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Abstract
Word embeddings have proven to be effective for many natural language processing tasks by providing word representations
integrating prior knowledge. In this article, we focus on the algorithms and models used to compute those representations
and on their methods of evaluation. Many new techniques were developed in a short amount of time, and there is no unified
terminology to emphasise strengths and weaknesses of those methods. Based on the state of the art, we propose a thorough
terminology to help with the classification of these variousmodels and their evaluations.We also provide comparisons of those
algorithms andmethods, highlighting open problems and research paths, as well as a compilation of popular evaluationmetrics
and datasets. This survey gives: (1) an exhaustive description and terminology of currently investigated word embeddings,
(2) a clear segmentation of evaluation methods and their associated datasets, and (3) high-level properties to indicate pros
and cons of each solution.

Keywords Word embeddings · Word embedding evaluation · Survey · Contextualised embeddings · Non-Euclidean
embeddings

1 Introduction

Words are distinct elements of language carrying meaning.
Characters on their own are not sufficient to retrieve the
meaning of the words they compose. For instance, restau-
rant and food are both related, but it is impossible to quantify
this relation only using the characters of these strings. Word
embeddings aremodels for words answering to the particular
use-case of providing meaningful representations for words.
In other words, word embeddings are projections of words
in a continuous space preserving the semantic relationships
between them.Words aremapped to vectors sharing semantic
properties through geometrical relations.
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The strength of word embeddings relies on their ability
to represent natural language with geometric relations. They
enable efficient end-to-end architectures by transposing a dis-
crete world representation into a continuous space. That is
why they are widely used in natural language processing
(NLP) problems: they are easy to plug in Deep Learning
architectures. Sentiment analysis, NamedEntityRecognition
[4,45,54], and many other tasks outperformed their standard
counterparts with these models.

We are mainly interested in word embeddings learnt over
a training corpus «from scratch» [13]. This family of rep-
resentations is trying to compile a plain text dataset into a
continuous vector representation without any expert knowl-
edge. All of them rely on a simple statement of Harris [21]
assuming that words appearing in similar context must have
similar meanings. Therefore, in this work we assume this
«distributional hypothesis» claiming that the sense of a word
highly depends on the words surrounding it. Other word
embedding techniques refine this assumption and use a lan-
guage model to build contextualised word representations,
such as BERT [14]. Finally, a very different technique is
to build vectors using knowledge bases or other sources of
expert knowledge, an example being the TransE approach
proposed by Bordes et al. [9]. We do not consider them on
their own, but we will expose embedding techniques using
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the «distributional hypothesis» in combination with others,
as done by Sun et al. [56].

Different corpora, optimisationprocesses, or basic geome-
tries yield different sets of properties in the resulting projec-
tion. In this work, we are trying to emphasise these properties
in order to provide a detailed analysis of these various
embedding methods. Along with this analysis, we also detail
evaluation procedures.

The remainder of this paper is organised as follows. In
Sect. 2, we explain elements of the underlying theory of
embeddings. In Sect. 3, we discuss the different embed-
ding evaluation metrics and methods. In Sect. 4, we present
high-level features that characterise embeddings. In the final
section, we conclude on suggestions for future research in
the area.

2 Embeddings: from discrete variables to
continuous semantic space

Word embeddings, in their original formulation, are Lookup
Tablesmapping words to vectors of real numbers [13]. They
are functions giving continuous vector representations inRD

for elements of a set V (e.g. a set of words or tokens). In
the following, vew ∈ R

D is the representation of an element
w ∈ V in an embedding e. Formally, a word embedding e
can be represented as:

e : V → R
D

w �→ e(w) = vew.
(1)

In order to estimate the word embedding function e,
an optimisation process is performed on a large sample of
language data on an arbitrary task. During this optimisa-
tion process, word vectors are coalesced given a criterion
in charge of, for instance, extracting the similarity between
words from a corpus. At the end, the embedding has accu-
mulated information from the corpus for each word vector
leading to noticeable geometric relationships. An example is
shown in Fig. 1: countries and their main cities are separated
by distance and a direction almost identical for every pair.
Automatic systems benefit from these relations since they
explore numerical features and hyperplanes.

In the following, we separate static from contextualised
embeddings:

– Static word embeddings use the «distributional hypoth-
esis» to learn global and constant vectors. In other words,
they represent a word by a unique vector condensing
every local usage of the word in the training corpus. We
distinguish Euclidean embeddings from others.

Fig. 1 Main cities and countries in a FastText [8] embedding of dimen-
sion 300, projected onto a 2d plane using PCA. Dashed lines join each
country with its main city

– Euclideanword embeddings use theEuclidean geom-
etry as mathematical support to embed vectors. Yet,
due to intrinsic properties of this geometry [57], it
may be difficult to embed asymmetric information. In
fact, these kinds of embeddings [8,39,45] preferably
incorporate symmetric knowledge such as semantic
synonymy or analogy.

– Non-Euclidean geometries provide a solution to
embed asymmetric relations such as entailments or
logical thinking.

– Contextualised word embeddings aremodels providing
variable vectors. In this work, we only review contex-
tualised word embeddings using a language model to
compute adaptative word representations. In this par-
ticular case, word representations are multiple and are
directly computed from their context. The context of
a word is usually composed by the words surrounding
it. For contextualised embeddings, we only consider the
Euclidean space as non-Euclidean contextualised word
embeddings have not yet been investigated.

In Fig. 2, a graph gives the main classes of word embed-
ding techniques explained by basic properties of those.

2.1 Static word embeddings

Let a static word embedding be a word embedding where
each word representation does not vary among contexts. For
instance, the word «bank» in «I am going to the bank» and
«I want to open a bank account » has two different mean-
ings: a location or a financial organisation. However, a static
word embedding gives the same word representation in both
sentences without considering the context. Thus, the term
«static» refers to this particularity: a word vector is always
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Fig. 2 Relations between word
embeddings based on some
basic properties

the same and can be statically pre-computed and stored in a
matrix.

Static word embeddings are commonly represented with
a matrix M = (mi j ) ∈ R

|V |×D . The i th row of M is then a
vector of RD representing the i th word of the vocabulary V .
In other words, vM

wi
= (mi j ) j∈�1,D�, with wi being the i th

word of V .

2.1.1 Euclidean static word embeddings

Euclidean static word embeddings are using the Euclidean
geometry to build word representations. For instance, both
Word2Vec Skip-Gram (SG) or Continuous Bag of Word
(CBoW) proposed by Mikolov et al. [39] and FastText SG
or CBoW from Bojanowski et al. [8] belong to this class of
models.

2.1.1.1 Word2Vec
Mikolov et al. [39] proposed a static word embedding
algorithm named Word2Vec producing static word embed-
dings. It incorporates paradigmatic and syntagmatic rela-
tions between words in the vocabulary into word vectors,
using two different word embedding models: SG or CBoW.
Paradigmatic refers to individual concepts represented by
the different words composing the vocabulary, while syntag-
matic corresponds to the meaning inferred by the structure
or syntax of language. Typically, idiomatic expressions are
syntagmatic elements since their sense is derived from the
whole sentence and not from the individual words in it. The
Vocabulary V is composed of |V | words extracted from a
set of sentences in a corpus T (see Fig. 3). In the end, an
embedding vector is associated with each word.

