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Abstract
In this article, we propose a systematic approach for fire station location planning. We develop machine learning models,
based on Random Forest and Extreme Gradient Boosting, for demand prediction and utilize the models further to define a
generalized index to measure quality of fire service in urban settings. Our model is built upon spatial data collected from
multiple different sources. Efficacy of proper facility planning depends on choice of candidates where fire stations can be
located along with existing stations, if any. Also, the travel time from these candidates to demand locations need to be
taken care of to maintain fire safety standard. Here, we propose a travel time-based clustering technique to identify suitable
candidates. Finally, we develop an optimization problem to select best locations to install new fire stations. Our optimization
problem is built upon maximum coverage problem, based on integer programming. We further develop a two-stage stochastic
optimization model to characterize the confidence in our decision outcome. We present a detailed experimental study of our
proposed approach in collaboration with city of Victoria Fire Department, MN, USA. Our demand prediction model achieves
true positive rate of 80% and false positive rate of 20% approximately. We aid Victoria Fire Department to select a location
for a new fire station using our approach. We present detailed results on improvement statistics by locating a new facility, as
suggested by our methodology, in the city of Victoria.

Keywords Extreme gradient boosting · Facility planning · Fire risk · Optimization · Random forest · Risk prediction

1 Introduction

Urban fires adversely affect the socio-economic growth and
ecosystem health of any community. In 2019, the National
Fire Protection Association (NFPA) reported an estimated
loss of $14.8 billion and 3700 civilian fire deaths in the
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U.S. [1]. According to the report, on average, a fire depart-
ment responded to a fire incident every 24s and in total,
local fire departments responded to an estimated 1.3 million
fires. Thus, building a safe community equipped with ade-
quate fire safety measures is one of the most essential and
challenging tasks of any fire department and local govern-
ment. However, it is very difficult to quantify the measure
of safety, which in turn results in complexity in determin-
ing if additional fire stations are required to be installed.
This decisionmust be substantiatedwith all necessary spatio-
temporal data, gathered from various different sources, such
as accurate details of historical emergency incidents from the
fire department, future patterns of land use from local gov-
ernment, parcel information from geographic information
system (GIS) (maintained by both US Census Bureau and
local authorities) and demographic information from the US
Census Bureau. Combining all of this information together
is a demanding task, due to differences in storage architec-
tures across different sources. For example, the address of
a real property is documented with different abbreviations
and acronyms in different data sources, which makes the
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task of joining the data sets very difficult. Also, the accu-
racy of the information on historical fire incidents is poor
and exacerbated by incompleteness. A few examples include
address mismatches, missing dates, and missing timestamps.
Further, even if the requirement can be empirically justified
using historical spatio-temporal data, the determination of
locations for new facilities is a demanding task that must be
strategically chosen based on the performance of the exist-
ing facilities as well as future community growth and fire risk
projections. Such prediction of future service demand is very
difficult due to its dependency on many different underlying
factors. Moreover, a correlation between the predictive fea-
tures makes the task even more challenging. We emphasize
that quantifying public safetymeasures, and embedding them
to devise a systematic approach to locate new fire stations is
limited in the existing literature. Moreover, the efficacy of
such approaches from a data-mining perspective, including
both confidential and publicly available datasets, is unex-
plored in existing works.

To this end, we provide an approach that utilizes both tem-
poral and spatial data to select locations for future fire stations
in urban settings. Ourmethodology uses a RandomForest [2]
and ExtremeGradient Boosting [3] machine learningmodels
and a Density-based spatial clustering of applications with
noise (DBSCAN) algorithm [4]. For our experimental case
study, we partneredwith the City ofVictoria FireDepartment
(VFD), MN, USA. We apply our proposed methodology to
select the location of a future fire station for VFD. Note that
our approach is not specific toVFDandcanbeused to analyze
candidate locations for any urban area. The main contribu-
tions of this article are summarized below:

1. Predictive demandmodel and service quality assessment:
We propose two machine learning (ML) models, based
on Random Forest (RF) and Extreme Gradient Boost-
ing (XGBoost), to predict future service demand of urban
areas from spatial data.We present a detailed performance
comparison between the models to choose the superior
one. The chosen ML model is utilized to define a gen-
eralized service quality index (SQI ) that measures the
quality of service provided by existing fire stations at any
demandpoint.Wepropose to use theSQI as a newnational
fire service standard to assess the performance of any fire
facility, which can be tailored to a specific locality. We
also present a travel time-based DBSCAN algorithm to
identify candidate locations for new facilities. Our pro-
posed methodology can be used to predict and analyze
the performance of any fire department to improve the
quality of service.

2. Optimization model for facility location selection: We
propose an optimization model, based on SQI estimates,
to select future fire stations. Our optimization model
accounts for spatial coverage, service prioritization, and

service redundancy, thus presenting an end-to-end strate-
gic approach for fire station location selection. Further, we
propose a two-stage stochastic optimization model utiliz-
ing our demand prediction model and travel-time base
DBSCAN algorithm. While the SQI-based optimization
model establishes the utility of our proposed SQI to be
used as a new standardized index, the stochastic optimiza-
tionmodel establishes confidence in the decision outcome
of our proposed models, thus providing a comprehensive
overview of the merits of fire station location selection
methodology.

3. Impact on the city of Victoria Fire Department: The work
is done in collaboration with Victoria Fire Department
(VFD). VFD utilizes the detailed performance analysis
of the existing fire station to properly allocate resources
to improve the quality of service. It can also help VFD
to identify properties and locations which require special
attention in terms of fire safety measures. The predictive
models and the facility location study are used by VFD
for crafting the initial proposal for the new fire station to
be approved by the local authorities.

2 Related work

Systematic approaches for selecting sites for critical infras-
tructure have been widely studied in the literature [5]. In
[6], a bi-objective spatial optimization model is proposed to
locate an urban fire station by minimizing the number of sta-
tions to be sited along with their distances from the service
demand clusters to ensure a required area coverage. A sim-
ilar approach is applied in [7] to prove the efficacy of such
algorithms in guiding local government authorities to select
a location for a new fire station. A multi-criteria decision-
making approach for the planning of emergency facilities,
tuned with GIS information, is proposed in [8]. Site selec-
tion based on the spatial efficiency of existing and future
facilities is studied extensively in many prior works [9–11].
A GIS-based approach for emergency facility location is the
primary focus of [12,13]. Various optimization models to
solve facility location problems, both in the context of cost
and service coverage optimizations, are widely studied in
the literature [14–16]. In [17], an optimization methodology
based on response time of the fire stations is proposed to
select new facilities.

