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Abstract
Due to the availability of large amounts of data, recommender systems have quickly gained popularity in the banking sphere.
However, time-sensitive recommender systems, which take into account the temporal behavior and the recurrent activities of
users to predict the expected time and category of next purchase, are still an active field of research. Many researchers tend
to use population-level features or their low-rank approximations because the client’s purchase history is very sparse with
few observations for some time intervals and product categories. But such approaches inevitably lead to a loss of accuracy. In
this paper, we present a generative model of client spending based on the temporal point processes framework. The model is
built in the way, to bring more individuality for the clients’ purchase behavior which takes into account individual purchase
histories of clients. We also tackle the problem of poor statistics for people with a low transactional activity using effective
intensity function parameterizations, and several other techniques such as smoothing daily intensity levels and taking into
account population-level purchase rates for clients with a small number of transactions. The model is highly interpretable,
and its training time scales linearly to millions of transactions and cubically to hundreds of thousands of users. Different
temporal-process models were tested, and our model with all the incorporated modifications has shown the best results in
terms of both error of time prediction and the accuracy of category prediction.

Keywords Point processes · Transactional data · Mixture models · Recommendation · Machine learning

1 Introduction

Banks have been using corporate databases for a long time,
which led to the accumulation of a large amount of different
data on the purchasing behavior of customers. Thanks to this,
as well as the development of machine learning algorithms,
banks have moved from using simple models, such as LRFM
(length, recency, frequency, and monetary) model to more
complex recommendation models. Typically, these models
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were used to back up bonus programs developed together
with trade and service enterprises for a long fixed period,
such as a month. However, the use of time-limited offers
can be much more profitable. They may sound as follows:
“Hurry up and spend 100 dollars at our partner’s restaurant
and get double cash-back. The offer is valid until 10 pm.
April the 5th !!!.” The efficiency of limited-time offers is
explained by the psychological phenomenon known as loss
aversion,which refers to people’s tendency to prefer avoiding
losses to acquiring equivalent gains. The customer is offered
a limited time to make a purchase in a certain category. This
offer can be delivered via the bank’s mobile application in
the form of a coupon. To do this, it is necessary to develop a
recommendation system that would predict: (1) the time of
the next purchase of the client; (2) the most likely categories
of purchase.

The problem of predicting the return time can be solved
using classicalmethods, dividing the time into intervals. First
of all, the time can be simply divided into a set of inter-
vals, and static latent feature models can be applied [7,12].
However, such models have several disadvantages: First, it is
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Fig. 1 A fragment of the customer’s purchase history. Our model is
intended for predicting the category and time of spending based on the
client’s transaction history

unclear how to choose the interval length parameter; second,
different users may have very different time scales; third,
the history of last spendings cannot be incorporated into the
model.

The point process-based models [1] can overcome these
limitations. By nature, they generate continuous timestamps
and the length between them can vary depending on the
client’s activity. Also, the excitation factors can be added
to take into account the last client transactions (Fig. 1).

This problem can be formalized in the following way:
Let [t0,T ] be the observation window with some number

of transactions of every customer in every category. For each
customer u, we have a set of timestamps representing the his-
tory of transactions Tu = {

tu,1, ..., tu,n
}
and their associated

categories Cu = {
cu,1, . . . , cu,n

}
(for example, gas stations,

restaurants, transport, etc.).
We need to build a model capable of predicting the time

t and category c of the next transaction of the client and the
sequence of transactions as well.

In solving this problem, the following features should be
taken into account:

– The transaction history of the absolute majority of clients
is highly sparse, and many elements (client, category,
time) are non-observed.

– The last spendings are quite important and should be
taken into account.

– The level of transactional activity of clients differs a lot.
– There are millions of transactions in the dataset, which
opens up the question of scalability.

In paper [10], the authors decided not to use any client-
specific parameters resulting in a model with only 390
parameters for 10 categories. This approach uses population-
generalized consumption levels, and the transactional history
of a particular customer is applied only through the introduc-
tion of the terms responsible for self-excitation. Therefore, it
is obvious that the forecasts will be biased toward the average
level of activity for the dataset, which will lead to big errors
for customers with a small daily number of transactions.