Fig. 3 Window of size k around a target word wi in a corpus
T . The context words are then {wi−k , wi−(k+1), ..., wi−1,

wi+1, ..., wi+(k−1), wi+k}

This process relies on the «distributional hypothesis»
from Harris [21], claiming that word sharing similar con-
text has similar meanings. Following Pennington et al. [45]
and Mikolov et al. [39], the context of a word can be defined
by the k words before and the k words after this word in a sen-
tence. k is called the window size and bounds the 2k words
surrounding a target word (see Fig. 3). LetCw1 (resp.Cw2 ) be
the set of words appearing in the context of a word w1 (resp.
w2). The «distributional hypothesis» states that the seman-
tic proximity between w1 and w2 is positively correlated to
|Cw1 ∩ Cw2 |.

Two word embedding models were proposed to proceed
the Word2Vec algorithm: the Skip-Gram (SG) and the Con-
tinuous Bag-of-Words (CBOW), presented in Fig. 4.

Word2Vec uses two embeddings: a targetword embedding
(or input matrix) W ∈ R

|V |×D and a context word embed-
ding (or output matrix) C ∈ R

|V |×D . The word embedding
C serves only for training and is mostly discarded after this
process. One could argue that we could use a single matrix
instead of two. However, context and targetmatrices play dif-
ferent roles. The context matrix C embed w.r.t. target words
while the target matrix W embed w.r.t. context words. The
aim of these two matrices is to reflect the difference between
being a context and target word.

The Word2Vec Skip-Gram model tries to predict context
words given a target word wt . Therefore, for all wt in the
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Fig. 4 The Skip-Gram (SG) and the Continuous Bag-of-Words
(CBOW)models. On the left, the Skip-Grammodel which predicts con-
text words in the window given target words. On the right, the CBOW
model which predict a target word given the context words of the win-
dow (adapted from Mikolov et al. [38])

training corpus T , it maximises p(wc | wt , T , W , C) (wc,
wt , respectively, being a context and a target word), i.e. the
probability to observe wc in the window of wt . Increasing
this probability is equivalent to integrating significant infor-
mation on wc in the representation of wt . Formally, from
Mikolov et al. [38], the criterion to maximise is:

1

|T |
|T |∑

t=1

t+k∑

c=t−k
c �=t

log p(wc | wt , T , W , C), (2)

where

p(wc | wt , T , W , C) = e〈 vCwc ,v
W
wt 〉

∑
w∈V e〈 vCw,vWwt 〉 . (3)

The term
∑

w∈V e〈 vCw,vWwt 〉 is not tractable in practice
because the vocabulary contains millions of elements [39].
Actually, at each optimisation step it requires the computa-
tion of millions of dot products in a high dimensional space,
which is not feasible in reasonable time. An alternative is to
use Negative Sampling (NS) to turn the Skip-Gram objective
into a computable one [39]. So far, we described Skip-Gram
as a model trying to predict a context word given a target
word. The idea of NS is to add random context words and
detect them. Therefore, instead of predicting a context word
given a target word, it classifies whether a context-target pair
belongs to the corpus or was generated. In the end, it creates
a representation where real pairs are geometrically close and
noisy ones are scattered. Real pairs are called positiveswhile
noisy ones negatives, hence the name of the trick. Mathemat-

ically, NS maximises the dot product among positive pairs
and minimises the dot product for negative pairs and is for-
mulated as:

1

|T |
|T |∑

t=1

t+k∑

c=t−k
c �=t

[
log σ(〈 vCwc

, vWwt
〉)+

Ewneg∼PT (w)

(
log σ(−〈 vCwneg

, vWwt
〉)

) ]
,

(4)

where σ(x) = 1 + e−x and PT (w) = |w|
|T | .

The Continuous Bag-of-Words [39] version of Word2Vec
is similar to the Skip-Gram version but instead of predicting
context words given a target word, it does the opposite: pre-
dicting a target word given the context words. Thus, the task
is simpler since a larger set of words is known to infer the tar-
get word. In a sense, it might gather less semantic and more
syntactic features, as shown by the experiment of Mikolov
et al. [38]. Yet for some languages, the CBOW version of
Word2Vec leads to higher results [19]. Therefore, choosing
the version is still a parameter to optimise.

Depending on the window size, different aspects of lan-
guage are represented. For instance, a short window is best
suited for syntagmatic representations whereas a long win-
dow catches paradigmatic notions [45]. Levy and Goldberg
[30] have proven that Word2Vec relies on the fact that it is
equivalent to factorising the pointwise mutual information
matrix, i.e. the amount of shared information between a con-
text and a target word.

2.1.1.2 GloVe
The Glove method [45] reduces also this co-occurrences
matrix in order to get vector representations. This proce-
dure compiles the whole corpus into a large sparse matrix,
each coordinate being the co-occurrences count between two
words. Twowords co-occur if they are in the context window
of each other. This approach has two main advantages. First,
the process is divided into two steps being the compression of
the corpus into a sparse matrix followed by its factorisation
by word vectors. The compression step is convenient since it
has to be carried out once and produce a matrix summarising
global information for each word in the corpus. Therefore,
the optimisation stepwill benefit fromglobal knowledge. The
second point relies on the context window extracting local
information on words. Consequently, GloVe cumulates both
global and local information into its vectors leading to effec-
tive semantic representations, as proven by their experiments.
In comparison,Word2Vec embeddings perform slightly less.
An explanation is that Word2Vec focuses on local informa-
tion and embed less easily global information.

Formally, let Xi j be the number of times word j appears
in the context of word i , as done by Pennington et al. [45].
With these counters, authors defined
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Pi j = Xi j∑
k Xik

(5)

as the probability that the word j appears in the context of
word i . This probability helps at quantifying the relevance of
a word with regard to others. For instance, given three words
i , j and k, the quantity

Q = Pik
Pjk

(6)

acts as a discriminative feature:

– Q 
 1 means that word k is more related to i than j ,
– Q � 1 means that word k is less related to i than j ,
– Q � 1 means that word k is equally related to i and j .

The idea behind GloVe is to embed word probabilities
into word vectors vWwi

, vWw j
and vCwk

all in R
D by trying to

approximate Q using those vectors leveraging a function F ,
formally:

F(vWwi
, vWw j

, vCwk
) = Q = Pik

Pjk
, (7)

where F must satisfy several criteria. First, F has to treat
word vectors linearly without ambiguity over dimensions,
thus, F is written F((vWwi

− vWw j
)T vCwk

). This property pre-
serves the cosine similarity betweenvectors sincedimensions
are treated consistently. The second property is the symmetry
between context word and target word which is artificial and
implies that F must be able to exchange both roles. There-
fore, authors [45] added the constraint

F((vWwi
− vWw j

)T vCwk
) = F((vWwi

)T vCwk
)

F((vWw j
)T vCwk

)
(8)

which entails

F = exp (9)

and

Pik = F((vWwi
)T vCwk

) ⇐⇒ (vWwi
)T vCwk

= log Xik − log Xi . (10)

log Xi is considered as a bias parameter bWi and another bias
bCk is added to the formula to have symmetry. In addition, as
most of Xi j are zero value, the log is not well defined. To
alleviate this problem, a weight function f will be used in
the loss function with the following properties:

– f (0) = 0 and limx→0 f (x)log2(x) is finite,
– f should increase,
– f should be small for large values.

Those properties ensure that f do not overweight small or
high values and smoothly cancel the logarithm. Finally, the
GloVe loss function is given by

J =
∑

i, j

f (Xi j )((v
W
wi

)T vCw j
+ bWi + bCj − log Xi j )

2. (11)

GloVe is another way to produce word embedding vectors
from plain text source using contextual information as SG
and CBoW. Its main advantages are that it does not use NS
for training, and as we mentioned earlier, that it globally
compiles the corpus (less computation).

