
International Journal of Data Science and Analytics (2022) 14:191–215
https://doi.org/10.1007/s41060-022-00320-5

REGULAR PAPER

Accurate and efficient privacy-preserving string matching

Sirintra Vaiwsri1 · Thilina Ranbaduge2 · Peter Christen1

Received: 8 June 2021 / Accepted: 10 March 2022 / Published online: 13 April 2022
© The Author(s) 2022

Abstract
The task of calculating similarities between strings held by different organisations without revealing these strings is an
increasingly important problem in areas such as health informatics, national censuses, genomics, and fraud detection. Most
existing privacy-preserving string matching approaches are either based on comparing sets of encoded characters allowing
only exact matching of encoded strings, or they are aimed at long genomics sequences that have a small alphabet. The set-
based privacy-preserving similarity functions that are commonly used to compare name and address strings in the context of
privacy-preserving record linkage do not take the positions of sub-strings into account. As a result, two very different strings
can potentially be considered as a match leading to wrongly linked records. Furthermore, existing set-based techniques cannot
identify the length of the longest common sub-string across two strings. In this paper, we propose two new approaches for
accurate and efficient privacy-preserving string matching that provide privacy against various attacks. In the first approach we
apply hashing-based encoding on sub-strings (q-grams) to compare sensitive strings, while in the second approachwe generate
one-bit array from the sub-strings of a string to identify the longest common bit sequences. We evaluate our approaches on
several data sets with different types of strings, and validate their privacy, accuracy, and complexity compared to three baseline
techniques, showing that they outperform all baselines.

Keywords Secure hash encoding · Bit array encoding · String comparison · Privacy-preserving record linkage · Bloom filter
encoding

1 Introduction

In application domains such as banking, health, bioinfor-
matics, and national security, it has become an increasingly
important aspect in decision making activities to integrate
information from multiple databases [11,18]. Integrating
databases can help to identify and link similar records that
correspond to the same entity, a task known as record link-
age [9]. This in turn can facilitate efficient and effective data
analysis that is not possible on an individual database.

Increasingly, record linkage needs to be conducted across
databases held by different organisations [57], where the

B Sirintra Vaiwsri
sirintra.vaiwsri@anu.edu.au

Thilina Ranbaduge
thilina.ranbaduge@data61.csiro.au

Peter Christen
peter.christen@anu.edu.au

1 School of Computing, The Australian, National University,
Canberra, ACT 2600, Australia

2 Data61, Black Mountain, Canberra, ACT 2600, Australia

complementary information held by these organisations can,
for example, help to identify patient groups that are suscepti-
ble to certain adverse drug reactions (linking doctor, hospital,
and pharmacy databases), or detect welfare cheats (linking
taxation with employment and social security databases).
However, in many of these applications the databases to be
linked contain sensitive information about people which can-
not be shared between the organisations that are involved in
a linkage protocol [11,57]. Similarly, in the bioinformatics
domain the comparison of genomics data often raises con-
fidentiality concern as genomics sequences might contain
proprietary information and such data are often highly sen-
sitive in nature [50].

Research in the area of privacy-preserving record linkage
(PPRL) [56] aims to develop techniques for linking databases
without the need of sharing the original (unencoded) sensi-
tive values between the organisations that participate in the
linkage protocol. In PPRL, the attribute values of records are
usually encoded or encrypted in some form before they are
being compared. Any encoding or encryption technique used
must ensure that approximate similarities can still be calcu-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s41060-022-00320-5&domain=pdf
http://orcid.org/0000-0002-1391-6160

192 International Journal of Data Science and Analytics (2022) 14:191–215

lated between encoded values without the need for sharing
the corresponding sensitive plaintext values [56]. PPRL is
conducted in such a way that only limited information about
the record pairs classified asmatches is revealed to the partic-
ipating organisations in the linkage process. The techniques
used in PPRL must guarantee that no participating party, nor
any external party, can compromise the privacy of the entities
that are represented by records in the databases being linked
[11].

One popular technique to allow privacy-preserving string
comparison is based on converting strings into sets of q-
grams (sub-strings of length q characters) and encoding these
sets into Bloom filters (BFs) [44]. BFs are bit arrays where
multiple independent hash functions are used to encode the
elements of a set by setting those bit positions to 1 that are hit
by a hash function.BFs can be compared using set-based sim-
ilarity functions such as the Dice coefficient [9]. It has been
shown that BF-based PPRL is both efficient and can achieve
accurate linkage results comparable to non-PPRLapproaches
[41,42]. A related similar approach based on tabulation hash
(TMH) encoding was recently proposed by Smith [51]. The
proposed approach applies Min-hash locality sensitive hash-
ing [5] and uses the Jaccard similarity function for comparing
bit arrays.

One drawback of set-based comparisons as used with BFs
or TMH is that the sequence of characters in a string is lost
when the string value is converted into a q-gramset.As shown
in Table 1, in certain cases [15] two different strings can
result in the same q-gram set which would be encoded into
the same bit pattern. This can lead to falsely matched record
pairs because of too high similarities between rather different
string values [9]. The likelihood of two different strings shar-
ing the same or a highly similar q-gram set increases if the
size of the alphabet Σ (the set of unique characters used to
generate the strings to be encoded) becomes smaller, because
less unique q-grams can be generated. Therefore, strings gen-
erated using only digits (alphabet of size |Σ | = 10), such as

Table 1 Example string pairs from a real US voter database [10] that
have the same set of q-grams with q = 2 (bigrams), and therefore
Jaccard or Dice coefficient similarities of 1.0

Attribute String 1 String 2 Bigram set Edit dist.
Similarity

Zip code 27828 28278 {27, 28, 78, 82} 0.600

First name Amira Ramir {am, ir, mi, ra} 0.600

First name Geroge Roger {er, ge, og, ro} 0.500

First name Jeane Jeaneane {an, ea, je, ne} 0.625

Last name Avera Raver {av, er, ra, ve} 0.600

Last name Einstein Steins {ei, in, ns, st, te} 0.500

Last name Gering Ringer {er, ge, in, ng, ri} 0.333

On the other hand, their edit distance similarities [9] are (correctly)
much lower

zip codes or telephone numbers, will more likely result in
increased q-gram set similarities compared to strings that
contain letters (|Σ | = 26), such as first and last names.

Another drawback of set-based string comparison func-
tions is that they only allow the calculation of an overall
similarity between two strings. However, identifying the
longest common sub-string between two strings can be
crucial in certain applications. For example, financial intel-
ligence units around the world, including FinCEN (US), the
National Crime Agency (UK), and AUSTRAC (Australia),
collect financial information to help identify tax evasion,
money laundering, and terrorism financing. This involves
linking records from different reporting entities such as
banks, casinos, and money remitters such as Western Union,
and requires finding matches in a privacy-preserving way
where bank identifiers such as SWIFT or BIC codes need to
be pairedwith bank account numbers. Sub-stringmatching is
crucial because leading zeros are often omitted, such that the
identifier “DK54000074491162” would be the same account
as “DK5474491162”.

Contributions: In this paper, we propose two novel
approaches to privacy-preserving string matching, where we
encode each string based on its generated q-gram list. In
the first approach, we encode the q-grams in each list into
hash values, while in the second approach we encode each
q-gram into a bit array of fixed length to improve privacy of
q-grams. However, it requiresmore runtime for encoding and
comparison than the first approach, resulting in a trade-off
between privacy and scalability of our two approaches. In
both approaches, we randomly shift the encoded q-grams in
order to hide position information that could be exploited by
an adversary. The encoded strings are then sent to a third party
for identifying the longest common encoded sub-string for
each pair of encoded string pairs. We analyse our proposed
approaches in terms of complexity, accuracy, and privacy,
and evaluate them using several real and synthetic data sets
that contain different types of strings (only letters, only digits,
and mixed).

2 Related work

The privacy-preserving comparison of values (such as strings
or numbers) is a common problem for many application
domains. Therefore, various techniques and algorithms have
been proposed, as shown in Table 2.

String matching is often used in the PPRL context where
encoded values of quasi-identifying attributes of individuals
(such as their names and addresses) need to be compared
across two or more databases to link records [57]. Bloom fil-
ter (BF) encoding is widely used in PPRL because it allows
efficient encodingof values and supports approximatematch-
ing of strings [44,57], numerical values [33,55], hierarchical

123

International Journal of Data Science and Analytics (2022) 14:191–215 193

Table 2 Overview of related privacy-preserving string matching techniques, where we show the complexity for encoding and matching one string

Methods/authors Data type Match type Encoding compl. Matching compl. Application

Bloom filter (Schnell et al. [44]) String Approximate O(l × h) O(b) PPRL

Tabulation hashing (Smith [51]) String Approximate O(l × t × h) O(b) PPRL

DGK approximate string matching (Essex [23]) String Approximate O(Σq) O(Σq) PPRL

Burrows–Wheeler transformation (Shimizu et al. [50]) Genomes Exact O(l × √
l × |Σ |) O(l2 × |Σ |) Genomics

Longest prefix and exact match (Nakagawa et al. [40]) Genomes Exact O(l|D|) O(l) Genomics

Symmetric encrypted suffix tree (Chase and Shen [6]) String Exact O(l × b) O(l × b) Cloud computing

Bloom filter tree (Bezawada et al. [3]) String Exact O(l2 × h) O(l × log l) Cloud computing

Secure verifiable pattern matching (Chen et al. [7]) Genomes Exact O(l) O(l) Cloud computing

Secure query sub-string (Hahn et al. [29]) String Exact O(2l) O(l) PPRL

Frequent q-grams matching (Bonomi et al. [4]) String Approximate O(3l) O(b) PPRL

Secure pattern matching (Zarazadeh et al. [60]) Genomes Exact & Approx. O(l × |Σ |) O(l2) Cloud computing

In this table, l is the string length, |Σ | is the size of the alphabet Σ , h is the number of hash functions used, b is the length of a Bloom filter or bit
array, t is the number of hash tables, q is the length of a sub-string (q-gram), and |D| is the size of a string database D

codes (such as of occupation anddiseases) [45,46], geograph-
ical locations [47], and Chinese characters [53].

Although BF encoding is considered as a standard for
PPRL, BFs cannot be used to identify the longest common
sub-strings, because they require values to be converted into
q-gram sets whereby positional information of q-grams in
their corresponding string values are lost. Furthermore, the
hash functions used in BF encoding likely lead to collisions
(where several q-grams are hashed to the same bit position)
and therefore the similarities between BFs, can be higher
than the actual Dice coefficient similarity between their cor-
responding q-gram sets. Other set-based techniques, such as
tabulation-based hashing (TMH) [51] have similar drawback
because any set-based encoding of q-grams into bit arrays
does not preserve their positional order.

Privacy-preserving matching of genome sequences is
increasingly required in bioinformatics applications where
the aim is to find the longest matching sub-sequences for
a query sequence in large genome databases [50,58]. The
algorithms used in such applications often have high compu-
tational complexities [50,58].

Shimizu et al. [50] proposed an approach for searching
similar string patterns in a genome database using a recursive
oblivious transfer protocol based on an additive homomor-
phic encryption [25] to query sequences in the genome
database while ensuring each query does not lead to the iden-
tification of other similar strings in the database. However,
the approach does not scale to queries of longer sequences
because these incur high computational and communication
costs due to the complex cryptographic functions used [50].

Later, Nakagawa et al. [40] proposed an approach to
improve the time complexity and communication costs of
genome sequence matching. They used a recursive oblivious
transfer technique and a compressed indexing data structure
[24] to find the longest prefix and longest exact match of

a query sequence in a genome database. In this approach,
the time complexity depends upon the length of the genome
sequence that is being queried rather than the size of the
genome database; thus, it consumes less time to query a
sequence from a large genome database compared to the
approach proposed by Shimizu et al. [50] and the other secure
genome sequence matching technique [52].

Suffix trees [37] are often used in bioinformatics applica-
tions to search for patterns in genome or protein sequences
[59]. A suffix tree allows searching for a given pattern with
a linear complexity in terms of the length of the query string
being searched [37]. Ukkonen [54] showed how suffix trees
can be used for string matching efficiently; however, his
approach requires more space to hold a suffix tree than the
original string collection.

The use of suffix trees in privacy-preserving sub-string
matching has been investigated by Chase and Shen [6]. Their
approach constructs a queryable encryption scheme for find-
ing all occurrences of a query string in the encrypted suffix
tree stored on an untrusted server. However, this approach
reveals information of client queries to the server which com-
promises the privacy of a client’s data and can potentially lead
to the identification of the encrypted string values.

Bezawada et al. [3] proposed a protocol based on a pat-
tern aware secure search tree where each tree node contains
a BF that encodes a set of encrypted strings. The approach is
aimed for twoparties to compare strings securely over a cloud
infrastructure, where the parties only learn if their strings
are matched but not the actual matching sub-strings. This
approach therefore does not allow the privacy-preserving
identification of the longest common sub-strings.

Chen et al. [7] proposed a secure pattern matching
approach based on suffix arrays and order hashing, where
each hashed character in a string is concatenated with the
hashed value of the next character in the string. In this

123

194 International Journal of Data Science and Analytics (2022) 14:191–215

approach a database owner (DO) sends the encrypted data to
an untrusted server and transmits the key to the clients. This
key is then used by the clients for verifying if the encoded
query sub-string results that the clients received from the
server are correct. However, in this approach the server can
learn the actual string length from the encrypted suffix array
received from the DO.

Hahn et al. [29] proposed a privacy-preserving secure
sub-string or q-gram query approach where the frequency
distribution of sensitive data are hidden by applying a
frequency-hiding order preserving encryption [35]. This
approach involves three parties for processing a secure q-
gram query, which are (1) the DO which owns the sensitive
information, encodes the q-grams, and generates the encoded
data tables (indexes and q-grams); (2) the untrusted party
which holds the index tables that are used for searching
encoded q-gram; and (3) the clients who want to query their
encoded q-grams. In this approach, the complexity of query-
ing depends upon the q-gram length because it determines the
number of iterations required for querying encoded q-grams
from the untrusted party.