Approaches based on client–category–time co-occurrence
matrix factorization may be viable [16]. However, some
authors [8] argue that these methods tend to oversmooth

distributions resulting in excessively high probabilities of
unseen client–category–time combinations.

In most works, the authors pay great attention to the fac-
tor associated with mutual excitement. However, we believe
that members associated with the inhomogeneous Poisson
process, who are responsible for the “timetable” and their
modification can bring the best results, should have a greater
impact on our dataset.

Latent representation and deep neural network models are
possible to solve the sequential recommendations problem
[14]. For example,[13] presents a framework for studying
implicit and explicit dependencies of elements, where they
pay great attention to the implicit side of the problem. An
example of recommendations based on a neural network is
presented in [15], where the authors create a sequential net-
workwith Purpose-SpecificRecurrentUnits that captures the
membership of items, improving the results of recommenda-
tions.

Since the results of this study were planned to be used
for the recommendation system in the bank, we set ourselves
the task to build an interpretable model and refrained from
using neural net approaches [3,5,6,11]. The model presented
below is a generative model of client spending and allows us
to generate the purchasing activity of the population, which
is also of interest to the study.

2 Data

The data that were used during the current work were
provided by the partner bank. It includes 67+ millions of
transactions of ∼143,000 clients over the period of one year,
where each transaction is represented by its client’s unique
ID, transaction time and date, the amount in rubles, and the
category. The category is represented via the merchant cate-
gory code (MCC)—4-digit code, which is widely used in the
banking sphere to mark the transaction category. By using
the MCC, we gain a very big number of different categories,
while two MCC’s can represent pretty same categories, e.g.,
3001 code stands for the American airlines and 3009 is Air
Canada where both are the airlines’ companies. To avoid the
issues with much MCC’s prediction, we transformed the 4-
digit representation to 2-digit, where categories are grouped
by their purpose, e.g., every grocery shop becomes one “gro-
cery” category, etc.

By looking at the clients’ daily average number of trans-
actions distribution in Fig. 2, we can see that clients are
distributed widely—there are clients with very low transac-
tion activity (one transaction), or there are clients with very
high activity (4–5 transaction per day). As is intuitively clear,
the purchasing activity depends on the current time, which
is illustrated in Fig. 3a and b. People spend most on Mon-
days, and for hours, it is the evening and the middle of the
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Fig. 2 Properties of the frequency of payments in the dataset: Distri-
bution of the number of transactions in several popular categories

day, which is typically the end of workday and lunchtime,
respectively. For our test purpose, we took only the top 10
most frequent categories which are described in Table1.

Other data filtering includes multiple steps—the objective
is to leave only enough active clients and exclude all oth-
ers, that, for example, hold their bank card only for gaining
money on payday and transfer them on the other card or into
cash. Another example of unlikely clients is those, whose
cards expire just right after the beginning of the observed
period, or clients, that got their card right before the end of
the year. So the following filtering steps were performed—
first of all, we removed all the transactions, that took place
at 00:00:00 time due to the bank issue when some of the
transactions have delayed operations and are massively per-
formed at night. The second step was to remove categories
outside the top 10. Next, to sort out clients, who were not
active throughout the whole year we left only those of them,
who have at least one transaction before February and at least
one after November. At last, we managed to take only clients
with at least 20 transactions over a year, which in our opin-
ion are active enough. Going through all the steps described
above, we left 115,089 clients with 47,721,556 transactions
in total.

3 Model

3.1 Temporal point processes

The temporal point process is usually represented via its con-
ditional intensity function, which can be interpreted as the
probability of an event occurring in a small time window.
Formally, given the history of previous events at point t as
Ht = {t1, t2, . . . , tn}, where ti < ti+1 and tn < t , the inten-
sity function looks as follows:

λ∗(t) = lim
h→+0

P
(
event in (t, t + h]|Ht

)

h
, (3.1)

where eachpoint in history Ht canbemarkedwith someevent
category as a pair (ti , di ), which in our scenario is transaction
category, and the asterisk means that the intensity function
is conditioned by the history of events.

