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Abstract

A central theme of network analysis, these days, is the detection of community structure as it offers a coarse-grained view

of the network at hand. A more interesting and challenging task in network analysis involves the detection of overlapping

community structure due to its wide-spread applications in synthesising and interpreting the data arising from social, biological

and other diverse fields. Certain real-world networks possess a large number of nodes whose memberships are spread through

multiple groups. This phenomenon called community structure with pervasive overlaps has been addressed partially by the

development of a few well-known algorithms. In this paper, we presented an algorithm called Interaction Coefficient-based

Local Community Detection (IC-LCD) that not only uncovers the community structures with pervasive overlaps but do so

efficiently. The algorithm extracted communities through a local expansion strategy which underlie the notion of interaction

coefficient. We evaluated the performance of IC-LCD on different parameters such as speed, accuracy and stability on

a number of synthetic and real-world networks, and compared the results with well-known baseline algorithms, namely

DEMON, OSLOM, SLPA and COPRA. The results give a clear indication that IC-LCD gives competitive performance with

the chosen baseline algorithms in uncovering the community structures with pervasive overlaps. The time complexity of

IC-LCD is O(ncmax), where n is the number of nodes, and cmax is the maximum size of a community detected in a network.

Keywords Node interaction coefficient · Edge interaction coefficient · Pervasive overlap · Community detection algorithm

1 Introduction

Networks have become an indispensable tool to study com-

plex systems emerging from diverse areas including biolog-

ical, social and computational sciences. Network techniques

are widely used in data structure, data mining and artificial

intelligence too. The emergence of giant social networking

sites such as facebook and twitter has made the human–

human interaction possible through complex social networks

at an unprecedented level. The internet itself is a huge com-

plex network where nodes represent the webpages and edges

the hyperlinks given by one to others [9]. Molecular inter-
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actions in living organisms control mechanism of cellular

functions [41]. Understanding the nature and dynamics of

such large networks, specifically at mesoscale level, depends

on their successful decomposition into smaller modules con-

sisting largely of related nodes called communities [6]. Most

of the previous studies have mainly focused on the disjoint

community structures where each node belongs to no more

than one community. However, in many real networks nodes

possess the multiple groups simultaneously. Many networks

such as co-authorship networks and the internet are likely

to have large number of nodes whose interactions are spread

across several groups. For example, influential scientists con-

tribute to different disciplines of interdisciplinary nature by

collaborating with other influential scientists. Likewise most

often searched webpages on internet are well connected with

several other websites. An individual in a social network

may have interactions with multiple groups such as family,

friends, peers, teachers, etc. Such nodes belong to multi-

ple groups. This phenomenon is called community structure

with pervasive overlaps [28,31,56], and it cannot be detected

by the other traditional methods of overlapping community
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detection. Although, there are few algorithms based on per-

vasive overlap phenomenon such as CPM [40], LinkCom

[2], SPLA [54], OSLOM [26], COPRA [17] but these are

not satisfactory upto the mark and suffer with slow speed.

A detailed discussion on these and few more algorithms is

given in Sect. 2.

To overcome these limitations, we have proposed a novel

algorithm called IC-LCD—Interaction Coefficient based

Local Community Detection. As the name suggests, IC-LCD

algorithm is based on node and edge interaction coefficient,

where edge interaction coefficient is a newly defined param-

eter. Community detection through IC-LCD takes place in

two phases. Phase-1 (Expansion Phase) expands communi-

ties starting from seeds containing single nodes, and Phase-2

(Refinement Phase) involves the merging of unstable or

smaller communities into stable and larger communities.

We have tested the proposed algorithm on LFR benchmarks

and a range of real-world networks including some large

networks. To compare its performance we choose the algo-

rithms, namely DEMON, SPLA, OSLOM and COPRA as

the baseline algorithms due to their wide-spread use in the

literature. The results indicate that IC-LCD gives competi-

tive performance with all these algorithms in terms of speed,

accuracy and stability.

2 Relatedwork

The overlapping community detection algorithms can be

classified on the aspect whether they employ a local strat-

egy or a global one for clustering nodes. Usually a global

algorithm uses overall topological information about the net-

work to optimise a global quality function such as modularity

[34], or overlapping modularity [22,39]. Generally, this pro-

cess of community detection uses an agglomerative [35] or

divisive [52] approach. Some examples of global methods are

FCM by Zhang et al. [59], CONGO (Cluster-Overlap New-

man Girvan Algorithm) by Gregory [16], and MOSES by

McDaid and Hurley [31]. On the other hand, the algorithms

such as CPM [40] and [43] employ local optimisation strate-

gies for producing overlapping communities. The algorithm

FCM is based on a combination of three concepts namely,

modularity [38], spectral relaxation [52] and fuzzy c-means

clustering method [7]. But, the computational complexity is a

key problem of FCM (See Table 1 for more details.). CONGA

provides good results but it is slow and has approximately

cubic time complexity, so it cannot cope with large size net-

works. CONGA inherits its low speed from the GN algorithm

[13]. Both CONGA and GN algorithms rely on betweenness,

which is a global centrality measure: at each step, it counts

the number of shortest paths between all pairs of vertices in

the network. For a fast and scalable algorithm, there was an

urgent need that a measure can be computed locally. Hence,

Gregory [16] introduced the concept of local betweenness,

and then described the new algorithm: CONGO (CONGA

Optimized) algorithm. Although, CONGO is good for sparse

networks, and is slightly faster than CONGA, but its accu-

racy is decreased (See Table 1 for complexity.). McDaid and

Hurley [31] proposed MOSES algorithm which is based on

the same global objective function (modularity) but with the

incorporation of greedy maximisation strategy in which com-

munities are created and deleted, nodes are added and deleted

from community in order to maximise the objective function.

It is learnt that MOSES is not able to attain high NMI scores

on LFR benchmarks, despite being a fast algorithm.

On the other hand, local strategy-based algorithms such

as EAGLE [45] and OSLOM [26] utilise local expansion and

optimization-based strategies for growing a seed community

(Other details can be seen in Table 1). In these methods, a seed

community is grown only through a local structure such as

neighbourhood around the seed. In some cases, the seed com-

munity can be started with a single node such as in LFM [25]

and MONC [19]. However, a k-clique (complete subgraph

on k vertices) is seed community for GCE [28] algorithm.

Most of the local algorithms rely on a local benefit function

that characterises the quality of a densely connected group

of nodes. However, problems arise with both the approaches.

For instance, global methods usually suffer with resolution

limits [11], whereas local methods are unable to scale with

network size.