However, when there exists a constraint on the maximum
number of facilities that can be sited, determining theweights
on multiple options in decision-making can be challenging.
Here, prioritization of service demand locations based on
future risk prediction can be helpful [18]. Fire risk prediction
has been a primary focus of many researchers; however, this
work has mostly pertained to forest and wild land fires [19–
23]. [24] presents an extensive study on the effect of climate
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on fire prediction along with an analysis of the impact of
different seasons on burned area from global perspective. In
[25], the authors propose a neural network model to predict
forest fires with spatio-temporal data.

Urban fire risk prediction has received little attention
despite the critical nature of such applications. [26] provides
a data-driven approach to predict commercial and residential
building fires. In [27], a Random Forest algorithm is used to
generate predicted fire risk scores to aid the local fire depart-
ment in identifying properties that require fire inspections.
Such data-driven predictive models are widely used in many
prior works [28–31]. [32] proposes an interesting approach
to the prediction of fire incidents that is based on a deep neu-
ral network. Here, the authors use spatio-temporal data from
GIS to learn a generative model. However, the application
of these models to locate new facilities has not been exten-
sively studied. Moreover, other critical aspects of fire rescue
service, such as response time [33], need to be combinedwith
prediction models. In summary, a unified approach, to select
new fire station locations in urban settings, that considers
fire service demand predictions and temporal variables with
proper characterizations of service priorities and redundan-
cies is limited in the literature.

To this end, we propose an end-to-end fire station loca-
tion selection methodology that respects predicted demand
as well as travel time. We propose a Random Forest (RF)
model to predict demand for urban fire and emergency ser-
vices demand and combine it with travel time information
to assess service quality. We quantify the quality of service
using our proposed Service Quality Index and further utilize
it to identify candidate locations for additional fire stations.
Finally, an optimization model is presented to select the best
option(s) among the candidate locations. In summary, we
devise a systematic approach for locating a new fire station
usingGISand temporal data.Our demandpredictionmodel is
inspired by [26,27]; however, instead of restricting themodel
to residential and commercial buildings,we consider all types
of properties present in a typical city. We apply our proposed
methodology to aid VFD with site selection for the new fire
station in the city of Victoria. Historical fire incident data is
provided by VFD which is augmented with GIS and other
demographic data collected from multiple different sources.
We substantiate the efficacy of our method with extensive
experimental results.

The rest of the paper is organized as follows: The pro-
posedSQI and the demandpredictionmodels are explained in
Sect. 3. Section 4 describes the algorithm to choose suitable
candidate locations for new station installation. Two opti-
mization problem formulations, to select new locations from
the candidates, are introduced in Sect. 5. The efficacy of our
proposed approach is illustrated with a detailed case study in
Sect. 6. Section 7 presents the concluding remarks.

3 Service quality assessment

The service quality of existing fire stations is an important
indicator that influences the choice of candidate locations for
future facilities. However, in the context of urban fire safety,
there is no standard approach to assess the service quality
that considers demographic factors such as age of residents,
income, property types, and population density. Apart from
demographic factors, another important aspect to measure
fire safety is travel time from the responding station to the
incident location.A longer travel time can result in significant
damage or even loss of life. In this context, we propose a
generalized service quality index for each propertywithin the
service area of a fire station, considering both demographic
factors and travel time, as described in the following sections.

3.1 Service quality index

LetJ denote the set of demand locations (properties) and let
I denote the set of fire stations within the city boundary. We
define the Service Quality Index (SQI ) of a demand location
j ∈ J with respect to a fire station i ∈ I as follows:

SQI ji :=P( j)T̂ ( j, i), (1)

where P( j) ∈ [0, 1] denotes the probability of demand
request at a location j and T̂ ( j, i) denotes the normalized
travel time from fire station i to the demand location j . The
normalized travel time can be calculated as follows:

T̂ ( j, i) = Tactual( j, i)

Tnorm
, (2)

where Tnorm is a normalization factor to ensure T̂ ( j, i) ∈
[0, 1] and Tactual( j, i) is the actual travel time from fire sta-
tion i to demand location j which can be calculated using
GIS. A lower value of SQI ji indicates better service. Note
that, SQI ji depends on the probability of demand request
P( j) of property location j , which usually depends on fac-
tors like local population density, property type (residential,
business etc.), property age, and demographic factors such
as residents’ age and median income. Moreover, SQI ji also
considers the response time for emergency personnel to reach
a location, a crucial factor in quality of service [34].

Remark 1 In the trivial case of no existing fire station, T̂ ( j, i)
is undefined. Here, one can take SQI ji values to be equal to
P( j) and the rest of the analysis follows.

Remark 2 The trade-off between low demand probability at
a location with a long travel time from i and high demand
probability at a location with a short travel time from i
ensures a balance between area coverage and emphasis on
demand request. However, the interpretation of better (or
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worse) service quality can be tuned per the facility planners’
requirements as we describe next.

The availability of multiple fire stations ideally enhances
the service quality at a location. However, it is very difficult
to characterize, quantify, and predict the availability status
of all the stations at the time of demand request. Also, note
that the probability of a demand request usually depends on
demographic and property characteristics, and hence is inde-
pendent of the location of fire stations. Therefore, we factor
out the dependency on a particular fire station by taking the
minimum of SQI ji values over all fire stations i ∈ I. There-
fore, the Service Quality Index of a property j can be written
as

SQI ( j) = min
i∈I

SQI ji . (3)

The interpretation of better/worse service quality can be
done by categorizing the demand locations into low,medium,
and high quality locations based on their SQI values. Let the
sets Jl ,Jm,Jh ⊆ J denote the set of indices of the demand
locationswith low,medium and high quality of servicewhich
are defined as follows:

j ∈ Jh, if 0 ≤ SQI ( j) < τl ,

j ∈ Jm, if τl ≤ SQI ( j) < τh,

j ∈ Jl , if τh ≤ SQI ( j) ≤ 1, (4)

where τl , τh are user-defined constants in R with 0 < τl <

τh ≤ 1. Note that, the choice of τl and τh provides an
interpretation of fire service quality at a location based on
planning constraints. For example, one can calculate the val-
ues of τl , τh based onmaximum allowable travel time (which
depends on the type of fire station [34]) and an acceptable
demand request probability that is to be considered as high
demand. Thus, our objective is to identify candidate locations
to install additional fire stations such that the SQI values of
j ∈ Jl are improved.

