pattern and becomes a new tuple
of a virtual dataset DBv [23]. Such a pattern can also be
attached to the original dataset DBo, which then becomes
the DBv. In the end, the DBv becomes the redundance-free
result pattern set.

The above describes theway toward the expected selective
pattern mining approach.

Example 7 For a simple decomposition, the DBo of Table
1 in a case can be decomposed into three blocks of tuples:
{T1, T4}, {T2, T5, T6} and the rest in the third block.

For a proper decomposition, take tuple T2 = {V2, V4,

V7, V8} of that table, 15 patterns will be produced from
the full enumerationmode: {V2, V4, . . . , V4V7, . . . , V2V4V7,

. . . , V2V4V7V8}. If V4V7 is a real pattern, then a partition
of tuple T2 into {V2, V8} and {V4, V7} is a proper partition.
Resultantly, all the redundant patterns from the tuple are
gone, except only {V2, V8} is left to check if it is one or
two separate patterns.

Example 8 Table 8 is an example DBv extended from Table
1, where the first 10 tuples are those retained from Table 1
after related decompositions and removals, while tuple t11
contains that removed from T1 of Table 1, t12 from T2, t13
and t14 both from T5, and t15 from T10.

Note that the above example is for a demonstration pur-
pose only, so as for readers to get an impression of the
decomposition and the rational result set. However, the the-
ory and algorithm on how to render the decompositions is
another major work and can only be presented in a future
paper (the next section presents further reasons for this).

Another notice is that in real applications, the DBv may
not necessarily be implemented but put the results into Table
9 directly, for instance.

We now name the corresponding new gi distribution over
the final DBv as gs

i distribution. Since each tuple of the DBv
stores one and only one pattern, the gs

i distribution is exactly
the final Hs

k distribution! That is:

Hs
k = gs

i . (k = i) (4.35)

Meanwhile, the accumulative pattern frequency from the
DBv will be:

ws =
∑

k

Hs
k =

∑

k

gs
k = us = |DBv|. (4.36)

Notice we have defined Φs
k as a collection of the result

patterns of the same length k, while Z j
k being a pattern within

that collection. Then, as proved in [23] and stated in Sect. 2.2,
the probabilities of all patterns obtained from the selective
mining approach are directly additive and sum to 1. That is:

p(Z j
k ) = F(Z j

k )

ws
, p(Φs

k ) = Hs
k

ws
, and,

∑
p(Φs

k ) =
∑

k

∑

j

p(Z j
k ) = 1. (4.37)

For instance, from Table 8 the final gs
i thus the Hs

k dis-

tribution is (3, 11, 1), the p(Z j
k ) and p(Φs

k ) distributions are
all shown in Table 9.

As stated before, this paper is mainly on the probabil-
ity distributions in terms of collections (Φs

k )s rather than
individual patterns. For the shape of the probability p(Φs

k )

distribution, we have:

Theorem 10 The probability p(Φs
k ) distribution will be

quasi-concave and converge to the normal distribution anal-
ogously if the pattern lengths spread widely and the source
dataset becomes large.

Proof Notice that p(Φs
k ) comes from and is linear to Hs

k ,
they then share the same distribution shape. As such, for the
first part of the theorem, we only need to prove the quasi-
concavity of the Hs

k curve. The proof is directly reachable.
From the ĥm

k model and Corollary 11 that every ĥm
k curve is

quasi-concave after a reduction of some redundant patterns
and frequencies in any order m, so is the Hs

k curve since the
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Hs
k curve is just a special case with all redundant patterns

and their frequencies being removed.
As seen before, the semantics of the quasi-concavity

implies the fullness. The Hs
k quasi-concavity then rightly

lays a theoretical foundation for the “completeness” require-
ment for the final mining result set.

For the second part of the theorem, notice first that the
normal distribution function is quasi-concave [46]. The only
issue here is that it is formally a continuous probability den-
sity function, while pattern lengths are integers. However,
when the pattern lengths spread widely as given, it is rea-
sonable to analogize the p(Φs

k ) distribution to a continuous
distribution. It is why the word “analogously” is used in the
theorem. Notice also, in real pattern mining applications and
as given the dataset is large, so is the number of patterns.
As such, the p(Φs

k ) distribution will ultimately approach the
bell-shaped normal distribution, based on the central limit
theorem in probability theory [64]. Theorem 4.5 is then fully
proved. ��
Corollary 12 As long as the conditions of Theorem 10 hold,
the final Hs

k curve (hence the p(Φs
k ) distribution curve) from

the dataset will be quasi-concave and ultimately bell-shaped,
irrespective of the shape of the original gi distribution.