Node versus link is another classification of the commu-

nity detection algorithms. Structural information of networks

lies in node degrees, clustering coefficients, etc. Usually the

node clustering methods exploit the node degree or node

centrality to extract the community structure [25]. A typical

limitation of node-based algorithms is that they tend to pro-

duce smaller overlapping regions among communities [53].

The notion of link clustering was proposed by Palla et al. [40]

with the presumption that overlapping community structure

can be effectively recovered if the clustering is done through

links rather than the nodes.

They offered the Clique Percolation Method (CPM) which

is based on the definition that a community, or more specif-

ically a k-clique community, is the union of all k-cliques

that can be reached to each other through a series of adja-

cent k-cliques. The output of CPM is, however, sensitive to

the parameter k. Another interesting algorithm for link clus-

tering is LinkCom [2] proposed by Ahn et al. which works

on the concept of link similarity. It has been argued that,

in general, the link clustering methods perform no better

than node clustering methods [12]. To resolve some of the

drawbacks of node and link clusterings, recently an algo-

rithm was proposed that can extract node, link and hybrid

node-link communities through a probabilistic model [20].

Several other algorithms have been developed based on prob-

abilistic modelling for community detection and these are
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highly applicable for the set of social media, target events,

story line detection, protein function predictions, etc. DIM3

(dynamic infinite mixed-membership stochastic blockmodel)

[8] is one such algorithm based on stochastic mechanism, and

it is highly applicable on dynamical sets of data where data

is changing day by day. NOODLES (overlappiNg cOmmuni-

ties and rOles from noDe Links and messagES) [5] is another

algorithm for community detection based on the probabilistic

approach and it can be applied to detect certain attributes from

real data. This algorithm has extensively been experimented

on real-world social media data for community detection and

link prediction. However, alike many other algorithms it also

needs further scope of improvement, for instance in elimi-

nating the unrealistic communities.

Many overlapping community detection algorithms use

the idea of label propagation introduced by Raghavan et

al. [42]. It has been extended to incorporate multiple mem-

berships of vertices in the methods such as COPRA [17],

SLPA [54] and DEMON [4]. In COPRA each node updates

its label and the belonging coefficients average out from the

coefficients of all its neighbours in a synchronous manner.

SLPA is a general speaker–listener–based information prop-

agation process. It spreads label information between nodes

according to the pairwise interaction rules. In SLPA, each

node has a memory space to store the received information.

The probability of observing a label in the memory of a

node is perceived as the membership strength. So it needs

a post-processing parameter to generate communities. How-

ever, there are no effective strategies for the proper parameter

setting. The algorithm DEMON first extracts the ego-minus-

ego network from the given network and then it applies the

label propagation to discover communities. Recently, Sun

et al. [47] has proposed a link propagation-based algorithm

called LinkLPA for overlapping community detection. But

LinkLPA also performs poorly on synthetic networks as well

as on ground truth networks such as DBLP in terms of over-

lapping modularity [39]. Apart from all above discussion

on overlapping community detection algorithms, few more

attempts have been made for community detection in general

or specific network [46,48,51,58,60].

To be specific we are concerned about the pervasive over-

laps where “nodes possess large number of memberships”

rather than communities with large overlapping regions. The

task of node-community assignment in such networks is often

hard. The algorithms such as DEMON, CPM and LinkCom

can detect pervasive overlaps somehow satisfactorily but they

suffer with slow speed [10,55,57]. Also they need reliable

quality measures for proper evaluation. On LFR networks

SLPA, OSLOM and COPRA show better performance but in

most real networks they have detected less than 20% overlap-

ping nodes [53]. In this direction, the performance of GCE

and MOSES are noteworthy, especially on LFR benchmarks.

In real networks, however, both fail to detect more than 10

memberships per node.

Accordingly, in this article, we have chosen to study

the problem of community detection with “pervasive over-

laps”. Our efforts have led us to develop an algorithm called

IC-LCD (Interaction Coefficient based Local Community

Detection). Interaction coefficient, the notion underlying IC-

LCD can be defined for nodes as well as for edges with a

subgraph. IC-LCD exploits the node and edge interaction

coefficients combinedly under the framework of local seed

expansion to reveal the community structure of real networks.

We experiment with IC-LCD on a number of synthetic and

real-world networks and compare the results with the algo-

rithms DEMON, SLPA, OSLOM, and COPRA. The results

indicate that IC-LCD gives competitive performance with the

baseline algorithms in uncovering the community structure

with pervasive overlaps.

3 Methodology

3.1 Definitions and terminologies

We denote a graph with G, its vertex (node) set with VG, and

edge set with EG. We shall write C ⊆ G to indicate that C is

an induced subgraph of G. Then the sets VC and EC are the

vertex set, and the edge set of C, respectively. The notation

Nv indicates the set of neighbours of a vertex v in G, and dv is

the degree of v. Let C ⊆ G. Then NC is the neighbourhood

of C defined as the set of all neighbours of the nodes of the

subgraph C excluding VC , i.e.,

NC = {v ∈ VG\VC : v ∈ Nu for some u ∈ C}.

We shall write NuC to denote the common neighbourhood of

C and u, i.e., NuC = Nu∩NC . Traditionally, seed expansion-

based algorithms use coefficients such as the one defined

below.

Definition 1 (Node interaction coefficient) Given a subgraph

C ⊆ G and a node v ∈ NC , the node interaction coefficient

of v with C is the quantity:

ξnode(v, C) =
|Nv ∩ VC |

dv

(1)

Some authors define a node interaction coefficient as a

weighted average of the quantities |Nv ∩ VC | and |Nv ∩ NC |,

see [23] for instance. Another approach is to define the inter-

action coefficient of an edge with a subgraph. So, consider a

subgraph C of a graph G. Let euv be an edge of G such that

its endpoints u and v are in NC . Note that

|Nu ∩ VC | ≤ du − 1, |Nv ∩ VC | ≤ dv − 1,
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which implies,

min{|Nu ∩ VC | , |Nv ∩ VC |} ≤ min{du − 1, dv − 1}

Hence, 1 + min{|Nu ∩ VC | , |Nv ∩ VC |} ≤ min{du, dv},

which is smaller than or equal to max{du, dv}. This leads

to the following definition.