The simplest process is the homogeneous Poisson pro-
cess, which intensity function is represented only by base
rate λ0 > 0. It is constant through the whole nonnegative
domain, which means that the probability of an upcoming
event is independent of any conditions. By itself, the homo-
geneous Poisson process does not make much sense because
in our case, it just evaluates the average frequency of clients
purchases and as output gives constant intensity for any client
with any history. To capture some time dependencies, we can
use the inhomogeneous Poisson process, which is described
below.

3.2 Inhomogeneous Poisson process

With inhomogeneous Poisson process, we allow the intensity
function to vary according to a deterministic function of t ,
with bounding λ(t) ≥ 0, t ≥ 0. In our case, as the t domain
refers to time, we can capture the time dependence with the
set of indicator functions F and some weights to each of the
time feature, described in Table2. As a result, we obtain the
following intensity function for category d:

λd(t) = λd0 +
∑

f j∈F
μd j f j , (3.2)

Fig. 3 Total number of
purchases in the dataset (a) at
each hour of the day and (b) on
each day of the week
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Table 1 Purchase categories used

N Category name Average monthly number of transactions Fraction of clients with transaction in category

1 Gas stations (GAS) 1.58 0.43

2 Medical goods (MED) 1.56 0.62

3 Clothing (CLO) 1.07 0.45

4 Personal services (PER) 0.97 0.43

5 Alcohol (ALC) 0.60 0.20

6 Supermarkets (GRO) 16.2 0.95

7 Restaurant (RES) 5.46 0.77

8 Special stores (SPE) 0.84 0.37

9 Transport (TAX) 2.39 0.44

10 Financial services (FIN) 4.05 0.84

Table 2 Time features that are captured by the inhomogeneous Poisson
process

Index j Time feature

0-23 Hour of a day

24 Monday–Thursday

25 Friday

26 Saturday and Sunday

which means that the intensity at some point t0 is defined by
the sum of base rate λ0 and every μd j , that is, active at the
t0, e.g., if we want to get the intensity at 1:30pm on Friday,
we sum μd,13 and μd,25 with λd0 . Hour dependency helps
the model to capture regular purchases so that we could pre-
dict periodic purchases more precisely and make stock with
less duration for it, but with longer for aperiodic purchases
which patterns can be hardly captured with such short peri-
ods as concrete hours. This makes sense because if we will
look at the weekday and the hour distributions of our dataset,
presented in Fig. 3a and b, we can see the dependence of
current time.

By training this model, we are making all the parameters
(Λ and M) shared no matter what client we predict for. To do
this, we evaluate the log-likelihood, which looks as follows:

L({(t1, d1), . . . , (tn, dn)}) =
n∑

i=1

log(λ∗
d(ti )(ti ))

−
D∑

d=1

∫ T

0
λ∗
d(τ )dτ − γ ||Θ||22,

(3.3)

where the γ is a L2 regularization parameter and Θ =
{Λ, M}. We do it for each of the clients in the training set and
then take the average as a function for maximization. This
method brings the possibility to parallelize the learning pro-

cess well by computing each log-likelihood separately and
then just take the average.

But the problem of estimating the parameters in such a
way is that it takes much time even if we parallelize it. It
takes about ten hours to get the likelihood converged for the
data set with the size of 115,000+ clients with 47+ million
transactions in total. As it was said earlier, the homogeneous
Poisson process intensity function base rate is just average
frequency of clients’ purchases, and one can see the only
difference between the homogeneous and inhomogeneous
one in Fig. 4a and b—the latter one is partly constant on some
intervals. So, by that we are coming to another approach
to learning of the model—estimating average frequencies
on that intervals, and as a result, we must obtain the same
result, as learning via themaximization of the log-likelihood.
To estimate a parameter of the concrete interval, we must
calculate the duration of this interval, combining all non-
mutual exclusive time features that are active at the interval.