2.1.1.3 FastText
Themain drawback ofWord2Vec andGloVe (see the twopre-
ceding sections) is their inability to compute representations
for words not seen during the training phase, called Out Of
Vocabulary (OOV) words. To address this issue, the FastText
method [8] proposes to extend the embedding matrix with
character n-grams. This is relevant since often the morphol-
ogy of words influences their meaning. For instance, bi-gram
«ed» carries a temporal notion: past.Other examples include:
«er» for comparison, «est» for superlatives and «ly» for
adverbs. FastText includes these subword information in the
representation in order to provide pertinent vectors for unseen
words. To do so, the |V |×DWord2Vec matrix is turned into
a matrix WFT of size (|V | + H) × D, H being the size of
the hash table of character n-grams.

For FastText, a character n-gram is a subset of n consec-
utive characters in a word wi . Every n-gram is hashed1 in
order to get the index of the row of WFT representing it. In
the implementation of FastText [8], vector representations
are computed as follows:

vWFT
wi︸ ︷︷ ︸

FastText representation

=

Wi,∗
FT︸︷︷︸

word representation

+
maxn∑

n=minn

∑

z∈Gn(wi )

WN+h(z),∗
FT ,

︸ ︷︷ ︸
sum of n-gram representations

(12)

where

– minn and maxn are, respectively, the minimum and max-
imum size of character n-grams.

– Gn(wi ) is the set of n-grams in wi , Gn(∗) being the set
of all possible n-grams, such that Gn(wi ) ⊂ Gn(∗).

– Wk,∗
FT is the kth row of a FastText storage matrix WFT .

– h : Gn(∗) → �1, H� the hashing function: mapping a
n-gram to an index.

1 Using the FNV algorithm (Bojanowski et al. [8]).
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Fig. 5 Evaluationmetrics explained by the dimension FastText Embed-
dings. Dashed lines are trend lines calculated with the model fλ(x) =
λ1 − λ2e−x/λ3 , λ = (λ1, λ2, λ3) being parameters for fλ. This model
was chosen because we claim that, with fixed parameters, when the

dimension is high enough the accuracy cannot increase further a thresh-
old λ1. λ2 controls x-axis offset and λ3 the convergence speed to λ1.
Red points represent observations

FastText enables the computation of a word embedding
via the sum of its n-gram embeddings. For instance, 3-
grams of the word «<HELLO> » are: «<HE» , «HEL» ,
«ELL» , «LLO» , and «LO>» . Thus, the representation for
«<HELLO> » is: v<HELLO> = vHELLO + v<HE + vHEL +
vELL + vLLO + vLO>.

2.1.1.4 Knowledge enhanced word embeddings
Word embedding techniques presented so far are not able

to deal with word polysemy. Indeed, static word embeddings
map each word to a vector which is unable to change for dif-
ferent word usage. Some researchers [23,34] proposed to use
external tools and knowledge bases to alleviate this problem
and embed words with regard to their different meanings.
SensEmbed [23] and CoupledCR [34] are examples of such
solutions and both use the following workflow.

First, dealing with polysemy is achieved by a slight modi-
fication of the word embedding model. A vector is no longer
mapped to a word but to a word sense. For instance, the
word spring has two word senses: the season and the metal-
lic object, which leads to two word vectors, one for each
meaning. In the literature, those vectors are called concept
vectors because they represent the concept of the word.

Then, the textual data is preprocessed by replacing each
word by the corresponding concept when possible (words
are left if no matching concept is found): this is obtained by
using a word disambiguation tool (such as Babelfy used in
Iacobacci et al. [23]) or annotations in Wikipedia [34]. The
training of concept/word vectors is performed similarly to
word2vec SG, CBoW, or GloVe. In addition to that, Cou-
pledCR embeds the Wikipedia hyperlink graph and adds it
to the concept vector through concatenation followed by an
SVD. Once the concept/word vectors are optimised, it is
possible to recover the similarity between two words by tak-
ing the most similar concept vectors (w.r.t. cosine similarity)
attached to those words [23].

This technique is convenient because it enables word pol-
ysemy with word embeddings and it has been shown more
effective than previous methods at recovering human-like
similarities between words. The main disadvantage is that it
relies on third-party tools and good annotations which breaks
the end-to-end fashion of word embeddings.

2.1.2 Non-Euclidean static word embeddings

Entailment is a term commonly used to refer to asym-
metric relations such as is_a or t ype_of . For instance,
a dog is a mammal but a mammal is not always a dog.
As mentioned earlier, projecting asymmetric relations using
Euclidean embedding is complex. Actually, the Euclidean
distance and most of Euclidean metrics are symmetric, i.e.
f (wi , w j ) = f (w j , wi ). For example, the cosine similar-
ity in Euclidean space does not consider the order of the
input vectors. Thus, it is ambiguous to distinguish words as
hyponyms or hypernyms of others [56].2

Furthermore, representing complex data structures (such
as language) is successfully achieved in Euclidean spaces
with a large number of dimensions. To corroborate this
statement, we evaluated the performances of Euclidean
embeddings on three different tasks w.r.t. the embedding
dimension, as shown in Fig. 5. This behaviour is due to the
underlying properties in Euclidean spaces as shown in Sun
et al. [57] and Laub and Müller [28]. Some of them are rep-
resented in Fig. 6. More degrees of freedom are required
to emancipate from those properties that constrain the rep-
resentation power of Euclidean embeddings. Besides, high
dimensional spaces require more parameters and thus com-
plicate the optimisation, as pointed by Nickel and Kiela [42].

2 Source code for the tetrahedron by Ignasi:https://tex.stackexchange.
com/questions/174317/creating-a-labeled-tetrahedron-with-
tikzpicture.
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Fig. 6 Example of properties in R
d

The point is not to discredit Euclidean embedding, but
to claim that these properties are adapted for certain tasks
(such as Analogy or Similarity) but fail to represent complex
relations such as entailment [42,43]. In the next section, we
detail non-Euclidean geometriesmore adapted to this class of
relations. Those geometries are often used to embed Knowl-
edge Graph, but this usage is out of the scope of this survey.
Instead, we mostly review works where these geometries are
used with plain-text data.
2.1.2.1 Probabilistic word embeddings (Word2Gauss)
Probabilistic Word Embeddings are word embeddings that
map each word to a distribution probability (e.g. Gaussian).
Instead of modelling each word by a vector and then infer a
probability for p(wc|wt ) as done with Word2Vec or GloVe,
probabilistic embeddings [61] directly parameterise a distri-
bution probability and estimate p(wc|wt ) in the probabilistic
embedding space. Then, distance betweenwords is estimated
by metrics between distributions as Kullback–Leibler (KL)
divergence, Expected Likelihood (EL) or Wasserstein [56].
The first two are defined as

EL(p, q) =
∫

p(x) · q(x)dx .

K L(p, q) =
∫

p(x) · log p(x)
q(x)

dx .
where p, q are distributions.

(13)

Specifically, EL is used to represent symmetric relations as
synonymy or analogy while KL is used to build asymmetric
ones (as entailment, or hierarchies).