Definition 2 (Edge interaction coefficient) Let G be a graph

and C ⊆ G. Let euv be an edge of G with endpoints u, v ∈

NC . Then the edge interaction coefficient of euv with C is

defined as

ξedge(euv, C) =
1 + min

{

|Nu ∩ VC | , |Nv ∩ VC |
}

max{du, dv}
(2)

3.2 Seed expansion criterion

As described in the introduction, Phase-1 of IC-LCD is

involved in the expansion of seed communities, where each

seed community starts from a single node. To expand a seed

community, one essentially needs to know which nodes are

to be included in it. This task is performed by the procedure

GET-NEW-NODES() of our algorithm, given in Algorithm 1.

The arguments of the procedureGET-NEW-NODES() are the

graph G, a subgrapgh C of G, the neighbourhood NC of C,

and the parameters ξ0 and nmin. The subgraph C is known

as a seed community, and its local expansion solely depends

on how it interacts with its neighbourhood NC . The interac-

tion between C and NC can be measured in two ways—using

node interaction coefficient (ξnode) and edge interaction coef-

ficient (ξedge). The threshold value for both these coefficients

is taken as ξ0. How this is done is explained in “Appendix

A.1.” The parameter nmin indicates the minimum size of the

detected communities.

Let G be a graph where the nodes in VG are, for the sake

of simplicity, assumed to be positive integers. Let C ⊆ G.

In order to expand C into a community, we must have some

criterion to pick new nodes from the neighbourhood of C.

For this task, we select a set Vnew which is empty, initially.

Then, for each u ∈ NC , if ξnode(u,C) ≥ ξ0, u is added to

Vnew, otherwise if |NC | ≥ |VC |, then for each v ∈ NuC with

dv > du, if ξedge((u, v), C) ≥ ξ0, both u and v are added

to Vnew. Note that v > u is taken to avoid computing ξedge

twice for the same edge.

If the steps above yield Vnew = ∅ and the size of C is still

smaller than nmin, then all those nodes u ∈ NC that satisfy

ξnode(u,C∪NC ) ≥ ξ0 are added to Vnew. This last step which

we call augmentation step plays a pivotal role during the

expansion phase of a community. The method for computing

the new nodes is listed in ProcedureGET-NEW-NODES (See

Appendix A for illustration.).

Procedure GET-NEW-NODES(G,C,NC, ξ0, nmin)

Result: Vnew

1 Vnew ← ∅

2 for u ∈ NC do

3 if ξnode(u, C) ≥ ξ0 then

4 Vnew ← Vnew ∪ {u}

5 else

6 if |NC | ≥ |C| then

7 for v ∈ NuC do

8 if v > u then

9 if ξedge((u, v), C) ≥ ξ0 then

10 Vnew ← Vnew ∪ {u, v}

11 end

12 end

13 end

14 end

15 end

16 end

/* Augmentation step */

17 if Vnew = ∅ then

18 if |C| < nmin then

19 for u ∈ NC do

20 if ξnode(u, C ∪ NC) > ξ0 then

21 Vnew ← Vnew ∪ {u}

22 end

23 end

24 end

25 end

3.3 Overlap andmerging criterion

The strategies of determining the overlapping function and

the consequent merging criterion is the next important aspect

of a seed expansion based algorithm. A simple distance mea-

sure between two communities C1 and C2 is given below

[28]:

δ(C1, C2) = 1 −

∣

∣VC1 ∩ VC2

∣

∣

min{
∣

∣VC1

∣

∣ ,
∣

∣VC2

∣

∣}
.

Note that 1 − δ(C1, C2) can be taken as the overlap

between C1 and C2. However, this overlap simply depends

on the number of nodes in the common region of C1 and

C2. It does not take into account the edges between C1 and

C2, and the edges within C1 and C2. It is quite possible that

VC1 ∩ VC2 = ∅, but there are a large number of edges with

one endpoint in C1 and the other endpoint in C2. In such cases

1 − δ(C1, C2) would be zero, still they could be merged to

form a stable community.

To arrive at a more sensitive overlap function let us con-

centrate on the quantity |cut(C1, C2)|, which represents the

number of edges with one endpoint in C1 and the other end-

point in C2. To normalise it we divide it by the minimum of

the external degrees of C1 and C2, i.e., by the minimum of
∣

∣NC1

∣

∣ and
∣

∣NC2

∣

∣. Thus we have
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0 ≤
|cut(C1, C2)|

min{
∣

∣NC1

∣

∣ ,
∣

∣NC2

∣

∣}
≤ 1 (3)

This indicates that C1 and C2 could be merged if either

of them shares a large fraction of its external edges with

another. However, this argument may fail in certain cases. For

example, consider two cliques C1 and C2 joined by a single

edge, and let they have no other external edges. Then merging

C1 and C2 would not be a good idea. So, we need to look at

some other factor that makes the merging of two communities

necessary. In fact, it is the internal density (the ratio of the

number of internal edges present to the maximum possible

number of internal edges) of a community that makes it stable

or unstable. So, consider the quantity

α(C1, C2) = 1 −
min{‖C1‖, ‖C2‖}

max{‖C1‖max, ‖C2‖max}
, (4)

which takes into account the combined effect of the internal

densities of both C1 and C2. Here ‖C‖ denotes the number

of edges in C, and ‖C‖max the maximum possible number of

edges in C. That is, ‖C‖max =
(

|C|
2

)

. Note that α(C1, C2) lies

between 0 and 1, where 1 is achieved when either ‖C1‖ or

‖C2‖ is zero. When ‖C1‖ and ‖C2‖ increase, which means

that both C1 and C2 have large number of internal edges,

α(C1, C2) decreases. So, α can serve as a factor responsible

for amalgamation of C1 and C2.

Now we are ready to define our overlap function. Given

a cover K containing the initial communities, we define the

overlap function between any C1, C2 ∈ K as

θ(C1, C2) =
α(C1, C2) |cut(C1, C2)|

min{
∣

∣NC1

∣

∣ ,
∣

∣NC2

∣

∣}
(5)

We now present the criterion for merging two communi-

ties that have overlap greater than a certain threshold, say θ0.

The method for merging communities is described in Proce-

dure MERGE-COMS(), which takes as input a graph G, the

initial communities of G stored in a container K, and the

corresponding membership container m, and the parameters

θ0 and nmin. (See Table 2 for details.) The parameter nmin

is included just to facilitate the user to get the communities

smaller than a specific size merged into another suitable and

stable community.

The method works as follows. All the labels of the initial

communities in K are stored in a variable L. Then in a repeat-

until loop (lines 2–21), a label ℓ is chosen from L randomly.

Let C be the community corresponding to ℓ. The labels of

the communities that are larger than or equal to C in size,

and that share at least one edge with C are stored in LN (See

line 5.).