Notice that Theorem 10 and other theories presented so
far in this paper is based on ordinary gi distributions. The
above corollary and its proof as below thus peculiarly refer
to the case of unordinary gi distributions.

Proof Recall that an unordinary gi distribution is featured
with either the “island” or “cliff” exception or both, while the
latter is of amore negative effect than the former on the quasi-
concavity of the corresponding Hk curve (refer to Theorem
3 and its proof). However, with the objective decomposition
operations, those original long tuples each will be partitioned
into multiple short tuples and attached to the dataset, as seen
in Example 8. Ultimately, the “island” (if there is one) will
be moved out, and the “cliff” be filled up after finishing the
decompositions, considering that the pattern set and the orig-
inal dataset are large as given. Then, the central limit theorem
applies, and the result Hs

k and p(Φs
k ) distributions will fol-

low what is specified in Theorem 10. The corollary is then
proved. ��

The above corollary is a natural extension of Theorem 10
and delivers a general conclusion of the shape of the Hs

k and
p(Φs

k ) curves over every real gi distribution of a real large
dataset. It then justifies the ignorance of the unordinary gi

distribution in this paper, in addition to the space limitations.
Finally, recall the strict equilibrium condition at the initial

mining stage without considering a random walk (refer to
Sect. 2.2 and formula 2.4).

∑
(|Zi | ∗ F(Zi )) =

∑
b j , (4.38)

Table 9 The pattern probability distribution

Pattern (Z) F(Z j
k ) Hs

k p(Z j
k ) p(Φs

k )

V1 1 3 0.067 0.2

V5 2 0.133

V1V2 3 11 0.2 0.733

V2V8 1 0.067

V4V7 4 0.267

V3V8 2 0.133

V2V6 1 0.067

V1V6V8 1 1 0.067 0.067
∑

Ck = 8
∑ = 15

∑ = 15
∑ = 1

∑ = 1

where Zi is the i th pattern and b j is the length of tuple j of
an original dataset DBo.

Let Ct be the total number of elements of the original
dataset, then in Hk distribution,

Ct = ∑
b j = ∑

(i ∗ gi) = H1,
which implies, numerically (not semantically), all the pat-

terns in Hk with k > 1 are redundant since H1 has consumed
all the elements. It is another overfitting symptom of the full
enumeration mode.

Only the Hs
k distribution could satisfy (4.38).

Ct =
∑

i

(|Zi | ∗ F(Zi )) =
∑

k

Hs
k ∗ k. (4.39)

Notice that ws = ∑
k Hs

k defined in (4.36) has another
meaning. Refer to Fig. 1 and make use of the Hk curve there
to represent the Hs

k curve, in integrals, ws = ∑
k Hs

k means
the area enclosed by the Hs

k curve and the horizontal axis.
Then, Ct expressed in (4.39) can be interpreted alternatively
as the first-order moment of that area against the vertical
axis (k = 0) of the coordinate system. Since the Hs

k curve is
bell-shaped, it is (at least near) symmetrical to the central line
passing through the apex coordinate qs . As such, the moment
Ct = qs ∗ ws as well.

That is, qs can be obtained as:

qs = Ct

ws
. (4.40)

Accordingly, the longest pattern length, thus the longest
tuple length in DBv,

αs = 2qs . (4.41)

Theorem 10, Corollary 12, and the formulas (4.38)
through to (4.41) together form the conclusive results of this
paper.

Example 9 The p(Φs
k ) distribution from the results of Exam-

ple 8 is shown in the right column of Table 9. We see that
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the p(Φs
k ) distribution curve is to be quasi-concave but not

bell-shaped. It is just because the original dataset (Table 1)
is too small to meet the conditions of Theorem 10.

Interested readers can also verify formulas (4.38) through
to (4.41) with Example 8 and Table 9.