Bonomi et al. [4] proposed a PPRL approach to compare
string values using bit arrays based on the embedding of the
frequent q-grams. The DOs that participate in a PPRL proto-
col individually apply differential privacy [20] to generate a
table of frequent q-grams that occur in their databases. The
DOs then send their frequent q-gram tables to one of the
DOs to find the common frequent q-grams (shared frequent
q-grams) and send them to all DOs that participate in the
protocol. Each DO then uses the shared frequent q-grams to
embed their strings into bit arrays, and sends these bit arrays
to a third party to compare pairs of bit arrays. However, in this
approach the DO that identifies the shared frequent q-grams
is able to learn the frequent q-grams of the other databases
which can compromise the privacy of the entities in those
databases.

Zarazadeh et al. [60] proposed a protocol for secure pattern
matching on a client and server architecture using ElGamal
encryption [22] and bit arrays. This approach is able tomatch
either exact or approximate patterns with or without wildcard
characters, or patterns with random bit vectors added (for
hiding the length of strings). The server cannot learn anything
about the pattern matching results. However, the clients can
learn the positions of a matched pattern in a string in the
database stored on the server.

Essex [23] proposed a secure two-party approximate
string matching protocol using DGK homomorphic encryp-
tion [16] and private set intersection cardinality. Each DO
first generates a list of all possible q-grams (based on letters
a to z), where the DO replaces a q-gram in the list of all pos-
sible q-grams with the encryption of 1 if a q-gram is found in
its string. The first DO sends its list to the other DO to con-
duct a set intersection cardinality and the Dice coefficient

calculation based on the lengths of q-gram lists of the two
strings in a pair, then returns the results to the first DO for
decrypting the results, where the decryption of 1means a pair
of strings is classified as a match. However, using the lengths
of the lists of q-grams to calculate the Dice coefficient can
lead to false matches because some q-grams in the two lists
are not common. Furthermore, this approach consumes a lot
of memory as the list of all possible q-grams for each string
needs to be kept in memory for the comparison process.

Recently, Mullaymeri and Karakasidis [39] proposed
a two-party private approximate string matching protocol
based on polynomial coefficients generated using a reference
database and a FuzzyVault scheme [31]. The idea behind this
approach is that if the set of keys (generated from reference
strings) of the two strings in a pair are similar, the polyno-
mial coefficients generated from the keys of these two strings
must be the same, and therefore, the two strings in a pair are
classified as a match. However, the main drawback of this
approach is that the reference strings that are used to gen-
erate keys must be very similar to the strings in a pair to
ensure that the polynomial coefficients of the two strings are
the same. Therefore, the number of reference strings must be
large enough to allow the two parties to generate the same
polynomial coefficients.

The approaches discussed above mostly allow a user to
query a database of strings or sequences for similar patterns,
while the problem we aim to address involves the identifica-
tion of similar sub-strings in two databases owned by differ-
ent parties without each party having to reveal their strings.
In contrast to most existing techniques, our approaches allow
the efficient and accurate privacy-preserving comparison of
pairs of strings that share a sub-stringwith a certainminimum
length.

3 Privacy-preserving stringmatching

We assume our approaches follow a honest-but-curious
(HBC) adversary model [27,30]. As illustrated in Fig. 1, we
assume two database owners (DOs) want to find the length
of the longest common sub-string (LCS) between pairs of
sensitive strings in their databases. The DOs do not commu-
nicate with each other, except to agree on the parameters to
be used. We assume a linkage unit (LU), which is a semi-
trusted party [26], is involved in the protocol to compare the
strings sent to it by the DOs. Because the DOs do not want
to reveal the sensitive string values in their databases to any
other party that participates in the protocol, these strings need
to be encoded before being sent to the LU such that the LU
cannot learn anything about them.

In some cases, the first characters in a string value can
reveal some information. For example, the distribution of
the first digits in numerical values can follow Benford’s law

123

International Journal of Data Science and Analytics (2022) 14:191–215 195

Linkage
Unit

Tables
3.1.

Generate
q−grams

Tables
3.1.

Generate
q−grams

Calculate
LCS

Database
Owner A

4. Bit
array

4. Bit
array

5. Matching result

Hash and
shift q−grams

2. String

3. Q−gram list

3. Q−gram list

5. Matching result

1. Exchange parameters

Database
Owner B

Hash and
shift q−grams

2. String

3. Q−gram list

3. Q−gram list

Generate Generate GenerateGenerate

Matching functions

Calculate
LCS

bit array tables final bit array final bit array bit array tables

4. Shifted hashed list 4. Shifted hashed list

1) Basic encoded q−grams comparison
2) Fast encoded q−grams comparison
3) Basic bit array comparison
4) Fast bit array comparison

Fig. 1 Overviewof our privacy-preserving stringmatching approaches.
The blue boxes are the Database Owners, where the steps they execute
are shown in the dashed rectangles. The white boxes are the steps com-
mon to both our two approaches. The yellow box shows the step of
the shifted hash encoded q-gram-based encoding approach (described

in Sect. 4), while the pink boxes show the steps of the bit array-based
approach (described in Sect. 5). The linkage unit is shown in the red box
and its functions are shown in the box below it. The arrows show inputs
and outputs of the steps, where the numbers given show the sequence
of the steps being conducted

[2], while the first letters in first and last names can follow
Zipf’s law [61]. This potentially allows an adversary to learn
some of the encoded q-grams at the beginning of encodings
by identifying the q-grams that occur frequently in a pub-
lic database [11]. Hence, we propose two novel encoding
approaches to prevent any q-grams from being re-identified.

In our encoding approaches (as illustrated in Fig. 1), the
DOs first generate sub-strings of length q, called q-grams,
from their unique sensitive string values. The DOs then indi-
vidually encode all q-grams of each string and send these
encoded q-grams to the LU. The LU then compares the
encoding of a pair of strings and returns the length of the
longest common sequence of hash encoded q-grams (ele-
ments), called the longest common elements (LCE), or the
length of the longest common bit array, called the longest
common bit array (LCB), back to the DOs. The DOs can
then calculate the actual length of LCS based on the infor-
mation received from the LU, as we describe in Sect. 6.

As we discuss in Sect. 4, the first encoding approach
improves privacy of encoded q-grams by randomly shifting
the position of the encoded q-grams in the generated encoded
q-gram lists. The shifting of encoded q-grams hides their
actual positions in a string, which makes a position-based
frequency analysis of q-grams more difficult and thereby
prevents an adversary from identifying the string values that
were encoded. This approach is useful for linking databases
that require fast and accurate linkage results, such as link-

ing the phone number of a criminal between databases to
facilitate a fast response for police to take action.

In the second approach, described in Sect. 5, we improve
the privacy of q-grams further by encoding q-grams into
bit arrays. We hide the actual sub-string positions and the
length of the encoded strings by adding random bit arrays
at the beginning and end of the bit array that encodes a
list of q-grams. This ensures that the bit arrays of all string
values in a database have the same length, further increas-
ing the difficulty for an adversary to identify the original
string values that have been encoded into bit arrays. How-
ever, this approach usesmore runtime than our first approach.
Therefore, it can be useful for linking databases in applica-
tion domains that require high privacy and accurate linkage
results, but are less concerned about runtime, for example,
linking credit card numbers between databases for financial
crime investigations.

Both our approaches provide accurate calculations of the
length of LCS while hiding the actual sensitive string val-
ues from any parties. The DOs and the LU cannot learn the
original string values nor the positions of the LCS from the
compared encodings. A DO cannot learn anything about the
sensitive values of the otherDObecause theDOs do not com-
municate with each other, and they only receive the length of
the LCE or LCB, respectively, from the LU.

As notation, we use italics type letters for numbers and
strings, bold lowercase letters for lists and sets, and upper-

123

196 International Journal of Data Science and Analytics (2022) 14:191–215

case bold letters for lists and sets of lists or sets. We use ||
to denote the concatenation of strings and bit arrays and +
when concatenating lists. Lists are shown with square and
sets with curly brackets, where lists have an order while
sets do not. We show the elements of a list l as l[i], with
0 ≤ i < |l|, where i is the position (index) of a list element.
We denote sub-lists as l[i :] = [l[i], l[i + 1], . . . l[|l| − 1]],
l[: j] = [l[0], l[1], . . . , l[j − 1]], and l[i : j] = [l[i], l[i +
1], . . . , l[j − 1]], with i < j .

4 Stringmatching based on shifted hash
encoded Q-grams

As shown in Fig. 1, our first approach consists of five steps:
(1) parameter agreement, (2) generating q-grams, (3) hashing
of q-grams and shifting encoded q-gram lists, (4) comparing
lists of encodings by the LU, and (5) calculation of the length
of the LCS by the DOs.

4.1 Parameter agreement

Before the protocol starts, the DOs agree on the parameters
to be used, which are:

– The length of q-grams, q, to be used for generating the
q-grams, as we describe in Sect. 4.2.

– The padding characters, α and β, to be added to string
values to avoid any incorrect length of LCS calculations,
as we describe in Sects. 4.2 and 8.2.

– The secret salting value, s, to be concatenated with the
generated q-grams. This is to avoid a dictionary attack
by the LU [11], as we describe in Sect. 4.3.

– The one-way hash function [11],H (such as SHA [43]),
to be used for hashing q-grams before sending them from
the DOs to the LU, as we describe in Sect. 4.3.

– The minimum length of the LCS, m, where m ≥ q. This
is used for selecting those string pairs that have a LCS of
at least m, as we describe in Sect. 6.

4.2 Generating Q-grams

Before the generation of q-grams from a string value, the
DOs first add the agreed padding characters α and β to the
beginning and end of their unique strings. Let us assume the
first DO has a databaseDA and uses the padding character α,
while the second DO has a databaseDB and uses the padding
character β, where α �= β. The padding characters are used
to ensure the beginning and end of the compared strings are
different. Due to the shifting process of encoded q-grams (as
we describe in Sect. 4.3), without the padding characters the
length of LCS could be calculated incorrectly, as we discuss
in Sect. 8.2.

Assuming Σ is the alphabet of all characters in the
databases DA and DB , Σ = {a ∈ v : v ∈ DA ∪ DB}, where
a is a character in a string value v in the two databases. It
needs to hold that α /∈ Σ and β /∈ Σ . Let us assume two
padded strings x ′ = α||x ||α and y′ = β||y||β, where x and
y are strings with x ∈ DA and y ∈ DB , respectively.

Once the DOs have added the padding characters to their
strings, they independently generate the q-gram lists of each
padded string in their databases. Each padded string in a
database (let us use DA), consists of characters and can be
written as x ′ = [a0 . . . ai . . . an−1], where a0 = an−1 = α,
and ai ∈ Σ for 0 < i < (n − 1), with n = |x ′|. We define
a q-gram as qi = ai . . . ai+q−1, and a q-gram list as q =
[q0, . . . , qn−q], where q is the q-gram length as agreed by
the DOs.

For example, assume the agreed q-gram length is q = 2
and the string is x = “mary′′. TheDOadds the padding char-
acter α = “$′′ to x , resulting in x ′ = “$mary$′′. The DO
then generates a q-gram list of the padded string x ′, result-
ing in q = [$m,ma, ar , r y, y$], as also shown in the third
column in Table 3.

4.3 Hashing of Q-grams and shifting Q-gram lists

Before the DOs send their databases to the LU, they indi-
vidually hash encode the q-grams in each of the q-gram lists
using the agreed hash function H. To prevent a dictionary
attack on the encoded q-grams, we use a salted hash encod-
ing approach [11]. Given that s is the secret salt value andH
is the hash function agreed by the DOs, and assuming qi ∈ q,
where q is the q-gram list and 0 ≤ i < n, with n = |q|, we
hash encode each q-gram qi as hi = H(qi ||s), and define the
hash encoded q-gram list as h = [h0, h1, ..., hn−1].

Once the q-grams in each list q are hashed into a list h,
each DO generates a random number, r , for each of its hash
encoded q-gram lists, h, where 0 ≤ r < |h|. The DO then
shifts (rotates) the list h by r , resulting in the shifted hash
encoded q-gram list, h′. A given hash encoded value at a
position i , with 0 ≤ i < n, is shifted to a new position
i ′ = ((i + r) mod n), also with 0 ≤ i ′ < n. This shift-
ing process aims to hide the original positions of the hash
encoded q-grams and therefore the corresponding positions
of characters in each string.Hence, the frequency distribution
of shifted hash encoded q-grams will not follow Benford’s
[2] law anymore because the first encoded q-grams are dis-
tributed to different positions in the shifted hash encoded
q-gram lists, thereby preventing a position-based frequency
attack on these encoded q-gram lists.

