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Abstract
Many complex and important real-life applications, such as surveillance, monitoring and fraud detection, need to identify
entire time-series, from a given collection, as anomalous. In this paper, we formulate and propose a solution for this inter-time-
series anomaly detection problem, which is different from the usual intra-time-series anomaly detection, which identifies an
anomalous “region” within a given single time-series. We formulate the notion of causally anomalous multi-variate time-
series, and propose algorithms to identify them in a given database, using well-established notions of both linear and nonlinear
Granger causality. The idea is to use (either domain knowledge or frequently observed) causal relations that hold between the
univariate time-series corresponding to individual attributes, and identify those time-series as anomalous where this expected
causality is violated. We use the proposed algorithms to detect causally anomalous time-series in several public datasets,
in different domains such as economics, engineering, and medicine. Our experiments show that the causally anomalous
time-series are not detected by strong baseline algorithms, indicating that this is a new notion of anomaly that complements
the more standard formulations of what makes a time-series anomalous. We then present a detailed real-life case-study in a
large stock exchange, where these techniques were used to identify agents with suspicious order behavior. We also point out
limitations of the proposed notion of causally anomalous time-series.

Keywords Anomaly detection, Time-series · Granger causality · Stock market frauds · Stock market order book surveillance

1 Introduction

Many applications, e.g., such as surveillance, monitoring
and fraud detection, collect a database of multi-variate time-
series, where each time-series gives the “behavior” of an
entity over a period of time, and the time-series share a com-
mon “structure.” The time-series in a database may or may
not be sampled at the same rate. Examples:

– In a data center having N servers, a monitoring program
collects information about the servers’ utilization (e.g.,
CPU usage, disk usage and memory usage at every sec-
ond), resulting in N time-series every day.
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– In a stock exchange having N stocks, the corresponding
N time-series (collected every day) have data about the
price and volume in the trades in that stock.

– In a bank having N accounts, the corresponding N time-
series have data about the transactions of these accounts
in a given time-period.

– In N systems (e.g., aircraft), each being monitored by a
particular type of sensor, the corresponding N time-series
have data about the sensor readings.

An important question is: are there any anomalous time-
series in the given database? In the data center example,
an anomalous time-series may indicate a server that is dan-
gerously overloaded, or almost un-utilized or having wild
fluctuations in its utilization levels. In the stockmarket exam-
ple, an anomalous stock may indicate highly unusual trading
patterns. This problem may be called as inter-time-series
anomaly detection. This is different from the usual intra-
time-series anomaly detection, where the goal is to identify
an anomalous “region” within a given single time-series. For
example, a particular kind of anomalous region in a given
ECG signal may indicate a specific cardio-vascular disease,
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or in the sensor data about a chemical process, it may indicate
transient faults or sudden changes. In the intra-time-series
setting, a region within the single given time-series is anoma-
lous only in the context of the remaining portion of the same
time-series. In inter-time-series setting considered in this
paper, a time-series in a database may be anomalous as a
whole, in the context of the other time-series in the database.
We consider, in general, multi-variate time-series.

Clearly, a multi-variate time-series consists of attribute-
wise univariate component time-series. For example, the
multi-variate time-series for a particular server consists of
individual univariate time-series, one for each attribute (e.g.,
CPU utilization, memory usage, disk-space usage). Notions
of statistical causality (e.g., Granger causality [1]) between
univariate time-series are well-known in statistics. On the
basis of domain knowledge, a particular causality relation
may be expected to hold among some attributes. Alter-
natively, one may observe that a causality relation holds
between two specific attributes in a large majority of time-
series in a database. In either scenarios, then, a particular
time-series in the database can be called as causally anoma-
lous (or just anomalous) if its component time-series violate
the expected causality relation(s). Purely as an example, one
may find that CPU utilization Granger causes memory usage
in a majority of time-series in the database. Then, any server
whose time-series violates this causal relation is anomalous.

At the outset, we emphasize that this notion of causally
anomalous time-series is quite limited—it captures only one
particular type of anomaly. It fails to identify any time-series
in the database as anomalous, if no causal relations are found
to hold among the attribute time-series. It only applies to
multi-variate time-series in the inter-time-series setting. It
identifies an entire time-series as causally anomalous or not;
it does not identifywhich regions in an anomalous time-series
make it anomalous.

Our contributions in this paper are as follows. We formal-
ize the novel notion of a causally anomalous multi-variate
time-series. We propose unsupervised algorithms (which do
not need any training data) to identify causally anomalous
time-series in a database, based on both linear and nonlinear
Granger causality formalisms (Sect. 4). We use the proposed
algorithms to detect causally anomalous time-series in sev-
eral public datasets, in different domains such as economics,
engineering, and medicine (Sect. 5). Our experiments show
that the causally anomalous time-series are not detected by
strong baseline algorithms, indicating that this is a newnotion
of anomaly that complements themore standard formulations
of what makes a time-series anomalous. We then present a
detailed real-life case-study in a large stock exchange, where
these techniques were used to identify agents with suspicious
order behavior (Sect. 6).

2 Related work

Anomaly detection involves identifying unexpected items or
events in a dataset. Most anomaly detection techniques use
unsupervised, and do not need any labeled training data.
Basic assumptions behind anomaly detection algorithms
include rarity of occurrence and significant differences (e.g.,
value distributions) between anomalous points and “normal”
data points. The input for an anomaly detection algorithm
can be point data (where each data instance is considered as
a point in k-dimensional space), or graph data (where two
data points are joined by edges and points need not be con-
sidered to be members of a Euclidean space) or sequence (or
time-series) data (an ordered list of values with or without a
timestamp).

Many anomaly detection algorithms are known for point
data; see [2] for an excellent, if dated, survey. In Sect. 5.2,
we have already described the basic ideas behind some of
these algorithms (RRS, LOF, iForest), which we have used
as baselines.Another prominent approach for anomaly detec-
tion for point data is based on the idea that anomalous data
points occur in less dense regions, whereas normal points
occur in highly dense regions. DBSCAN is a density-based
spatial clustering algorithm [3] that can be used for mark-
ing points in a low density region as outliers. Breunig et al.
[4] takes this idea forward and considers the ratio of average
density of k nearest neighbors of a data point with that point
itself and marks points with local density lower than nearest
neighbors as outliers.