Gaussian Word Embeddings or Word2Gauss [61] is an
implementation of this approach. Considering aWord2Gauss
Embedding WG, each word is associated with a normal dis-
tribution: vWG

wi
(x) = N (x, μi , σi ), where μi ∈ R

D and
σi ∈ R

D×D are, respectively, the mean and the covariance
matrix of the normal law corresponding to wi . The mean
interpretation is comparable to Word2Vec vectors. However,
the variance encodes the uncertainty of a word. Here, uncer-
tainty refers to how generic the word is. In other terms, words
with high uncertainty (high variance) are very generic while
words with low uncertainty (low variance) are very specific.
For instance, the distribution of fruit must be very uncer-
tain since there is a large variety of fruit hyponyms. Thus,
we are not sure of what kind of fruit this fruit is. Now, an
apple is more certain because it has less hyponyms. There-
fore, the variance is an important addition of Word2Gauss
w.r.t. Word2Vec as it enables hierarchical representations.
Figure 7 shows how hierarchies can be represented in the
probabilistic embedding space, using the uncertainty.
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Fig. 7 Example of embedded hierarchy in the probabilistic Embedding
space, as shown by Vilnis and McCallum [61]

Fig. 8 Representations of the Poincaré disc, taken from [42]

The optimisation process is similar to Word2Vec and
relies on distances to embed asymmetric (KL) or symmetric
(EL,Wasserstein) relations. Some experiments show that this
advantageous ability to combine asymmetric and symmetric
metrics in the same space is beneficial. Actually, it can incor-
porate information from taxonomies / knowledge graphs and
plain text data simultaneously and outperforms the standard
approach [56].

2.1.2.2 Hyperbolic word embeddings (Poincaré / Lorentz)
Hyperbolic geometry is anisotropic: the distance depends on
the direction of the movement. Euclidean shortest paths are
straight lines where hyperbolic ones are curved: the curva-
ture intensity depending on the location in hyperbolic space.
Hyperbolic Word Embeddings are representations for words
using the anisotropic attitude of the hyperbolic distance to
embed structured data, as shown in Nickel and Kiela [42]
with a tree. Figure 8 (taken from their work) shows how this
can be done: root elements are placed in the centre and most
specific elements are positioned on the edges. Hierarchies
are preserved using the hyperbolic distance in order to create
tree-like structure.

There are twomain hyperbolic models used to embed data
in the literature [29,43,43,57,58]: Poincaré and Lorentzmod-
els. The major difference relies on the fact that the Poincaré
model is bounded by the unit sphere while the Lorentz
model is infinite. Therefore, the Poincare model is harder
to implement than the Lorentz one since it generates numer-
ical instabilities as 1 represents infinity. Yet, its geometry is

easier to comprehend, as confirmed byNickel andKiela [43],
because concepts of a similar hierarchy tend to coalesce along
a single radius. Also, the specificity of concepts grows as the
norm increases. In other words, central area should contain
generic conceptswhereas edges should have themost specific
ones as shown in Nickel and Kiela [42]. Such characteris-
tics are harder to observe on the Lorentz model. However,
numerical stability of Lorentz and visualisation simplicity of
Poincaré can be used simultaneously since there is a diffeo-
morphism between both models, as presented by Nickel and
Kiela [43].

Complex hierarchy such as WordNet [41] was projected
into hyperbolic spaces (both Lorentz and Poincaré, Nickel
and Kiela [42,43]). In all experiments, hyperbolic embed-
dings lead to a higher reconstruction accuracy even with
small dimensionality. In comparison, best reconstruction per-
formance for Euclidean embeddings is reached with high
dimensionality and is low, as shown in Table 1.

The optimisation process is the following. Consider-
ing a vocabulary of concepts V , a set of edges E =
{(wa, wb), wa ∈ V , wb ∈ V } extracted from a hierarchy and
a hyperbolic embedding H , the objective is to minimise the
hyperbolic distance dH between existing edges while max-
imising dH for non-existent ones. Then, following [42], the
objective is to maximise:

∑

(wa ,wb)∈E
log

e−dH (vH
wa ,vH

wb
)

∑

w′
b∈E (wa)

e
−dH (vH

wa ,vH
w′
b
)

(14)

where E (wa) = {w′
b, (wa, w

′
b) /∈ E } ∪ {wa}, the set of con-

cepts not connected to wa including wa .
Another possible use-case for hyperbolic embeddings is to

discover hierarchies from raw pair-wise similarities [43,57].
The idea is to derive global structures from local similarity
relations between concepts. Then, the distance in the embed-
ded space should encode the compatibility between concept
and entailment information.

We are more interested into hyperbolic space version
of SG or GloVe [29,58], replacing the dot product by the
hyperbolic distance. For similarity and analogy tasks, it did
not improve performance compared to high dimensional
Euclidean equivalent, except for Glove with a noticeable dif-
ference. This confirms our point on the fact that Euclidean
embeddings are more adapted for analogy and similarity
tasks. Yet, hyperbolic embeddings still exhibit striking per-
formances with lower dimensions.

2.2 Contextualised word embeddings

Contextualised Word Embeddings are directly opposed to
static word embeddings since they produce variable word
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Table 1 Mean average
precision (MAP) of hyperbolic
and Euclidean word embeddings
on two WordNet tasks
(reconstruction and link
prediction)

WordNet Task Embedding kind Embedding dimensionality
5 10 20 50 100 200

Reconstruction Euclidean 0.024 0.059 0.087 0.140 0.162 0.168

Hyperbolic 0.823 0.851 0.855 0.86 0.857 0.87

Link Prediction Euclidean 0.024 0.059 0.176 0.286 0.428 0.490

Hyperbolic 0.825 0.852 0.861 0.863 0.856 0.855

Reconstruction consists of learning every WordNet links and predict them based on distance. Link prediction
evaluates generalisation: WordNet links are randomly separated in a train and test sets. Word embeddings are
trained on the train set and try to predict links from the test set. Experiments and results are taken from the
work of [42]

representations. Here, contextualised word embeddings pro-
pose to represent a givenword based on the sentence inwhich
it occurs. Therefore, a context-independent representation for
a given word is not compiled from a dataset. Instead, local
information is extracted using a language model and a con-
textualised word embedding vector is computed depending
on the local usage.

Contextualised word embeddings handle three major
problems of their static counterparts. Firstly, in the original
modelling, static Euclidean embeddings cannot cope with
polysemy since they use a unique global vector for each
word. In the best case, knowledge enhanced word embed-
dings (see Sect. 2.1.1.4) are able to copewith polysemy using
concept but they require third-party tools and are not end-
to-end. On the contrary, contextualised word embeddings
adapt representations to current situations, theoretically lead-
ing to more relevant vectors. Indeed, the meanings of words
highly depend on the context in which they occur. Secondly,
it enables representations for n-gramofwords. In some cases,
the unigram language model is not enough to infer the mean-
ing of a group of words. For instance, the sense of the English
expression ‘Speak of the devil’ is very different from the
individual meaning of the words composing it. Static word
embeddings are theoretically adapted to unigram representa-
tion, thus, they are not convenient in this situation. The third
and last point concerns the distributional hypothesis stating
that the meaning of a word is distributed in its context. In
practice, static Euclidean embeddings assume this distribu-
tion to be uniform. In other words, each context word equally
participates in the meaning of target words. However, this is
not totally right for each context window, as highlighted by
thework of Ling et al. [32]: some contextwords do not partic-
ipate (as stopwords), some others participatemore, or worse,
have an opposite meaning.

An important remark is that contextualised word embed-
dings still employ static word embeddings to project the
text to a continuous space. Then, the projection is fed to
sequence processing model that combines static features or
enrich those to mutually embed contextual information.