For example, assume the string “mary′′ has been padded
and hashed into the hash encoded q-gram list hx =
[H($m||s),H(ma||s),H(ar ||s),H(r y||s),H(y$||s)], and
rx = 2. Therefore, the hash encoded q-grams are shifted
by two positions, resulting in h′

x = [H(r y||s),H(y$||s),

123

International Journal of Data Science and Analytics (2022) 14:191–215 197

Table 3 Example strings, and their corresponding q-grams and randomly shifted q-gram lists, where the patterns of where common characters
occur are shown in the first column (where b,m, and e represent the LCS occurring at the beginning, middle, or end of a string, respectively)

Common String Q-gram lists (including Random Shifted q-gram lists LCE length, Calculated LCS,
patterns pairs padding characters) shift lce lcs

b-b x = “mary” [$m,ma, ar, r y, y$] rx = 0 [$m,ma, ar, r y, y$] 2 2 + 2 − 1 = 3

y = “marie” [#m,ma, ar, ri, ie, e#] ry = 2 [ie, e#, #m,ma, ar, ri]
b-m x = “marrie” [m,ma, ar, rr, ri, ie, e] rx = 1 [e$, $m,ma, ar, rr, ri, ie] 3 3 + 2 − 1 = 4

y = “emarry” [#e, em,ma, ar, rr, r y, y#] ry = 3 [rr, r y, y#, #e, em,ma, ar]
b-e x = “larisa” [l, la, ar, ri, is, sa, a] rx = 4 [ri, is, sa, a$, $l, la, ar] 2 2 + 2 − 1 = 3

y = “calar” [#c, ca, al, la, ar, r#] ry = 2 [la, ar, r#, #c, ca, al]
m-m x = “marisa” [m,ma, ar, ri, is, sa, s] rx = 3 [is, sa, a$, $m,ma, ar, ri] 2 2 + 2 − 1 = 3

y = “carie” [#c, ca, ar, ri, ie, e#] ry = 2 [ie, e#, #c, ca, ar, ri]
m-e x = “malary” [$m,ma, al, la, ar, r y, y$] rx = 1 [y$, $m,ma, al, la, ar, r y] 3 3 + 2 − 1 = 4

y = “calar” [#c, ca, al, la, ar, r#] ry = 3 [la, ar, r#, #c, ca, al]
e-e x = “mary” [m,ma, ar, ry, y] rx = 2 [ry, y$, $m,ma, ar] 2 2 + 2 − 1 = 3

y = “cary” [#c, ca, ar, ry, y#] ry = 3 [ar, ry, y#, #c, ca]
be-be x = “mary” [m,ma, ar, ry, y] rx = 2 [ar, ry, y$, $m,ma] 2 2 + 2 − 1 = 3

y = “marary” [#m,ma, ar, ra, ar, ry, y#] ry = 5 [ar, ra, ar, ry, y#, #m,ma]
The string pairs, with minimum length of the LCS m = 3, are shown in the second column. Q-grams are generated using q = 2. LCE refers to the
longest common list of elements. The random numbers used to shift each q-gram list are shown in the fourth column. The common sub-strings and
the common elements are shown in bold

H($m||s),H(ma||s),H(ar ||s)]. We show other examples
of shifted q-gram lists in Table 3.

4.4 Comparison of hash encoded Q-gram lists

To simplify notation, we now use hx and hy to represent the
shifted hash encoded q-gram lists h′

x and h′
y .

For a pair of strings, the LU needs to find the length of
the longest common (same) sub-list elements (LCE), lce,
between the two lists hx and hy . We propose two algorithms
for this comparison process, a basic and a fast algorithm.
The first is a naive method to conduct the comparison by the
LU which, however, requires longer runtimes for comparing
pairs of hashed q-gram lists. We then propose an alternative,
more efficient, algorithm which allows for a faster compari-
son process, as we describe in Sect. 4.4.2.

Algorithm 1: Basic encoded q-grams comparison process by the LU

Input:
- hx : Hashed and shifted q-gram list of string x
- hy : Hashed and shifted q-gram list of string y
Output:
- lce: LCE of the hashed q-gram list pair

1: lce ← 0 // Initialise the length of LCE
2: if set(hx) ∩ set(hy) �= ∅ do: // Check if common hashed elements exist
3: for 0 ≤ px < |hx | do: // Loop over each position in the list hx
4: py ← get PosMatch(hx [px],hy) // Get list of positions in hy where the element hx [px] occurs
5: ���x ← hx [px :] + hx [:px] // Get the current shifted (rotated) list of the list hx
6: for py ∈ py do: // Loop over each position in the list of positions py
7: ���y ← hy [py :] + hx [:py] // Get the current shifted list of the list hy
8: k ← 0 // Initialise index and common count k
9: while (k < min(|���x |, |���y |)) and (���x [k] = ���y [k]) do: // Loop over ���x and ���y if a common element occurs
10: k ← k + 1 // Increment k
11: lce ← max(lce, k) // Keep the length of the so far maximum length of LCE
12: return lce // Send found the length of LCE back to the DOs

123

198 International Journal of Data Science and Analytics (2022) 14:191–215

Algorithm 2: Fast encoded q-grams comparison process by the LU

Input:
- hx : Shifted hashed q-gram list of string x
- hy : Shifted hashed q-gram list of string y
Output:
- lce: The LCE length of the pair of hashed q-gram lists

1: lce ← 0 // Initialise the length of LCE
2: c ← set(hx) ∩ set(hy) // Get common hashed elements
3: if |c| ≥ 1 do: // Check if at least one common hashed element exists
4: hs , hl ← hx ,hy if |hx | < |hy | else hy , hx // Order the lists by their lengths
5: ���s ← hs + hs // Concatenate shorter list with a copy of itself
6: ���l ← hl + hl // Concatenate longer list with a copy of itself
7: ps ← getConsecCommon(���s , c) // Get a list of positions of consecutive common hashed elements in the list ���s
8: if |ps | = 0 do: // Check if no consecutive hashed elements are found
9: lce ← 1 // There is no consecutive common hashed element
10: else: // If consecutive elements are found
11: for ps ∈ ps do: // Loop over each position in the list of consecutive common element positions ps
12: pl ← get PosMatch(���s [ps],���l) // Get the list of positions in ���l where the element ���s [ps] occurs
13: for pl ∈ pl do: // Loop over each position in the list of positions pl
14: k ← 0 // Initialise index and common count k
15: while (k < min(|���s [ps :ps + |hs |]|, |���l [pl :pl + |hl |]|)) and (���s [ps + k] = ���l [pl + k]) do: // Loop over elements in ���s and ���l
16: k ← k + 1 // Increment k by 1
17: lce ← max(lce, k) // Keep the length of LCE
18: return lce // Send found the length of LCE back to the DOs

4.4.1 Basic encoded Q-grams comparison algorithm

Because of the random shifting process performed by the
DOs, the LU does not know the start and end positions of the
hash encoded q-grams in the lists hx and hy to be compared.
To compare two shifted hash encoded q-gram lists, the LU
needs to rotate the two lists to find the length of their LCE,
lce, and then returns the lce to the DOs.

Algorithm 1 outlines the naive way for comparing two
encoded q-gram lists. In line 1, the LU first initialises the
length of LCE, lce. It then checks if the two lists, hx and hy ,
have any common elements (in line 2). If there are common
elements between the two lists, then the LU loops over each
position, px , of the elements in the list hx (in line 3), where
we denote the element in hx at position px as hx [px].

In line 4, the LU finds all positions where the ele-
ment hx [px] occurs in the list hy using the function
get PosMatch(). This function returns a list of positions,
py , where this list is empty if hx [px] does not occur in hy .
In line 5, the LU then generates the shifted (rotated) list,
hhhx , with a starting position of px by concatenating the two
sub-lists hx [px :] and hx [:px] into one shifted list hhhx .

The LU then loops over each position, py , in the list of
positions py in line 6, and in line 7 generates the shifted list,
hhhy , with starting position py , similar to the shifted list hhhx

generated in line 5. The common element at positions px
and py now becomes the first element of the two rotated lists
hhhx and hhhy , respectively.

In line 8, the LU initialises an index k as a count of the
number of common elements between hhhx and hhhy . The LU
then loops over the rotated list that has the shortest length,
with the condition that the elements in the two rotated lists
at position k are common (are the same). The LU keeps the

maximum k identified over all iterations of rotated lists in
line 11.

The LU repeats the steps in lines 3 to 11 until the element
hx [|hx | − 1] becomes the first element in the rotated shifted
listhhhx . Finally, the LU returns the length of LCE, lce, to the
DOs in line 12.

4.4.2 Fast encoded Q-grams comparison algorithm

As outlined inAlgorithm 2, the LU uses concatenated hashed
q-gram lists, hhhs and hhhl , for the comparison. We use such
a concatenation technique because (1) the concatenated list
contains the actual sequence of consecutive elements in the
hash encoded q-gram list before it has been shifted, and
(2) even after concatenation the actual positions of the hash
encoded q-grams are not being revealed to the LU, as we
discuss in Sect. 8.3.

Let us use the q-gram list q = [$m,ma, ar , r y, y$] as
an example. With the random number r = 2, the shifted
q-gram list becomes q′ = [r y, y$, $m,ma, ar]. We now
concatenate q′ with itself to generate a concatenated list
qqq′ = [r y, y$, m,ma, ar, ry, y, $m,ma, ar]. As can be
seen from this example, the concatenated listqqq′ does contain
the actual sequence of consecutive elements of the q-gram
list q (shown in bold).

In line 1 of Algorithm 2, the LU first initialises the length
of the LCE, lce. It then finds the common elements between
the two lists, hx and hy , it received from the DOs, and adds
these common elements into the set c in line 2. If common
elements occur betweenhx andhy , then theLUorders the two
lists by their lengths, and assigns the shorter list to hs and the
longer list to hl in lines 3 and 4. The LU then concatenates in

123

International Journal of Data Science and Analytics (2022) 14:191–215 199

lines 5 and 6 each of hs and hl with a copy of itself, resulting
in the two concatenated lists hhhs and hhhl , respectively.

In line 7, the LU then finds the list ps of consecutive posi-
tions inhhhs of the common elements in c by using the function
getConsecCommon(). For example, the first string pair in
Table 3, the string x = “mary” has the list ps = [1, 2]which
are the positions of q-grams ma and ar, respectively. The list
ps is empty if there is no sequence of consecutive common
elements occurring in both hx and hy . The length of LCE is
returned as lce = 1 in line 9 (the lce is 1 because the set c is
not empty, as tested in line 3).

If ps does contain consecutive common elements, then the
LU loops over each position ps in the list ps in lines 10 and
11. In line 12, the LU finds the list of positions, pl , in the
longer concatenated list, hhhl , where the element at position
ps of the concatenated list, hhhs , occurs by using the function
get PosMatch(). The LU then loops over each position pl
in pl in line 13.

In line 14, the LU then initialises the index k as the count
of the number of common elements between the two con-
catenated lists,hhhs andhhhl . In line 15, it loops over the shorter
concatenated sub-listhhhs , where this sub-list is not longer than
|hs |, starting from position ps , and the sub-list of the longer
concatenated listhhhl is not longer than the length |hl |, starting
from position pl . The loop terminates once the elements at
positions ps + k and pl + k are different.

If there are common elements in the two compared sub-list
hhhs andhhhl , then the LU increases the index k in line 16. Once
the loop is terminated, in line 17 the LU finds the maximum
length of the LCE identified so far. The LU repeats the steps
in lines 11 to 17 until there are no further positions to be
compared. Finally, the LU returns the length of the LCE,
lce, of the pair of hash encoded q-gram lists to the DOs in
line 18.

5 Stringmatching based on shifted random
bit arrays

While our approach based on shifted hash encoded q-grams
prevents frequency attacks that are exploiting Benford’s law
[2], an adversary might still be able to identify the most
frequent q-grams because these are encoded into hash val-
ues that will become the most frequent in the lists of hash
encoded q-grams, h. To prevent such attacks, we improve the
privacy of the shifted hash encoded q-gram-based approach
by encoding each unique q-gram list q into a bit array. Each
such bit array is padded at the beginning and end with ran-
dom bits to ensure the bit arrays of all encoded strings have

the same length even if the length of their q-gram lists differ.
This approach prevents the LU from identifying which sub-
sequence of bits in a bit array correspond to which q-gram,
as we discuss further in Sect. 8.3.

5.1 Generating bit arrays for strings

To generate bit arrays for the strings in a databaseD, eachDO
builds two tables of unique bit arrays. The first is the table
TΣ which contains one unique bit array for each possible
q-gram that can be generated from the alphabet Σ , where
Σ contains all characters that occur in the string values of
the databases DA and DB being compared, plus the padding
characters, α and β. The second table, TR , contains random
bit arrayswhichwill be used as padding tomake the bit arrays
of all q-gram lists the same length, where each DO needs to
generate a unique table of such random bit arrays in order to
prevent false matches, as we discuss further below.

Before building the tablesTΣ andTR , eachDOfirst gener-
ates all unique q-grams that can be obtained from the alphabet
Σ based on the q-gram length, q, where Σ = {a ∈ v : v ∈
DA ∪DB}∪{α, β}. The total number of possible q-grams we
obtain is |Σ |q .

Based on the sizes of Σ , the DOs now need to calculate
the q-gram bit array length, lq , to be used for generating
the unique bit array for each possible q-gram. Because each
DO needs to generate two tables of bit arrays (TΣ and TR),
where the random bit arrays TR must be different between
the two databases DA and DB , the bit array length lq must
be large enough to allow at least 3|Σ |q unique bit arrays to
be generated. We can calculate a minimum length for lq as
lmin
q = log2(3|Σ |q). This would however require every pos-
sible combination of bits to be generated, including [0]×lmin

q

and [1] × lmin
q . Such patterns could however reveal informa-

tion as their frequencies of occurrence could be analysed by
an adversary.