We now review some of the work for anomaly detection in
time-series data; see [5] for a survey.Most of these techniques
work with univariate time-series (e.g., ECG) and identify
parts within a time-series as anomalous (the intra-time-series
setting described in Sect. 1). They identify either (i) a single
value or (ii) a contiguous region in the time-series as anoma-
lous, by comparing with neighboring (pre- and post-) regions
in the same time-series. An unusually high (or low) value,
or a sudden and sustained change in value are examples of
anomalies detected by such techniques. These techniques are
not directly usable in our inter-time-series setting (1).

A prominent approach for intra-time-series anomaly
detection is proposed in [6,7]. The idea here is to transform
a numeric time-series T into a symbolic aggregate approxi-
mation (SAX) representation by sliding a window of length
n across T : first divide T in equal sized frames and then dis-
cretizing T using symbols. Then, they formalize the problem
of detecting anomalies in T as the problem of finding dis-
cords, i.e., unusual sub-sequences in the SAX representation
of T .

Qiu et al. [8] have used Granger graphical models that
explore the temporal dependencies between variables by
applying L1-regularized learning to Granger causality. Their
aim is to find data points in multivariate time-series data
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that significantly deviate from the “normal” patterns. Given a
reference time-series, they use KL-divergence to compute an
anomaly score for a time-serieswith the reference time-series
for each variable, representing whether and how much that
variable contributes to the deviation from the reference time-
series. Anomalies are reported based on a threshold cutoff.
This approach is useful when a suitable reference time-series
is available, which is not the often the case.

Some approaches for anomaly detection in time-series are
based on clustering. Tatusch et al. [9] clusters data points in
various time-series that have the same timestamp, and then
analyze behavior of a time-series as a sequence of transitions
across these clusters to identify anomalous time-series. The
notion of this behavior is based on the distances between the
clusters of different points in time. In [10], the authors extend
thisworkbyusing a different notionof distance between clus-
ters and by using aweighting function. A crucial step in these
time-series clustering methods is the so-called evolutionary
clustering, which is the problem of how to build clusters of
data points for different time instants. Several algorithms are
known for evolutionary clustering; e.g., see [11].

We note that there is not much work in identifying entire
multi-variate time-series in a database as anomalous (our
inter-time-series setting described in Sect. 1), using inter-
attribute causal relations.

3 Overview of Granger causality

3.1 Linear Granger causality

Interdependence between two time-series can be computed
using cross-correlation (in time domain) or coherence (in
frequency domain) functions. However, this does not capture
causal interdependence between two time-series. Granger
causality (GC) techniques provide a better understanding of
the causal relationship among two time-series. A univariate
time-series Y Granger-causes another univariate time-series
X if using Y values allows us to get better predictions for X
values. A simple approach (the Wald test) to test whether Y
Granger causes X is as follows. As an example, using lag =
2, build an auto-regressive (AR) model for X , which predicts
the value Xt at time t using previous two values Xt−1 and
Xt−2:

Xt = α + β1Xt−1 + β2Xt−2 + εt (1)

We can use the actual data in the given time-series X to
compute the estimated values α̂, β̂1, β̂2 of the coefficients.
The R2 value for this restricted model (denoted R2

restricted)
gives its predictive accuracy. Next, build a new AR model,
called full model, which predicts Xt using Xt−1, Xt−2 aswell
as 2 newvariables corresponding to laggedvaluesYt−1,Yt−2:

Xt = α + β1Xt−1 + β2Xt−2 + β3Yt−1 + β4Yt−2 + εt (2)

Again, estimate the coefficients and obtain a new R2 value
(denoted R2

full) for this model. Now, use the F-test to check
if the new model has better accuracy than the old model.
Compute the F-value as follows:

F = ((R2
full − R2

restricted)/m)

((1 − R2
full)/((n − 2) · (� − 1)))

(3)

Here, m denotes the number of additional variables in the
full model (m = 2 in our example) and n denotes the total
number of elements in time-series X (Y is assumed to have
the same number of elements as X ) and � is the lag (� = 2 in
our example). Next, compare this computed F-value to the
critical value F∗

α,m,2� of the F-distribution with m degrees
of freedom (DoF) in numerator and (n − 2)(� − 1) DoF in
the denominator (this value is obtained from tables). Here, α
is the level of significance; typically, α = 0.05. If computed
F-value > F∗ then we reject the null hypothesis H0 (both
models have the same accuracy) and accept the alternative
hypothesis H1 that adding � lag values of Y to the AR model
improves prediction accuracy of X , i.e., Y Granger-causes
X . In general, we may have to try different lag (�) values,
and we say Y Granger-causes X if this statement is true for
at least one lag � value. One issue is that we have tacitly
assumed that X and Y have the same sampling rate, i.e., have
the same timestamps at which the values are measured. If
this is not the case, then one possibility is to re-sample both
the time-series to have the same timestamps.