For example, to estimate the intensity at Friday 2 pm,
we calculate the duration of the intersection of the time
intervals—all Fridays and all 2 pm wall-clock values, and
then divide the number of transactions at Friday 2 pm by
obtained duration value. Formally, we say that

μd,14 + μd,25 + λd0 =
∑Ntrans

i=1 I [ti ∈ Friday 2 pm]
∫ T
0 fFriday∩2 pm(τ )dτ

(3.4)

and if we go in such way with all of non-mutual exclu-
sive combinations, we get the algebraic system of linear
equations, which is consistent. Starting from the pair of
(Monday–Thursday, 12pm) and going down to the last pair
(Saturday–Sunday, 11pm), we obtain the following system
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Fig. 4 Intensity functions for
homogeneous Poisson (a),
inhomogeneous (b) and Hawkes
(c) processes

of equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

μd,0 + μd,24 + λd0 =
∑Ntrans

i=1 I [ti∈Mon−Thu 12 pm]
∫ T
0 fMon−Thu∩12 pm(τ )dτ

μd,1 + μd,24 + λd0 =
∑Ntrans

i=1 I [ti∈Mon−Thu 1 am]
∫ T
0 fMon−Thu∩1 am(τ )dτ

· · ·
μd,23 + μd,26 + λd0 =

∑Ntrans
i=1 I [ti∈Sat−Sun 11 pm]
∫ T
0 fSat−Sun∩11 pm(τ )dτ

,

(3.5)

where T is the end of the observation period. By solving it,
we get our vector parameter M for category d. This approach
speeds up learning time significantly—the boost is about
30 times over likelihood maximization, and this opens new
opportunities for creating models, which is described in the
next sections.

While having a pretty big dataset with many transactions
for each client, we developed a model, where we do not learn
the parameters on the whole clients set, but rather we learn
them when we want to make a prediction for a particular
client by using the approach of solving the linear system
equation. This means that we are now conditioned on the
client’s history with an inhomogeneous Poisson process.

3.3 Intensity factorization

Since the 3-dimensional matrix (client, category, time)
describing the process is highly sparse and many elements
are unobserved, we also tried to do the following factoriza-
tion, laying out the client’s preference for certain categories

and his schedule:

μ(client, d, t) = μ(client, d) · μ(client, t), (3.6)

where t stands for time and d for category. As input for
prediction, we take the history as one of the arguments,
with the sequences of timestamps and related categories
Ht = {(t1, d1), . . . , (tn, dn)}. To not suffer from the case,
when the client has notmany statistics on somecategories,we
decided to calculate the parameters that are shared for all cate-
gories but are scaled to their frequencies. Formally, by getting
the vector of parameters θ = {λ0, μ0, . . . , μ26}, calculated
without relation to the categories; to bring those vectors for

all categories separately, we multiply θ by
∑N

i=0 I [di=d]
Ntrans

for
each category d. By doing that, we obtain the same pattern
of purchasing through the time features, which is not the best
solution if we got a relatively big history of every category,
but it works well if the client has not many statistics on the
purchasing. The resulting functions for every category are
presented in Fig. 5a.

3.4 Intensity smoothing

Here, we assume that there is some variation in intensity
caused by small statistics for some users. And a person can
make a purchase a little earlier or a little later. The logic is
this: Let’s assume that a client has some transactions at 11am,
and no transactions at 12am. Therefore, his μ(12 am)would
be zero, which can often be wrong, especially if the customer
does not buy a lot. So, we mix the intensities of the adjacent
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Fig. 5 Intensity functions for one day period with some client’s param-
eters, estimated via linear system for all categories at ones (a), for each
category separately (b). Different colors means intensities for different
categories

clocks into the intensity of each hour.