Therefore, to provide maximum entropy, which will make
it more difficult for a frequency attack to be performed, each
DO randomly generates bit arrays where bits are set to 0 or
1 with equal probability [11,48]. For a given bit array length
lq , the number of unique bit arrays that can be generated with

half their bits set to 1 is
(lq
lq/2

)
, where this number needs to

be at least 3|Σ |q in our case. We can calculate an estimation
of this number based on Stirling’s formula [14,28] as:

lestq =
⌈
2lq

/ √
πlq/2

⌉
. (1)

123

200 International Journal of Data Science and Analytics (2022) 14:191–215

Algorithm 3: Bit array generation by a DO

Input:
- D: Database as one list of q-grams per unique string value - lt : Final bit array length
- Σ : Alphabet - s: Common secret salt value
- q: Q-gram length - sd : Individual secret salt value
- lq : Q-gram bit array length
Output:
- B: Bit array inverted index

1: B ← {} // Initialise inverted index of bit arrays
2: TΣ ← {} // Initialise table of q-gram bit arrays
3: TR ← {} // Initialise table of random bit arrays
4: QΣ ← genQgramSet(Σ, q) // Generate set of all possible q-grams from Σ

5: for qΣ ∈ QΣ do: // Loop over q-gram in QΣ
6: bq ← genBit Arr(TΣ, lq , s, qΣ) // Generate a unique bit array for each q-gram (see function below for details)
7: TΣ [qΣ] ← bq // Add q-gram bit array to table TΣ
8: while |TR | ≤ |TΣ | do: // Loop to generate table TR , to contain |TΣ | random bit arrays
9: TT ← genRandBit Arr(TΣ , lq , sd) // Generate temporal set of random bit arrays
10: TC ← set I ntersect DOs(TT) // Find common random bit array generated by more than one DO
11: TT ← TT \ (TC ∪ TR) // Remove random bit arrays also generated by other DOs from TT
12: TR .add(TT) Add to local random bit array of this DO
13: for (sid, q) ∈ D do: // Loop over each q-gram list in the database
14: b′

q ← [] // Initialise bit array for this q-gram list
15: for qΣ ∈ q do: // Loop over q-grams in the q-gram list
16: b′

q ← b′
q + TΣ [qΣ] // Concatenate the bit arrays of all q-grams in the q-gram list

17: lr ← lt − |b′
q | // Calculate the number of random bits required for padding

18: b f ← padRandBit Arr(TR , b′
q , lr) // Pad bit array at both beginning and end with a total of lr random bits

19: B[sid] ← b f // Add the final bit array for q-gram list q to the inverted index B
20: return B

Function genBit Arr(TΣ, lq , s, qΣ):
21: bq ← [0] × lq // Initialise a bit array of 0-bits of length lq
22: random.seed(qΣ ||str(s)) // Set PRNG seed value as q-gram concatenated with salt
23: for 0 < i ≤ lq do: // Loop over all positions of the bit array
24: bq [i] ← random.select(0, 1) // Choose a 0 or 1 bit value randomly with equal probability
25: while bq ∈ TΣ do: // Regenerate bit array until it is unique
26: s = s + 1 // Increase salt value
27: bq = genBit Arr(TΣ, lq , s, qΣ) // Re-generate bit array using increased salt value
28: return bq

It holds that lmin
q ≤ lestq , and Table 4 shows values for both

lmin
q and lestq for alphabets of different sizes and different q-
gram lengths. In the following, and in our implementation,
we assume that the value of lq has been calculated based on
Eq. (1).

Once the DOs have calculated the q-gram bit array length,
lq , to be used, they engage in a secure protocol [49] to find the
maximum length ls that corresponds to the longest q-gram
list in their respective two databases, DA and DB . To ensure
all q-gram lists can be padded with random bits both at the
beginning and end, the DOs add 2 to the length ls and then
calculate the final bit array length as lt = (ls + 2) × lq .

For example, as illustrated in Fig. 2, assume two padded
strings are x ′ = “$mary$′′ and y′ = “#marry#′′, and their
corresponding q-gram lists are qx = [$m,ma, ar , r y, y$]
and qy = [#m,ma, ar , rr , r y, y#], respectively. As shown
in this figure, the longest q-gram list is qy with length ls = 6,
where each q-gram bit array is of length lq = 6 (to simplify
visualisation). Thus, the final bit array length is lt = (6 +
2) × 6 = 48 bits.

Algorithm 3 outlines the bit array generation by the DOs.
In line 1, each DO initialises the bit array inverted index,
B, to be used for the generated bit arrays that correspond
to its unique strings. Each DO then initialises the tables TΣ

and TR , respectively, in lines 2 and 3. Each DO in line 4
generates the set of all possible q-grams, QΣ , based on the
agreed alphabet, Σ , and q-gram length, q. Then, in lines 5
to 7, the DO loops over each q-gram qΣ ∈ QΣ to generate
a bit array for this q-gram using the function genBit Arr().
The details of this function are provided in lines 21 to 28.

In line 21, the function genBit Arr() first initialises a bit
array of length lq with only 0 bits. Then the q-gram qΣ is
concatenated with the secret salt value, s, that was agreed
by the two DOs. This concatenated value is used as the seed
to a pseudo random number generator (PRNG) [11]. With
the same seed, a PRNG will generate the same sequence of
random outputs, and therefore, all DOs generate the same
random bit arrays for the q-gram qΣ . The loop in lines 23
and 24 will generate lq such random bits, where the func-
tion random.select(0, 1) returns a 0- or a 1 bit with equal
probability. As a result, the bit array bq should be filled with
roughly 50% 1 bits. To ensure that each q-gram has a unique
bit array, in line 25 we check this condition, and if required,
we generate a new bit array based on a changed secret salt
value s. Because all DOs employ the same PRNG, they will
generate the same bit arrays for the q-gram set QΣ (which
is the same for all DOs). The function returns bq in line 28,
where bq /∈ TΣ .

123

International Journal of Data Science and Analytics (2022) 14:191–215 201

Table 4 Minimum and estimated lengths of bit arrays, lmin
q and lestq , for sizes of Σ (includes the two padding characters, α and β) and q-gram

lengths, q

Alphabet Σ |Σ | lmin
q lestq

q=2 q=3 q=4 q=2 q=3 q=4

Genomics 4+2 7 10 12 10 12 16

Digits 10+2 9 13 16 12 16 20

Letters 26+2 12 17 21 14 20 24

Digits and letters 36+2 13 18 23 16 20 26

Fig. 2 Two example bit arrays,
where each is of length lt = 48
bits, with different random bit
arrays padded at the beginning
and end (shown in red)

bx

by

q
x

= [m, ma, ar, ry, y]

6 6 66 67 11
101001 101100 110010 110100 1010100001110 01011010101

48 bits

8 46 6 6 6 6 6

101100 110010 110100010011 10001111100110010100 1110

48 bits

y’= #marry#,

x’= $mary$,

q
y

= [#m, ma, ar, rr, ry, y#]

Back to themain program,where in line 7, eachDO inserts
the generated bit array bq into the inverted index TΣ , where
the corresponding q-gram, qΣ , is used as a key. Each DO
repeats this process until one bit array, bq , has been generated
for every q-gram qΣ ∈ QΣ .

Each DO then generates in lines 8 to 12 its random
bit array table, TR , where |TR | = |TΣ | using the func-
tion genRandBit Arr(). A temporary table of random bit
arrays, TT , is generated first (in line 9), where the func-
tion genRandBit Arr() calls the function genBit Arr() (as
described above) to generate each random bit array. EachDO
uses its individual secret salt value, sd , as its random seed.
These individual secret salt values should result in different
random bit arrays being generated by the DOs. However, to
ensure no random bit array is generated by more than one
DO, a secure set intersection protocol [17] is employed in
line 10 between the DOs. Any found random bit array that
has been generated by more than one DO will be returned
by the set I ntersect DOs() function in the set TC in line 10,
and only those random bit arrays unique to a DO are then
added to its list TR . The DO repeats the steps in line 9 to 12
until |TR | = |TΣ |.

In the last phase of the bit array generation process,
each DO generates the final bit array, b f , of length, lt , for
each string (assumed to be available as a q-gram list) in its
database. Each DO first loops over the q-gram lists q in its
database, D, in line 13. For each q, the DO initialises a q-
gram bit array b′

q in line 14, and in line 15 loops over each
q-gram, qΣ ∈ q. Each DO then selects the q-gram bit array,

bq , that corresponds to qΣ from TΣ and concatenates the
selected bq to the bit array, b′

q , in line 16.
Finally, to ensure the generated bit arrays for all q-gram

lists q ∈ D are of the same length of lt , in line 17we calculate
the number of random bits, lr , that are required for padding
based on the length of the generated bit array b′

q . Using the
function padRandBit Arr(), in line 18 the DO then gener-
ates the final bit array, b f , where a random number of bits are
padded both at the beginning and end of b′

q such that a total of
lr bits are padded, and where these random bits are sourced
from the list of random bits arrays, TR . We illustrated this
random padding process in Fig. 2. Finally, in line 19 the DO
inserts the final bit array b f into the bit array inverted indexB
which will be sent to the LU for comparison, as we describe
next.

5.2 Comparison of bit arrays

For a pair of bit arrays, bx and by , as received from the DOs,
the LU needs to find the longest consecutive sequence of bits
that are the same across the two bit arrays. In the following,
we denote such a sequence as common bits, and the length of
the longest such sequence as the length of longest common
bits (LCB), lcb. We propose two algorithms for this com-
parison process. Similar to the comparison of hash encoded
q-grams described in Sect. 4.4, the first algorithm is a basic
algorithm that follows a naive comparison method, while
the second algorithm is a fast algorithm which substantially
improves the runtime of the comparison process.

123

202 International Journal of Data Science and Analytics (2022) 14:191–215

Algorithm 4: Basic bit array comparison process by the LU

Input:
- bx : First bit array
- by : Second bit array
Output:
- lcb: The number of bits in the longest common bit sequence

1: lcb ← 0 // Initialise the length of the LCB
2: lt ← |bx | // Get length of bit array, lt
3: for −(lt − 1) ≤ i ≤ lt − 1 do: // Loop over index position i
4: xs ← max(0, i) // Set start position of bx to compare with by
5: xe ← min(lt − 1, i + (lt − 1)) // Set end position of bx to compare with by
6: ys ← max(−i, 0) // Set start position of by to compare with bx
7: ye ← min(lt − 1, lt − (i + 1)) // Set end position of by to compare with bx
8: b′

x ← bx [xs :xe + 1] // Generate the bit segment, b′
x , of bx for comparison

9: b′
y ← by [ys :ye + 1] // Generate the bit segment, b′

y , of by for comparison
10: c ← f indCommon(b′

x , b′
y) // Find the length of the common bit array in the segment

11: lcb ← max(lcb, c) // Keep the maximum length of so far identified the length of LCB
12: return lcb

Algorithm 5: Fast bit array comparison process by the LU

Input:
- bx : First bit array
- by : Second bit array
- lγ : Segment length
Output:
- lcb: The number of bits in the longest common bit sequence

1: lcb ← 0 // Initialise the length of the LCB
2: sy ← genSegment(by , lγ) // Generate list of segments of bit array by
3: for i ∈ (0, |sy | − 1) do: // Loop over each segment in the list of segments of by
4: px ← get PosMatch(sy [i], bx) // Get the list of positions in bx where the segment sy [i] occurs
5: for px ∈ px do: Loop over all positions in the list px
6: cl ← getCommonLe f t(sy , bx [:px]) // Find the length of the common bit array in the left side of the current position in bx
7: cr ← getCommonRight(sy , bx [px :]) // Find the length of the common bit array in the right side of the current position in bx
8: c = cl + |sy [i]| + cr // Calculate length of common bit sequence, where |sy [i]| ≤ lγ
9: lcb = max(lcb, c) // Keep the maximum length of the LCB
10: return lcb

5.2.1 Basic bit arrays comparison algorithm

Figure 3 shows an example of the basic comparison algorithm
between two bit arrays, bx and by , where by is moved over
bx by one bit position per iteration. In each iteration, the
LU compares the bit segment in the overlapping positions
between bx and by to find the longest sequence of common
bits between the two segments.

Algorithm 4 outlines the steps in the basic bit array com-
parison process. The LU first initialises the LCB to lcb = 0
and then obtains the length of the bit arrays bx and by as
lt = |bx |, where we assume |bx | = |by |.

To compare the bit arrays bx and by , from line 3 onwards
the LU then loops over index position i , where −(lt − 1) ≤
i ≤ lt − 1. It calculates the start (xs and ys) and end (xe
and ye) positions for the two bit segments in bx and by to be
compared, based on the value of i , where 0 ≤ xs ≤ xe < lt

bx

lt()

by

by

by

by (lt−2)

by t−1l()

(1)

(2)

10 1110001111001001010 1101000100111101100110010 10

101001010010011110110011001001001111010011000111

1 11100011110010010100 1101000100111101100110010 10

...

100101001001111011001100100100111101001100011110

...

000111010100110110011001011010010101001011010101

100101001001111011001100100100111101001100011110

Fig. 3 Comparison of bit arrays bx and by using the basic comparison
method. The numbers in brackets show the iteration number. The com-
mon bits are shown in bold and those bits that are compared between

bx and by in red. The blue lines show the bits that are common between
bx and by (we have two sequences of common bits, one 13 bits and the
other 6 bits long)

123

International Journal of Data Science and Analytics (2022) 14:191–215 203

bx 000111010100110110011001011010010101001011010101

by

11001100s
y3

s
y2

s
y3

s
y4

s
x

s
y2

s
y3

s
y6

s
y5

s
y4

s
y1

10010100 10011110 11001100 10010011 11010011 00011110

1100110010100110 10110100

RightLeft

10011110 1001001111001100

lcb = 13

(a)

(b)

(c)

Fig. 4 Fast bit array comparison method between bit arrays bx and by ,
where the bits in the red dashed box are the common bits, with the LCB
set to lcb = 13. a illustrates the segmentation of by into segments of
length lγ = 8 as done by the LU, b shows how the LU then finds the
positions of the common bits, and c illustrates how the LU compares
the segments to the right and left

and 0 ≤ ys ≤ ye < lt . In lines 8 and 9, the LU then generates
the corresponding two bit segments, b′

x of bx and b′
y of by .

In line 10, the LU uses the function f indCommon() to
find the length of the LCB by applying the XOR operation on
b′
x and b′

y and identifying the length of the longest consec-
utive sequence of 0 bits, which represents the LCB between
b′
x and b

′
y . In line 11, the LU then keeps the longest length so

far identified the length of the LCB, and it repeats the steps
in lines 3 to 11 for all positions i . Finally, the LU returns the
found lcb to the DOs in line 12.

5.2.2 Fast bit arrays comparison algorithm

In the fast bit array comparison process, the DOs first agree
on a segment length, lγ , where 0 < lγ ≤ llcb, and llcb is the
minimum required length of LCB. The DOs can calculate
llcb = lq × (m − q + 1), where lq is the q-gram bit array
length, m is the minimum length of LCS required, and q is
the agreed q-gram length. If two encoded strings share m
consecutive characters, then they need to have a common bit
sequence of at least length of llcb.