Now a variable LH is required to store the labels of the

communities into which C may be merged. There are two

cases depending on whether |C| < nmin or |C| ≥ nmin. In

the first case, LH stores the labels of those C′ ∈ K for which

θ(C,C′) is the maximum (see line 7). In the second case, on

the other hand, LH stores the labels of all those C′ ∈ K that

satisfy θ(C,C′) ≥ θ0. (See line 9.)

The lines 11–16 simply perform the task of merging C

into each of the communities with labels LH and updating

the memberships of all the vertices of C accordingly.Then, at

line 17, ℓ is removed from L. The lines 18–20 remove C from

K whenever LH is nonempty. This means, when LH = ∅,

C will not be removed from K even if the size of C is smaller

than nmin.

Procedure MERGE-COMS(G,K,m, θ0, nmin)

Result: K,m

1 L ← {1, 2, . . . , |K|}

2 repeat

3 Pick ℓ ∈ L at random.

4 C ← Cℓ

5 LN ← {i ∈ L : i 6= ℓ, |Ci | ≥ |C| , cut(C,Ci) 6= ∅}

6 if |C| < nmin then

7 LH ← {i ∈ LN : θ(Ci , C) = max
j∈LN

θ(Cj , C)}

8 else

9 LH ← {i ∈ LN : θ(Ci , C) ≥ θ0}

10 end

11 for i ∈ LH do

12 for v ∈ C do

13 Ci ← Ci ∪ {v}

14 mv ← mv ∪ {i}\{ℓ}

15 end

16 end

17 L ← L\{ℓ}

18 if LH 6= ∅ then

19 K ← K\C

20 end

21 until L = ∅

3.4 Main algorithm and parameter selection

Looking at the different parts of IC-LCD we are now ready

to describe the full algorithm which is given in Algorithm 1.

The algorithm maintains primarily three containers—K, U ,

and m as described in Table 2.

Initially, K is empty, and U contains all the vertices of G,

that is, U = VG. In the beginning mu = ∅, for each u, so

m is also empty. The algorithm now works as follows. The

counter i is initialised with 1 (line 5). Since in the beginning

U is nonempty, a seed, say u, is selected from U randomly

(line 7). Let C be the set initialised with u (line 8). Lines

9 through 18 update C as follows. Vnew is computed for C

through the procedure GET-NEW-NODES(). Next, for each

v ∈ Vnew, v is added to C, v is removed from NC , and any

neighbour of v not in C, is added to NC . When C can no more

be expanded, C is added to K at the i th position (line 19).
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Table 2 Containers and parameters of IC-LCD

Containers and parameters Description

G The input graph

K The container holding the

communities. We write

K = {C1, C2, . . . , Ck}, where Ci

is the community stored at the ith

position in K

U The set of unexplored vertices

m The container holding the

memberships of all the vertices of

G. Indeed, m = {mu : u ∈ VG},

where mu stores the

memberships of the vertex u

nmin The minimum size of a community

the user is interested in

θ0 The threshold value for the overlap

function θ

ξ0 The threshold value for both ξnode

and ξedge

Then, the lines 20–23, update the memberships of each of the

vertices in C, and C is removed from U . Line 24 increments

i with 1. As long as U remains nonempty, lines 7 through

24 get repeated. At the end of line 25, K contains the list of

all the initial communities generated in the previous steps.

Finally, the procedureMERGE-COMS() is called to refine the

communities. Finally, the algorithm prints K containing the

communities of G, and the set m of the memberships of the

vertices of G.

We have run our algorithm several times on different net-

works for a range of parameter values. We found 0.5 to be

the best choice for ξ0. So, it is internally fixed at ξ0 = 0.5

meaning that it is not available for user manipulation (See

line 10 of Algorithm 1.). For nmin we tried the values 2, 3,

4 and 5, and found that 5 is the most suitable choice. The

next parameter is θ0, which determines the maximum over-

lap allowed between any two communities, and it gives best

results for 0.4. Both θ0 and nmin can be set by the user as per

his/her choice. The default values for them are as θ0 = 0.4

and nmin = 5. At the same settings we have compared IC-

LCD with other algorithms for all the networks considered

in this article (See Table 3.).

4 Evaluation on synthetic networks

The most often used synthetic networks for testing com-

munity detection algorithms are Lancichinetti–Fortunato–

Radicchi (LFR) networks [24]. This is because the LFR

networks possess a number of parameters which allows users

to control many network characteristics. The most prominent

Algorithm 1: IC-LCD

Input: G, θ0, nmin

Result: K,m

1 K ← ∅

2 U ← VG

3 mu ← ∅,∀u ∈ VG

4 m ← {mu : u ∈ VG}

5 i ← 1

6 while U 6= ∅ do

7 Pick u ∈ U at random.

8 C ← {u}

9 repeat

10 Vnew ← GET-NEW-NODES(G,C,NC, 0.5, nmin)

11 for v ∈ Vnew do

12 C ← C ∪ {v}

13 NC ← NC\{v}

14 for w ∈ Nv\C do

15 NC ← NC ∪ {w}

16 end

17 end

18 until Vnew = ∅

19 Ci ← C

20 for v ∈ C do

21 mv ← mv ∪ {i}

22 U ← U\{v}

23 end

24 i ← i + 1

25 end

26 MERGE-COMS(G, K,m, θ0 , nmin)

parameter is the mixing parameter (µ) which represents the

fraction of the neighbours of a node lying outside the com-

munity of the node. Other important parameters are: N—the

number of nodes, k—the average degree, kmax—the max-

imum degree, cmin—the minimum size for a community,

cmax—the maximum size of a community, On—the num-

ber of overlapping nodes, Om—the number of memberships

for each overlapping node. Based on the LFR benchmarks,

we first talk about the accuracy measures.

4.1 Accuracymeasures

Our criterion for measuring the accuracy of an algorithm is

three-fold. The first measure is the widely used normalized

mutual information (NMI) given by Lancichinetti et al. [25].

The NMI score varying between 0 and 1 indicates how much

similar or dissimilar two community covers are. Second, we

study how well community detection algorithms reproduce

the number of communities. To measure this we consider the

ratio C/C, where C is the average number of communities

present in LFR networks over 100 different realizations and

C is the average number of communities detected by an algo-

rithm in the same 100 networks. A value of C/C closer to 1

indicates the higher accuracy. As a third measure we study

how well the algorithms reproduce the overlapping nodes.