According to Yang et al. [65], there are two main
approaches: autoregressive or autoencoding. For each of

Fig. 9 Autoregressive modelling for a sequence of tokens. The first
model is the forward factorisation and the second one is the backward
factorisation

them, we will dedicate a section and examples. In the fol-
lowing, we consider a sentence (i.e. sequence of words)
S = w1, ..., wT . Then, the final goal of contextualised word
embedding is to compute the representation of wi given the
context of the sentence: (w j ) j∈�1,i−1� for the autoregressive
model, and (w j ) j∈�1,T �\{i} for the autoencoding model.

2.2.1 Autoregressive

Autoregressive models are models inspired from n-gram
Language Modelling [24]. Indeed, n-gram Language Mod-
els (LM) try to estimate p(wt |wt−1, ..., wt−n) (see Fig. 9),
i.e. anticipate the upcoming word in a sentence given the
n preceding words. Autoregressive models extend the limit
of n-gram models by representing previous words by con-
text vectors. Thus, they only consider relevant words in the
preceding context. They seek to maximise [20]

p(S) = p(w1, ..., wT ) =
T∏

i=1

p(wi |w j<i ) (15)

for all sentences S in the corpus, hence the name of these
models. Actually, each word is exclusively explained by
words previously seen in the sequence.

The first autoregressive models often use the combo pre-
trained static embeddings + RNN + softmax [1,24,37,46]
to represent the temporal sequence with a hidden context
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vector and then create an output distribution for words. Also,
the sequence is reversed to perform bidirectional language
understanding. However, as mentioned by Devlin et al. [14];
Yang et al. [65], the resulting contextualised embeddings are
divided, in the sense that the past and post context are not
merged but considered independently. If it were not the case,
then the model would see upcoming words, thus leading to
a useless or trivial representation. As we will show later,
autoencoding architectures achieve inference with a unified
context which can lead to better understanding of natural
language, as proven by Devlin et al. [14] and Yang et al.
[65].

More recent autoregressive model widely use transformer
decoder, as GPT [10,48,49]. Using transformer instead of
LSTM or recurrent network has shown to be beneficial. Even
when the number of parameters is increased, transformer-
based models tend to be more effective.

The OOV issue can arise in autoregressive embeddings as
well, since they use a preset vocabulary. This is why, char-
acter CNN, proposed in Józefowicz et al. [24] and McCann
et al. [37], as well as byte pair encoding vocabulary, in Rad-
ford [48], are used in complement with the contextualised
representation to comprehend the morphology of words and
extend representation to unknownwords. Another solution is
to train bidirectional systemswith characters insteadofwords
and then concatenate static pre-trained representations, as
FLAIRmethod proposed in Akbik et al. [1]. The two follow-
ing paragraphs detail ElMo and FLAIR approaches.

2.2.1.1 ELMo
ELMo (Embedding for Language Modelling), proposed by
Peters et al. [46], is an autoregressive contextualised word
embedding based on words, using a RNN. The idea is to
create contextualised features by taking the hidden values of
a multilayer bidirectional RNN learning a language model:
predicting the upcoming word knowing the previous ones in
a sentence. In the end, stacked hidden layers of the model
should encode information of this language model.

2.2.1.2 FLAIR
FLAIR, proposed by Akbik et al. [1], is an autoregres-
sive contextualised word embedding based upon characters,
using a RNN. It considers sequence of characters instead of
sequence ofwords.Word representations are finally extracted
using the space character to determine boundaries of words.
For instance, the forward (resp. backward) FLAIR model
uses hidden state of the last (resp. first) letter of a word. Both
hidden states (forward and backward) are concatenated in
order to unify the context into a single vector. It is beneficial
to add to this representation a static word embedding, accord-
ing to Akbik et al. [1]. An explanation for this behaviour is
that static representations add word-level information to the
character-based FLAIR representations.

2.2.1.3 GPT
GPT [10,48,49] is a model that has been improved over

time. It is an autoregressive contextualised word embedding
using a transformer decoder to comprehend word sequences.
The third version GPT-3 [10] is probably paving the way
to future contextualised word embedding, since it is able to
perform NLP tasks with limited efforts spent on fine-tuning.
Instead, the model is trained on a very large corpus and is
then directly used to answer NLP tasks. Actually, any NLP
task can be formulated as a question, and GPT-3, as a gen-
erative autoregressive model, is ideally able to generate the
correct answer (for instance «Translate to French: cheese.» ).
When NLP task is proposed as sentences, then, the NLP task
objective is close to the unsupervised autoregressive objec-
tive. Hopefully, with a sufficiently large amount of data and
enough training, we will be able to reconcile both.

2.2.2 Autoencoding

Autoencoding-like approaches such as BERT approach, pro-
posed byDevlin et al. [14], try to encode bidirectional context
to predict a target word. Of course, no information is given to
the model on the word to predict. This is achieved by using
a MASK token hiding a target word in a sentence. Therefore
the objective is to reconstruct the original token based on
this masked sentence. Figure 10 pictures this task. Gener-
ally, after this step, the model is fine-tuned on a downstream
task.

Autoencoding models, particularly BERT, are suspected
not to capture language complexity [44]. Instead, it would
overfit spurious statistics in the training set. Furthermore,
the MASK token is supposed to introduce noise in the model
because downstream tasks do not contain this one, as pointed
by Yang et al. [65]. Likewise, the pre-training step is a recon-
struction exercise where input sentences are corrupted by
the MASK token. Therefore, the autoencoding embedding
never observes real sentences and has to create representa-
tions based on a corrupted proxy. A solution to thwart those
phenomena is to introduce new hyper-parameters control-
ling the amount of corruption or to replace the MASK token
with randomly selected real words. However, those are not
straightforward to choose nor to optimise. Finally, MASK
tokens are supposed independent. This point, arose by Yang
et al. [65], consists of saying that the reconstruction of each
masked token is done without considering the reconstruction
of others. In the following, we explain BERT and XLNET
embeddings.

2.2.2.1 BERT
BERT architecture proposed by Devlin et al. [14] is an
autoencoding contextualised word embedding using Trans-
former Encoder from Vaswani et al. [60]. It is trained in two
steps. The first one involves two pre-training tasks: Masked
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Fig. 10 MaskedLanguageModelling (MLM) task, used to train autoen-
coding contextualisedword embeddings. Tokens are randomly replaced
in sentence by the MASK token. At the end, the contextualised repre-
sentation of MASK is fed to a classification layer over the vocabulary.
The objective is to predict the original token

Language Modelling (MLM) and Next Sentence Prediction
(NSP). The second one is a fine-tuning phase. MLM consists
of (as said above) masking random token and try to predict
the most probable word given the whole context. NSP is a
classification problem where the model has to tell whether a
sentence can follow another. After the training phase, the rep-
resentation for words is taken from the output of the encoder.
We do not detail here more recent version of BERT, such as
ROBERTA Liu et al. [33], which mainly focus on reducing
the computational costs of training as well as its stability and
global performance.

2.2.2.2 XLNET
XLNET from Yang et al. [65] is a method trying to make the
most of both autoregressive and autoencoding approaches. It
reduces noise and approximations introduced by autoencod-
ing models while benefiting from unified context encoding.
Therefore, it benefits from a complete representation of the
context without having to mask inputs and does not require
masked tokens.