3.2 Demand predictionmodel

Calculation of SQI requires a fire service demand predic-
tion model. In addition to the ability to accurately predict
the probability of a service request for a future emergency
event, it is also important to gain insights into the predictors
and their effects on service demand. Such information can be
utilized for resource planning and staff management. Here,
tree-basedmodels are suitable as they can be used to quantita-
tively assess the importance and the effect of the predictors.
We propose to use Random Forest (RF) [2] and Extreme
Gradient Boosting (XGBoost) [3] algorithms, along with a
detailed performance comparison, to predict the probability

Table 1 Categorization of properties

Category Included property types

Residential 1 − 3 units residential properties, apartments
with 4+ units

Commercial Warehouses, retail outlets, factories etc.

Institution Churches, schools, Govt. offices, police
stations etc.

Park Parks, lakes, wetlands, agricultural lands, golf
courses, vacant lands etc.

of a demand request P( j) for each property j ∈ J . In build-
ing the prediction models, we consider various demographic
factors and property features as described in Table 2. Note
that service demand prediction, with an objective of fire sta-
tion location selection, is a static analysis. Unlike short-term
demand prediction models based on online learning algo-
rithms [35] in a dynamic environment, our model requires
long-term demand prediction. Thus we include only spatial
factors in our prediction models. The temporal factors, gov-
erning the dynamic nature of service demand, are analyzed in
[36] to aid VFD in resource planning and staff management.
The properties included in our analysis are categorized into
four categories based on their usage as shown in Table 1. For
our case study, the types of land use are obtained from [37].

The predictor and response variables of our prediction
model are described in Table 2.

Remark 3 The age of a property is calculated from the year it
is built and the year when an incident is reported. For exam-
ple, if a property built in 2010 reports a fire event in 2015, then
‘Age’= 5. Multiple events at the same location at different
points in time are treated separately. For the properties with
no reported incidents, the age is calculated with reference to
the year of writing the article (year 2021).

Once the prediction models are built, we obtain the demand
request probabilities P( j) using the class probability esti-
mates of the samples corresponding to the positive labeled
class (class of samples with response variables labeled as 1;
Refer to Table 2). We present the detailed performance mea-
sures of our prediction models and variable importance in
Sect. 6.2 for our case study.
Upon finding the demand request probabilities, it remains to
compute travel time from a fire station to a property in order
to completely characterize SQI values for each property.
We calculate travel time using the Open Street Map-Based
Routing Service (OSRM) package [38] in R [39] with traffic
flow disabled to account for the relaxed traffic rules for fire
service vehicles. Once the SQI values are calculated, we
need to identify suitable geographic locations for additional
fire stations. In the next section, we discuss our proposed
methodology to select such candidate locations.
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Table 2 Demand prediction models feature description (Variable type
notation: P ≡Predictor, R ≡ Response)

Variable name Type Range Description

Land value P R
+ Estimated land

value (×$10, 000).

Land size P R
+ Land size (acres).

Num units P N Number of units

in a property.

Prop. Age P N Age of property

at time of incident.

Resi. Age P R
+ Residents’ Median

age in the block

where the property

is located.

Population P R
+ Average population

of the block where

property is located.

Prop. Type P 0 − 3 0 ≡ residential,

(factor) 1 ≡ commercial

2 ≡ institution,

3 ≡ park

Demand R 0 − 1 1 if any

(binary) incident occurred,

0 otherwise

4 Determining candidate locations

The probability of a demand request depends on demo-
graphic and property characteristics and is independent of
the location of a fire station. Thus, from (1), we note that
improvement of SQI values can be achieved by placing addi-
tional fire stations in close proximity to areas with properties

having high SQI values (poor service) with respect to the
existing fire stations. Let Ic denote the index set of candidate
locations for new fire stations. We aim to find out the geo-
graphic locations of the candidate fire stations ic ∈ Ic such
that SQI ( j), j ∈ Jl , is minimized (service becomes better).
In this context, our objective is to locate high density clus-
ters of properties in Jl . Once the clusters are found, we can
choose to place the new fire stations within the clusters by
considering other qualitative features such as road accessibil-
ity, terrain condition, and availability of vacant space. Note
that to improve the fire service, finding the clusters that have
high densities of properties j ∈ Jl , should be based on the
travel time rather than Euclidean distance (which is not suit-
able for measuring the distance between points on a sphere)
or haversine distance. For example, even if two properties are
close to each other in terms of their longitude and latitude,
the time to travel from one to another may be large due to var-
ious factors such as road inaccessibility or traffic congestion.
Moreover, the existence of outliers (for example, a few prop-
erties far from the main city), and arbitrarily shaped clusters
are well-known problems in spatial clustering that cannot
be handled by centroid-based clustering algorithms such as
K-Means [40]. Another challenge associated with clustering
algorithms such as K-Means is the required specification of
the number of clusters. Although there exist various methods
to empirically find the optimal number of clusters [41], they
are not always reliable in spatial clustering [4]. Therefore,
we propose to use the Density-based spatial clustering of
applications with noise (DBSCAN) algorithm [4] with dis-
tancemeasure replacedwith travel time.We group properties
based on the travel time between pairs of properties. Let n
denote the total number of properties inJl . We first compute
the travel time between each pair of properties inJl using the
OSRMpackage [38] in R [39]. The travel time information is

Fig. 1 Catchment area with one
existing and two candidate
stations. Circles with Tmax
radius denote areas that can be
reached from respective stations
within Tmax time