Examples 8 and 9 above demonstrate the new solution
for the classic pattern mining problem. The solution also
effectively remedies the central overfitting issue of the con-
ventional mining approaches. To see it better, Table 10
presents an overall, brief but striking comparison between the
full-enumeration-based and the selective approaches, with
their mining results from Table 1.

Notice that, rigorously speaking, the “closed set”
approach, as shown in the table, is essentially the same as the
preliminary full-enumeration approach. It is not only because
this approach produces the same S(Z) and s(Z) for a given
Z as that from the former, but also no previous article has
claimed those out of the closed set are false patterns but only
to use the closed set to represent the whole result set. There
even have studies and algorithms peculiarly to recover all the
patterns from the closed pattern set. Even so, Table 10 takes
account of only those closed patterns as its final result, but it
still does not get out of the overfitting problem much. Notice
that, although the closed approach reduces a big chunk of
the total number (Ck) of patterns, it does not significantly
reduce the number of higher frequent ones, as shown in the
last column of the table. Its reduction ability is thus not as so
strong as expected in terms of “frequent pattern” mining. As
we see, only the selective approach can achieve the aimed
reduction.

Readers can read out much more meaningful informa-
tion from the table, although the table is small, for instance,
the biased frequentness toward the shorter and the generated
patterns in previous approaches, with comparisons of the fre-
quentness of V1, V2, V5, and the like in different approaches
(with Table 9 together). The probability anomaly, a radical
factor of the overfitting, is clearly shown in the column

∑
sz .

Also, notice that even if we can obtain the number of patterns
properly from the selective mode, the probability anomaly
hence the overfitting issue would still happen if using the
conventional sz , as shown in the table.

The table also listed four other ratios to measure the
degrees of overfitting from different angles. We see that all
the ratios are consistent, and they could become meaning-
ful indicators in a future reliability study. Notice that, from
such a small dataset (Table 1), the overfitting ratios are up
to or over ten times. In empirical applications, they could be
over millions or more folds if the dataset size is in billions or
more since the larger the dataset, the more rapid increase of
the ratios [23].

Altogether, the theories and examples presented in this
paper fully address the importance of establishing the rational Ta
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mining theory and the approach ultimately toward min-
ing reliability. Previous approaches, however, have largely
ignored this goal butmainly paid efforts tomining algorithms
and efficiency.

5 A brief discussion

After the above theoretical explorations and their empirical
verifications, one may ask how to develop the theory into
practical mining instruments? The answer is that the theory
will play a vital role in effective patternmining, but this paper
could not present its empirical applications yet. It is due to
the space limitations and the need for the establishment of
other imperative theories to work together, in addition to the
mining reliability theory.

Notice that the rational solution of the classic pattern min-
ing is firstly a pure mathematic problem as analyzed in the
previous section. It is an exciting but challenging subject. For
this, we need to answer several fundamental questions, such
as: would there be only one ormultiple possible rational solu-
tions for a given dataset? If it is the latter, what solution(s)
by what criteria would be superior to the others such that
the final reliable solution is reachable? How to obtain such a
solution efficiently? And so on.

Among the above questions, a central issue is how to cor-
rectly and efficiently find out a proper partition (the objective
decomposition) of each tuple of a real dataset since there
will be Bn possible partitions of a tuple of length n, where
Bn = ∑n

k=0 Ck
n Bk , called the “Bell number,” [65] is much

more than exponential to the tuple length n with n > 4.
Notice that the maximal tuple length n of a real application
dataset could be in hundreds or thousands, while the number
of tuples of such a dataset could be in billions or trillions, or
even larger.

In all, only after well-establishment of all the required
fundamental theories could we meaningfully proceed to the
mining algorithm development and ultimately pursue effec-
tive practical mining.

6 Conclusions

In big data science, the classic frequent pattern mining as
the simplest mining model is both theoretical and practical
fundamental to real-world pattern mining. As such, thou-
sands of research articles on the classic mining have been
published for nearly 30 years to date, all peer-reviewed, but
none is reliable yet [23]. It is primarily due to the convention
that emphasizes the mining efficiency and the use of one’s
empirical mining results to prove one’s declared contribution
but not on the rationality or reliability of the mining results.
In other words, only after the establishment and the use of the
required criteria, including the pattern frequency distribution
and reliability theories, could the above convention become
workable.