2.2.3 Training

Today, two training schemes are opposing. The first one is a
two-step training with a pre-training phase and a fine-tuning
phase (FLAIR, ELMo, BERT, XLNET). The model is first
pre-trained on a large corpus with unsupervised tasks (MLM,

Table 2 Global, intrinsic and extrinsic evaluations in term of properties

Global Intrinsic Extrinsic

Involve external data � �
Involve external models �

NSP,maximise Eq. 15) and then fine-tuned on a specificNLP
task for real-world usage. The second scheme (GPT-3) is a
one-step trainingwhere an autoregressivemodel ismassively
trained using a huge amount of data and an enormous model.
Then, answers of NLP tasks are generated by feeding the
model with correct queries. As autoencoding models are not
necessarily designed to be generative model, it is hard to
use them in the second scheme since they will be unable
to generate the answer to a query. Yet, the second scheme
seems more advantageous because it does not require a large
amount task-specific data or further training costs.

3 Evaluation

In this section,we propose to explore various evaluation solu-
tions and metrics on Word Embeddings. As we mentioned
in the previous section, different methods lead to different
structures having pros and cons for solving specific tasks. In
Table 2, we propose a partition , based on the work of Schn-
abel et al. [54], of word embeddings evaluationmeasures that
we will detail in the following.

3.1 Global

Based on Amsaleg et al. [3] and Torregrossa et al. [59], let
global metrics be the set of measures quantifying the distri-
bution of vectors in an embedding space. In other words, any
metric that does not need external labelled dataset and gives
information on the representation capacity of the embedding.

For instance, the Intrinsic Dimensionality (ID), coming
from Information Retrieval and introduced by E. Houle et
al. [15], aims to be a local metric correlated with the ideal
number of dimension required to project datapoints in an
embedding space [3,15]. One could create a global metric by
studying the distribution of these local metrics in the embed-
ding space. Another example of a global measure would
be the δavg-hyperbolicity, introduced by Tifrea et al. [58],
that measures whether the embedded objects have a tree-like
structure.

Torregrossa et al. [59] introduced othermetrics used in dif-
ferent areas than NLP such as computer vision. They expect
them to be simple and fast indicators on the representation
capacity of embeddings. Those are particularly adapted to
count significant dimensions inmatrices. In otherwords, they
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estimate the minimal dimensionality required to compress
matrices with a decent reconstruction error. Such metrics are
also usable on word embedding matrices in order to discover
the number of significative dimension of the representation:
a high number of those being correlated with a good usage
of the space dimensionality and potentially to effective rep-
resentations.

Those two metrics are: effective rank (erank) [50] from
signal processing and empirical dimension (edim) [47] from
computer vision. Their mathematic formulations are given
by

erank(W ) = exp

(
−

D∑

i=1

[
si∑D
j=1 s j

· log
(

si∑D
j=1 s j

)])
, (16)

edim(W , p) = ||s||p
||s|| p

1−p

, (17)

with s = (si )i∈�1,D� being the singular values of a matrix

W and ||x||p = (
∑

i x
p
i )

1
p , p ∈ [0, 1].

They both use singular values because those are related to
the principal axis of variance of the matrix row vectors, the
singular value itself being the value of this variance. The goal
of erank and edim is to study the contribution of each sin-
gular value in the decomposition of the matrix row vectors.
In the end, erank and edim return continuous values between
[1, D], corresponding to the number of singular values that
matter in this decomposition. A value close to D means that
singular values are equally important whereas a value close
to 1 exposes a preponderant singular value that concentrate
almost all information. Other values indicate that the embed-
ding is compressible into a spacewith a lower dimensionality
(almost equals to the erank or edim value).

3.2 Intrinsic

Intrinsic evaluations [54] reflect the coherence betweenword
vectors and human judgement. They need external human-
labelled data in order to compare the vector structures with
a ground truth. The intrinsic term refers to the fact that it
measures the structure of the vectors in the embedding space
without adding external information to the model. Indeed,
those evaluations assess the global quality of the language
representation.

Such evaluations commonly rely on similarity metrics in
order to compare, retrieve or coalesce word vectors. The
Cosine Similarity:

cos(vwA , vwB ) = 〈 vwA , vwB 〉
||vwA || · ||vwB || , (18)

is the most usedmetric for intrinsic evaluations. Actually, the
dot product is not chosen sinceword vector norms capture the
frequency of words, as proven by Schakel and Wilson [53].
We consider three types of intrinsic measures, commonly

used in the state of the art (as shown in Fig. 11, Mikolov et
al. [39]; Schnabel et al. [54]; Bojanowski et al. [45]; Tifrea
et al. [8,58]).

3.2.1 Similarity (Figure 11a–Table 3)

It quantifies agreement between human word similarity
judgement with the word vectors of an embedding. High
agreement rate means that word vectors represent well words
and language aspects of the dataset. This rate is obtained
using a correlationmeasure. Spearman is themost used corre-
lation for this purpose. This choice is quite relevant because it
summarises all kinds of correlation (linear or more complex)
into a single score. Specifically, it considers a matrix of pair-
wise similarities (Si j )i, j∈�1,N� obtained after compilation of
several human judgements. Then, Spearman correlation is
performed on the set of points, using the cosine similar-
ity (18): {(x = Si j , y = cos(vwi , vw j )), i ∈ �1, N�, j ∈
�i + 1, N�}. The cosine similarity can be replaced by other
measures capturing different kinds of relations (as entailment
as done by Tifrea et al. [58]; Nickel and Kiela [42]).

3.2.2 Analogy (Figure 11b–Table 4)

It consists of solving a relationship problem. A pair of words
is given (A, B) satisfying a relationR, i.e. A is something to
B orR(A, B) holds. Then, a word C is given, and the objec-
tive is to find a word D in the embedding so that R(C, D)

holds.A convenientway towrite the problem is A : B−C : ?.
For instance, we should find Spain as a solution of the prob-
lem Paris : France−Madrid : ?, because Paris is the capital
of France as Madrid is the capital of Spain. D is found by
solving the following problems using the cosine similarity
(18) between vectors, following Levy et al. [31]:

– 3CosAdd (1): argmax
D∈V \{A,B,C}

cos(vB − vA + vC , vD),

– 3CosAdd (2): argmax
D∈V \{A,B,C}

cos(vD, vB) − cos(vD, vA)

+cos(vD, vC ),
– 3CosMul: argmax

D∈V \{A,B,C}
cos(vDvB )·cos(vD,vC )

cos(vD,vA)+ε
, ε = 0.001.

The 3CosMul problem is known to be the most effective so
far.

3.2.3 Categorisation (Figure 11c–Table 5)

It characterises the capacity of the embedding to distinguish
semantic clusters among a set of words. A categorisation
dataset D is defined by a set of N classes C = (Ci )i∈�1,N�,
and a set of K words W = (w j ) j∈�1,K �. Each word belongs
to a specific class, thus D = {(w,C(w)),w ∈ W } indicates
the class C(w) ∈ C of a word w ∈ W . Then, the goal is to
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Fig. 11 Intrinsic task samples

Table 3 Similarity datasets ([4]) Name Size Pairwise score based on

WordSim353 [16] 353 Synonymy (common words)

MEN [11] 3000 Synonymy (common words)

RG [51] 65 Synonymy (common words)

SimLex-999 [22] 999 Synonymy (common words)

SimVerb [18] 3500 Synonymy (essentially verbs)

RareWords (RW) [35] 2034 Synonymy (low-frequency words)

HyperLex [62] 2616 Entailment (common words)
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Table 4 Analogy datasets ([4]) Name Size Relation types

Google Analogy 19,000 Capital, Country, Family, Currency, Cities, Morphology

Mikolov et al. [38]

MSR 8,000 Morphology

Mikolov et al. [40]

Table 5 Categorisation datasets ([4])

Name Size Number of clusters

Battig 5330 56

Baroni et al.[7]

AP 402 21

Almuhareb [2]

BLESS 200 17

Baroni and Lenci [6]

create N reconstructed clustersC r = (Cr
i )i∈�1,N� with the K

word vectors. CLUTO toolkit fromKarypis [25],with default
parameters, is generally (Baroni et al. [5]; Schnabel et al.
[54]) used to complete this operation. At the end, comparison
between C and C r is performed with the purity measure as
explained by Manning et al. [36]:

Purity(C ,C r ) = 1

K

N∑

i=1

max
j∈�1,N�

#(Ci ∩ Cr
j ). (19)

A thorough presentation of notorious datasets for intrin-
sic tasks is given by Bakarov [4]. We stored commonly used
datasets in Tables 3 (similarity), 4 (analogy), and 5 (categori-
sation). Figure 11 pictures the three tasks. The major issue
concerning the intrinsic evaluations is that they are adapted to
static word embeddings and do not deal with contextualised
ones. In addition, they evaluate on an artificial pre-defined
task not necessarily in relation to a real need.