Tm
ax

T
m
ax

Tmax

Candidate station 1

Candidate station 2

Existing station

Catchment area of candidate station 1

Catchment area of candidate station 2
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stored in a symmetric matrix T ∈ R
n×n+ , where each element

T [i, j] denotes the actual travel time from i to j , Tactual(i, j).
The longitude and latitude values of each property are stored
in P ∈ R

n×2 such that the i th row of P corresponds to the
i th row of T . Our travel time-based DBSCAN requires two
parameters, ε and δ. ε denotes the ε-neighborhood of a prop-
erty j , which is defined as the set {k ∈ Jl | T [k, j] ≤ ε}.
δ denotes the minimum number of properties required to be
present in the ε-neighborhood of j to be considered a part of
a cluster. Note that in travel time-based DBSCAN, the num-
ber of clusters is found during runtime and is not required
to be specified a priori. Once the clusters are obtained, we
choose to locate the candidate fire stations close to the cen-
troids of the clusters (for our case study, we account for the
factors such as availability of vacant space based on the future
city development plan [37], road accessibility, terrain, etc.)
The travel time-basedDBSCAN algorithm is shown inAlgo-
rithm 1. Next, we present the optimization model to select
the best location(s) among the candidate sites.

Algorithm 1: Finding Candidate Locations

Function FindCandidate (P ∈R
n×2, T ∈R

n×n,ε,δ):
cluster_id ← 0; outlier ← −1;
for i = 1 to n do Ln[i] ← unde f ined;
for i = 1 to n do

if Ln[i] �= unde f ined then continue;
N ← { j : T [i, j] ≤ ε}
if | N |< δ then

Ln[i] ← outlier ;
continue;

end
cluster_id ← cluster_id + 1;
Ln[i] ← cluster_id;
Sn ← {s : s ∈ N, s �= i};
foreach j ∈ Sn do

if Ln[ j] = outlier then
Ln[ j] ← cluster_id;

end
if Ln[ j] �= unde f ined then continue;
N ← {k : T [ j, k] ≤ ε};
Ln[ j] ← cluster_id;
if | N |< δ then continue;
Sn ← Sn ∪ N;

end
end
for c = 1 to cluster_id do

C f [c] ← centroid({P[k, :] : Ln[k] = c});
end

return C f ;

5 Fire station location selection

Installation of new fire stations along with existing facilities
can cause the service areas of the fire stations to overlap. It
is desirable to locate new fire stations in such a way that

the overlap of service areas is minimized and the aggre-
gated coverage area is maximized. In this context, we first
introduce the concept of catchment area and then formu-
late an optimization problem utilizing the SQI values and
the catchment areas of each candidate location, to select
the best location(s) among the candidates to install new
fire station(s). Further, in a facility planning model, involv-
ing demand probabilities, it is required to characterize the
stochasticity of decision outcome. Therefore, we propose a
two-stage stochastic optimization formulation, based on a
probabilistic reward function, to analyze the stochastic per-
formance of our model. Note that, both of our proposed
optimization formulations can be utilized to select the best
location(s) to install new fire station(s) while the two-stage
stochastic optimization model provides more insight into the
confidence in the decision.

5.1 Catchment area

The fire service in a city usually maintains a performance
bound on the time required to travel from the station to
the incident location. The bound depends on the type of
fire station [34] and the local government. Let Tmax denote
the specified bound on the travel time. With this constraint,
the candidate locations of new fire stations ic ∈ Ic should
allow the number of demand points j ∈ J for which
Tactual( j, ic) ≤ Tmax to be maximized. Essentially, the catch-
ment area of a candidate location ic includes properties j ∈ J
that cannot be accessed fromany existing station i ∈ I within
Tmax but can be accessed from ic within the specified travel
time limit of Tmax.An illustrative example of catchment areas
with one existing fire station and two candidate fire stations
is shown in Fig. 1.

In this example, the stations are located at the center of
circles covering areas that can be reached within Tmax units
of time from the center. Note that the catchment areas of the
candidate stations are the areas that do not overlap with the
existing station. To ensure good area coverage along with
SQI improvement, we propose to place the future stations
within the cluster of high SQI properties that cover the max-
imumnumber of properties within their respective catchment
areas. In the next section, we present the optimization model.
It is derived from the maximum area coverage problem [42].

5.2 SQI-based optimization problem formulation

The best locations for future fire stations are those that max-
imize the number of properties with high SQI (poor service
by the existing fire stations) within their respective catch-
ment areas. A property with higher SQI (poorer service by
existing fire stations) is givenmore priority relative to a prop-
erty with lower SQI (better service by existing fire stations).
Therefore, we propose to weigh the properties according to
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their SQI values. Let us assume that it is required to locate at
most p number of additional fire stations. For each candidate
location i ∈ Ic we consider a binary decision variable xi . It
takes a value of 1 if candidate location i is selected and 0 oth-
erwise. For each property j ∈ J we consider another binary
decision variable y j which takes a value of 1 if that prop-
erty is within the catchment area of any candidate location
i ∈ Ic, and 0 otherwise. For each property j , N j denotes
the set of candidate stations whose catchment areas cover
that property. In other words, the property j can be reached
within maximum allowable travel time from any of the can-
didate locations in N j . Our objective is to obtain values for xi
and y j that maximize the weighted sum

∑
j∈J SQI ( j)y j .

Hence, our proposedweightedmaximumcoverage optimiza-
tion problem can be stated as follows:

maximize
∑

j∈J
SQI ( j)y j (5)

subject to
∑

i∈N j

xi ≥ y j , for all j ∈ J , (6)

∑

i∈N
xi ≤ p, (7)

xi ∈ {0, 1} for all i ∈ Ic, (8)

y j ∈ {0, 1} for all j ∈ J , (9)

where

J = set of all demand locations within the city,

Ic = Set of candidate fire stations,

p = Number of fire stations to be located,

T̂ ( j, i) = Normalized travel time from fire station i,

to demand location j,

T̂max = Normalized maximum allowable travel time,

N j = {i ∈ Ic | T̂ ( j, i) ≤ T̂max},

xi =
{
1 if i ∈ N j , for all j ∈ J ,

0 otherwise,

y j =
{
1 if T̂ ( j, i) ≤ T̂max, i ∈ Ic,
0 otherwise.