We need to check some conditions on time-series X , Y ,
before we apply any Granger causality test to check if X
Granger-causes Y . We now summarize these restrictions.
Roughly, a time-series is not stationary if it contains trends,
seasonality, and other time-dependent effects such as the
mean, variance, auto-correlation vary with time. Formally,
a time-series Xt is stationary if the unconditional joint prob-
ability distribution of d random variables (positions) within
the time-series does not depend on time. For example, sup-
pose d = 2 and consider the joint PDF for values occurring
at two positions X11 and X18 within the time-series. Then for
a stationary time-series, the PDF is the same for say X12 and
X19, X13 and X20, X35 etc., as long as these two positions are
at a distance 7 from each other. All stationary time-series are
also integrated with order 0 (denoted I (0)), but not all I (0)
time-series are stationary. Informally, a time-series is inte-
grated with order 0 if its auto-covariance “quickly” decays
to 0. If time-series X , Y are both I (0) (or at least station-
ary) then a Granger causality test can be applied to check if
one time-series Granger-causes another time-series. Statis-
tical tests, such as augmented Dicky-Fuller (ADF) test, can
check whether or not the given time-series is stationary.
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If the time-series X is not stationary, then we can take the
first difference of the time-series to create another time-series
(Zt = Xt+1 − Xt , for every 1 ≤ t < |X |), and then test the
new time-series Z for stationarity. If Z is stationary then X is
called integratedwith order 1 (denoted I (1)). Supposewe are
given two time-series X and Y . Suppose you are able to find
a constant value β such that Yt − βXt is relatively constant,
for every 1 ≤ t < |X |, i.e., this new time-series is station-
ary I (0). Then, X and Y are said to be co-integrated. There
are statistical tests—such as Engle-Granger test or Johansen
test—which check whether the given two time-series are co-
integrated. Thus if X (or Y ) is not I (0) (or stationary), then
we can still test them for Granger causality if X is I (1) (or
Y is I (1)), or X ,Y are co-integrated.

The standard formulation of Granger causality has sev-
eral limitations. The main limitation is that it is a linear
notion. That is why we now discuss one formulation of non-
linear Granger causality and use it in our experiments. There
are other well-known limitations of Granger causality. First,
philosophically speaking, it is really a probabilistic notion
of causality and does not match with Hume’s notation of
causality. More importantly, it is seriously affected by con-
founding and when X and Y are both affected by a third
process and may not always yield correct results in such
scenarios. Finally, it applies only to pairs of variables and
in general, we may need to use multi-variate extensions of
Granger causality. Selecting such pairs of variables to test
for causal relation can be tricky, and for this reason, we have
used domain knowledge to identify them.

3.2 Nonlinear Granger causality

Linear Granger causality is unable to detect causal relations
if they are nonlinear; see [12] for an example. Thus, we need
a test to check for nonlinear causality between two time-
series. We first summarize the statistical test given by Baek
and Brock [13] for testing whether a time-series Y nonlin-
early Granger causes another time-series X . We assume that
X , Y are strictly stationary, weakly dependent (i.e., I (0))
and satisfy some “mixing” conditions given in [14]. Let
L, M ≥ 1 denote given lag values for time-series X and
Y , respectively, and let m denote the given lead value for
X . For example, if m = 3, then the lead vector for X
at time index t is Xm

t = (Xt , Xt+1, Xt+2). Similarly, the
lag vectors are: XL

t−L = (Xt−L , Xt−L+1, . . . , Xt−1) and
Y M
t−M = (Yt−M ,Yt−M+1, . . . ,Yt−1). The null hypothesis H0

is that Y does not nonlinearly Granger cause X . The test pro-
cedure first fits a full linear model (using L lag values of X
and M lag values of Y ) to the data, and obtains the residuals
for X , i.e., difference between predicted and actual values of
X . Similarly for Y . Any remaining predictive power of these
residuals time-series can be considered as nonlinear causal

relation [13]. We now summarize the statistical hypothesis
test developed by Baek and Brock [13] for this purpose.

Let ε > 0 be a given small positive number. Let t, s be any
two time indexes. Quantities C1,C2,C3,C4 are defined as
given below. C1 is the joint probability that (i) the distance
between lag vectors Xm+L

t−L and Xm+L
s−L at time indexes t and

s is< ε; as well as (ii) the distance between lag vectorsY M
t−M

andY M
s−M at time indexes t and s is< ε. ‖·‖ denotes distance,

for which the max norm is used. C2,C3,C4 are understood
similarly.

C1(m + L, M, ε) = Pr(‖Xm+L
t−L − Xm+L

s−L ‖ < ε,

‖Y M
t−M − Y M

s−M‖ < ε) (4)

C2(L, M, ε) = Pr(‖XL
t−L − XL

s−L‖ < ε,

‖Y M
t−M − Y M

s−M‖ < ε) (5)

C3(m + L, ε) = Pr(‖Xm+L
t−L − Xm+L

s−L ‖ < ε) (6)

C4(L, ε) = Pr(‖XL
t−L − XL

s−L‖ < ε) (7)

Then, [13] give correlation integral-based estimators
̂C1, ̂C2, ̂C3, ̂C4 for the above quantities, which can be
computed from the data, i.e., the actual realizations of the
time-series X and Y . They show that under the null hypothe-
sis and other conditions on X ,Y given above, the test statistic
given on the left follows the Normal distribution with mean
0 and variance σ 2 (which depends on m, L, M, ε):

√
n

(

̂C1
̂C2

− ̂C3
̂C4

)

∼ N (0, σ 2) (8)

They give an estimator for σ 2 that can be computed from
the data. Here, n = n0 + 1 − m − max(L, M) and n0 is the
length of the given realization of time-series X (and Y ). The
hypothesis test procedure now simply computes the value of
the test statistic from given data and if it is more than the
critical value obtained from the normal distribution on the
right side (for, the significance level of, say, 0.05), then H0

is rejected and the alternative hypothesis that Y nonlinear
Granger causes X is accepted. We actually use a modified
form of this Baek and Brock test, as given by Hiemstra and
Jones [15], where they have given a better estimator for σ 2.
Note that the choice of values for lags L, M , lead m and ε

are important.

4 Causally anomalous time-series

Let D = {T1, T2, . . . , TN } be a given database of N time-
series. Each Ti in D is a multivariate time-series of the form:
〈x(i)

1 , x(i)
2 , . . . , x(i)

mi 〉; here, mi = length of time-series Ti . We

assume that each element x(i)
j of each time-series in D has

k ≥ 2 attributes, i.e., each element is a k-vector. Our task

123



International Journal of Data Science and Analytics (2021) 11:141–153 145

is to find out all time-series in D, each of which is causally
anomalous with respect to a majority of the time-series in D.
We now formalize the notion of causally anomalous time-
series.