To this end we compute the ratio OV /OV , where OV is
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Table 3 Algorithms parameters

Algorithms Parameters

IC-LCD nmin = 5, θ0 = 0.4

COPRA v = 10

OSLOM hr = 0

SLPA r = 0.05, t = 50

DEMON ǫ ∈ [0.1, 0.4]

fixed at 100 which is the average number of overlapping

nodes present in LFR networks over 100 realizations and

OV is the average number of overlapping nodes detected by

an algorithm in the same 100 networks.

We compute each of the three measures—NMI, C/C and

OV /OV , as independent functions of Om and µ. For Om

we pick the range {2, 3, 4, . . . , 15} and fix other LFR param-

eters as N = 2000,On = 100, µ = 0.2, k = 50, kmax =

100, cmin = 10, cmax = 150. On the other hand for µ, we

choose the range {0.05, 0.10, . . . , 0.50} and take Om = 8

and other LFR parameters as above.

4.2 Accuracy results and comparison with
competitors

To compare the results of IC-LCD, we have selected

DEMON, SLPA, OSLOM, and COPRA as the baseline algo-

rithms. The parameters for these algorithms are set as in

Table 3. Note that the parameter ǫ of DEMON is not fixed

at a particular value. Instead, we have taken some random

discrete values of ǫ in the range [0.1, 0.4], and recorded the

output for the best choice. It is important to note that the algo-

rithms SLPA and DEMON are implemented in the CDLib

[44], which is a Community Discovery Library available for

the python language. We have used this library for running

the algorithms DEMON and SLPA, and also for computing

the NMI measure. The results for all the three accuracy mea-

sures are shown in Fig. 1.

First we plot the NMI scores between the produced and

actual covers of the five algorithms as a function of Om (see

Fig. 1a) and µ (see Fig. 1b). It can be observed that as Om

varies, IC-LCD delivers more stable NMI scores than the

rest of the algorithms. When NMI is seen as a function of µ,

among all the algorithms IC-LCD delivers the highest scores

till µ reaches 0.3, and thereafter it starts degrading whereas

OSLOM and COPRA maintain the high scores till µ = 0.5.

The worst performance on NMI is shown by DEMON, which

indicates that it produces highly unstable covers.

Next we look atC/C as functions of Om and µ (see Fig. 1c,

d). The algorithm COPRA delivers the correct number of

communities till Om = 13, where as OSLOM does so only

upto Om = 6. IC-LCD on the other hand, underestimates the

number of communities until Om crosses 4 and thereafter it

delivers the correct number of communities.

The algorithm SLPA underestimates the number of com-

munities for the whole range of Om. When µ varies till 0.35,

the scores of C/C indicate that the number of communities

are estimated correctly by both the COPRA and IC-LCD,

whereas they are overestimated by OSLOM and underesti-

mated by SLPA. In this case also DEMON exhibits the worst

performance.

Finally, we consider how Om and µ affect OV /OV (see

Fig. 1e, f). As Om increases, IC-LCD delivers scores of

OV /OV that monotonically increase and stay above 0.8

when Om crosses 7. The opposite behavior is shown by SLPA

which begins with high scores of OV /OV and monotoni-

cally degrades as Om increases. For OSLOM, the scores of

OV /OV are closer to 1 until Om = 5 and afterwards they

start oscillating with wide variations. Both the algorithms

COPRA and DEMON fail to detect the overlapping nodes as

soon as Om crosses 4. On the other hand, when OV /OV is

measured as a function of µ, SLPA produces slightly better

estimates for overlapping nodes than IC-LCD till µ reaches

0.2, and thereafter IC-LCD takes the lead. The other three

algorithms deliver unrealistic estimates.

Overall, we find that IC-LCD delivers moderate perfor-

mance when the overlapping nodes have fewer memberships

(the number of communities per node). As their membership

increases IC-LCD’s performance starts improving while that

of the others deteriorate. The transition point usually occurs

at Om = 6. This indicates that IC-LCD favors community

structures with pervasive overlaps, i.e., where the nodes pos-

sess memberships of several communities.

5 Evaluation on real-world networks

After understanding how IC-LCD performs on synthetic net-

works, we proceed to test it on real-world networks. The list

of real-world networks we have chosen to experiment with

IC-LCD is given in Table 4. The list includes a range of net-

works with the number of nodes varying from very small to

about 335 thousand, and the number of edges varying upto

about 926 thousand. The networks DBLP and AMAZON

are quite large and are well suited for testing the scalability

of algorithms. Since in real networks the prior information

about the community structure is usually absent, we must

employ other measures to understand how well an algorithm

performs on them.

5.1 Quality measures

There are many quality measures for this purpose [27,30,39]

which are motivated in some or other way by the modular-

ity of Newman [37]. We select two such measures. The first
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Fig. 1 Accuracy measures versus LFR parameters for the algorithms DEMON, IC-LCD, SLPA, OSLOM and COPRA
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Table 4 Details of networks studied in this paper

Network Nodes Edges References

LES-MISERABLES 77 254 [21]

JAZZ-MUSIC 198 2742 [14]

EMAIL-URV 1133 5451 [18]

POLBLOGS 1490 16715 [1]

NETSCIENCE 1589 2742 [36]

YEAST-PPI 2361 6646 [3]

POWER-GRID 4941 6594 [50]

HEP-THEORY 5835 13,815 [33]

ASTRO-PHYSICS 14,845 119,652 [33]

INTERNET 22,963 48436 [32]

DBLP 317,080 1,049,866 [29]

AMAZON 334,863 925,872 [29]

one is the overlapping modularity measure (Qov) given by

Nicosia et al. [39] as it has been used quite extensively in

the literature on overlapping community detection. The Qov

score depends on a function f (x) = 2px − p, where p is

any real number. The code for computing Qov implements

the function f with p = 30. To compute the Qov scores we

have used the CDLib (Community Discovery Library). The

second measure is the weighted overlapping modularity mea-

sure Qwo [22] which is equally applicable for unweighted

networks. Unlike the traditional versions of modularity, Qwo

has a very simple formulation and it can be computed very

fast.

We take the parameters of the algorithms again as given

in the Table 3 except the parameter r of SLPA which we set

now as r = 0.45. This value of r is chosen by the authors

of SLPA for experiments on real networks. We run each of

the five algorithms 10 times and record the average values

Qov,Qwo, C and OV frac of the corresponding parameters

over 10 runs.