This papermakes up the absent pattern frequency distribu-
tion theory. The theory results from a systematic exploration
of a set of laws andprinciples governing the pattern frequency
distributions from the full enumeration to the reduced pat-
tern generation mode and then to the rational mining results.
These laws and principles embody a bunch of theorems,
corollaries, and formulas, all with mathematical beauties. A
conclusive discovery is that the rational resultant Hs

k and
probability p(Φs

k ) distributions will be bell-shaped over any
large classic dataset. The findings presented in this paper
reflect the intrinsic properties of the classic datasets without
any exogenous input, such that every approach on the classic
pattern mining should observe, irrespective of what field the
dataset comes from.

Not limited to pattern mining itself, the study presented
in this paper also inspires some interesting rethinking and
proposals on set theory and combinatorics.

Of course, great future works are in need to reach reliable
classic pattern mining. These include the theory and algo-
rithm to render the selective pattern generation mode and the
mining reliability theory.
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Appendix: The detailed empirical results from the “Retail” dataset

Total number of elements n = 16470. Total number of tuples u = 88162. Longest pattern length α = 76.
The gi distribution:
3016 5516 6919 7210 6814 6163 5746 5143 4660 4086 3751 3285 28662620 2310 2115 1874 1645 1469 1290 1205
981 887 819 684 586 582 472480 355 310 303 272 234 194 136 153 123 115 112 76 66 71 60 50 44 3737 33 22 24 21
21 10 11 10 9 11 4 9 7 4 5 2 2 5 3 30 0 1 0 1 1 0 1

The Hk Series: (1) 908576 (2) 7164335 (3) 52502539 (4) 366817927 (5) 2447321444 (6) 15534598332
(7) 93307736462 (8) 527550301625 (9) 2796416534241 (10) 13863139450195 (11) 64204046715896
(12) 277757200264229 (13) 1.12312584494064E +15 (14) 4.24904654295735E +15 (15) 1.5058885990449E +16
(16) 5.00625023811958E+16 (17)1.56327472119759E+17 (18) 4.59121121980175E + 17 (19) 1.26976301242088E+
18 (20) 3.31067777753649E+18 (21) 8.14636975894685E+18 (22) 1.8935525717633E+19 (23) 4.16131440789675E+
19 (24) 8.65288386954046E+19 (25) 1.70361679656958E+20 (26) 3.17787016348576E+20 (27) 5.61949830792223E
+20 (28) 9.4248316680112E+20 (29) 1.49988185541216E+21 (30) 2.26577690430042E+21 (31) 3.2501290738274E
+21 (32) 4.42825143223911E+21 (33) 5.73212226482143E+21 (34) 7.05069716806149E+21 (35) 8.24219004470137E
+21 (36) 9.15769085268638E+21 (37) 9.67116815427317E+21 (38) 9.70768639718059E+21 (39) 9.26120299243453E
+21 (40) 8.39616377302037E + 21 (41) 7.23232941850291E +21 (42) 5.91772992838759E +21 (43)
4.59811839985694E+21 (44) 3.39150713519183E+21 (45) 2.37356853011541E+21 (46) 1.57537354482505E+21 (47)
9.91013257283473E +20 (48)5.9046404820075E +20 (49) 3.32957641309953E +20 (50) 1.77535631861495E +20
(51) 8.94240979386786E +19 (52) 4.25025368313273E +19 (53) 1.90382440924376E +19 (54) 8.0257650807726E +
18 (55) 3.17919252128806E+18 (56) 1.18129875755773E+18 (57) 4.10926627354641E+17 (58) 1.33528383786941E
+17 (59) 4.04304582589712E+16 (60) 1.13749193542012E+16 (61) 2.96417842579272E+15 (62) 712836643924391
(63) 157536096738717 (64) 31838940145963 (65) 5851270021055 (66) 971240578752 (67)144437457258 (68)
19056211853 (69) 2203389079 (70) 219831833 (71) 18542293 (72) 1285749 (73) 70375 (74) 2851 (75) 76 (76) 1