Let T [a] denote the univariate time-series obtained from
T by removing all attributes, except a-th attribute. The uni-
variate time-series T [b] is obtained from T by removing all
attributes except b-th attribute. If time-series T [a] Granger
causes time-series T [b], then we denote it as a ⇒ b; if T [a]
does not Granger cause T [b], then we denote it as a � b.

In some applications,wemayhaveapriori domain knowl-
edge that a ⇒ b is expected to hold for some particular
attributes a and b. In such a case, any time-series in D for
which a � b is called causally anomalous. Alternatively,
suppose we do not have any such domain knowledge. In that
case, for a given pair of attributes a and b, we examine each
time-series in D, and check whether a ⇒ b. Now, there are
several possibilities: (i) For a “majority” of time-series in D,
it is true that a ⇒ b. In that case, any time-series for which
a � b is called causally anomalous; (ii) for a “majority” of
time-series in D, it is true that a � b. In that case, any time-
series for which a ⇒ b is called causally anomalous. (iii)
Neither the relation a ⇒ b nor a � b holds for a “majority”
of time-series in D. In that case, our approach fails to identify
any causally anomalous time-series in D.

We now only need to formalize the notion of “majority”
mentioned above. Rather than a Boolean check against a
threshold value, we use a simple statistical test of propor-
tions [16] to check whether the observed proportion is equal
or greater than the user-specified threshold constant h0. Let
pobs = count_pos/N be the observed proportion of time-
series for which a ⇒ b holds (N is the number of time-series
in the database). We use the right-tailed test where the null
hypothesis is H0 : pobs = h0 against the alternative hypoth-
esis H1 : pobs > h0. The test statistic is: t = pobs−h0

√

h0(1−h0)

N

. Note

that t is a random variable, as it is based on pobs, which is
computed from the given set of time-series and varies if the
sample is changed. By a well-known result, assuming H0 is
true and sample size N is large, t has Standard Normal distri-
bution t ∼ N (0, 1). We reject H0 if the computed value of t
is “too large” i.e., if the area under the standard Normal PDF
to the right of t (as computed by the subroutine pnorm in
the algorithm) is less than the required level of significance,
say 0.05.

The check whether T [a] Granger causes time-series T [b]
can be implemented through a subroutine
check_Causali t y(T [a], T [b], a, b, c_t ype), which returns
T RUE if time-series T [a] Granger causes time-series T [b]
at some lag m (in the range [0, lagmax], where lagmax is a
user-specified constant) and returns FALSE when T [a] does
not Granger cause T [b] at any lag in the range [0, lagmax].
For nonlinear causality, along with lagmax, another param-

eter leadmax is also required. c_t ype specifies the type of
causality to be tested by the routine (0 for linear and 1 for
non-linear). This routine encapsulates checks for both linear
and nonlinear Granger causality in a single abstraction.

Algorithm GC_Anomaly uses these ideas to identify
causally anomalous time-series in a given database D with
respect to a given pair of attributes. Basically, for given
attributes a, b, it just counts (and records in array f lag) in
how many time-series in D the causality a ⇒ b holds and in
how many a � b holds. It then uses a statistical hypothesis
test of proportions (as explained above) to check if either of
these counts is “close” or above the user-specified threshold
h0, and returns the indexes of time-series which violate the
direction (dir ) of the majority causal relation that holds in
D (these are the causally anomalous time-series). Running
this algorithm in a loop over all possible attribute pairs will
identify causally anomalous time-series with respect to any
pair of attributes. Note that it is possible that neither a ⇒ b
nor a � b may hold for majority of time-series in D, in
which case the algorithm does not find any causally anoma-
lous time-series in D.

5 Experiments

5.1 Datasets

To our knowledge, there are no public-domain multivari-
ate time-series datasets containing explicitly marked causal
relations among its attributes. Hence, we use several public-
domain time-series datasets, for which there is domain
knowledgewhich gives an idea of the causal relations that are
expected to hold between some pairs of attributes (Table 1).
The Electric Motor Temperature Dataset1 contains 52 time-
series, each corresponding to a session where the permanent
magnet synchronous motors (PMSM) are monitored using
sensors. The measurement sessions range between 1 and 6 h.
The causal relations expected to hold in this dataset are taken
from [17], which intuitively correspond to voltage causes
current, voltage causes angular motor speed and tempera-
ture causes (changes to) torque.

The World Development Indicators dataset from World
Bank2 contains data related to the development indicators for
various countries from the years 1960 up to 2018. Following
are some of the attributes, along with the number of coun-
tries for which the attribute is available: births attended by
skilled health staff (% of total) (96 countries), immunization,
measles (% of children ages 12–23 months) (191 countries),
prevalence of underweight, weight for age (% of children

1 https://www.kaggle.com/wkirgsn/electric-motor-temperature.
2 https://databank.worldbank.org/source/world-development-
indicators/.
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Algorithm 1: Algorithm GC_Anomaly
input : D = {T1, T2, . . . , TN } // N time-series, each element is

k-dimensional vector
input : A = {1, 2, . . . , k}; a, b ∈ A // attribute names
input : h0 ∈ [0, 1] // user-given min. proportion reqd. for

majority
output: O ⊆ {1, 2, . . . , N } // indexes of anomalous time-series
count_pos := 0; count_neg := 0; O := ∅;
for i = 1 to N do

( f lag[i]) := check_Causali t y(T [a]
i , T [b]

i , a, b, c_t ype);
if f lag[i] == T RUE then

count_pos++;
end
else

count_neg++;
end

end

t+ = (count_pos/N )−h0
√

h0(1−h0)

N

;

t− = (count_neg/N )−h0
√

h0(1−h0)

N

;

// area under Std. Normal prob. density to the right of obs. value
t+
if pnorm(t+) < 0.05 then

// a ⇒ b holds in majority of time-series in D
dir := T RUE

end
else

if pnorm(t−) < 0.05 then
// a � b holds in majority of time-series in D
dir := FALSE

end
else

// Neither a ⇒ b nor a � b holds in majority of
time-series
// in D (no statistically significant difference in their
counts)
return((∅, NULL));

end
end
for i = 1 to N do

if dir == T RUE ∧ f lag[i] == FALSE then
O := O ∪ {i};

end
if dir == FALSE ∧ f lag[i] == T RUE then

O := O ∪ {i};
end

end
return((O, dir));

under 5) (18 countries) with mortality rate under-5 (per 1000
live births) and contraceptive prevalence any methods (% of
women ages 15-49) with population growth (annual %) (34
countries). The number of countries for each causal relation
are different due to non-availability of different attributes for
all countries.