Let x∗:={x∗
i : x∗

i ∈ {0, 1}, i ∈ Ic} and y∗:={y∗
j : y∗

j ∈
{0, 1}, j ∈ J } denote the optimal values of the decision
variables. The selected locations for the new fire stations are
those for which x∗

i = 1.

5.3 Two-stage stochastic optimization problem
formulation

Our proposed two-stage stochastic optimization problem is
an iterative process involving a stochastic reward function
Rt (i) associated with each candidate location i ∈ Ic in
iteration t ∈ N. We associate a random variable X j,t with
each demand location j ∈ J in t th iteration. We assume
that, for all t ∈ N and j ∈ J , the set of random variables
{X j,t } are independent and identically distributed according
to Bernoulli distribution with Pr(X j,t = 1) = P( j) = 1 −
Pr(X j,t = 0) = 1− (1− P( j)). Note that, such a definition
assigns a value of 1 or 0 to X j,t based on the demand request
probability, P( j). Let Ci :={ j ∈ J | T̂ ( j, i) ≤ T̂max, i ∈ Ic}
denote the catchment area of candidate i ∈ Ic. We define the
reward function as

Rt (i):=
∑

j∈Ci
X j,t . (10)

Our proposed approach is as follows: at iteration t ≥ 1, in the
first stage, the candidate, it ∈ Ic, having maximum expected
reward till (t − 1)th iteration, Qt−1(it ), is chosen. We com-
pute the expected reward, till t th iteration, corresponding to
each candidate location as follows:

Qt (i) :=
∑t

k=1 1(ik=i)Rk(i)
∑t

k=1 1(ik=i)
, (11)

where 1(ik=i) = 1 if candidate i is chosen at iteration k, and
0 otherwise. Thus,

it = argmaxi∈Ic Qt−1(i). (12)

In the next stage, all demand locations in its catchment area,
Cit , are triggered and the values {X j,t | j ∈ Cit } are proba-
bilistically determined and the reward Rt (it ) is evaluated as
per (10). Once Rt (it ) is evaluated, we update the expected
reward for all i ∈ Ic as per (11).
We employ an epsilon-greedy approach to enable exploration
of all candidates to find the optimal candidate that maximizes
the reward, that is, with probability (1 − ε) we choose it as
per (12) and with probability ε, we randomly choose a can-
didate from Ic. Upon termination of our proposed algorithm,
based on a maximum iteration count tmax, the candidate hav-
ing the maximum expected reward is chosen as the optimal
location to install a new fire station. Note that, if p num-
ber of fire stations are to be located, where p > 1, the first
p candidates corresponding to expected rewards sorted in
descending order, can be chosen. The sets Ic and Ci are
derived as described in Sects. 4 and 5.1 respectively and ε

is tuned empirically. The entire algorithm is summarized in
Algorithm 2.
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Algorithm 2: Finding Optimal Candidate
Function getOptimalCand ({P( j), j ∈ J }, ε, Ic,
{Ci , i ∈ Ic}, p):
for i = 1 to | Ic | do

Initialize R0(i), Q0(i);
Q[i] ← Q0(i);

end
for t = 1 to tmax do

it ←
{
argmaxi∈Ic

Qt−1(i), with Pr(1 − ε)

any i ∈ Ic with Pr(ε)
;

for j = 1 to | Cit | do
X j,t ∼ Bernoulli(P( j));

end
Update Rt (it ) as per (10);
Update Qt (it ) as per (11);
Q[it ] ← Qt (it );

end
I[·] ← argsorti Q[i];

return {I[1], I[2], . . . , I[p]};

We now present a detailed case study of our entire fire
station location methodology described in the previous sec-
tions.

6 Case study: City of Victoria, MN

To apply our proposed methodology, we partnered with the
city of Victoria fire Department (VFD) to select a suitable
location for a new fire station. The city of Victoria is located
in Carver county of Minnesota, USA. The city enjoys a solid
economic and agricultural foundation. This has catalyzed
rapid urbanization and population growth in the past few
years. The increased acceptance of remote-work situations
will further add to the city’s growth. Per the US Census
Bureau [43], the population of the city rose from 7400 in
2010 to 9170 in 2017. The current population (at the time of
writing) is approximately 10,000 and this number is expected
to increase by 68% by the year 2040 [37]. Currently, Victo-
ria is being served by one fire station. The expected growth
and economic development have caused concern among the
city’s leadership that the current infrastructure may be insuf-
ficient to provide adequate public safety services, including
those services provided by the fire department. Therefore,
VFD initiated a resilient community project (RCP) in 2019
to assess the performance of the existing facility and to iden-
tify a location for an additional fire station. The new facility
will enhance (not replace) the capabilities of the existing fire
station. A data exploratory analysis, as a part of the RCP ini-
tiative, is performed in [44] to find spatio-temporal demand
statistics. Following the statistics and the city guidelines, as
presented in [44], we apply our location selection methodol-
ogy to provide a comprehensive guidance on future station

location. Our database features and the detailed description
of our results are presented in the next sections.