μ̃i = (1 − ε) · μi + ε · μi−1 + μi+1

2
(3.7)

˜̃μi =
∑24

i=1 μi
∑24

i=1 μ̃i
μ̃i , (3.8)

where ε = α
N . At the same time, if the customer buys often,

we believe that the distribution of his purchases by hours
deserves more confidence. (And accordingly at the expense
of 1/N, we will have almost no mixing.) We also believe that
the total intensity per day should remain single before and
after smoothing, so we conduct renormalization and get the
final normalized ˜̃μi as the result.

3.5 Mixture models

The idea of mixture parameters from the baseline model and
parameters, gained from solving the linear system, comes
from the case, when we want a particular client to have a
chance of purchasing in category or time, that is, not lying
on his/her pattern of purchasing, but at the same time, we

want to save the individuality with the parameters from the
linear system.

Let’s say that parameters obtained from learning on the
whole dataset are denoted as θavg and parameters gained from
particular client are denoted as θclt, and then, we define the
mixture model as the linear combination of the parameters:

θ = wavg · θavg + wclt · θclt, (3.9)

wherewavg+wclt = 1. We can interpret thew parameters as
howmuch impact do the baseline and the clients’ parameters,
respectively.

Now, the problem of having not many statistics on some
clients, described in Sect. 3.3, can be dropped out, as we
capture some degree from the baseline parameters. And this
brings two ideas, how to build the mixture model—the first
is to estimate individual parameters as described in Sect. 3.3,
and the second is to estimate them separately for each cat-
egory. The difference of the intensities calculated with both
approaches is shown in Fig. 5a and b, where it is seen that
when we calculate it separately, we do not repeat the same
pattern for all categories with just different magnitudes.
We present the w parameters as the hyper-parameter of the
model, and to tune it,we can justmake the grid search through
some set of them.

3.6 Mutual excitation

The model described above does not take into account the
impact of recent purchases, which can be very significant.We
restricted our consideration of pair interactions purchases in
one category purchase in the other and modified the model
in the following way:

– Added exponential terms similar to [10]
– Removed the restrictions on the nonnegativity of beta
coefficients. In the majority of the works utilizing
Hawkes processes, positive β coefficients were used.
However, this significantly reduces the expressiveness
of the model. And we see evidence of such phenomena
in our dataset. We have built distributions of the inter-
purchase time in the categories of gas stations versus
supermarkets and gas stations versus transport and con-
ducted a seasonal decomposition usingmoving averages.
It can be seen in Fig. 6 that the trend line for these pairs
is tilted in different directions, which indicates different
signs of the β coefficients. It shows the distribution of
inter-purchase time for gas stations versus transport. We
observe that with the increase in time after purchase in
the gas stations, the number of purchases in the transport
category increases.

– In order to fulfill the restriction λ > 0, we have to modify
the intensity, so we take only the positive part:
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Fig. 6 Indication of different
signs of coefficients of mutual
excitation. Gas stations versus
transport (a); gas stations versus
supermarkets (b)

λ∗
d(t) = max

(
+ 0, λcld0 +

∑

f j∈F
μcl
d j f j

+
D∑

d ′=1

∑

d(t ′)=d ′
t ′∈Ht

βdd ′e−αdd′ (t−t ′)
)

(3.10)

The μ coefficients here were not trained but taken from
the previous points. We expect the self-generating term is
small and therefore will not affect the μ values. β coeffi-
cients are not individual, and they depend only on category
indices. Since there are only a few beta coefficients (100 for
our dataset), there is no reason to perform the training on the
whole dataset, and we used a small part of it to reduce the
calculation time. The training was conducted by minimizing
the likelihood function using the L-BFGS-B [2] method.

4 Experiments

4.1 Prediction

Both models can generate as output next event time and cate-
gory, and the sequences of the events by predicting the events
one right after another, taking previously as a history. To gen-
erate a time of the next event, the Ogata’s modified thinning
algorithm [4] was used in the case of Hawkes process and
algorithm for simulation inhomogeneous Poisson process [4]
for the other one. In both cases, the following prediction algo-
rithm for time and category was used:

We implemented the evaluation of the median of the 100
runs to take the most probable time prediction (1), and then,
we predict category based on that time by the multinomial
distribution. For a simulation of an event, we used a simula-
tion algorithm for inhomogeneous Poisson process/Ogata’s
thinning modified algorithm in case of the process we sim-
ulate. To generate a sequence of the events, we can just run
Algorithm1 multiple times, each time starting from the last
event time.