The Parkinson Disease Spiral Drawings Using Digitized
Graphics Tablet Data Set is handwriting dataset (PDSST)
[18] consisting of 25 People with Parkinson’s Disease and
15 healthy individuals. The dataset consists of handwriting
recordings of three types.We have considered the static spiral
test (SST) data. SST is used for clinical research in literature

for different purposes like determining motor performance,
measuring tremor and diagnosing Parkinson disease. Since
people with Parkinson’s are not able to draw a spiral prop-
erly, we can consider a causal relation between the x and y
coordinates for such people (since the number of individuals
with Parkinson’s disease is more).

5.2 Baselines

As mentioned earlier, our notion of causally anomalous
time-series is quite restricted, applies only to multivariate
time-series and identifies entire time-series in a database as
causally anomalous or not (inter-time-series anomaly set-
ting). This makes a direct comparison with other time-series
anomaly detection techniques somewhat difficult. For exam-
ple, it is not useful to compare with non-causality-based
techniques that analyze univariate time-series to identify
intra-time-series regions as anomalous.

Our first baselines “condense” each time-series to a point
in a multi-dimensional space and then use standard anomaly
detection techniques to identify anomalous points. Here, we
used the well-known outlier detection algorithms RRS [19],
LOF [4], iForest [20] algorithms, along with a simple sta-
tistical outlier detection algorithm based on Mahalanobis
distance, as baselines. These algorithms do not directly work
on time-series data; instead they identify anomalous points
in a given set of p-dimensional data points. Hence, we map
each of pair of our univariate time-series X and Y to a sin-
gle vector containing summary statistics for each of the two
component time-series: min, max, average, standard devi-
ation, quartiles, auto-correlations, etc. In Table 1, we take
all possible attribute pairs, and transform the associated two
univariate time-series datasets in this manner to a single data-
point, in order to apply these baseline algorithms to them.

The RRS algorithm [19] uses the distance of each point
from its kth nearest neighbor (NN) as the measure to decide
the outlier. The more the distant a point is from its kth neigh-
bor, the more likely is the point to be an outlier. Once the
distances from the kth nearest neighbor are computed for
each point, then we mark top-m data points as anomalous
(we use k = 5, m = 5). The LOF algorithm [4] computes
local outlier factor as the ratio of average density of k nearest
neighbors of the data point and the average density of the data
point itself. The idea is that the average density of a normal
point must be close to the average density of its neighbor.
Thus, a point having a marginal difference between the aver-
age density of its k nearest neighbors and its own average
density is likely to be an outlier. This ratio is converted to an
outlier score. We mark top-m data points as anomalous (we
use k = 5, m = 5).

The iForest algorithm [20] builds a random partition tree
as follows: first randomly select an attribute A, then randomly
select a split value between the maximum and minimum
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Table 1 Public-domain time-series datasets used

Dataset #Time-series #Attributes Expected causal relations

Electric motors 52 12 pm ⇒ torque,

u_d ⇒ i_d, u_q ⇒ i_q

u_d ⇒ motor_speed

u_q ⇒ motor_speed

World dev. ind. 96 2 bir th_skilled_sta f f ⇒ mortali t y_under_5

World dev. ind. 191 2 immunization_measles ⇒ mortali t y_under_5

World dev. ind. 18 2 prevalence_underweight ⇒ mortali t y_under_5

World dev. ind. 34 2 contraceptive_prevalence ⇒ population_growth

PDSST 40 2 x ⇒ y

values of A, and then partition the instances in the dataset
accordingly. This partitioning of instances is repeated recur-
sively until all instances are isolated (i.e., become the only
entry in a partition). Many such random partition trees are
constructed for the same dataset, and points which have a
short path length in many of these trees are identified as
anomalies.

The Mahalanobis distance between two p-dimensional
points x and y in a dataset is given by:

R(x, y) = (x − y)T · C−1 · (x − y) (9)

whereC is the p×p sample co-variancematrix. Thisway,we
get distance of each point from the mean of both attributes.
These distances are sorted in descending order and the points
that are very far from the mean are marked as anomalous.

In addition, we combine dynamic time warping [21,22]
and the RRS algorithm to design another simple baseline
algorithm for detection of anomalous time-series; this algo-
rithm works directly on time-series data. Dynamic time
warping (DTW) [21,22] is a well-known technique for mea-
suring similarity of the shapes of two time-series. We use
DTW to construct a similarity matrix between a set of time-
series and then use RRS algorithm (which uses this matrix)
to identify anomalous time-series.We call this baseline algo-
rithm as RRS_DTW . Note that this method works directly
on the time-series, withoutmapping each time-series to a sin-
gle vector, and identifies an entire time-series as anomalous.

For our GC_Anomaly(linear) algorithm, we use h0 =
0.55 and we iterate lag_value from 1 to 4. Here, lag_value
is the number of past values considered for building regres-
sion models (both full and restricted) and h0 is the threshold
above which the majority is considered a a true majority. For
GC_Anomaly(non-linear) algorithm, we use h0 = 0.55
and we iterate lag_value from 1 to 4. Specifically for
the nonlinear setting, we have to give additional parameter
lead_value which is taken as lead_value = lag_value + 1.

5.3 Results

Table 2 shows the results of all baseline algorithms, as
well as our algorithms, on various public-domain datasets
which are explained in Table 1. The public-domain datasets
do not provide a ground truth for anomaly detection.
So in Table 2, we have given the results of our algo-
rithm GC_Anomaly(linear), and in the columns for the
baselines, we have given the no. of anomalies reported
by each baseline algorithm and common anomalies with
GC_Anomaly(linear) are given in bracket; e.g., for the
dataset Electric Motors (u_d ⇒ i_d) results for the column
LOF show that LOF algorithm has reported five anomalies
out of which one is common with GC_Anomaly(linear).
We observe that the causally anomalous time-series are not
captured well by the baselines, i.e., they have low overlap
with outputs of our algorithms. This shows that our algo-
rithms are capturing genuinely new types of anomalies.