6.1 Description of data

The entire database used in this study is comprised of data
from multiple different sources. Data containing the details
(date, locations, response time etc.) of historical incidents
that occurred between January 2010 and October 2020 are
provided by VFD. In particular, the dataset contains: (1)
incident types (fire, explosion and overheat, Rescue and
emergency medical service, Hazardous condition, service
call, good intent call, false alarm, natural disaster, and spe-
cial intent type), (2) address of incident location, (3) date
and time, (4) Response time, (5) fire service vehicle used.
As there are reported incidents for these properties between
2010 and 2020, these properties are designated as demand
requesting locations. We use Carver county’s open data por-
tal [45] to further augment this dataset with properties with
no reported incidents, and these properties are designated
as no demand requesting locations. The entire dataset con-
tains 5334 samples of which 47.9% have reported historical
incidents. Parcel information for each property location is
also obtained from [45]. The parcel information includes
address, land size (acres), estimated land value ($), property
usage category (see Table 1), and year of construction. This
dataset is augmentedwith block-wise average population and
the median age of residents obtained from the US census
bureau and Federal Communications Commission [46,47].
For the spatial analysis, the latitude and longitude of the
property locations are obtained from the US Census Bureau
Geocoding Service [48]. However, some locations cannot be
geocoded due to incorrect address entries, such as zip code
and address line mismatch, which are primarily caused by
human errors. These entries are matched by address lines in
the Carver CountyActive911 database [49] to obtain the geo-
graphic locations. TheUScensus bureau geocoder alongwith
the Active911 database reduce the number of missing data
due to common errors. Every record is matched by property
address to create a fully processed database. There are sev-
eral sources of missing data, mainly due to misspellings and
abbreviations of the addresses (such as ‘highway’ is termed
as ‘hwy’ / ‘hgwy’ / ‘highway’ and sometimes misspelled as
‘hgihway’, ‘drive’ is represented as ‘Dr’/‘drv’/‘drive’ etc.).
Some of the common errors are fixed in the data cleaning
step; however, several different types of errors lead to some
amount of missing data. (4.2% of the entire dataset). We per-
formed our proposed station location selection analysis on
this dataset and the results are presented in the subsequent
sections.
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Fig. 2 Locations of all incidents
occurred during 2010–2020 (till
Oct): Incidents are concentrated
in southern region and in
residential areas. Existing
facility is marked with black star
icon and the locations are
marked with red dots. Blue solid
line indicates fire district
boundary. Black dashed line
indicates Victoria city boundary
(color figure online)

ArcGIS Web Map

Victoria fire department

Victoria city boundary

Fire district boundary

Incident location

6.2 Demand prediction using random forest and
XGBoost

Figure 2 shows the locations of all incidents that occurred
in 2010–2020 (until Oct 2020) on an open street map. At
the time of writing, the City of Victoria has dense residential
areas in the southeast [37]. The concentration of the incident
locations in the southeast, as can be seen in Fig. 2, indicates
that the service demand is mostly concentrated in the resi-
dential areas. All of the maps are created using ArcGIS [50].
The shapefiles of the fire district and city boundary are taken
from [51,52]. The incidents outside the fire district are typ-
ically serviced in cooperation with other fire departments,
while some of the events that are outside the city boundary,
but inside the Victoria fire district, are serviced by the VFD.

For the rest of our analysis, we consider only those prop-
erties that are within the VFD fire district and served by VFD
only, in case of emergency events. We combine the proper-
ties with a history of reported incidents and other properties
with no historical event. The entire dataset, with the sam-
ple features shown in Table 2, is used to build our proposed
prediction models for demand request prediction.
We implement our RF model using the Scikit-learn pack-
age [53] and XGBoost model using the xgboost package in
Python. 80% of the total number of samples are used for
training the model and the remaining 20% are used for per-
formance testing and fine-tuning. Tables 3 and 4 show the set
of parameters used for grid search, with 10-fold cross vali-

Table 3 Grid parameters for Demand prediction RF model training

Parameters Grid search Selected
parameters parameter

Criterion Entropy, Gini index Gini index

Max tree depth 2, 4, 6, 8, 10 8

Number of trees 100, 200, 300, 400 300

No. of features
√
No. of total features 3

randomly chosen

Min samples in 30, 40, 50 30

Leaf nodes

dation, to find the best set of parameters of RF and XGBoost
model respectively. For our RF model, we set the minimum
number of samples required to split a node of a tree to 2,
and enable bootstrapping from the entire training sample set
while building the trees. The selected parameters in the right-
most column resulted in the best accuracy. The performance
of the prediction models are presented in Table 5.

The ROC curve [54] is shown in Fig. 3a. It can be seen
that both of our models perform very well in predicting
the demand request of different property types. Further, our
extreme gradient boosting model performs significantly bet-
ter than the RF model in terms of accuracy and true and false
positive rates. RF model exhibits a true positive rate (TPR)
of 69% and 65% for the training and the test set respectively
while with XGBoost they are improved to 89% and 80%
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Table 4 Grid parameters for Demand prediction XGBoost model train-
ing

Parameters Grid search Selected
parameters parameter

Learning rate 0.01, 0.1, 0.2, 0.3 0.2

Max tree depth 2, 4, 6, 8, 10 4

Number of trees 100, 200, 300, 400 100

Gamma 0, 1, 2, 3, 4 3

Alpha 0.001, 0.002, 0.003 0.002

Lambda 1, 2, 3 1

Subsample 0.7, 0.8, 0.9 0.8

Random feature 0.5, 0.6, 0.7 0.6

Ratio per tree

Table 5 Demand prediction model performance measures

Performance measure RF XGBoost

Training accuracy 74% 87%

Test accuracy 70% 78%

Out-of-Bag score 69% NA

True positive rate: Training set 69% 89%

False positive rate: Training set 22% 11%

True positive rate: Test set 65% 80%

False positive rate: Test set 26% 21%

AUC: Training set 0.83 0.94

AUC: Test set 0.79 0.85

respectively. The false positive rate (FPR) values of 11%
and 21%, of XGBoost model, are relatively low and sig-
nificantly better than those of the RF model. While TPR is
associated with performance guarantees of our SQI -based
stochastic optimization-based planning algorithms, FPR is
closely related to the cost effectiveness ofVFDand local gov-
ernment, as it can result in unnecessary investments in safety
measures. We derive impurity-based feature importance, as
illustrated in Fig. 3b, to explain the effect of demographic
and property features on the service demand request. Here,
we observe that the most important features in determining
service demand are property age, median age of residents in
the block where the property is located, land size, popula-
tion at the block level, and estimated land value. We note
that this additional information can be utilized by the city of
Victoria to further analyze future service demand with pro-
jected growth [37]. As our XGBoost model performs better
than the RF model, we use the class probability estimates
of our XGBoost model as the demand request probabilities
for the calculation of SQI . The raw class probabilities are
scaled to have values between 0 to 1 using min–max nor-
malization. We categorize the demand request probabilities
into three categories as shown in Table 6, in order to tune τl
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Fig. 3 Demand PredictionMLmodel performance: aROC curve. AUC
values are ≥ 0.7, which indicates the efficacy of our proposed model.
b Feature importance shows that property age and residents age are the
two most important factors governing the demand request

Table 6 Demand Request Probability of Properties

Demand probability Number of properties (%)

Low (0 ≤ Pr < 0.35) 18.1

Medium (0.35 ≤ Pr < 0.65) 61.9

High (0.65 ≤ Pr ≤ 1) 20

and τh that are required for (4). Table 6 shows the number
of properties falling under each category as a percentage of
total number of properties within the VFD fire district. The
spatial distribution of the same is presented in Fig. 4.