Algorithm 1 Prediction time and category of the next event
1: procedure predict(t0, history)
2: time[100]
3: for integer i in 100 do
4: time[i] = simulate one event
5: end for
6: t = median(time)

7: c = multinomial({ λ∗
0(t)∑D

d=1 λ∗
d (t)

, ...,
λ∗
D(t)

∑D
d=1 λ∗

d (t)
})

8: Return (t, c)
9: end procedure

4.2 Evaluationmetrics

To measure the quality of the built models, we divided our
dataset into the train set and test set as follows—we trained
on the time period from the beginning of January till the end
of October. We used two types of metrics in this work:

– Next purchaseOnly thefirst event since the start of the test
set for every client was predicted. Then, several metrics
were calculated:

– Time error We tried mean / median / 75 percentile
error of the timestamp (given in seconds) of the next
event and settled with the median relative absolute
error.

– Accuracy Accuracy for category prediction averaged
among all categories.

– Sequence of eventsA chain of events for every client was
generated.

– Generation ratioThe ratio of the number of generated
events to the number of real events

First, onlyMAEwas calculated. But later, it was realized that
the error is too big for clients with high transaction activity—
some of them can perform 5–10 transactions per day, but the
error can be much higher, than the average time between
transactions. The main reason comes from the fact that some
clients start their activity only a long period after the test
period begins, which is intuitively clear—it can be a vacation
or something else. For this reason, we tried the 50 and 75
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percentiles as they are more adequate in our case. At last, we
settled with MdRAE (median relative absolute error), which
looks like the following: MdRAEi = median(abs(t−t̂)i

mean(t j+1−t j )i
, where

j = 1 . . . Ni − 1, Ni - number of transactions for client i .
To estimate the best values for wavg and wclt parameters, we
used the grid search within [0; 1] segment. It was discovered
that bothmixturemodels showed the best results for w values
0.4 and 0.6, respectively, while the worst case was the (1, 0)
pair, which gives 12.7% more time error comparing to the
best one, so the resulting parameters look like the following:
θ = wavg ∗ θavg + wclt ∗ θclt, where θ = {λ,μ}.

4.3 Models evaluated

We compared the models with modifications mentioned
above with several models from [10] and our recent work
[9].

– Inhomogeneous Poisson process Simple inhomogeneous
Poisson process model with parameters shared among all
clients.

– Hawkes process Multidimensional Hawkes processes
with the time-varying component from [10]. Parameters
shared among all clients.

– Scaled Poisson process. Inhomogeneous Poisson process
model with intensity scaling proportional to each client’s
average number of transactions.

– Individual Poisson process Inhomogeneous Poisson pro-
cess with μ coefficients calculated for each client.

– Smoothing Smoothing of hourly coefficients.
– Mixing with group coefficients Individual coefficients
mixed with dataset average coefficients to properly
account for the rare categories.

– Mutual excitation The self-excitation part added to the
previous model similar to the Hawkes process to take
into account the impact of recent purchases.

4.4 Prediction performance

All obtained results are shown in Tables3, 4, 5, where the
models’ descriptions are related to Table4.3.

By looking at the time error, we can see that the best
performance is obtained with a mixture model of smooth-
ing individual and averaged coefficients including Hawkes
process with β > 0 restriction.

pg
Table4 illustrates that the modification with mixture,

smoothing, and self-excitation achieves the best results in
terms of accuracy, while the baseline models perform much
worse.