3.3 Extrinsic

Extrinsic evaluations [54] need higher level and more
complex representations than word embeddings to be solved.
Therefore, external information is added via training and
additional modelling in order to solve these complex tasks
when word vectors may not be enough to solve the extrinsic
problem. For instance, static embeddings are fed into a RNN
that will name entity over a sentence. The RNN will com-
prehend sequential information. Another training phase is
needed in order to optimise the RNN for the task. Therefore,
external information is added to the word vectors through
the RNN. Similarly, contextualised word embedding has to
be fed into task-specific layers and fine-tuned to be compati-

blewith the task. In both static and contextualisedmodels, the
task-specific layers are used to extract the relevant features
prior learnt by the embeddingmodel on natural language text.

A large number of other extrinsic tasks are detailed in
the survey of Bakarov [4]. As stated by the authors, it is
arguable that extrinsic evaluations provide good assessment
of word embeddings quality, due to the fact that there are
correlations across a wide range of extrinsic tasks. However,
this assumption is controversial among the NLP community,
since someembeddings canbe constructed in order to achieve
specific tasks while neglecting others, as shown by Claveau
and Kijak [12]. Actually, the global quality of an embedding
does not necessarily exist, instead, maximising the quality
of the representation with regard to a specific task has more
sense, as proven by the same authors and Schnabel et al.
[54].Overall, evaluationof embeddings remains significantly
complex as interaction mechanisms across different kinds of
tasks and different methods are not well understood.

To overcome the need of proper and high-level evalua-
tion, the famous benchmark GLUE Wang et al. [63] was
proposed to evaluate word embedding models and is now
widely used. This benchmark provides nine different natu-
ral language understanding tasks aiming at enhancing the
simple input–output correspondence evaluation. These nine
tasks are supposed to give a wide description of the inner
understanding of the word embedding model.

As an example, we provide a small benchmark gathering
some of the famous extrinsic task in NLP. We consider the
three following tasks:

– Named Entity Recognition (NER) is a sequence labelling
task, where a sentence is given and the model has to
assign each word of the sentence to a particular entity
class (a person, an organisation, or other). CoNLL2003
[52] is the dataset we use for the experiments, composed
of news thread extracts.

– Sentiment Analysis (SA) is a sentence-level classifica-
tion task where the model is asked to give a sentimental
class for each sentence. We use the Stanford Sentiment
Treebank (SST) dataset [55], which is a set of movie
reviews and sentiment are either very positive, positive,
neutral, negative or very negative (SST-1 set-up presented
in Zhou et al. [68]).
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Table 6 Extrinsic evaluation Embedding type NER SA TC
P R F1 P R F1 P R F1

GloVe (768d) 0.833 0.809 0.820 0.381 0.358 0.346 0.908 0.908 0.908

Word2Vec SG (768d) 0.882 0.837 0.858 0.447 0.436 0.415 0.920 0.92 0.919

FastText (768d) 0.881 0.852 0.866 0.440 0.434 0.391 0.918 0.918 0.917

BERT 0.921 0.928 0.925 0.508 0.500 0.471 0.937 0.938 0.937

– Text Classification (TC) is a sentence-level/document-
level classification task where the model has to classify
text into different categories. AGNews dataset3 is an
online resource composed of news articles falling into 4
categories (World, Sports, Business, and Sci/Tech) used
here.

As mentioned earlier, we have to train new models when
solving extrinsic tasks:

– For NER, we feed the sequence of static vectors or con-
textualised vectors into a one-layer bidirectional GRU
followed by a CRF layer that predict the sequence of
labels. Fine-tuning of some of the weights is allowed for
contextualised models.

– For TC and SA, we used the sequence of static vectors or
contextualised vectors in combination with a one-layer
bidirectional GRU followed by a linear mapping fitting
the number of classes.

The implementation and pre-trained models are from the
Python library transformers, presented by Wolf et al. [64].
Table 6 reports the results we obtained using these three tasks
and 4 word embeddings (1 is contextualised and 3 are static).

GloVe, Word2Vec Skip-Gram, and FastText Skip-Gram
are trained on a Wikipedia Dump following Bojanowski et
al. [8]. All methods are used with default parameters. The
dimension is set to 768 to match the dimensionality of BERT
and perform a fair comparison. For each task, we train the
bidirectional GRU and CRF model for 5 epochs and allow
fine-tuning for BERT embeddings only.We noticed that fine-
tuning static embeddings reduces performance gap between
them.

BERT is the best of all tested embeddings, and this is
explained by the fact that it uses contextual information and
therefore can create a word representation adapted to its
usage in a sentence.We notice that FastText is the best among
static word embedding and this is mainly due to the way it
handles OOV. These are simple observations on these tasks
and different could be observed on different datasets.

3 http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html.

4 Discussion

In this part, we discuss properties characterising methods of
Sect. 2.

4.1 Presentation of properties

Table 7 describes different embedding methods using five
properties:

– OOV (Out Of Vocabulary): aword embeddingwill han-
dle OOV if it is able to give representations for unseen
words. Basically, every embedding technique is able to
do so by introducing a UNK token. However, this is not
a proper solution for the OOV issue since each unknown
word shares an identical vector. In the table, we indicate
with a tick mark (�) embeddings able to generalise the
representations to unknown words using, for instance,
subword information. The – symbol highlights meth-
ods that do not handle OOV completely. In fact, ELMo,
BERT, and XLNET work at the token level, and the
tokenisermight incorporate subword information. There-
fore, they handle OOV only if context words around the
unknown word are well known.

– Contextualised: when the representation of a word is
calculated online using its context, i.e. when the word
embedding is a contextualised word embedding.

– Self-supervised [67]: commonly, the task used to train
an embedding is self-supervised. This means that a sur-
rogate supervised task is automatically extracted from an
unlabelled dataset. We do not consider WordNet [41] as
an unlabelled dataset, because high-level human knowl-
edge was required to build this graph. Hence, techniques
that involve WordNet do not satisfy this property.

– Non-Euclidean: when the representation is using a non-
Euclidean geometry.