After obtaining the demand request probabilities, the
travel time fromVFD to each property are required in order to
compute the SQI values and the catchment areas. In the next
sections,we present the comprehensive results of our newfire
station location selection methodology based on SQI values
and two-stage stochastic optimization model as described in
Sects. 4 and 5.
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Fig. 4 Spatial property
distribution based on probability
of demand request: Existing
facility is marked with black star
icon and low, medium, and high
service quality properties are
marked in red, orange, and
green dots respectively. Blue
solid line indicates fire district
boundary. Black dashed line
indicates Victoria city boundary
(color figure online)

Table 7 Location selection parameter values

Parameter Values Units

Tmax 4 Minutes

Tnorm 20 Minutes

τl 0.05 None

τh 0.16 None

ε 2 Minutes

δ 80 None

p 1 None

6.3 Fire station location selection

Once the probability of service demand of all properties are
predicted using the predictionmodel and the travel time from
VFD to each property is obtained from OSRM [38], we cal-
culate the SQI values of the properties using (3). VFD has
a performance goal that travel time is not to exceed 4 min.
Therefore, we have taken Tmax = 4. The other parameters
that are required for Algorithm 1 and the for the SQI-based
optimization model, described in Sect. 5.2, are listed in
Table 7. Note that the parameters τl , τh are derived from the
demand request probability categorization shown in Table 6
and Eq. (1).

We calculate the SQI values and categorize the proper-
ties into low, medium, and high service quality properties as
per (4). The total number of properties falling under each
category as a percentage of total number of properties within
the fire district is presented in Table 8.

The geographical distribution of properties is shown in
Fig. 5. Here, a visual comparison between Figs. 4 and 5

Table 8 SQI percentages

Quality of service Number of properties (%)

Low (τh ≤ SQI ≤ 1) 12

Medium (τl ≤ SQI < τh) 72.9

High (0 ≤ SQI < τl ) 15.1

is useful to provide an interpretation of the remark made
in Sect. 3.1. It is observed that most of the properties with
medium demand request probabilities, but far from the exist-
ing fire station, aremarked as receiving low quality of service
while the properties with high demand but close to the exist-
ing fire station are marked as receiving better service.
Now, we apply Algorithm 1 on the properties marked with
red in Fig. 5 to find the candidate locations. Algorithm 1 is
implemented using the Scikit-learn package [53] in Python.
The result is shown in Fig. 6 along with the 4-min drive time
polygons of the candidates. We only show the approximate
locations of the candidateswith circles on themap to conform
to the confidentiality of actual locations as requested byVFD.
Based on Algorithm 1, we find three candidate locations in
the fire district: (a) northeast, (b) southwest, and (c) south.
For the rest of our analysis, we denote the candidates by:

1. Northeast (NE)
2. Southwest (SW)
3. South (S).

Note that the non-overlapped 4-min travel time polygons
between SW, S, and NE with the existing station form the
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Fig. 5 Service Quality with
existing fire station: Existing
facility is marked with black star
icon and low, medium, and high
service quality properties are
marked in red, orange, and
green dots respectively. Blue
solid line indicates fire district
boundary. Black dashed line
indicates Victoria city boundary
(color figure online)

Fig. 6 Catchment areas of
candidate locations based on
4-min drive time polygon:
Overlap is least for SW thus
indicating least redundancy in
service along with the existing
facility. Existing facility is
marked with black star icon and
the candidate locations are
shown with large circles to
indicate broader zones. Blue
solid line indicates fire district
and black dashed line indicates
Victoria city boundary (color
figure online)

Option: south-west Option: south Option: north-east

0-4 min: option south-west

0-4 min: option south

0-4 min: option north-east

0-4 min: existing fire station

Victoria fire department

Victoria city boundary

Fire district boundary

123



International Journal of Data Science and Analytics (2023) 15:33–48 45

Table 9 SQI percentages

Service quality Ex (%) Ex+SW (%) Ex+S (%) Ex+NE (%)

Low 12 9 9.4 9.6

Medium 72.9 67.2 70.4 71.8

High 15.1 23.8 20.2 18.6

catchment areas of the candidates. We aim to apply our SQI-
based optimization methodology, as described in Sect. 5.2,
with respect to these catchment areas. Properties within the
catchment areas of SW, S, and NE are obtained using ‘sf’
package [55] in R. VFD seeks a location for one additional
fire station, i.e. p = 1. We remark that although the project
with VFD requires one additional station, our methodology
can be applied without modification to more general settings
for any value of p. The optimization problem is solved using
ILOGCPLEXOptimization Studio V20.1 [56]. The solution
to the optimization problem indicates that SW candidate is
the one that maximizes the number of properties with high
SQI (lower service quality, marked red in Fig. 5) within
its catchment area. A detailed comparison of the number
of properties in each SQI category as a percentage of total
number of properties is presented in Table 9. The existing fire
station is abbreviated as ‘Ex’ and the expected performance,
in case of an additional fire station with the existing one, is
tabulated. Note that while the existing station provides high
quality service to 15.1% of properties, an additional fire sta-
tion at SW can enhance it to 23.8%. Thus, we can expect an
improvement of 53% over the existing performance. How-
ever, the installation of an additional station at S or NE
location results in an approximate 23 − 33% improvement
over the existing one. Similarly, in the case of low service
quality properties, SW location provides an improvement of
approximately 25%, while S andNE both provide an approx-
imate 20% improvement.

To analyze the improvement in SQI from the installation
of an additional fire station at the SW location, we show his-
tograms of SQI values of all the properties considering only
the existing fire station and considering the existing station
along with SW candidate, as per (3) (see Fig. 7a).We see that
the addition of the SW candidate location increases the den-
sity towards the head of the distribution, thus improving the
number of properties with low SQI (better service quality).