The Hk Quasi Concavity: + Increase, - decrease, = equality.
1 <> 2+ 3+ 4+ 5+ 6+ 7+ 8+ 9+ 10+ 11+ 12+ 13+ 14+ 15+ 16+ 17+ 18+ 19+ 20+ 21+

22+ 23+ 24+ 25+ 26+ 27+ 28+ 29+ 30 + 31+ 32+ 33+ 34+ 35+ 36+ 37+ 38+ 39− 40− 41−
42− 43− 44− 45− 46− 47− 48− 49− 50 − 51− 52− 53− 54− 55− 56− 57− 58− 59− 60− 61−
62 − 63 − 64 − 65 − 66 − 67 − 68 − 69 − 70 − 71 − 72 − 73 − 74 − 75 − 76−

The Hk Genuine Concavity: (Hk − (Hk−1 + Hk+1)/2 ≥ 0?)
Theoretic concavity domain = [33, 43]; exact = [33, 43], detailed as below:
1 <> 2 : (−19541222.5) 3 : (−134488592) 4 : (−883094064.5) 5 : (−5503386685.5) 6 : (−32342930621) 7 :

(−178234713516.5) 8 : (−917311833726.5) 9 : (−4398928341669) 10 : (−19637092174873.5) 11 : (−81606123141316)
12 : (−315907745564039) 13 : (−1.14027602667015E +15) 14 : (−3.84195937473746E +15)
15 : (−1.20968884716276E +16) 16 : (−3.56306766739083E + 16) 17 : (−9.8264340060926E +16) 18 :
(−2.53924120290146E +17) 19 : (−6.15136437337449E +17) 20 : (−1.39738860814738E +18)
21 : (−2.97673198863789E +18) 22 : (−5.94423120132421E +18) 23 : (−1.11190381275513E +19) 24 :
(−1.94585731725583E +19) 25 : (−3.1796247865032E +19) 26 : (−4.83687388760149E +19)
27 : (−6.81852607826247E +19) 28 : (−8.84326763010704E +19) 29 : (−1.04248180138614E +20) 30 :
(−1.09228560319354E +20) 31 : (−9.68850944423698E +19) 32 : (−6.28742370853074E +19)
33 : (−7.35203532886717E +18) 34 : (6.35410133000913E +19) 35 : (1.37996034327435E +20)
36 : (2.01011753199109E +20) 37 : (2.38479529339683E +20) 38 : (2.41500823826744E +20)
39 : (2.09277907334049E +20) 40 : (1.49397567551648E +20) 41 : (7.53825677989307E +19)
42 : (2.50601920766935E +18) 43 : (−5.65001319327722E +19) 44 : (−9.43363297943486E +19) 45 :
(−1.09871809893028E +20) 46 : (−1.06917348874388E +20) 47 : (−9.19055392294298E +19)
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48 : (−7.1521401095963E +19)49 : (−5.10421987211691E +19) 50 : (−3.36552377628212E +19) 51 :
(−2.05949864077324E +19) 52 : (−1.17286341842308E +19) 53 : (−6.22590686361234E +18)
54 : (−3.08295322609023E +18) 55 : (−1.4243393978771E +18) 56 : (−6.13760816763625E +17) 57 :
(−2.46486943317692E +17) 58 : (−9.21501590198654E +16) 59 : (−3.20211933115998E +16)
60 : (−1.03223989881807E +16) 61 : (−3.07969957327008E +15) 62 : (−848020617341325)
63 : (−214801695296460) 64 : (−49854743233923) 65 : (−10553820341302.5) 66 : (−2026613160404.5) 67 :
(−350710938044.5) 68 : (−54264211315.5) 69 : (−7434632764) 70 : (−891133853) 71 : (−92016498) 72 :
(−8020585) 73 : (−573925) 74 : (−32374.5) 75 : (−1350)

The Rk Series:
0.21027292525152.9 0.297094051410328 0.382831246282321 0.463316718039126 0.536416236147605