– Multisources: embeddings use amain optimisation crite-
rion. However, it is possible to enrich word vectors using
various kinds of datasets and thus different criteria. For
instance in Sun et al. [56], authors use the KL-divergence
and the Wasserstein distance to embed simultaneously a
plain text dataset and a knowledge base. Contextualised
embeddings are particularly multitask because they often
require a final fine-tuning step.
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Table 7 High-level properties of various embeddings techniques

Embedding technique OOV Contextualised Self-supervised training Non-Euclidean Multisources

GloVe [45] �
Word2Vec [39] �
FastText [8] � �
SensEmbed [23] � �
CoupledCR [34] � �
Word2Gauss EL [61] � �
Word2Gauss Wasserstein [56] � � �
Poincaré GloVe [58] � �
Lorentz Skip-Gram [29] � �
ELMo [46] – � � �
FLAIR [1] � � � �
BERT [14] – � � �
GPT-3 [10] – � � �
XLNET [65] – � � �

4.2 Analysis

Training data sources are a major leverage for learning effec-
tive word embeddings. Plain text data is the most common
sort of datasource considered by techniques listed in Table 7.
Word embedding is performed with a self-supervised train-
ing task based on the «distributional hypothesis» .Word2Vec,
GloVe, andFastText have shown to be helpful representations
for a wide range of NLP tasks. Indeed, they are often chosen
as input prior knowledge of extrinsic problems [27,68].

Sometimes, this hypothesis is locally unsatisfied [32].
Indeed, those models are particularly convenient for building
unigram word vectors but not for n-gram ones. Contex-
tualised propositions, such as FLAIR or BERT, are word
embedding alternatives and solutions to these issues. Their
surrogate self-supervised training task is based on a lan-
guage model and therefore try to increase the theoretical
reliability of the wholemodel. In the end, those new architec-
tures globally improved the performance on extrinsic tasks.
However, this gain is not free, and this because of the cost
of the training phase. Today, on standard computers, Fast-
Text tool4 complete a training onWikipedia (2.5B tokens) in
about a day. Conversely, according to Devlin et al. [14], on
the same corpus, BERT requires not less than 4 days on 16
TPUv3 chips, a massive and expensive physical architecture.
A solution to time-consuming step is to download pre-trained
multilingual or monolingual BERTmodels (when available),
and perform a fine-tuning step to suit the downstream task.
Another one is to do large-batch optimisation as done by You
et al. [66].

4 https://github.com/facebookresearch/fastText.

Instead of changing the hypothesis, it is possible to work
with non-Euclidean methods. While Euclidean embeddings
produce particularly efficient representations on semantic
or analogy tasks, they still seem unable to extract logi-
cal thinking or entailment scheme from natural sentences.
Hyperbolic or probabilistic embeddings try to reconfigure
the representation (introducing asymmetric metrics) in order
to integrate these different aspects of language. Hyperbolic
spaces are known to encode more information with a lower
dimensionality and show performance challenging high-
dimensional Euclidean embeddings with low dimension
[29]. On entailment task such as HyperLex [58], hyperbolic
word embeddings trained on Wikipedia outperform their
Euclidean counterparts. However, on paradigmatic and syn-
tagmatic tasks, Euclidean word embeddings remain the state
of the art. Concerning probabilistic word embeddings, they
also introduce uncertainty encoded in the variance of the dis-
tributions. Thanks to that, they significantly improved the
performance on intrinsic tasks [56].

Using multiple sources (multisources) of data also helps
enhancing word vectors. So far we only evoked plain text
data source, but there are many structured sources on the
web such asWordNet Miller [41]. Those could be embedded
into vectors along with plain text data source as done in Sun
et al. [56].

5 Conclusion

In this survey, we explained the main categories of widely
used word embeddings. Terminologies and definitions are
given to properly segment each technique as well as their
advantages. Similarly, major metric tools have been intro-
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duced. Intrinsic metrics were thoroughly presented in order
to give a clear procedure to compute them. Finally, high-level
properties are proposed to qualitatively assess word embed-
dings and highlight uninvestigated approaches.

To conclude, we propose three main research paths.
First, contextualisedword embeddings canonlybe assessed

using extrinsic tasks. Therefore it is hard to understand what
kind of semantics or syntactics they intrinsically capture. It
would be beneficial to see whether the promise of context-
dependent representation is fulfilled, and assess the extent of
this potential accomplishment.

Hyperbolic deep neural network [17] is a recent kind of
neural network able to comprehend more naturally entail-
ment and logical thinking.Many libraries as geoopt [26] offer
the possibility to build hyperbolic networks. Therefore, it is
possible to build contextualised word embeddings using the
hyperbolic geometry and compare it with their Euclidean
nemesis whether they are better able to capture grammar or
thinking.

Finally, correlations between different kinds of measures
(global, intrinsic, extrinsic) are not clear. In other word, it is
not obvious to tell the quality of an embedding on a specific
extrinsic task regarding its global performance on several
intrinsic or global tasks. Investigations on this path would
leverage two points. On the one hand, it would give new
optimisation criterion for the training phase. On the other
hand, it would propose a quick way to select an embedding
for an extrinsic task.
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62. Vulić, I., Gerz, D., Kiela, D., Hill, F., Korhonen, A.: HyperLex: a
large-scale evaluation of graded lexical entailment. Am. J. Comput.
Ling. 43(4), 781–835 (2017)

63. Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., Bowman, S.:
GLUE: a multi-task benchmark and analysis platform for natu-
ral language understanding. In: Proceedings of the 2018 EMNLP
Workshop BlackboxNLP: Analyzing and Interpreting Neural Net-
works for NLP, Brussels, Belgium, pp. 353–355. Association for
Computational Linguistics (2018)

64. Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C.,Moi, A.,
Cistac, P., Rault, T., Louf, R., Funtowicz, M., Davison, J., Shleifer,
S., von Platen, P., Ma, C., Jernite, Y., Plu, J., Xu, C., Scao, T.L.,
Gugger, S., Drame, M., Lhoest, Q., Rush, A.M.: Huggingface’s
transformers: state-of-the-art natural language processing (2019).
arXiv:1910.03771

65. Yang, Z., Dai, Z., Yang, Y., Carbonell, J.G., Salakhutdinov, R.,
and Le, Q.V: XLNet: generalized autoregressive pretraining for
language understanding. CoRR (2019). arXiv:1906.08237

66. You, Y., Li, J., Hseu, J., Song, X., Demmel, J., Hsieh, C.: Reducing
BERT pre-training time from 3 days to 76 minutes. CoRR (2019).
arXiv:1904.00962

67. Zhai, X., Oliver, A., Kolesnikov, A., Beyer, L.: S4l: self-supervised
semi-supervised learning. In: Proceedings of the International Con-
ference on Computer Vision (ICCV) (2019)

68. Zhou, P., Qi, Z., Zheng, S., Xu, J., Bao, H., Xu, B.: Text
classification improved by integrating bidirectional LSTM with
two-dimensional max pooling. In: Proceedings of COLING 2016,
the 26th International Conference on Computational Linguistics
(2016)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1906.08237
http://arxiv.org/abs/1904.00962

	A survey on training and evaluation of word embeddings
	Abstract
	1 Introduction
	2 Embeddings: from discrete variables to continuous semantic space
	2.1 Static word embeddings
	2.1.1 Euclidean static word embeddings
	2.1.2 Non-Euclidean static word embeddings

	2.2 Contextualised word embeddings
	2.2.1 Autoregressive
	2.2.2 Autoencoding
	2.2.3 Training


	3 Evaluation
	3.1 Global
	3.2 Intrinsic
	3.2.1 Similarity (Figure 11a–Table 3)
	3.2.2 Analogy (Figure 11b–Table 4)
	3.2.3 Categorisation (Figure 11c–Table 5)

	3.3 Extrinsic

	4 Discussion
	4.1 Presentation of properties
	4.2 Analysis

	5 Conclusion
	References