We use the segment length lγ because it allows the LU to
compare bit arrays one segment after another, which reduces
the runtime required by the LU. Furthermore, the LUwill not
be able to learn any information about the original bit arrays
that represent individual q-grams, even if the segment length
lγ = lq , because it does not know lq .

Algorithm 5 outlines the fast comparison process by the
LU and Fig. 4 shows an example of this process on two bit
arrays, bx and by . As input, the LU receives bx and by , and
the segment length lγ , from the DOs. In line 1, it initialises
the length of LCB, lcb, and in line 2, it generates a list of
segment, sy , from by using the function genSegment() (as
illustrated in Fig. 4a). Each segment in sy has a length of lγ
or less bits (last segment in the sy). The LU then loops over

the segments in the list sy in line 3, and for each segment
in line 4, the LU finds the list of common positions, px , in
the bit array bx where the segment sy[i] occurs by using the
function get PosMatch(), as shown in Fig. 4b.

Because each bit array contains random and q-gram bit
arrays, a given segment can contain bits from both. For each
position, px , in the position list px , the LU therefore needs
to check if there are sequences of common bits between bx
and by both to the left and right of the common segment,
because in either direction there can be further common
bits, as is illustrated in Fig. 4c. The LU uses the functions
getCommonLe f t() and getCommonRight() in lines 6 and
7 to find the number of common bits on the left and right,
respectively, between the current segment in by , sy[i], and
bits in bx . The LU calculates the current length of the com-
mon bit sequence in line 8, and checks if it is a new LCB, lcb,
in line 9. The LU repeats steps in lines 3 to 9 for all segments
in sy . Finally, the LU returns the found lcb to the DOs in line
10.

6 LCS length calculation

As shown in Fig. 1, in the last step of our string matching
approaches, using Eq. (2) the DOs calculate the length of the
LCS, lcs, based on the matching results they received from
the LU. For the approach based on shifted hash encoded q-
grams we discussed in Sect. 4, the DOs calculate the lcs
based on the length of the longest sequence of common ele-
ments, lce, while if they use the approach based on bit arrays
described in Sect. 5, they calculate the lcs based on the length
of the longest sequence of common bits, lcb.

lcs = lce + q − 1 // For shifted hash encoded q-grams

lcs = �lcb/lq
 + q − 1 // For bit array encoding (2)

The DOs then only keep the string pairs that have a
lcs ≥ m. The last column in Table 3 shows examples of
the calculated LCS length based on the lce for different pairs
of strings.

7 Scalability aspects

In this section, we describe how we can scale our proposed
string matching approaches to large databases. The number
of string pairs increases quadratic with the numbers of strings
in the two databases being compared. We can improve the
complexity of the comparison process by applying a privacy-
preserving blocking technique [11,19] to reduce the number
of encoded string pairs that need to be compared by the LU.

We apply a q-gram-based blocking approach [11] to gen-
erate blocks for each database. In this approach, each block

123

204 International Journal of Data Science and Analytics (2022) 14:191–215

is generated based on a permutation of q-grams in the q-gram
list of each string. The DOs first agree on a secret salt value,
s, a hash function,H, and the length of q-gram set permuta-
tions, tq . In our approach, we calculate tq based on the agreed
minimum length of the LCS,m, and the q-gram length, q (as
described in Sect. 4.1) as tq = m − q + 1.

The DOs then independently generate the q-gram permu-
tation lists of length tq for each of their q-gram lists. Each
DOconcatenates the q-grams in each such list into one string,
qs , which is used to generate a blocking key value, bkv, by
concatenating it with the agreed secret salt value, s. This
is followed by a hash encoding of this concatenated string,
resulting in bkv = H(qs‖s). Finally, all q-gram lists in a
database that have the same bkv are inserted into the same
block. Once the DOs have generated their blocks, they then
send these blocks to the LU for conducting comparisons. The
LU finds the common bkv between the received databases
and only compares the encoded string pairs in blocks that
have the same bkv.

For example, let us consider the DOs have agreed onm =
3 and q = 2, and therefore they calculate tq = 3−2+1 = 2.
We assume the two strings in the two databases, x ∈ DA

and y ∈ DB , are x = “mary” and y = “marie”, with the
q-gram lists qx = [ma, ar , r y] and qy = [ma, ar , ri, ie],
respectively. They then individually generate the bkv of their
strings as bkvx = {H(maar‖s),H(mary‖s),H(arry‖s)}
and bkvy = {H(maar‖s),H(mari‖s),H(maie‖s),H
(arri‖s),H(arie‖s),H(ri ie‖s)}. The encoding of strings
x and y are inserted into every block with the bkvx ∈ bkvx
and bkvy ∈ bkvy , respectively. Once the DOs have sent
their blocks to the LU, the LU can find the common bkv =
H(maar‖s). Therefore, two encoded strings x and y are
being compared.

In the random bit array-based approach, we generate
blocks by applying Hamming locality sensitivity hashing
(HLSH) [19,34]. In this approach, the LU receives two sets
of bit arrays from the two DOs. The LU uses a set of hash
functions to select certain bits, and it concatenates these bits
into a bit array of fixed length, lb, to be used as a bkv. The
bit arrays that have the same bkv are then inserted into the
same block.

In our approach, the DOs individually generate blocks
of bit arrays before sending them to the LU. The DOs first
agree on the secret salt value, s, a hash function, H, and a
bit percentage, pb. They use pb to calculate the length of a
bit segment to be used for HLSH blocking as lb = (pb ×
llcb)/100, where we described llcb in Sect. 5.2.2. They then
generate segments of the selected q-gram bit arrays, b′

q , each
of length of lb. Each of these segments is then used to generate
a bkv by concatenating themwith the agreed secret salt value,
s, followed by a hash encoding using the functionH. The bit
segments that have the same hash encoded bkv are inserted
into the same block. However, the length of the b′

q is possibly

not divisible by lb, and therefore the last segment might be
shorter than lb. To ensure every generated segment has the
same length, we therefore extend any segment that is too
short by adding bits from the left segment, for example, if
we assume b′

q = 11001100 (with |b′
q | = 8) and lb = 3. The

generated segments of this b′
q are 110, 011, 00. Therefore, the

last segment, 00, is extended with the last bit from the second
segment, resulting in the last segment becoming100.Thebkv
of this b′

q are bkv = {H(110‖s),H(011‖s),H(100‖s)}.

8 Analysis of our protocol

Wenowanalyse our approaches in terms of complexity, accu-
racy, and privacy.

8.1 Complexity analysis

In the shifted hash encoded q-gram-based approach, eachDO
requires O(lh) for each step of the encoding process, where
lh is the length of hash encoded q-grams list corresponding
to each string in its database.

In the comparison process, let us assume the two shifted
hash encoded q-gram lists, hx and hy , are sent from the DOs
to the LU, where these lists have the same length, lh . In
the basic comparison algorithm, the LU requires O(lh) for
checking if set(hx) ∩ set(hy) �= ∅. For each common hash
encoded q-gram hx ∈ hx , the LU requires O(lh) to find the
positions of hx that occur in hy . It then requires O(l2h) to
find the length of the LCE, lce, between hx starting from hx
(shifted hx) and every shifted list of hy . Therefore, overall
the basic comparison algorithm requires O(2l2h + 2lh).

In the fast comparison algorithm, the LU requires O(lh)
for checking if hx and hy share elements. The LU then con-
catenates each list with itself and orders them, resulting in
the shorter list hhhs and longer list hhhl . The LU then requires
O(lh) for finding the positions of consecutive common hash
encoded q-grams inhhhs . For each hs ∈ hhhs , it requires O(lh) to
find the positions in hs that occur inhhhl , and it requires O(lh)
to find the lce between hhhs starting from hs and hhhl . Over-
all, the LU therefore requires O(2l2h + 2lh). However, this
is the worst case which only occurs when hx and hy contain
exactly the same encodings. Otherwise, the LU requires less
than O(2l2h) to find the lce betweenhhhs andhhhl . Therefore, the
fast comparison algorithm is faster experimentally than the
basic comparison algorithm, as we will show in Sect. 9.5.

In the random bit array-based approach, each DO requires
O(|Σ |q) to generate the bit array table of all possible q-
grams, TΣ . To generate each random bit array, br , a DO
checks if br /∈ TΣ ∪TRA ∪TRB , where TRA and TRB are the
random bit array tables of the two DOs. Each DO therefore
requires a maximum O(3|Σ |q) to generate the random bit

123

International Journal of Data Science and Analytics (2022) 14:191–215 205

array table of size |TΣ |. To generate the final bit array, b f , of
each string, a DO requires O(lh) to concatenate the q-gram
bit arrays, bq , into a bit array, b′

q , and O(nr) to pad each b′
q ,

with random bit arrays, where nr is the number of random
bit arrays to be selected from TR .

We assume the LU receives two bit arrays, bx and by , from
the DOs. In the basic bit array comparison algorithm, the LU
requires O(l2t) to find the length of the LCB between bx and
by , where lt = |b f |. In the fast bit array comparison, the LU
requires O(lt) to generate a list of segments, sy , from by . For
each sy ∈ sy , it then requires O(lt) to find the positions in
bx where each sy occurs. For each position px in bx , the LU
requires O(lt) to find the sequence of common bits that occur
to the left and right of bit at the position px in bx . Therefore,
the LU requires a total of O(lt + |sy |(lt + l2t)).

When the DOs apply blocking to their databases, each
DO requires O(lh × |D|) to generate blocks based on q-
gram-based blocking, while with HLSH-based blocking the
DOs require O(bB × |D|), where bB = �lt/lb� and lb is
the length of bit segments used to generate a blocking key.
In the comparison process, the LU requires O(n2/nb) block
comparisons, where n is the number of hash encoded q-gram
lists or bit arrays in each database (we assume |DA| = |DB |)
and nb is the number of blocks.

8.2 Accuracy analysis

As mentioned in Sect. 4, we use different padding characters
between databases to ensure that the calculated length of
LCS, lcs, is correct. Let us describe why this approach is
required by using a q-gram list without padding characters
as an example. We assume the strings to be compared are
x = “mary′′ and y = “marary′′. The correct LCS between
these two strings is “mar ′′ with lcs = 3. We assume the
DOs have agreed on q = 2 and they use random numbers for
shifting their q-gram lists rx = 2 and ry = 4, respectively.
Therefore, their shifted q-gram lists are q′

x = [ar, ry,ma]
and q′

y = [ar , ra, ar, ry,ma], where the common q-grams
are shown in bold. When the LU compares these lists, it
returns the lce = 3 to the DOs. The DOs then use Eq. (2) to
calculate lcs = 3 + 2 − 1 = 4. Therefore, the DOs obtain
an incorrect result. As this example shows, our approach
does not work when strings are not padded using different
characters. Examples of correct LCS calculations are shown
in Table 3.

Apart from the padding characters, to calculate an accurate
lcs, the minimum length of the LCS, m, must be at least of
length q, m ≥ q. This is because when m < q, in the shifted
hash encoded q-gram-based approach, the LU cannot find the
length of LCE, lce, between the two hash encoded q-grams
lists. Let us use the twoq-gram lists,qx andqy , as an example.
We assume m = 3, q = 4, and two padded strings are x ′ =
“$mary$” and y′ = “#marary#”. The corresponding q-

gram lists of x ′ and y′ are qx = [$mar ,mary, ary$] and
qy = [#mar , arar , rary, ary#], respectively. There is no
common q-gram between these lists and therefore the DOs
obtain the length of LCS, lcs = 0, for this pair of strings,
where the actual LCS between x ′ and y′ is “mar” with the
lcs = 3. The same issue also occurs in the random bit array-
based approach because each bit array is generated based on
a list of q-grams.

In the random bit array-based approach, hash collisions
[8], where two or more q-grams are encoded into the same q-
gram bit array, bq , can affect the accuracy of stringmatching.
The probability of a hash collision, Pb, that the bit can be
set to 1 in this approach can be calculated by applying the
dependent probability calculation [1] as shown in Eq. (3):

Pb = lq/2

lq
× (lq/2) − 1

lq − 1
× ... × 1

(lq/2) + 1
, (3)

where lq is the length of the bit array of each q-gram, and lq/2
means 50% of lq is set to 1. When selecting the first bit posi-
tion, there is a lq/2 out of lq chance that the position is being
selected to be set to 1 by two or more q-grams. The num-
ber of chances decreases by 1 once each position is selected.
Finally, when selecting the last position, there remain 1 out of
lq/2+1 chances that a position can be selected. For example,
assume we use lq = 6, the probability that a hash collision
can occur is Pb = 3/6 × 2/5 × 1/4 = 0.05 or 5% of lq .

8.3 Privacy analysis

We assume the DOs and the LU follow the honest-but-
curious (HBC) adversary model where no DO colludes with
the LU [36]. TheHBCmodel is commonly used in PPRL and
private string comparison protocols [57] because of its appli-
cability to real scenarios. In this model, each party tries to
learn as much as possible about the other parties’ data based
on what it receives from the other parties, while following
the protocol steps.

In our approaches, the DOs first communicate with each
other to agree onparameter settings. This allows them to learn
the parameters that are being used in the encoding processes
but they cannot learn any sensitive information of the strings
in each other’s databases.

In both approaches, the DOs then individually encode the
unique strings in their databases using the agreed parameters
without learning any information from the other database.
However, to generate the random bit arrays in the random bit
array-based approach, the DOs employ a secure set intersec-
tion protocol [17] to find and exclude the common random
bit arrays from their random bit arrays tables. These random
bit arrays however do not represent any actual q-grams, and
therefore, the DOs do not learn any sensitive information
from each other.

123

206 International Journal of Data Science and Analytics (2022) 14:191–215

Whenblocking is used, theDOsapply aprivacy-preserving
blocking algorithm [11,19] on their encoded strings before
these are being sent to the LU. We assume such a blocking
algorithm to be secure such that it does not allow the DOs to
learn any sensitive information about each other’s databases.
The LU then receives the two encoded databases from the
DOs. It first finds common blocks between them and then
compares only encoded strings that are in the same blocks.
In this step, the LU does learn which encodings occur in both
databases, but not their actual content.