The next question is: how well is the domain knowledge
(i.e., expected causal relations among attributes in Table 1)
reflected in these datasets?We found that the expected causal
relations among attributes do not always hold in the datasets
when we use linear Granger causality. As an example, in
the electric motors dataset, the domain knowledge expects
that the causal relation pm ⇒ torque should hold; how-
ever, we found that in majority of the time-series in this
dataset, this causal relation was found not to hold (using
linear Granger causality). Similarly, in the World Develop-
ment Indicators dataset, we found that some of the expected
causal relations were found not to hold (using linear Granger
causality). Interestingly, in the Electric Motors dataset, the
modified Baek and Brock test (GC_Anomaly(non-linear))
captured all the causal relations as expected from the domain
knowledge and no causally anomalous time-series were
detected by GC_Anomaly(non-linear). Similarly, in the
World Development Indicators dataset also, all the expected
causal relations were detected by the modified Baek and
Brock test (GC_Anomaly(non-linear)).
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Table 2 Results on public-domain datasets

Dataset with expected causality GC_anomaly (linear) RRS LOF iForest Mahalanobis RRS_DTW

Elec. motors (u_d ⇒ i_d) 4 5 (0) 5 (0) 5 (0) 5 (0) 5 (0)

Elec. motors (u_d ⇒ i_q) 2 5 (0) 5 (1) 5 (0) 5 (1) 5 (0)

Elec. motors (u_d ⇒ motor_speed) 8 5 (0) 5 (0) 5 (0) 5 (1) 5 (0)

Elec. motors (u_q ⇒ i_d) 14 5 (1) 5 (1) 5 (1) 5 (2) 5 (3)

Elec. motors (u_q ⇒ i_q) 11 5 (0) 5 (0) 5 (0) 5 (2) 5 (0)

Elec. motors (u_q ⇒ motor_speed) 2 5 (0) 5 (0) 5 (0) 5 (1) 5 (0)

Elec. motors (pm ⇒ torque) 11 5 (2) 5 (2) 5 (2) 5 (1) 5 (3)

World. dev. indicators 13 5 (0) 5 (0) 5 (0) 5 (0) 5 (0)

(bir th_skilled_sta f f ⇒ mortali t y_under_5)

World. dev. indicators 2 5 (0) 5 (0) 5 (0) 5 (0) 5 (1)

(contraceptive_prevalance ⇒ population_growth)

World. dev. indicators 1 5 (0) 5 (0) 5 (0) 5 (0) 5 (1)

(prevalence_underweight ⇒ mortali t y_under_5)

World. dev. indicators 31 5 (1) 5 (1) 5 (0) 5 (0) 5 (1)

(immunization_measles ⇒ mortali t y_under_5)

Parkinson’s disease (PDSST) 10 5 (0) 5 (1) 5 (1) 5 (3) 5 (1)

It is interesting to compare the anomalies detected
by GC_Anomaly(linear) with those detected by GC_
Anomaly(non-linear). For example, in the World Devel-
opment Indicator dataset, one expected causal relation is
prevalence_underweight ⇒ mortality_under_5, for which
we do not know the causal form: linear or non-linear. In this
case, GC_Anomaly(linear) reports BFA, KWT and PER
as anomalous, whereas GC_Anomaly(non-linear) reports
VEN as anomalous.

The threshold parameter h0 is important in the algorithm
GC_Anomaly(linear). Table 3 shows the effect of differ-
ent values of parameter h0 (threshold for majority) fed to the
AlgorithmGC_Anomaly(linear). The value of h0 is varied
from 0.55 to 0.95; because we are considering the majority
condition for finding anomalies, we consider h0 > 0.5. The
range of values we tried for h0, and for which the anomalies
are reported, is given in the Range(h0) column. The num-
ber of anomalies remains constant when the anomalies are
reported, so we conclude that Granger causality between the
time-series is not very sensitive to the value of h0.

We also conducted experiments with different lags for the
regression equations in the Granger causality check of the
GC_Anomaly(linear) algorithm. We used the lag values
in the range 1–4 in the Parkinson’s Disease (PDSST) and
Electric Motor dataset. We limited lag values in the range 1–
2 for the World Development Indicators dataset due to lack
of sufficient number of observations in the time-series. The
GC_Anomaly(linear algorithm produced different counts
of anomalous time-series at different lag values; however,
we found no significant relationship pattern between the lag
value of the regression and the outputs of the algorithm.

6 Suspicious order behavior in stockmarket

A stock exchange maintains an order book, containing buy–
sell orders for all stocks on a particular day. Each order is
placed by one agent, either for buying or selling shares of a
specific company (stock). Depending on the granularity of
interest, an agent may be a stock + broker combination, or
a stock + broker + dealer combination, or a stock + broker
+ dealer + investor combination. Thus, an order book of
a particular day consists of N time-series, each containing
the sequence of orders placed by a particular agent on that
day. Each element of these time-series corresponds to one
order. An order is a k-vector, consisting of attributes such as,
t imestamp, agent_id, order_ f lag, order_t ype, limit_
price, quanti t y, price, order_status, etc. Here, order_
f lag indicates whether it is a buy order or sell order. Most
stock exchanges allow different types of orders to be placed.
When order_t ype = market , it means that the agent wants
to match this order to any order (with opposite value for
order_ f lag) which is currently already placed and not ful-
filled. When order_t ype = limit , it means that the agent
wants to execute this order onlywhen the limit_price (spec-
ified in the order) is matched; the order remains unfulfilled
till such a matching order enters the order book. When
order_t ype = market , the attribute limit_price is not
used. In general, there are other types of orders, but for sim-
plicity we omit them here.