5.2 Results and comparisonwith competitors

On all the 12 networks listed in Table 4, we applied IC-LCD

along with the four baseline algorithms. The results for the

selected measures for all chosen algorithms can be seen in

Table 5. First, let us analyse how the five algorithms perform

on the modularity measures. We find that the score Qov ≥

0.60 is achieved on 7 networks by IC-LCD, on 5 networks

by both OSLOM and COPRA, on 3 networks by SLPA, and

unfortunately on zero networks by DEMON. Likewise, the

score Qwo ≥ 0.60 is achieved on 11 networks by IC-LCD,

on 4 networks by OSLOM and DEMON both, on 6 networks

by COPRA, and on 7 networks by SLPA.

This clearly indicates in terms of quality IC-LCD gives

better performance than the baseline algorithms. On the other

two parameters, i.e., C and OV frac, IC-LCD gives almost the

similar results with the baseline algorithms.

Community Structure in LES-MISERABLES Network

After giving a quantitative tests of the results on all the real-

world networks listed in Table 4, we specifically select the

network LES-MISERABLES for demonstration of its over-

lapping community structure found by IC-LCD and compare

the results with those of the baseline algorithms. It is the

weighted network of co-appearances of characters in Vic-

tor Hugo’s novel “Les Miserables” [21]. It contains 77 nodes

and 254 edges. Nodes represent characters as indicated by the

labels and edges connect any pair of characters that appear

in the same chapter of the book. The values on the edges are

the number of such co-appearances. Since IC-LCD does not

work for weighted networks, we have ignored the weights.

We ran IC-LCD on this network 10 times. The best cover

produced by IC-LCD has 8 communities (See Fig. 2.). We

can see that the character ‘Valjean’ has a central role in the

novel. It has occurred with almost all the groups, although

prominently with 4 groups. Other characters that co-appear

with two or more groups are ‘Marius’, ‘Cosette’, ‘Gavroche’,

‘Javert’, ‘Marguerite’, and ‘Simplice’. The modularity scores

corresponding to this cover are Qov = 0.66 and Qwo = 0.52.

When we ran OSLOM 10 times on this network we

find that the best cover produced by it contains 6 commu-

nities with only two overlapping nodes namely, ‘Valjean’,

and ‘Marius’. Both of these nodes possess the memberships

of just two communities. However, the cover gets a qual-

ity scores as Qov = 0.69 and Qwo = 0.55. Next we run

COPRA 10 times on this network. The best cover produced

by COPRA contains only 3 communities (see Fig. 2c). Fur-

ther, we can see that no node has membership more than

2. The modularity scores for this cover are Qov = 0.53 and

Qwo = 0.59. Finally, we look at (Fig. 2d) the cover produced

by SLPA. It detects 6 communities, but with no overlapping

node. The quality scores for this cover are Qov = 0.73 and

Qwo = 0.58. It may be noted that DEMON does not produce

more than 1 communities in this network in 10 consecu-

tive runs for different values of its parameter ǫ in the range

[0.1, 0.4].

On this network, our algorithm produced the maximum

number of communities, with node membership reaching as

high as 4. On the other hand, rest of the three algorithms

produce upto a maximum of 6 communities, and node mem-

berships no more than 2.

5.3 Nodemembership distribution

To understand how node memberships are spread across

multiple communities we select three real-world networks

namely, INTERNET, DBLP and AMAZON. The network

INTERNET represents a symmetrised snapshot of the struc-

ture of the Internet at the level of autonomous systems, recon-
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Table 5 Quality measure comparison of the algorithms IC-LCD, OSLOM, COPRA, SLPA and DEMON on real-world networks

IC-LCD OSLOM COPRA

Qov C OV frac Qwo Qov C OV frac Qwo Qov C OV frac Qwo

LES-MISERABLES 0.66 8 0.09 0.52 0.69 6 0.03 0.55 0.53 3 0.35 0.59

JAZZ-MUSIC 0.69 3 0.17 0.79 0.45 11 0.13 0.44 0.56 2 0.09 0.52

EMAIL-URV 0.54 154 0.27 0.88 0.49 36 0.06 0.50 0.20 3 0.03 0.45

POLBLOGS 0.80 8 0.03 0.63 0.42 15 0.05 0.32 0.76 5 0.10 0.68

NETSCIENCE 0.75 47 0.08 0.84 0.84 29 0.01 0.43 0.82 29 0.05 0.70

YEAST-PPI 0.51 287 0.18 0.74 0.54 60 0.03 0.35 0.84 55 0.00 0.78

POWER-GRID 0.72 692 0.15 0.68 0.89 156 0.01 0.88 0.64 1308 0.14 0.59

HEP-THEORY 0.63 731 0.25 0.60 0.65 598 0.04 0.34 0.78 489 0.16 0.58

ASTRO-PHYSICS 0.58 931 0.30 0.60 0.41 1218 0.15 0.42 0.58 256 0.06 0.63

INTERNET 0.55 937 0.46 0.79 0.53 176 0.04 0.63 0.26 2634 0.00 0.62

DBLP 0.58 31,629 0.15 0.69 0.54 17525 0.09 0.64 0.49 2565 0.04 0.58

AMAZON 0.68 24,418 0.17 0.72 0.73 17041 0.05 0.78 0.59 7105 0.20 0.60

SLPA DEMON

Qov C OV frac Qwo Qov C OV frac Qwo

LES-MISERABLES 0.65 6 0.00 0.54 0.13 1 0 0.10

JAZZ-MUSIC 0.45 11 0.35 0.52 0.14 1.1 0.1 0

EMAIL-URV 0.37 3 0.59 0.40 0.16 11.9 0.70 0.37

POLBLOGS 0.39 18 0.41 0.59 0.14 1 0 0

NETSCIENCE 0.72 24 0.04 0.96 0.11 106 0.14 0.92

YEAST-PPI 0.56 63 0.00 0.65 0.20 130 0.19 0.40

POWER-GRID 0.65 666 0.11 0.70 0.01 75 0.01 0.59

HEP-THEORY 0.52 460 0.25 0.83 0.10 298 0.33 0.78

ASTRO-PHYSICS 0.29 743 0.54 0.69 0.42 258 0.72 0.71

INTERNET 0.41 9 0.53 0.58 0.07 56 0.23 0.48

DBLP 0.50 19,059 0.59 0.68 0.30 9164 0.28 0.58

AMAZON 0.52 30,316 0.62 0.68 0.38 14701 0.40 0.74

structed from BGP tables posted at archive.routeviews.org.

This snapshot was created by Mark Newman from data for

July 22, 2006. From Fig. 3a which depicts the vertex mem-

bership distribution, we find that DEMON detects the highest

number of memberships for the overlapping nodes. The rest

of the algorithms including IC-LCD are not able to detect

more than 5 memberships for any node.