In our shifted hash encoded q-gram-based approach, the
LU can learn the string length by guessing the length of q-
grams, q (commonly used values are 2 and 3), and checking
the length of the hash encoded q-gram lists. The LU can then
generate q-grams from a public database using the guessed q
and compare the frequency of the generated q-grams and the
hash encodings in a received database. However, in order to
identify encoded q-grams, this public database must contain
a very similar set of values with the same frequency distri-
bution to the encoded database as otherwise the LU cannot
employ a frequency analysis. Furthermore, an injection of
faked values can be used to prevent such a frequency-based
attack [32].

In the basic encoded q-gram comparison algorithm
(described in Sect. 4.4.1), for each pair of shifted hash
encoded q-gram lists, the LU finds the length of LCE by
iteratively comparing and rotating the two lists. While the
LU can keep the positions where the common hash encoded
q-grams occur, it cannot learn the actual positions of these
common hash encoded q-grams nor the positions of the orig-
inal q-grams because (1) the common q-grams between two
lists can occur at any position in the lists, and (2) the hash
encoded q-grams in the two lists have been shifted by our
random shifting technique. This results in the common pat-
terns of the original string pairs to be distributed to different
patterns of the encoded string pairs. In other words, the orig-
inal positions where common q-grams occur in the q-gram
lists have been shifted to other positions in the encoded and
shifted lists.

Similarly, in the fast encoded q-gram comparison algo-
rithm, although the actual sequence of hash encoded q-grams
is contained in the concatenation of the shifted lists (as
described in Sect. 4.4.2), the LU still cannot learn the actual
positions of neither where the original q-grams nor the LCS
occur in the two strings.

In the random bit array-based approach, the LU receives
bit arrays which are randomly padded by random bits. The
LU cannot learn the length of the original strings because
every bit array has the same length. It also cannot learn the
frequency distribution of the bits that encode each q-gram
because the q-grambit arrays are shifted by a randomnumber
of bits, and therefore, it cannot re-identify the original q-
grams. The LU can only learn that the common bits occur

in the middle of two bit arrays (common pattern m-m) but
it cannot learn the actual positions where the LCS occurs in
the strings that correspond to a bit array pair.

Once the LU has compared all encoded string pairs, it
returns the LCE or LCB to the DOs. Each DO then calculates
the length of the LCS, lcs. This allows each DO to learn the
LCS between a string in its database and a string in the other
DO’s database, but the DO cannot learn the positions where
the LCS occurs in their string. Therefore, the DOs only learn
that there is a sub-string match.

9 Experimental evaluation

We evaluated the accuracy, privacy, and scalability of our
privacy-preserving string matching approaches compared
to Bloom filter (BF) encoding [44], tabulation-based hash-
ing (TMH) [51], and DGK approximate string matching
(DGK) [23]. We compared our approaches with these three
baselines because BF encoding [44] is considered as a
standard technique for PPRL, TMH [51] is a more secure
technique compared to BF encoding, and DGK [23] is a
recently proposed approach for secure string matching that
encrypts strings based on their q-grams. We implemented all
approaches using Python 2.7 and ran experiments on a server
with 2.4 GHz CPUs running Ubuntu 18.04.

9.1 Data sets

In our evaluation,we require pairs of data setswhere eachpair
contains different common patterns as illustrated in Table 3.
Weusedboth synthetic and real data of types numbers, letters,
and mixed.

Togenerate the synthetic data,weused thePythonpackage
Faker1 to create data sets of credit card, barcode, and IBAN
(International Bank Account Number) numbers, where each
such data set contains 1,000 unique strings. We used each of
these data sets as the first data set in a pair. We then created
the second data set of a pair by replacing characters at dif-
ferent positions in each string in the first data set by random
characters of the same alphabet. We ensured each data set
pair does contain different common patterns; however, the
common pattern b–e (see Table 3) cannot occur for IBAN
numbers because these numbers begin with letters and end
with digits. Therefore, the beginning of the first IBAN num-
ber cannot be in common with the end of a second IBAN
number in a string pair.

For real data, we extracted 1,000 strings of first names,
cities, zip codes, and telephone numbers from the North Car-
olina Voter Registration (NCVR)2 database, with snapshots

1 See: https://pypi.org/project/Faker/
2 See: https://dl.ncsbe.gov

123

https://pypi.org/project/Faker/
https://dl.ncsbe.gov

International Journal of Data Science and Analytics (2022) 14:191–215 207

Table 5 Lengths of the longest q-gram list, ls , q-gram bit array, lq ,
calculated using lestq (Eq. (1)), and final bit array, lt , of different data set
pairs and alphabet sizes, |Σ |
Data set pair Data set |Σ | ls lq lt

NCVR 2011-2020 First names 28 15 20 300

” Cities 31 22 20 440

” Zip codes 10 11 16 176

” Telephone numbers 11 11 20 220

Extracted-corrupted US security numbers 26 14 20 280

Synthetic-corrupted Credit card numbers 10 17 20 340

Synthetic-corrupted Barcode numbers 10 14 20 280

Synthetic-corrupted IBAN numbers 36 23 26 598

from 2011 (first data set) and 2020 (second data set). We
also extracted 1,000 strings of US security numbers from the
Social Security DeathMaster File3. Similar to generating the
synthetic data sets, we used the extracted US security num-
bers to generate the second data set by randomly replacing
characters at different positions in each string.

In total, we evaluated our approaches and baselines on
eight data set pairs including three sets of synthetic data, four
sets of real NCVR data, and one set of real social security
death index data.

9.2 Parameter settings

We padded strings in the two databases, DA and DB , using
the padding characters α = “$” and β = “#”, respectively.
We generated q-grams using q = 3 for first names, cities,
zip codes, and the US security numbers data sets, while we
used q = 4 for telephone, credit card, barcode, and IBAN
numbers. For each data set, we used the minimum length of
LCS, m = q.

In the shifted hash encoded q-gram-based approach, to
generate hashed q-grams, we used the hash function H =
SHA256 [43] and the agreed secret salt value s = 45. This
salt value was also concatenated with q-grams for generating
each q-gram bit array, bq , in the bit array-based approach. To
generate the random bit arrays for databases DA and DB , we
used the individual secret salt values, sA = 65 and sB = 56,
respectively. We calculated the length of q-gram bit arrays,
lq , using Eq. (1). Table 5 shows the alphabet sizes and bit
array length for each data set.

We compared our approaches with three baselines, which
are BF [44], TMH [51], and DGK approximate string match-
ing (DGK) [23]. We used the same parameter settings as we
used in our approaches, such as padding character α, q-gram
length q, minimum lengthm, secret salt value s, and the hash
function H.

3 See: http://ssdmf.info/download.html

To generate the BF for a string, we encoded each q-gram
set into a BF of 1,000 bits as this is a commonly used BF
length for PPRL [44]. We used the optimal number of hash
functions [38] for each data set, which is 139 for first names,
87 for cities, 139 for zip codes, 87 for telephone numbers,
116 for US security numbers, 46 for credit card numbers,
58 for barcode numbers, and 33 for IBAN numbers. For the
TMH approach, we followed the original publication [51]
and used 8 tabulation hash keys each of 64 bits length to
generate a bit array of length 1,000 bits to encode a string.
For the DGK approach, we used keys of size 1,024 bits,
and rather than using a two-party protocol as proposed in
the original publication [23], we implemented a three-party
protocol to be comparable with our approaches and the other
two baselines by using a LU for conducting the comparison
process.

To improve scalability, we applied a q-gram-based block-
ing technique for all approaches and applied HLSH -based
blocking on the random bit array, BF, and TMH approaches,
as we described in Sect. 7. However, we only show results
based on q-gram-based blocking for BF [44] and TMH
[51] as both blocking approaches (q-gram- and HLSH-based
blockings) provide highly similar results. For q-gram-based
blocking, we calculated the length of q-gram set permuta-
tions for generating blocks based on m and q, resulting in
tq = 1.

For HLSH-based blocking, in our random bit array-based
approach, we generated blocking key values, bkv, using the
length of bit segments lb calculated based on the bit percent-
age, pb = 30, 50, and 80 (the lb calculation is described in
Sect. 7). For theBF [44] andTMH[51] baselines,we used the
same length of bit segments lb calculated based on pb = 80
in our approach because when using pb < 80 the resulting
bit segments are too short and generate too many blocks for
BFs or bit arrays of length 1000 bits. This would lead to a
large number of comparisons. For example, as shown in the
first names data set in the Table 6, the length of bit segments
lb = 6 and number of blocks is 166 blocks when it is cal-
culated based on pb = 30, while lb = 16 and number of
blocks is 62 when calculated based on pb = 80. To generate
each blocking key, bkv, we used the agreed secret salt value,
s = 45, and the hash function H = SHA256.

9.3 Accuracy results

Weevaluated the accuracy of all approaches based on the cor-
rectness of similarity calculations. We compared the length
of the LCS of unencoded string pairs with the calculated
length of LCS, lcs, of the corresponding encoded string
pairs based on Eq. (2). To be comparable with the BF [44],
TMH [51], and DGK [23] baselines, we normalised the
lcs into the range [0...1] of similarity values, calculated as

123

http://ssdmf.info/download.html

208 International Journal of Data Science and Analytics (2022) 14:191–215

Table 6 Number of bits used
for generating blocks and bkv
for different data sets and
approaches

Data set Our approach BF TMH

pb = 30 pb = 50 pb = 80

NCVR First names 6 10 16 16 16

NCVR Cities 6 10 16 16 16

NCVR Zip codes 4 8 12 12 12

NCVR Telephone numbers 6 10 16 16 16

US security numbers 6 10 16 16 16

Credit card numbers 6 10 16 16 16

Barcode numbers 6 10 16 16 16

IBAN numbers 7 13 20 20 20

simlcs = lcs/max(|x |, |y|), where x and y are the strings in
a pair.

For the BF approach, we calculated the similarity of q-
gram sets and of BFs using the Dice coefficient similarity
[44], while we used the Jaccard similarity calculation for q-
gram sets and of bit arrays generated by the TMH encoding
technique [51]. For the DGK approach, we calculated the
similarity of q-gram and encryption (ciphertext) lists using
the Dice coefficient [23].

Figure 5 shows scatter plots where the horizontal axis
shows unencoded similarities and the vertical axis shows
the corresponding encoded similarities. Points on the diag-
onal show pairs of strings where both the unencoded and
the encoded similarities are the same, while any point off
the diagonal shows differences in the calculated similari-
ties between unencoded and encoded string pairs. As can
be seen, both our approaches provide accurate string similar-
ity results, while BF [44] and TMH [51] encodings can result
in inaccurate similarities. This is because of high number of
hash collisions that occur with both encoding approaches,
where different q-grams are hashed into the same bit posi-
tions.

The DGK [23] approach also results in inaccurate similar-
ities. This is because the Dice coefficient of the ciphertexts is
calculated based on the cardinality, where some ciphertexts
that represent encrypted q-grams of strings in a pair are not
common, although these ciphertexts are common between
the two lists of all possible q-grams that were used to gener-
ate the intersection set of cardinality.

9.4 Privacy results

We first evaluated the privacy of our approaches by iden-
tifying the common patterns between unencoded (or unen-
crypted) and encoded (or encrypted) string pairs. Figure 6
shows example heatmap [21] plots of different levels of pri-
vacy provided by a PPRL approach, where in each plot the
vertical axis shows the common patterns of unencoded (or
unencrypted) string pairs and the horizontal axis shows the

common patterns of encoded (or encrypted) string pairs. The
dark blue colour indicates a higher percentage of unencoded
and encoded string pairs while lower percentage of pairs are
shown in light blue.

An approach provides the highest privacy when there are
no common patterns of unencoded and encoded string pairs
(as we show in the leftmost plot in Fig. 6). In contrast to
the highest privacy, an approach provides the lowest privacy
when all patterns of unencoded and encoded string pairs are
in common (as we show in the rightmost plot in Fig. 6).
An approach provides high privacy when (1) the patterns of
unencoded string pairs become the m-m pattern when the
strings in these pairs are encoded (as illustrated in the sec-
ond left plot), or (2) the patterns of unencoded string pairs
become different patterns when the string in these pairs are
encoded (as illustrated in the second right plot). Therefore,
when common patterns of unencoded string pairs become
different patterns in encoded string pairs, it is more diffi-
cult for an adversary to identify the original q-grams and the
positions where the LCS occurs.

As shown in in Figs. 7 and 8, the common patterns of
encoded string pairs using our approaches are different from
the common patterns of unencoded string pairs, where no
string pair has the same common pattern. With the shifted
hash encoded q-gram-based approach, each common pattern
of unencoded string pairs is distributed to different common
patterns when the strings in the pairs are encoded. The high-
est number of encoded string pairs in many data sets is the
common pattern m-m, which means the encoded strings in a
pair are common in the middle of the hash encoded q-gram
list, h. Similarly, in the random bit array-based approach,
most common patterns of unencoded string pairs become
the common pattern m-m in the encoded string pairs, as we
described in Sect. 8.

For theDGKapproach [23], the common patterns of unen-
crypted and encrypted string pairs are all the same because
the common patterns of unencrypted string pairs are not dis-
tributed to other common patterns of encrypted string pairs.
Each unencrypted q-gram in a pair and its corresponding

123

International Journal of Data Science and Analytics (2022) 14:191–215 209

Fig. 5 Similarity plots of shifted hash encoded q-gram-based approach
(first column), shifted random bit array-based approach (second col-
umn), Bloom filter (BF) encoding [44] (third column), tabulation-based
hashing (TMH) [51] (fourth column), and theDGKapproximate thresh-
old [23]-based approach (last column). As can be seen, both of our
approaches provide accurate similarity calculations (our LCS equals

the actual LCS that is calculated on unencoded string pairs), while the
BF and TMH approaches both can lead to substantially changed simi-
larities even between very similar strings. The DGK approach results in
the similarity of a pair of encoded strings to be higher than the similarity
of its corresponding unencoded strings

ciphertext (encryption of 1) is located at the same position
in the list of all possible q-grams. However, this approach
still provides high privacy because of the use of the DGK
homomorphic encryption [16] which results in the same
value being encrypted into different ciphertexts. Therefore,
although the common patterns of unencrypted and encrypted
string pairs are the same, it would be difficult to re-identify
the original string values because an adversary cannot learn
if a ciphertext represents a 0 or 1.