Stock exchanges have complex order matching algo-
rithms, and a trade happens when two orders of opposite
values of order_ f lag are matched; in that case the order
book is updated suitably. Example: when a buy order for 300
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Table 3 Effect of the parameter
h_0.

Dataset Range(h_0) Count of anomalies

Elec. motors (u_d ⇒ i_d) (0.55–0.8) 4

Elec. motors (u_d ⇒ i_q) (0.55–0.85) 2

Elec. motors (u_d ⇒ motor_speed) (0.55–0.7) 8

Elec. motors (u_q ⇒ i_d) (0.55–0.6) 14

Elec. motors (u_q ⇒ i_q) (0.55–0.65) 11

Elec. motors (u_q ⇒ motor_speed) (0.55–0.85) 2

Elec. motors (pm ⇒ torque) (0.55–0.65) 11

World. dev. indicators (0.55–0.75) 13

(bir th_skilled_sta f f ⇒ mortali t y_under_5)

World. dev. indicators (0.55–0.8) 2

(contraceptive_prevalance ⇒ population_growth)

World. dev. indicators (0.55–0.75) 1

(prevalence_underweight ⇒ mortali t y_under_5)

World. dev. indicators (0.55–0.75) 31

(immunization_measles ⇒ mortali t y_under_5)

Parkinson’s disease (PDSST) (0.55–0.6) 10

shares of a stock matches a sell order for 1000 shares of the
same stock, the buy order has its order_status is set to the
value completed, and the order quantity for the sell order is
updated to 700; also, a trade record is created for this transac-
tion.Once all shares in a sell (buy) order are sold (bought), the
order_status is marked as completed. An agent is allowed
to modify any of the orders placed by him any number of
times, until order_status = completed, where a modifica-
tion may involve changes in price or quantity. In this paper,
we focus only on equity trading and do not consider any other
kind of trading, such as futures or options. Also, we exclude
the part of the order book that records the trade information,
i.e., we focus only on the orders.

A key aspect of real-time surveillance in a stock exchange
requires monitoring the order book, and detecting attempts
by agents to place orders in a suspicious manner with the
aim of influencing or manipulating the trading. Following
are some examples of such suspicious order behaviors:

– Front Running: An agent having information about large,
potentially market moving orders, places orders for per-
sonal advantage before these large orders are actually
placed.

– Marking the close: Placing orders and creating trades in
the stock near the end of the day to affect the published
closing price.

– Pegging and capping: Placing orders for a stock, with
prices always above (pegging) or always below (capping)
a pre-specified (undisclosed) threshold price.

– Pump and dump: To attract attention in a particular low-
trading stock, an agent places many buy orders with
higher prices, andwhen other join and place buy orders at

higher prices, then the agent exits by selling large blocks
of shares at these inflated prices.

– Insider trading:When an agent has access to secret infor-
mation which is going to affect the share price in near
future, he places large buy or sell orders accordingly.

– Circular Trading/Wash Trades/Pools/Painting the Tape/
Collusion: Agents collude with other to artificially create
an impression of high activity, by placing synchronized
orders and trading among themselves. They exit by sell-
ing when the price reaches a suitably high level.

– Pinging and spoofing: The complete order book of the
day is not visible to agents; they typically only know total
buy/sell volumes and a summaryof orders 5 “ticks” above
and below the last traded price. Hence, agents may place
ping orders, which “explore” the price range at which
others have placed orders. Such ping orders are then can-
celed or modified. Thus, ping orders allow an agent to
understand and exploit the market picture, which is not
available to other genuine investors. Agents sometimes
place spoofing orders, outside the bona fide limits, for
feigning interest in a stock and hoping to stimulate more
activity. Pinging and spoofing are typically used in algo-
rithmic trading.

– Placing “large” orders in the pre-open session with
“large” price difference from previous close price.

– Placing orders with “too many” updates.
– Placing and canceling “too many” orders.

Many such patterns of suspicious order behavior can be
identified by domain experts and these can be coded into
the surveillance system. However, this approach suffers the
usual issues plaguing any rule-based system: the patterns are
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Table 4 Summary statistics for
the order book

Statistic Max Average SD Q1 Q2 Q3

Buy volume 200,000 1088.65 5713.51 100 200 885

Sell volume 300,000 1467.87 6260.09 100 300 1000

Buy price 58.7 43.011 12.140 43.15 45.15 49.15

Sell price 58.7 45.429 11.229 44.55 48.5 50.15

#orders per agent 1799 2.467 18.463 1 1 2

#buy orders per agent 1741 3.638 26.861 1 1 3

#sell orders per agent 424 1.718 6.587 1 1 1

#modifications per agent 18,606 3.959 147.937 1 1 1

#buy modifications per agent 15,348 13.140 322.272 1 1 2

#sell modifications per agent 3258 2.384 30.659 1 1 1

#modifications per order per agent 979 2.150 12.558 1 1 1

#modifications per buy order per agent 979 5.941 28.926 1 1 1

#modifications per sell order per agent 334 1.345 3.143 1 1 1

Inter-order gap 601.0 0.315 2.951 0 0 0

Inter-order gap per agent (s) 25,623.0 692.303 2046.364 0 9 223

fragile, insensitive to variations, not able to discover newer
(emerging) suspicious order behaviors and need to be main-
tained and updated manually.

We have built a surveillance system for a large national
exchange, which includes deployment of many different
types of anomaly detection techniques for both time-series
as well as non-time-series data. As explained, a day’s order
book consists of N time-series, one for each agent, and each
element of each time-series is a order (which is a k-vector).
Note that the orders come at irregular time instants. Thus, the
problemof detecting agents having suspicious order behavior
can be considered (in part) as a problem of detecting causally
anomalous time-series among the N time-series in the order
book (inter-time-series setting). As emphasized in Sect. 1,
agents may have other types of suspicious order behaviors
that are not detected by our notion of causally anomalous
time-series. On the other hand, as already demonstrated in
Sect. 5, our techniques are capable of detecting agents with
suspicious order behaviors which are not detectable by stan-
dard techniques. Thus, our notion of causally anomalous
time-series, while limited, complements the common notions
of anomaly.