Our experiments reveal that the smoothing methods
achieve the best results. (In case of time, we mix smoothing

Table 3 Median relative absolute time error

Model MdRAE

Poisson baseline 0.53

Hawkes baseline 0.63

Poisson baseline + scaling 0.47

Factorization + Smoothing 0.47

Poisson individual 0.49

Factorization 0.48

Smoothing 0.46

Factorization + Smoothing + Mixture 0.47

Smoothing + Mixture 0.47

Smoothing + Mixture + Hawkes(β > 0) 0.44

Smoothing + Mixture + Hawkes 0.58

Table 4 Category accuracy

Model Accuracy

Poisson baseline 0.233

Hawkes baseline 0.3245

Poisson baseline + scaling 0.3485

Factorization + Smoothing 0.3345

Poisson individual 0.3405

Factorization 0.3345

Smoothing 0.345

Factorization + Smoothing + Mixture 0.287

Smoothing + Mixture 0.3035

Smoothing + Mixture + Hawkes(β > 0) 0.302

Smoothing + Mixture + Hawkes 0.349

The bold value row shows the best result for current metric

Table 5 Ratio of the number of events in generated sequences and real
sequences

Model Generation ratio

Poisson baseline 91.55

Hawkes baseline 97.24

Poisson baseline + scaling 94.72

Factorization + Smoothing 94.24

Poisson individual 94.26

Factorization 94.25

Smoothing 93.63

Factorization + Smoothing + Mixture 93.17

Smoothing + Mixture 92.80

Smoothing + Mixture + Hawkes(β > 0) 89.41

Smoothing + Mixture + Hawkes 89.91
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Fig. 7 Analysis of mutual excitation coefficients. Categories are enu-
merated in Table1

with averaged parameters, in case of accuracy—smoothing
does well by itself.)

These results suggest that most of the purchases are not
induced by previous ones but are determined by the aver-
age level of consumption by category. This is especially
noticeable on the the time error results, with the Hawkes
process performing the worst. As for the accuracy, we can
conclude that considering the individual purchasing activities
of clients improves the results quite significantly compared
to the baselines. On the other hand, the experiments indicate
that self-excitation improves the results. Also, using this kind
of model, we can exclude biases associated with individual
consumption levels and analyze the β coefficients to draw
conclusions about how purchases in some categories affect
the likelihood of purchases in others. Also, it should be noted
that all the models without the self-excitation are much more
scalable in terms of the training time.

The generation ratio presented in Table5 can be consid-
ered as a kind of sanity test. Although the main task of this
work is to predict the category and the timestamp of the next
purchase, it was important for us to make sure that all the
methods presented generate approximately the same number
of events as observed.

4.5 Model interpretation

The structure of our model provides an opportunity for pur-
chase behavior process interpretation. The analysis of the β

coefficients can be made, as it is of great interest for mar-
keters. The elements of β matrix are given in Fig. 7, where
the values near the 10−8 or less show nearly no correlation
between the categories and values > 10−7 show meaningful
correlation. From the matrix, we can distinguish the follow-
ing patterns:

– Grocery trigger almost all other categories.
– Transport-gas andgas-transport coefficients are both neg-
ative.

– Cash withdrawal triggers grocery stores and another cash
withdrawal.

– Awordof caution is needed about the fact that the greatest
β values seem to lie on the diagonal. It does not seem right
and may be caused by overfitting.

5 Conclusion

In this work, we proposed a novel set of models that combine
the Poisson processes with individual coefficients for each
client and mutual/self-excitation behavior and allow predict-
ing the occurrence and time of spending in various categories
based on the client’s transaction history.

We argue that despite the frequent use of low-rank approx-
imations and group features, individual parameters cannot
be ignored. We show that excitation can be both positive and
negative and propose a model that allows for this to be taken
into account. We also offer several options for modifying
individual coefficients to improve the model.

Different variants of the model were tested, and models
based on solving the linear system of equations have shown
the best results in terms of both error of time prediction and
the accuracy of category prediction.

The presentedmodel is interpretable and provides insights
on the dynamics of the consumer’s purchase behavior.

We show that the model can be used for the modeling of
the purchasing activity of the population, which is of funda-
mental interest.
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