For the BF [44] and TMH [51] encoding approaches, the
common patterns of the same string value in different data
sets are not being distributed to other common patterns when
they are encoded, and therefore, the common pattern is the
same common pattern. The encoded string pairs can have the
none common pattern because when using these approaches
the bits that encode q-grams are not located in sequential
order. The bits of common q-gram between two strings can
be located next to bits that encode not common q-grams, and

123

210 International Journal of Data Science and Analytics (2022) 14:191–215

Fig. 6 Heatmap [21] plots of different privacy levels of a PPRL
approach. The highest to lowest privacy are shown from left to right.
In each plot, the vertical axis shows the common pattern of unencoded

(or unencrypted) string pairs and the horizontal axis shows the common
pattern of encoded (or encrypted) string pairs

Fig. 7 Heatmap [21] plots of the NCVR and US social security num-
ber data set that are compared using different approaches. Each column
shows shifted hash encoded q-gram, random bit arrays, BF encoding
[44], TMH [51], and DGK [23] ordered from left to right. Each row
shows common patterns of different real data sets. In each plot, the verti-

cal axis shows the commonpattern of unencoded (or unencrypted) string
pairs and the horizontal axis shows the common pattern of encoded (or
encrypted) string pairs. Higher percentages of unencoded and encoded
string pairs are shown in dark blue, while lower percentages are shown
in light blue colour

123

International Journal of Data Science and Analytics (2022) 14:191–215 211

Fig. 8 Heatmap [21] plots of the synthetic data sets that are compared
using different approaches. Each column shows shifted hash encoded
q-gram, random bit arrays, BF encoding [44], TMH [51], andDGK [23]
ordered from left to right. Each row shows common patterns of differ-
ent synthetic data sets. The vertical axis shows the common pattern of

unencoded (or unencrypted) string pairs and the horizontal axis shows
the common pattern of encoded (or encrypted) string pairs. Higher per-
centages of unencoded and encoded string pairs are shown in dark blue,
while lower percentages are shown in light blue colour

the sequence of bits in a BF or TMH bit array is then a mix
of common and not common q-grams.

For example, assume the two BFs bx = 1011000100 and
by = 0001010110 have common bits encoding of common
q-gram locating at positions 3 and 7 (as shown in bold) of the
BFs. These two bits are located next to the bits encoded of
not common q-grams. The encoding is a mix of bits encoded
of common and not common q-grams. As can be seen, this
BF pair cannot be categorised to any of common patterns (as
illustrated in Table 3), and therefore, the common pattern of
this BFs pair is none.

We also evaluated the privacy of our random bit arrays
approach and the BF [44] and TMH [51] encoding base-
lines using two cryptanalysis attacks developed for BFs for
PPRL [12,13]. A frequency-based attack [12] cannot reveal
any information from our random bit array-based approach
as well as the two baselines because the frequency of bit
arrays or BFs equals the frequency of strings (all have fre-
quency of 1). Therefore, the attack cannot identify any pairs
of unencoded and encoded values. A pattern mining-based
attack [13] cannot re-identify any information in our ran-
dom bit array-based approach and the two baselines either,
because of the random bit arrays which result in encodings of
the same q-gram in different strings being located at different
positions. It also cannot attack the two baselines because too
many hash collisions occur in encodings which means the

attack cannot re-identify any information about individual
q-grams.

9.5 Scalability results

To be comparable between our approaches and the baselines,
we use a three-party protocol for all approaches [11]. We
evaluated the runtime of the encoding process by a DO and
the string comparison process by the LU, as shown in Fig. 9.
We report the average times for one string or string pair in
milliseconds.

As shown in Fig. 9, our shifted hash encoded q-gram-
based approach is the fastest encoding technique while the
DGK approach [23] is the slowest encoding technique. In
our random bit array-based approach, the encoding of letters
is performed faster than the encoding of numbers. This is
because the size of the alphabet, |Σ |, affects the runtime
when generating the unique random bit arrays. A small |Σ |
leads to shorter q-gram bit array length, lq , and results in
longer runtimes to generate unique random bit arrays for the
two DOs. Furthermore, encoding also uses more time for
longer strings, such as IBAN numbers (as shown in Table 5).
However, the size of the alphabet and the length of strings
do not affect the other encoding approaches.

For the comparison process, we applied q-gram-based
blocking to our shifted hash encoded q-gram-based approach

123

212 International Journal of Data Science and Analytics (2022) 14:191–215

Fig. 9 Runtime comparison of the encoding processes by a DO (left) and encoded string comparison by a LU (right) between our approaches, BF
encoding, and TMH. Shown are average times for encoding one string and matching one string pair

Table 7 Number of string pair comparisons for different data set pairs and encoding approaches

Data set pair Data set Shifted hash encoded q-gram Bit array-based BF [44] TMH [51] DGK [23]

NCVR 2011-2020 First names 19,462 20,573 45,215 45,215 124,246

” Cities 33,029 33,662 46,954 46,954 168,494

” Zip codes 55,454 59,515 389,603 389,603 396,020

” Telephone numbers 176,863 177,372 573,053 573,053 574,920

Extracted-corrupted US security numbers 12,884 13,175 29,625 29,625 81,024

Synthetic-corrupted Credit card numbers 18,594 22,153 27,606 27,606 27,606

Synthetic-corrupted Barcode numbers 9,864 12,139 11,706 11,706 11,706

Synthetic-corrupted IBAN numbers 22,818 23,156 112,872 112,872 112,872

and the three baselines,whilewe appliedHLSH-based block-
ing to our random bit array-based approach and the BF
[44] and TMH [51] baselines. Table 7 shows the number
of string pair comparisons of the different data set pairs and
approaches, where we show only the number of comparisons
based on q-gram-based blocking for the three baselines.

As shown in Fig. 9, in the comparison process, our
approaches consume similar runtimes to the DGK approach
[23] and have longer runtimes than BF [44] and TMH [51]
encoding, where these two baselines have similar runtimes.
This is because the comparison process of our approaches
is more complicated, where we find all sequences of com-
mon encodings that occur in the encoded strings pair and
then find the LCS between them, while BFs [44] and TMH
[51] both only calculate approximate similarities based on
the set intersection of 1 bits that occur in a pair of encoded
strings.

Overall, as expected, the runtimes of our fast comparison
algorithms are faster than the basic comparison algorithms.
However, in the random bit array-based approach, the fast
algorithm is slower than the basic algorithm when we use
lγ = 10% of llcb. This is because of the overhead by the

fast algorithmwhich needs to generate segments and find the
common sequences of bits to the left and right of segments.

10 Discussion

Our approaches provide accurate string comparisons and
outperform Bloom filter (BF) encoding [44], tabulation-
based hashing (TMH) [51], and the DGK approximate string
matching (DGK) [23] approaches, where all of these base-
lines calculate approximate similarities between string pairs.
Our approaches use more time for the comparison step than
the BF [44] and TMH [51] baselines, while our random bit
array-based approach uses similar runtimes to the DGK [23]
approach. For the encoding step, our approaches are faster
than the TMH [51] and DGK [23] baselines.

In terms of privacy, the common patterns of the original
string pairs are distributed to different patterns when strings
are encoded using our approaches, while with the BF, TMH,
and DGK baselines the common patterns of string pairs are
not distributed to other common patterns. This implies that
our approaches will make it more difficult for an adversary
to re-identify the original string pairs based on a frequency

123

International Journal of Data Science and Analytics (2022) 14:191–215 213

analysis than with the three baselines because less common
patterns are available for an attack. Overall, our approaches
provide high accuracy and privacy, at the cost of increased
comparison times if compared to the three baselines.

11 Conclusions and future work

Wehave presented two new privacy-preserving stringmatch-
ing techniques that allow the accurate and efficient calcula-
tion of the longest common sub-string between strings. Our
approaches encode sensitive input strings such that no re-
identification is possible, while also preventing frequency
attacks on individual character encodings. Our experimen-
tal evaluation has shown that both our approaches result in
the same string similarities as on the original unencoded
strings, while commonly used Bloom filter encoding [44] ,
tabulation-based hashing [51], and DGK approximate string
matching [23] approaches will lead to potentially much
higher or lower similarities between encoded strings.

As future work we aim to improve the runtime of the
comparison step of our random bit array-based approach by
generating blocks based on the consecutive order of bit seg-
ments, and conduct more extensive scalability experiments
on larger databases.

Acknowledgements This work was partially funded by the Australian
ResearchCouncil (ARC)underDP160101934.The authors like to thank
Kee Siong Ng for helpful discussions.

Funding Open Access funding enabled and organized by CAUL and
its Member Institutions.

Declaration

Conflict of interest On behalf of all authors, the first author states that
there is no conflict of interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Ash, R.B.: Basic probability theory. Courier Corporation (2008)

2. Benford, F.: The law of anomalous numbers. In Proceedings of the
American philosophical society pp. 551–572 (1938)

3. Bezawada, B., Liu, A.X., Jayaraman, B., Wang, A.L., Li, R.: Pri-
vacypreserving stringmatching for cloud computing. In 2015 IEEE
35th International Conference on Distributed Computing Systems,
pp. 609–618. IEEE (2015). https://doi.org/10.1109/ICDCS.2015.
68

4. Bonomi, L., Xiong, L., Chen, R., Fung, B.C.: Frequent grams based
embedding for privacy preserving record linkage. In Proceedings of
the 21stACMInternationalConference on Information andKnowl-
edgeManagement, pp. 1597–1601 (2012). https://doi.org/10.1145/
2396761.2398480

5. Broder, A.Z.: On the resemblance and containment of documents.
In Proceedings. Compression and Complexity of SEQUENCES
1997 (Cat. No. 97TB100171), pp. 21–29. IEEE (1997). https://doi.
org/10.1109/SEQUEN.1997.666900

6. Chase, M., Shen, E.: Pattern matching encryption. IACR Cryptol.
ePrint Arch. 2014, 638 (2014)

7. Chen, F., Wang, D., Li, R., Chen, J., Ming, Z., Liu, A.X., Duan, H.,
Wang, C., Qin, J.: Secure hashing-based verifiable pattern match-
ing. IEEE Trans. Inf. Forensics Secur. 13(11), 2677–2690 (2018).
https://doi.org/10.1109/TIFS.2018.2825141

8. Chi, L., Zhu, X.: Hashing techniques: a survey and taxonomy.
ACM Comput. Surv. (CSUR) 50(1), 1–36 (2017). https://doi.org/
10.1145/3047307

9. Christen, P.: Data Matching. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-31164-2

10. Christen, P.: Preparation of a Real Voter Data Set for Record
Linkage and Duplicate Detection Research. Australian Nat. Univ,
Canberra, Australia (2013)

11. Christen, P., Ranbaduge, T., Schnell, R.: Linking Sensitive Data:
Methods andTechniques for Practical Privacy-Preserving Informa-
tion Sharing. Springer International Publishing AG (2020). https://
doi.org/10.1007/978-3-030-59706-1

12. Christen, P., Schnell, R., Vatsalan, D., Ranbaduge, T.: Efficient
cryptanalysis of Bloomfilters for privacy-preserving record link-
age. In Pacific-Asia Conference onKnowledgeDiscovery andData
Mining, pp. 628–640. Springer (2017). https://doi.org/10.1007/
978-3-319-57454-7_49

13. Christen, P., Vidanage, A., Ranbaduge, T., Schnell, R.: Pattern-
mining based cryptanalysis of Bloom filters for privacy-preserving
record linkage. In Pacific-Asia Conference on Knowledge Discov-
ery and Data Mining, pp. 530–542. Springer (2018). https://doi.
org/10.1007/978-3-319-93040-4_42

14. Conrad, K.: Stirling’s formula. Available in http://www.math.
uconn.edu/kconrad/blurbs/analysis/stirling.pdf (2016). https://
doi.org/10.1002/0471667196.ess2579.pub2

15. Culnane, C., Rubinstein, B.I., Teague, V.: Options for Encoding
Names for Data Linking at the Australian Bureau of Statistics.
arXiv preprint arXiv:1802.07975 (2018)

16. Damgård, I., Geisler, M., Krøigaard, M.: Efficient and secure
comparison for on-line auctions. In Australasian Conference on
Information Security and Privacy, pp. 416–430. Springer (2007)

17. Dong, C., Chen, L., Wen, Z.: When private set intersection meets
big data: an efficient and scalable protocol. In Proceedings of
the 2013 ACM SIGSAC Conference on Computer and Commu-
nications Security, pp. 789–800 (2013). https://doi.org/10.1145/
2508859.2516701

18. Dong, X.L., Srivastava, D.: Big data integration. Synth. Lect.
Data Manage. 7(1), 1–198 (2015). https://doi.org/10.2200/
S00578ED1V01Y201404DTM040

19. Durham, E.A.: A framework for accurate, efficient private record
linkage. Ph.D. thesis, Faculty of the Graduate School of Vanderbilt
University, Nashville, TN (2012)