For illustration, we use a small subset of the order book in
a large stock exchange, for a particular stock on a particular
date.3 In this subset, therewere 14,576 agents, with one order
time-series for each agent. Total number of unique buy and
sell orders are 45,120 and 33,672. The sumof the buy and sell
order volumes is 49,283,400 and 50,443,516. Table 4 shows
the summary statistics of the order book.

In a stock exchange, agents typically place orders by
looking at the previous trades (price and volume) that have

3 This is a proprietary data and we are unable to share it.

happened. This gives rise to the expectation that the orders
placed are typically interdependent on orders previously
placed (since the trades will happen by matching these
orders). Thus, it is appropriate to examine causal relations
that may exist between various attributes in the order time-
series. We use our two approaches of linear as well as
non-linear Granger causality for detecting suspicious order
behavior. The idea is to check whether one attribute within
an agent’s time-series Granger causes another attribute. If
this pattern is observed to be true (false) for a “majority” of
agents, then any agent for whom this pattern is false (true)
is causally anomalous and hence the corresponding order
behavior is suspicious. Copeland and Jennings [23,24] indi-
cate a positive causal relation between stock market prices
and trading volume in either direction. Hence, we analyze
causal relations between these two attributes. Note however,
that we work on orders, not trades. Further, as we will show
below, we found that a nonlinear causal relation between
price and volume holds for majority of agents in the order
book database of this stock exchange. This piece of discov-
ered domain knowledge should be interesting to financial
analysts and econometricians.

Our algorithm GC_Anomaly(linear) failed to detect the
causal relation between price and volume in both directions
of the order placement time series formajority of the brokers.
It established a non-causal relation for the majority mark-
ing the ones with causal relations as anomalous. However,
Our algorithm GC_Anomaly(non-linear) clearly identi-
fied the causal relation for the majority of the time-series
and marked the ones having non-causal relations as anoma-
lous. The results of both our algorithms are given in Tables 5
and 6. The results should be interpreted similar to Table 2. As
already observed in Sect. 5, here too, the baseline anomaly
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detection algorithms do not detect causally anomalous time-
series, which again demonstrates that our notion of causally
anomalous time-series complements the standard notions of
anomaly. In the absence of labeled data, we cannot provide
accuracy figure for our results. However, the surveillance
officers in the stock exchange have agreed in informal dis-
cussions that most of the results indeed prima facie indicate
suspicious order behaviors.

7 Conclusions and future work

In this paper, we described a novel inter-time-series setting
for detection of entire anomalous time-series in a database
of multi-variate time-series. We formalized a new notion of
causally anomalous time-series in this setting, and proposed
techniques for identifying causally anomalous time-series in
a database of time-series. The idea is to look for “frequently
observed” causal dependence between univariate attribute
time-series in the given database, and identify those time-
series as causally anomalous that violate this dependence.
Granger causality uses vector autoregression to find the effect
of one attribute for prediction of values of another attribute
in the same time-series (cause and effect). Granger causality
is a linear causal relation. However, sometimes the causal
relationships might be nonlinear. Hence, we proposed algo-
rithms that used both linear and nonlinear Granger causality
to identify these causal relations. We used public-domain
time-series databases from different domains (economics,
engineering and medicine) to demonstrate the effectiveness
of our techniques, as compared to a set of strong baseline
anomaly detection techniques, to identify causally anoma-
lous time-series. Here, we used available domain knowledge
to a priori identify causal relations that are expected to hold
between various attributes. This shows that the approach
can accommodate (and validate) domain knowledge about
causal relations among time-series attributes. We observed
that the results of our algorithms that use linear and nonlinear
Granger causality often complement each other. Finally, we
used our techniques to identify agents with suspicious order
behaviors in a real-life dataset from a large stock exchange,
again demonstrating the effectiveness of our techniques, as
compared to a set of strong baseline anomaly detection tech-
niques. We found that a nonlinear causal relation between
price and volume holds for majority of agents in the order
book database of our stock exchange. This piece of discov-
ered domain knowledge can be validated for order books
other stock exchanges, and thus should be interesting tofinan-
cial analysts and econometricians.

Asmentioned in Sect. 1, our notion of causally anomalous
time-series is quite limited—it captures only one particular
type of anomaly. It would fail to identify any time-series in
the database as anomalous, if no causal relations are found

to hold among the attribute time-series. It only applies to
multi-variate time-series in the inter-time-series setting. It
identifies an entire time-series as causally anomalous or not;
it does not identifywhich regions in an anomalous time-series
make it anomalous. In some applications this is sufficient, as
we have shown in Sect. 5 as well as in the real-life case-
study in Sect. 6. In other applications identifying anomalous
segments within a given time-series is important.

Another limitation of work is that it uses only pairwise
Granger causality among variables in a time-series. Sec-
tion 1) several other real-life applicationswhere our approach
would be useful. We plan to explore some of them. At
present, we have used causal relations between only pairs
of attributes in a time-series. We are exploring how mul-
tivariate time-series causality techniques can be applied to
generalize our approach. However, a similar limitation will
apply even when we use multivariate Granger causality: how
does one choose the appropriate subset of variables to test
for Granger causality? Also, in our experience, users find
it easier to understand pairwise Granger causality when it
exists. Hence, we have taken a novel approach of appeal-
ing to the existing domain-knowledge to identify likely pairs
of variables to test for Granger causality. Such knowledge
exists in many domains, and we have given many examples
of such domain knowledge in the paper. Moreover, since we
identify time-series which violate expected causal relations
as anomalous, this violation of domain knowledge automat-
ically makes the time-series interesting for end-users. To the
best of our knowledge, this is the first time domain knowl-
edge is used to generate hypotheses for causality testing. Still,
using only pair-wiseGranger causality to identify anomalous
time-series may lead to false positives (when ground-truth
is already available) due to underlying noisiness. Hence, as
future work, we will consider aggregating the results of vari-
ous pair-wise Granger causality tests to come up with a more
robust identification of anomalous time-series.
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