The network DBLP represents a co-authorship network

taken from the computer science bibliography database

DBLP where two authors are connected if they have pub-

lished at least one paper together. This is a large network

with 317,080 nodes and 1,049,866 edges. The distribution of

the node memberships of the community structures produced

by IC-LCD and the baseline algorithms is shown in Fig. 3b.

In this network also DEMON takes the lead and IC-LCD

achieves the second place.

The AMAZON network was collected by crawling Ama-

zon website. It is based on Customers Who Bought This Item

Also Bought feature of the Amazon website. If a product i is

frequently co-purchased with product j , the graph contains

an undirected edge joining i and j . On this network also we

find that DEMON detects the highest number of member-

ships for the overlapping nodes, whereas IC-LCD remains at

the second position.

Apparently, DEMON is able to detect highest number of

memberships for the overlapping nodes. However, its perfor-

mance on LFR networks does not make it a reliable candidate.

Moreover, its output significantly depends on the selection

of its parameter ǫ. On the other hand, despite remaining at

the second position, IC-LCD is more reliable in terms of the

stability and quality of the covers produced by it. Thus in a

sense, IC-LCD is capable of revealing the highly overlapping

structure of networks.
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(a) IC-LCD (b) OSLOM

(c) COPRA (d) SLPA

Fig. 2 Community structure in LES-MISERABLES networks

6 Scalability and time complexity

Finally, we study the most important aspect for any algorithm

its scalability and time complexity. Scalability of an algo-

rithm tells us how the run time of the algorithm varies with

the number of nodes in the network. For comparing the actual

run times of IC-LCD with the baseline algorithms we select

random networks with the number of nodes ranging from

1000 to 100,000. These networks are generated using the

IGRAPH Package available for the R language. We simply

used the command sample_gnp(n, p) with p = 5/n,

where n lies in {5000, 10,000, . . . , 100,000}. The parame-

ters set for the algorithms are again as in Table 3. The plot

showing the run time of the algorithms DEMON, IC-LCD,

SLPA, OSLOM and COPRA on random networks is shown

in Fig. 4a. Here COPRA is the fastest algorithm, whereas IC-

LCD is the third fastest algorithm. However, as the network

size reaches 100,000 mark all the three algorithms COPRA,

DEMON and IC-LCD seem to be on the same scale.
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Fig. 4 a Running time (in seconds) plot of IC-LCD along with the

baseline algorithms on a class of random networks generated by the

command sample_gnp(n, p) of igraph package, with n lying in

{5000, 10,000, . . . , 100,000} andp = 5/nb Running time (in minutes)

plot of IC-LCD along with the baseline algorithms on the real networks

INTERNET, DBLP and AMAZON

To observe the difference in running time of IC-LCD,

and the baseline algorithms, we again considered the three

real networks INTERNET, DBLP and AMAZON. While on

INTERNET, the running times are not much distinguish-

able, the difference is clear on DBLP and AMAZON. On

DBLP we find that IC-LCD takes the least time which is less

than 40 min, whereas DEMON takes more than 120 min.

On AMAZON, the least time is taken by COPRA, whereas

IC-LCD takes the second least time again around 40 min.

DEMON takes again the highest time on this network.

We shall now estimate the theoretical complexity of IC-

LCD. First we compute the complexity of the Expansion

Phase. For an arbitrary subgraph C of the input graph,

assume that c = |C| and nc = |NC |. First observe that

both node and edge interaction coefficients of a node or an
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edge with C can be computed in O(c) time. The procedure

GET-NEW-NODES takes a subgraph C and its neighbour-

hood NC , and returns new nodes for the expansion of C.

This can be done in O(cnc) time. Now we come to the while

loop (Lines 6–25) of Algorithm 1, which runs k times, where

k is the number of (initial) communities. Note that the final

communities are never more than k. Given a subgraph C,

the repeat-until loop (Lines 9–18) runs at most |Vnew| ≤ nc

times. So, the complexity of the repeat-until loop is O(cn2
c).

The assignments at Lines 19–24 take O(c) time. Thus the

complexity of the while loop is O(kcn2
c + kc) = O(kcn2

c).

Note that c and nc are not constants, but they keep on

changing as C expands. Normally, C and NC do not grow

simultaneously throughout the expansion phase. Indeed, for

every C, we have 1 = c ≤ nc at the beginning. At the inter-

mediate steps it is possible that c ≤ nc, but towards the end

of the expansion phase two situations might emerge. In the

first case, C does not grow after acquiring a few nodes, and

so in this case it is reasonable to assume that cnc ≤ nmax,

where cmax is the maximum size of the final communities.

In the second case, C grows much faster than NC so that

c becomes much larger than nc, i.e., nc ≪ c. In this case,

we get n2
c ≤ cmax. As a result, cn2

c ≤ c2
max, and hence the

complexity of the Expansion Phase becomes O(kc2
max).

Now we compute the complexity of the Refinement Phase,

that is, of the MERGE-COMS() procedure. Observe that the

repeat-until loop runs k times in the worst case. Now look

at the Lines 5, 7 and 9, each of which requires cci steps,

where ci = |Ci |. Clearly, cci ≤ c2
max. Now observe that

|LH | ≤ |LN | ≤ |NC | = nc. So, the nested for loop (Lines

11–16) runs cnc times. Finally, the operation at Line 19

takes c steps. Thus the complexity of the Expansion Phase is

O(kc2
max + kcnc + c) = O(kc2

max). Consequently, the com-

plexity of IC-LCD is also O(kc2
max). Further, if the input

network has n nodes, then it can be seen that O(kcmax) =

O(n). Consequently, the complexity of IC-LCD reduces to

O(ncmax).

7 Discussion

In the previous sections we have seen the performance of

IC-LCD on synthetic as well as real-world networks. On

synthetic networks, IC-LCD gives results more accurate than

the other algorithms when the node memberships are high.

In real-world networks, the performance of IC-LCD is mea-

sured by the quality indicators Qov and Qwo. We find that

IC-LCD gives competitive performance with the baseline

algorithms on almost all the quality indicators. If we assess

from the point of view of quality and stability, IC-LCD is

a suitable choice for overlapping community detection. The

running time plots on synthetic networks show that IC-LCD

is slightly slower than COPRA and DEMON, but much faster

than both OSLOM and SLPA. Surprisingly, DEMON is the

slowest algorithm on the real networks DBLP and AMA-

ZON. (See Fig. 4.) Our theoretical estimate of the complexity

of IC-LCD is thus in line with practical situations, and hence

the algorithm scales for large networks.