Similarly, Fig. 7b, c show the SQI histogram compar-
ison between SW, NE, and SW, S candidates. We observe
that the improvement by installing SW candidate, which is
visible from the increased density towards the head of the
distribution, is clear from all the plots.

We conclude our analysis by illustrating the geographical
distribution of properties categorized, as per (4), with both
the existing fire station and the additional fire station at SW
location. The plot is shown in Fig. 8.
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Fig. 7 a SW candidate along with existing fire station (marked in blue)
increases the density towards the head of the distribution, thus improv-
ing number of properties with better service quality, compared to that
with only existing station (marked in red). b SW candidate along with
existing station (marked in blue) improves number of properties with
better service quality compared to NE candidate with the existing sta-
tion (marked in red). c Similar improvement can be seen by comparing
the histograms corresponding to SW with existing station (marked in
blue) and S with existing station (marked in red) (color figure online)
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Fig. 8 Visual comparison with
Fig. 5 reveals that installation of
additional fire station at SW
location would significantly
improve the number of
properties with high fire service
quality (marked in green dots).
Existing facility is marked with
black star icon and the potential
future fire station at SW location
is shown with large circle to
indicate broader zone. Blue
solid line indicates fire district
boundary. Black dashed line
indicates Victoria city boundary
(color figure online)

high service quality: Ex+SW

low service quality: Ex+SW

medium service quality: Ex+SW

Option: south-west

Victoria fire department

Victoria city boundary

Fire district boundary

Avisual comparison of Figs. 5 and 8 reveals that the instal-
lation of the SW candidate significantly reduces the number
of properties with poor service quality. Note that the concen-
tration of poor service quality properties in the northeast and
southern parts of the city is difficult to avoid with the instal-
lation of only one additional fire station due to longer travel
times from either the existing facility or from the SW can-
didate location. The longer travel time is mainly attributed
to the presence of lakes, terrain conditions, and the road net-
work. Next, we employ our proposed two-stage stochastic
optimization model, as described in Sect. 5.3, to characterize
the confidence in our decision to locate a newfire station at the
SW location,which is apparent fromour previous discussion.
We run our proposedAlgorithm 2 in 400 episodes eachwith a
maximum iteration number tmax = 200. The catchment areas
and the candidate locations are same as described in the pre-
vious sections. The ε value is taken to be 0.7. Figure 9 shows
the density histogram plot of the expected rewards of the can-
didates SW, S, and NE for 400 episodes. The histograms are
plotted with a bin size of 40. It can be observed that the SW
location accumulates the highest expected reward followed
by S and NE respectively. Further, the narrower histogram
corresponding to the SW location indicates a lower standard
deviation of the expected rewards, indicating higher confi-
dence in the decision to choose SW as the optimal location
to install a new facility. Therefore, we propose the SW loca-
tion to VFD for the installment of an additional fire station.

Fig. 9 Histogram of expected reward accumulated by the candidates
SW, S, and NE for 400 episodes each with 200 iterations. SW has
the maximum expected reward. Variation of expected reward is signifi-
cantly lesser in case of SW, compared to S and NE, as can be observed
by narrow standard deviation of the histogram corresponding to SW.
Thus, selection of SW location as the optimal choice to install a new
fire station, as determined by our proposed algorithm has the highest
confidence

7 Conclusions

In this work we present a systematic approach for locat-
ing new fire stations, taking into account demand prediction,
travel time, service area coverage, and service redundancy.
We propose a machine learning model based on the random
forest and extreme gradient boosting algorithms to predict
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service demand, which can then be used to enhance commu-
nity safety. We present a detailed comparison between the
performance of the models to select the better model for fur-
ther study. We observe that the extreme gradient boosting
model outperforms the random forest model. With the help
of the machine learning model, we corroborate the influ-
ence and the importance of the key factors governing fire
service demand associated with the properties. The model
is further utilized to define a service quality index to quan-
tify the quality of service, which accounts for both demand
prediction and travel time from fire stations to demand loca-
tions. The quality index is utilized in a travel time-based
DBSCAN algorithm to identify candidate locations for new
fire stations. Finally, we present a service quality index-based
optimization model that is derived from the maximum cover-
age optimization problem, considering demand prioritization
and service area redundancy.We apply our proposedmethod-
ology to select a location for a new fire station in the city of
Victoria,MN,USA. Further, we employ a two-stage stochas-
tic optimization model to characterize the confidence in our
decision outcome. We recommend that a future fire station
be located in the southwest portion of the city. This loca-
tion would best serve the community and improve the public
safety standard.

Acknowledgements We would like to acknowledge Sarah Tschida,
Program Coordinator for the Resilient Communities Project (RCP),
University of Minnesota, Twin Cities, USA, for her assistance and
efforts in maintaining an efficient collaboration between the Victoria
Fire Department and University of Minnesota researchers. We would
like to sincerely thank Victoria city council members for providing us
with the opportunity to work on this project and for their valuable feed-
back on the research. We would also like to thank GIS technicians at
the Center for Urban and Regional Affairs (CURA), University of Min-
nesota, Twin Cities, for answering our queries about ArcGIS.

Funding No funds, grants, or other support was received.

Availability of data andmaterials Not applicable.

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

Code availability Not applicable.

Ethics approval Not applicable.

Consent to participate Not applicable.

Consent for publication Not applicable.

References

1. Ahrens, M., Evarts, B.: Fire loss in the united states during 2019.
National Fire Protection Association (NFPA) report (2020)

2. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
3. Chen, T., Guestrin, C.: Xgboost: a scalable tree boosting system. In:

Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 785–794 (2016)

4. Ester,M., Kriegel, H.P., Sander, J. et al.: A density-based algorithm
for discovering clusters in large spatial databases with noise. In:
kdd, pp. 226–231 (1996)

5. Turkoglu, D.C., Genevois, M.E.: A comparative survey of service
facility location problems. Ann. Oper. Res., pp. 1–70 (2019)

6. Yao, J., Zhang, X., Murray, A.T.: Location optimization of urban
fire stations: access and service coverage. Comput. Environ. Urban
Syst. 73, 184–190 (2019)
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