0.600644667263741 0.65552176787858 0.701570924935985 0.739920275015639 0.771879594163558
0.798676329287781 0.82134661868907 0.840718401553246 0.857434446016042 0.871986691039956
0.884749696089944 0.896009184273812 0.905984998255989 0.914848923844976 0.922738141516824
0.929765099200748 0.936024549137197 0.941598411268332 0.94655903067817 0.950971295213339
0.954893979352975 0.958380588604126 0.961479900011198 0.964236331011297 0.96669022077285
0.968878073679284 0.970832791317424 0.972583904574083 0.974157808823637 0.975578000710482
0.976865313167724 0.978038144975912 0.979112681618661 0.980103104973037 0.981021790211479
0.981879489047814 0.98268549907259 0.983447819379726 0.984173293000019 0.984867736850611
0.985536060009938 0.98618237115967 0.986810076020608 0.987421965565713 0.988020295733908
0.988606859302998 0.989183050515657 0.989749922993555 0.990308241423762 0.990858527459561
0.991401100244955 0.991936111947395 0.992463578665651 0.992983407067619 0.993495417104725
0.993999361143785 0.994494939852474 0.994981815169571 0.995459620685058 0.995927969747206
0.996386461603664 0.996834685870954 0.997272225611996 0.997698659284314 0.998113561803096
0.99851650494359 0.998907057287231 0.999284783895796 0.9996492458786391

The Rk Monotonic: + Increase, - decrease, = equality.
= 1+ 2+ 3+ 4+ 5+ 6+ 7+ 8+ 9+ 10+ 11+ 12+ 13+ 14+ 15+ 16+ 17+ 18+ 19+ 20+ 21+

22+ 23+ 24+ 25+ 26+ 27+ 28+ 29+ 30 + 31+ 32+ 33+ 34+ 35+ 36+ 37+ 38+ 39+ 40+ 41+
42+ 43+ 44+ 45+ 46+ 47+ 48+ 49+ 50 + 51+ 52+ 53+ 54+ 55+ 56+ 57+ 58+ 59+ 60+ 61+
62 + 63 + 64 + 65 + 66 + 67 + 68 + 69 + 70 + 71 + 72 + 73 + 74 + 75+

The accumulative frequency w0 = 1.08160582031538E+23
The sum of odd length pattern frequencies Hodd = 5.4080291015769E+22
The sum of even length pattern frequencies Heven = 5.4080291015769E+22
The hk Series:
(1) 88162 (2) 820414 (3) 6343921 (4) 46158618 (5) 320659309 (6) 2126662135 (7) 13407936197 (8) 7989980

0265 (9) 447650501360 (10) 2348766032881 (11) 11514373417314 (12) 52689673298582 (13) 225067526965647
(14) 898058317974992 (15) 3.35098822498236E +15 (16) 1.17078977654666E +16 (17) 3.83546046157292E +16
(18) 1.1797286750403E + 17 (19) 3.41148254476145E+17 (20) 9.28614757944738E+17 (21) 2.38206301959175E+
18 (22) 5.7643067393551E+18 (23) 1.31712189782779E+19 (24) 2.84419251006897E+19 (25) 5.8086913594715E+
19 (26) 1.12274766062243E +20 (27) 2.05512250286333E +20 (28) 3.56437580505891E +20 (29) 5.86045586295229
E+20 (30) 9.13836269116928E+20 (31) 1.35194063518349E+21 (32) 1.8981884386439E+21 (33) 2.53006299359521
E+21 (34) 3.20205927122623E+21 (35) 3.84863789683527E+21 (36) 4.3935521478661E+21 (37) 4.76413870482027
E +21 (38) 4.90702944945289E +21 (39) 4.80065694772769E +21 (40) 4.46054604470683E +21 (41) 3.93561772831
354E+21 (42) 3.29671169018937E+21 (43) 2.62101823819822E+21 (44) 1.97710016165872E+21 (45) 1.414406973
53311E+21 (46) 9.59161556582305E+20 (47) 6.1621198824275E+20 (48) 3.74801269040722E+20 (49) 2.156627791
60028E+20 (50) 1.17294862149926E+20 (51) 6.02407697115692E+19 (52) 2.91833282271095E+19 (53) 1.3319208
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6042178E+19 (54) 5.71903548821977E+18 (55) 2.30672959255284E+18 (56) 8.72462928735225E+17 (57) 3.088358
28822501E+17 (58) 1.02090798532141E+17 (59) 3.14375852548001E+16 (60) 8.99287300417102E+15 (61) 2.38204
635003018E+15 (62) 582132075762540 (63) 130704568161851 (64) 26831528576866 (65) 5007411569097 (66) 84385
8451958 (67) 127382126794 (68) 17055330464 (69) 2000881389 (70) 202507690 (71) 17324143 (72) 1218 150 (73)
67599 (74) 2776 (75) 75 (76) 1