Another interesting fact about IC-LCD is that its MERGE-

COMS() procedure is stand-alone, and therefore it can be used

as a refinement step for many seed expansion based algo-

rithms which are fast but produce unstable covers. However,

this requires a systematic study.

8 Conclusion

We have proposed the algorithm IC-LCD which employs the

notion of node and edge interaction coefficient to reveal the

community structure with pervasive overlaps in complex net-

works. IC-LCD has time complexity O(ncmax), where n is

the number of nodes in the input network, and cmax is the max-

imum size of the communities detected. We have analysed the

performance of IC-LCD on a number of quality indicators,

and compared the results with a few well-known algorithms

for overlapping community detection. The results on syn-

thetic networks suggest that when the node memberships are

low IC-LCD performs moderately and as the node member-

ships increase it begins outperforming the other algorithms.

Tests on real networks suggest that IC-LCD gives competi-

tive performance in terms of quality with other algorithms.

From the point of view of detecting the community structure

with pervasive overlaps, IC-LCD gives desirable outcomes.

Additionally its high speed makes it appropriate for applica-

tion on large networks.

Declarations

Conflict of interest The authors declare that they have no conflict of

interest.

Appendix

Here we shall illustrate the concepts of node and edge inter-

action coefficients, with the help of examples. Then we shall

see how the seed expansion takes place using these coeffi-

cients.

Appendix A.1: Illustration of node and edge
interaction coefficients

Consider the graph given below (Fig. 5).

Take C1 = {u0}, and C2 = {v0}. Let us expand C1, and C2

using the node interaction coefficient ξnode, taking ξ0 = 0.5.
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Fig. 5 Expansion of the seeds
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Note that NC1 = {u1, u2, u3, u4} and NC2 = {v1, v2, v3, v4}.

For each 1 ≤ i ≤ 4, we have

ξnode(ui , C1) =
1

5
< ξ0.

This means C1 would not expand. However, for each 1 ≤

i ≤ 4 we have

ξnode(vi , C2) =
1

2
= ξ0,

which means C2 can expand to all its neighbours, and

becomes C2 = {v0, v1, v2, v3, v4}. So, NC2 = {v5, v6, . . . ,

v12}. Now for each 5 ≤ i ≤ 12, we have

ξnode(vi , C2) =
1

4
< ξ0,

which means C2 cannot be expanded further. The case we

have considered is specific. But, it captures the two impor-

tant types of seeds which are—highly clustered, and lowly

clustered. The same strategy, such as the one based on node

interaction coefficient, will not work for the expansion of

both the kinds of seeds.

Therefore, we have introduced the concept of edge inter-

action coefficient ξedge. An edge euv essentially interacts with

a subgraph C through its endpoints u and v. To arrive at a

formula for ξedge(euv, C), we use the following assumption:

If both u and v have more neighbours in C, then euv interacts

with C highly. So, look at the quantity

min
{

|Nu ∩ VC | , |Nv ∩ VC |
}

.

To normalise it we can divide it by the minimum or the

maximum of the degrees of u and v. Moreover, we wish

ξedge(euv, C) to be highest when Nu ⊆ VC\{v}, Nv ⊆

VC\{u}, and du = dv . Keeping, all these requirements, we get

Eq. (2). It is apparent that 0 ≤ ξedge ≤ 1. It can be seen that

ξedge(euv, C) = 1 iff du = dv and |Nu ∩ VC | = |Nv ∩ VC |.

In the denominator of Eq. (2) we have taken max{du, dv}

instead of min{du, dv}. To see why let us look at the case

given in the picture below.

C

u v

The node u has 3 neighbours in C, and 6 neighbours outside

C. So, ξnode(u,C) = 1/3 which is much smaller than the

threshold ξ0. Consequently, u must not join C in any case.

However, v has 5 neighbours in C and just 2 neighbours

outside C. So, v would surely join C. Now let us compute

the node interaction coefficient of u with C ∪ {v}. We have

ξnode(u,C ∪ {v}) =
4

9
< ξ0

Thus u would not join C ∪ {v} too. Consider, now the case

when min{du, dv} is the numerator in Eq. (2). Then

ξedge(euv, C) =
1 + 3

7
=

4

7
> ξ0

In this case u joins C. Thus min{du, dv} is not an appropriate

choice for the denominator in Eq. (2).

Appendix A.2: Illustration of seed expansion phase

We illustrate the GET-NEW-NODES() procedure through

examples. Note that we do not specify any criterion for select-
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Fig. 6 A network with

community structure
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Table 6 Before augmentation step, Vnew = ∅ for C = {30, 31} in

Fig. 6

u ∈ NC ξnode(u, C) v ∈ Nu ∩ NC , v > u ξedge((u, v), C)

25 1
6

26 1
3

29 1
3

26 1
4

29 2
5

29 1
5

Table 7 Before augmentation step, Vnew = ∅ for C = {1, 2, 3} in

Fig. 6

u ∈ NC ξnode(u, C) v ∈ Nu ∩ NC , v > u ξedge((u, v), C)

4 1
5

5 2
5

5 1
5

14 1
3

22 1
6

23 1
3

23 1
4

ing seeds, so any node may serve as a seed. Then it may well

happen that certain seeds, especially the low degree nodes,

stop expanding after growing to few nodes, or do not expand

at all. Let us consider a few examples assuming that ξ0 = 0.5

and nmin = 4.

Example 1 Consider the graph given in Fig. 6.

Let C = {30, 31}. Then NC = {25, 26, 29}. In order

to compute Vnew, the steps followed before the augmenta-

tion step are listed in Table 6. No node of NC is added

to Vnew, leaving Vnew empty. On the other hand, during

the augmentation step, we find that ξnode(25, C ∪ NC) =

1/2, ξnode(26, C∪NC) = 3/4 and ξnode(29, C∪NC) = 3/5,

which makes Vnew = {25, 26, 29}.

Example 2 This time consider the subgraph C = {1, 2, 3} in

the graph given in Fig. 6. Here NC = {4, 5, 14, 22, 23}. Then

before the augmentation step Vnew remains empty as shown

in Table 7. However, in this case even the augmentation step

does not help, as ξnode(u,C ∪ NC) < ξ0 for all u ∈ NC , and

so, Vnew = ∅. Thus the subgraph C is not expandable to a full

community. Such groups of nodes are likely to join multiple

communities and form the basis for pervasive overlaps.
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