20. Dwork, C.: Differential privacy. Autom. Lang. Programm. (2006).
https://doi.org/10.1007/11787006_1

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/ICDCS.2015.68
https://doi.org/10.1109/ICDCS.2015.68
https://doi.org/10.1145/2396761.2398480
https://doi.org/10.1145/2396761.2398480
https://doi.org/10.1109/SEQUEN.1997.666900
https://doi.org/10.1109/SEQUEN.1997.666900
https://doi.org/10.1109/TIFS.2018.2825141
https://doi.org/10.1145/3047307
https://doi.org/10.1145/3047307
https://doi.org/10.1007/978-3-642-31164-2
https://doi.org/10.1007/978-3-642-31164-2
https://doi.org/10.1007/978-3-030-59706-1
https://doi.org/10.1007/978-3-030-59706-1
https://doi.org/10.1007/978-3-319-57454-7_49
https://doi.org/10.1007/978-3-319-57454-7_49
https://doi.org/10.1007/978-3-319-93040-4_42
https://doi.org/10.1007/978-3-319-93040-4_42
http://www.math.uconn.edu/kconrad/blu rbs/analysis/stirling.pdf
http://www.math.uconn.edu/kconrad/blu rbs/analysis/stirling.pdf
https://doi.org/10.1002/0471667196.ess2579.pub2
https://doi.org/10.1002/0471667196.ess2579.pub2
http://arxiv.org/abs/1802.07975
https://doi.org/10.1145/2508859.2516701
https://doi.org/10.1145/2508859.2516701
https://doi.org/10.2200/S00578ED1V01Y201404DTM040
https://doi.org/10.2200/S00578ED1V01Y201404DTM040
https://doi.org/10.1007/11787006_1

214 International Journal of Data Science and Analytics (2022) 14:191–215

21. Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, D.: Cluster
analysis and display of genome-wide expression patterns. Proc.
Natl. Acad. Sci. 95(25), 14863–14868 (1998)

22. ElGamal, T.: A public key cryptosystem and a signature scheme
based on discrete logarithms. IEEE Trans. Inf. Theory 31(4), 469–
472 (1985). https://doi.org/10.1109/TIT.1985.1057074

23. Essex, A.: Secure approximate string matching for privacy-
preserving record linkage. IEEE Trans. Inf. Forensics Secur.
14(10), 2623–2632 (2019)

24. Ferragina, P.,Manzini, G.: Opportunistic data structureswith appli-
cations. In Proceedings 41st Annual Symposium on Foundations
of Computer Science, pp. 390–398. IEEE (2000)

25. Ferrer, J.D.: A new privacy homomorphism and applications.
Inf. Process. Lett. 60(5), 277–282 (1996). https://doi.org/10.1016/
S0020-0190(96)00170-6

26. Franklin, M.K., Reiter, M.K.: Fair exchange with a semi-trusted
third party. In Proceedings of the 4th ACM Conference on Com-
puter and Communications Security, pp. 1–5 (1997). https://doi.
org/10.1145/266420.266424

27. Goldreich, O.: Secure multi-party computation. Tech. rep., Depart-
ment of Computer Science and Applied Mathematics, Weizmann
Institute of Science, Israel (2002)

28. Graham, R.L., Knuth, D.E., Patashnik, O., Liu, S.: Concrete math-
ematics: a foundation for computer science. Comput. Phys. 3(5),
106–107 (1989)

29. Hahn, F., Loza, N., Kerschbaum, F.: Practical and secure substring
search. In Proceedings of the 2018 International Conference on
Management ofData, pp. 163–176 (2018). https://doi.org/10.1145/
3183713.3183754

30. Hall, R., Fienberg, S.E.: Privacy-preserving record linkage. In
International Conference on Privacy in Statistical Databases,
pp. 269–283. Springer (2010). https://doi.org/10.1007/978-3-642-
15838-4_24

31. Juels, A., Sudan, M.: A fuzzy vault scheme. Des. Codes Crypt.
38(2), 237–257 (2006)

32. Karakasidis, A., Verykios, V.S., Christen, P.: Fake injection strate-
gies for private phonetic matching. In Data Privacy Management
and Autonomous Spontaneus Security, pp. 9–24. Springer (2011).
https://doi.org/10.1007/978-3-642-28879-1_2

33. Karapiperis, D., Gkoulalas-Divanis, A., Verykios, V.S.: Federal: a
framework for distance-aware privacy-preserving record linkage.
IEEE Trans. Knowl. Data Eng. 30(2), 292–304 (2017). https://doi.
org/10.1109/TKDE.2017.2761759

34. Karapiperis, D., Verykios, V.S.: A fast and efficient hamming lsh-
based scheme for accurate linkage. Knowl. Inf. Syst. 49(3), 861–
884 (2016). https://doi.org/10.1007/s10115-016-0919-y

35. Kerschbaum, F.: Frequency-hiding order-preserving encryption. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer
andCommunicationsSecurity, pp. 656–667 (2015). https://doi.org/
10.1145/2810103.2813629

36. Lindell, Y., Pinkas, B.: Secure multiparty computation for privacy-
preserving data mining. J. Priv. Confid. (2009). https://doi.org/10.
29012/jpc.v1i1.566

37. McCreight, E.M.: A space-economical suffix tree construction
algorithm. J. ACM (JACM) 23(2), 262–272 (1976). https://doi.org/
10.1145/321941.321946

38. Mitzenmacher,M.,Upfal, E.: Probability and computing: Random-
ization and probabilistic techniques in algorithms and data analysis.
CUP (2005)

39. Mullaymeri, X., Karakasidis, A.: A two-party private string match-
ing fuzzy vault scheme. In Proceedings of the 36th Annual ACM
Symposium on Applied Computing, pp. 340–343 (2021)

40. Nakagawa, Y., Ohata, S., Shimizu, K.: Efficient privacy-preserving
variable-length substringmatch for genome sequence. In 21st Inter-
nationalWorkshop onAlgorithms in Bioinformatics (WABI 2021).
Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2021)

41. Randall, S., Wichmann, H., Brown, A., Boyd, J., Eitelhuber, T.,
Merchant,A., Ferrante,A.:Ablinded evaluationof privacypreserv-
ing record linkage with Bloom filters. BMC Med. Res. Methodol.
22(1), 1–7 (2022)

42. Randall, S.M., Ferrante, A.M., Boyd, J.H., Bauer, J.K., Semmens,
J.B.: Privacy-preserving record linkage on large realworld datasets.
J. Biomed. Inform. 50, 205–212 (2014). https://doi.org/10.1016/j.
jbi.2013.12.003

43. Schneier, B., et al.: Applied cryptography-protocols, algorithms,
and source code in c (1996)

44. Schnell, R., Bachteler, T., Reiher, J.: Privacy-preserving record
linkage using Bloom filters. BMCMed. Inform. Decis. Mak. 9(1),
1–11 (2009). https://doi.org/10.1186/1472-6947-9-41

45. Schnell, R., Borgs, C.: Encoding hierarchical classification codes
for privacy-preserving record linkage using Bloom filters. In Joint
European Conference on Machine Learning and Knowledge Dis-
covery inDatabases, pp. 142–156. Springer (2019). https://doi.org/
10.1007/978-3-030-43887-6_12

46. Schnell, R., Borgs, C.: Encoding diagnostic codes for privacy-
preserving record linkage. Int. J. Popul. Data Sci. (2020). https://
doi.org/10.23889/ijpds.v5i5.1461

47. Schnell, R., Klingwort, J., Farrow, J.M.: Locational privacy-
preserving distance computations with intersecting sets of ran-
domly labeled grid points. Int. J. Health Geogr. 20(1), 1–16 (2021).
https://doi.org/10.1186/s12942-021-00268-y

48. Shannon, C.: A mathematical theory of communication. Bell Syst.
Technol. J. 27(3), 379–423 (1948). https://doi.org/10.1002/j.1538-
7305.1948.tb01338.x

49. Sheikh, R., Mishra, D.K.: Protocols for getting maximum value
for multi-party computations. In 2010 Fourth Asia International
Conference on Mathematical/Analytical Modelling and Computer
Simulation, pp. 597–600. IEEE (2010). https://doi.org/10.1109/
AMS.2010.120

50. Shimizu, K., Nuida, K., Rätsch, G.: Efficient privacy-preserving
string search and an application in genomics. Bioinfor-
matics 32(11), 1652–1661 (2016). https://doi.org/10.1093/
bioinformatics/btw050

51. Smith, D.: Secure pseudonymisation for privacy-preserving prob-
abilistic record linkage. J. Inf. Secur. Appl. 34, 271–279 (2017).
https://doi.org/10.1016/j.jisa.2017.01.002

52. Sudo, H., Jimbo, M., Nuida, K., Shimizu, K.: Secure wavelet
matrix: alphabet-friendly privacy-preserving string search for
bioinformatics. IEEE/ACM Trans. Comput. Biol. Bioinf. 16(5),
1675–1684 (2018)

53. Sun, S., Qian, Y., Zhang, R.,Wang, Y., Li, X.: An improved chinese
string comparator for Bloom filter based privacy-preserving record
linkage. Entropy 23(8), 1091 (2021)

54. Ukkonen, E.: Approximate string-matching over suffix trees. In
Annual Symposium on Combinatorial Pattern Matching, pp. 228–
242. Springer (1993). https://doi.org/10.1007/BFb0029808

55. Vatsalan, D., Christen, P.: Privacy-preserving matching of similar
patients. J. Biomed. Inform. 59, 285–298 (2016). https://doi.org/
10.1016/j.jbi.2015.12.004

56. Vatsalan, D., Christen, P., Verykios, V.S.: A taxonomy of privacy-
preserving record linkage techniques. Inf. Syst. 38(6), 946–969
(2013). https://doi.org/10.1016/j.is.2012.11.005

57. Vatsalan, D., Sehili, Z., Christen, P., Rahm, E.: Privacy-preserving
record linkage for big data: current approaches and research chal-
lenges. In Handbook of Big Data Technologies, pp. 851–895.
Springer (2017). https://doi.org/10.1007/978-3-319-49340-4_25

58. Wandelt, S., Deng, D., Gerdjikov, S.,Mishra, S.,Mitankin, P., Patil,
M., Siragusa, E., Tiskin, A., Wang, W., Wang, J., et al.: State-of-
the-art in string similarity search and join. ACM SIGMOD Rec.
43(1), 64–76 (2014). https://doi.org/10.1145/2627692.2627706

123

https://doi.org/10.1109/TIT.1985.1057074
https://doi.org/10.1016/S0020-0190(96)00170-6
https://doi.org/10.1016/S0020-0190(96)00170-6
https://doi.org/10.1145/266420.266424
https://doi.org/10.1145/266420.266424
https://doi.org/10.1145/3183713.3183754
https://doi.org/10.1145/3183713.3183754
https://doi.org/10.1007/978-3-642-15838-4_24
https://doi.org/10.1007/978-3-642-15838-4_24
https://doi.org/10.1007/978-3-642-28879-1_2
https://doi.org/10.1109/TKDE.2017.2761759
https://doi.org/10.1109/TKDE.2017.2761759
https://doi.org/10.1007/s10115-016-0919-y
https://doi.org/10.1145/2810103.2813629
https://doi.org/10.1145/2810103.2813629
https://doi.org/10.29012/jpc.v1i1.566
https://doi.org/10.29012/jpc.v1i1.566
https://doi.org/10.1145/321941.321946
https://doi.org/10.1145/321941.321946
https://doi.org/10.1016/j.jbi.2013.12.003
https://doi.org/10.1016/j.jbi.2013.12.003
https://doi.org/10.1186/1472-6947-9-41
https://doi.org/10.1007/978-3-030-43887-6_12
https://doi.org/10.1007/978-3-030-43887-6_12
https://doi.org/10.23889/ijpds.v5i5.1461
https://doi.org/10.23889/ijpds.v5i5.1461
https://doi.org/10.1186/s12942-021-00268-y
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1109/AMS.2010.120
https://doi.org/10.1109/AMS.2010.120
https://doi.org/10.1093/bioinformatics/btw050
https://doi.org/10.1093/bioinformatics/btw050
https://doi.org/10.1016/j.jisa.2017.01.002
https://doi.org/10.1007/BFb0029808
https://doi.org/10.1016/j.jbi.2015.12.004
https://doi.org/10.1016/j.jbi.2015.12.004
https://doi.org/10.1016/j.is.2012.11.005
https://doi.org/10.1007/978-3-319-49340-4_25
https://doi.org/10.1145/2627692.2627706

International Journal of Data Science and Analytics (2022) 14:191–215 215

59. Wang, J., Yang, X., Wang, B., Liu, C.: An adaptive approach
of approximate substring matching. In International Conference
on Database Systems for Advanced Applications, pp. 501–516.
Springer (2016). https://doi.org/10.1007/978-3-319-32025-0_31

60. Zarezadeh, M., Mala, H., Ladani, B.T.: Efficient secure pattern
matching with malicious adversaries. In: IEEE Transactions on
Dependable and Secure Computing (2020). https://doi.org/10.
1109/TDSC.2020.3009595

61. Zipf, G.: Human Behavior and the Principle of Least Effort.
Addison-Wesley Press, Boston (1949)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1007/978-3-319-32025-0_31
https://doi.org/10.1109/TDSC.2020.3009595
https://doi.org/10.1109/TDSC.2020.3009595

	Accurate and efficient privacy-preserving string matching
	Abstract
	1 Introduction
	2 Related work
	3 Privacy-preserving string matching
	4 String matching based on shifted hash encoded Q-grams
	4.1 Parameter agreement
	4.2 Generating Q-grams
	4.3 Hashing of Q-grams and shifting Q-gram lists
	4.4 Comparison of hash encoded Q-gram lists
	4.4.1 Basic encoded Q-grams comparison algorithm
	4.4.2 Fast encoded Q-grams comparison algorithm

	5 String matching based on shifted random bit arrays
	5.1 Generating bit arrays for strings
	5.2 Comparison of bit arrays
	5.2.1 Basic bit arrays comparison algorithm
	5.2.2 Fast bit arrays comparison algorithm

	6 LCS length calculation
	7 Scalability aspects
	8 Analysis of our protocol
	8.1 Complexity analysis
	8.2 Accuracy analysis
	8.3 Privacy analysis

	9 Experimental evaluation
	9.1 Data sets
	9.2 Parameter settings
	9.3 Accuracy results
	9.4 Privacy results
	9.5 Scalability results

	10 Discussion
	11 Conclusions and future work
	Acknowledgements
	References