The hk Quasi Concavity: + Increase, - decrease, = equality.
1 <> 2+ 3+ 4+ 5+ 6+ 7+ 8+ 9+ 10+ 11+ 12+ 13+ 14+ 15+ 16+ 17+ 18+ 19+ 20+ 21+

22+ 23+ 24+ 25+ 26+ 27+ 28+ 29+ 30 + 31+ 32+ 33+ 34+ 35+ 36+ 37+ 38+ 39− 40− 41−
42− 43− 44− 45− 46− 47− 48− 49− 50 − 51− 52− 53− 54− 55− 56− 57− 58− 59− 60− 61−
62 − 63 − 64 − 65 − 66 − 67 − 68 − 69 − 70 − 71 − 72 − 73 − 74 − 75 − 76−

The hk Genuine Concavity: (hk − (hk−1 + hk+1)/2 ≥ 0?)
Concavity domain = [33, 43], detailed as below:
1 <> 2 : (−2395627.5) 3 : (−17145595) 4 : (−117342997) 5 : (−765751067.5) 6 : (−4737635618) 7 :

(−27605295003) 8 : (−150629418513.5) 9 : (−766682415213) 10 : (−3632245926456) 11 : (−16004846248417.5) 12 :
(−65601276892898.5) 13 : (−250306468671140) 14 : (−889969557999009) 15 : (−2.95198981673845E +15) 16 :
(−9.14489865488914E+15) 17 : (−2.64857780190192E+16) 18 : (−7.17785620419068E+16) 19 : (−1.82145558248
24E +17) 20 : (−4.3299087908921E +17) 21 : (−9.64397729058168E +17) 22 : (−2.01233425957972E +18) 23 :
(−3.93189694174449E+18) 24 : (−7.18714118580676E+18) 25 : (−1.22714319867515E+19) 26 : (−1.95248158782
805E +19) 27 : (−2.88439229977343E +19) 28 : (−3.93413377848903E +19) 29 : (−4.90913385161801E +19) 30 :
(−5.51568416224334E +19) 31 : (−5.407171869692E +19) 32 : (−4.28133757454501E +19) 33 : (−2.0060861339
8568E + 19) 34 : (1.27088260109896E + 19) 35 : (5.08321872891022E + 19) 36 : (8.71638470383339E + 19) 37 :
(1.13847906160774E +20) 38 : (1.2463162317891E +20) 39 : (1.16869200647833E +20) 40 : (9.24087066862158E +
19) 41 : (5.69888608654323E +19) 42 : (1.83937069334968E +19) 43 : (−1.5887687725827E +19) 44 : (−4.0612444
2069455E + 19) 45 : (−5.37238855874031E + 19) 46 : (−5.6147924305625E + 19) 47 : (−5.07694245687632E +
19) 48 : (−4.11361146606667E + 19) 49 : (−3.03852864352963E + 19) 50 : (−2.06569122858727E + 19) 51 :
(−1.29983254769484E +19) 52 : (−7.59666093078404E +18) 53 : (−4.13197325344678E +18) 54 : (−2.0939336101
6557E +18) 55 : (−9.8901961592466E +17) 56 : (−4.35319781952443E + 17) 57 : (−1.78441034811182E +
17) 58 : (−6.80459085065098E + 16) 59 : (−2.41042505133557E + 16) 60 : (−7.91694279824414E + 15) 61 :
(−2.40545618993661E + 15) 62 : (−674243383333473) 63 : (−173777234007852) 64 : (−41024461288608) 65 :
(−8830281945315) 66 : (−1723538395987.5) 67 : (−303074764417) 68 : (−47636173627.5) 69 : (−6628037688) 70 :
(−806595076) 71 : (−84538777) 72 : (−7477721) 73 : (−542864) 74 : (−31061) 75 : (−1313.5)
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