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Abstract
Data science is about deriving insight, learning and understanding from data. This process may be automated via the use of 
advanced algorithms or scaffolded cognitively via the use of graphs. While much emphasis is currently placed on machine 
learning, there is still much to learn about the role of the data scientist, in particular the thinking process by which he reaches 
conclusions. The thinking process of the data scientist needs to be scaffolded as the human brain is easily overwhelmed by 
many variables. Graphs are a form of data abstraction and constitute an essential part of the data scientist’s toolkit. Graphs 
are also a viable scaffold on which the data scientist may gain familiarity with data. But the process of extracting insight 
from graphs is not always a trivial or straightforward process; it requires interpretative logic as well. Generalizing from the 
example of a simple graph type, the Venn diagram, we discuss various logical fallacies that can be committed when inter-
preting a Venn diagram. Amidst various considerations that dictate how a graph should be tackled, we explain why context 
is most important, and should form the first guiding principle during data analysis.
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1  Introduction

Data science is an exciting new field which is only begin-
ning to find its own footing [1]. While augmented and sup-
ported by the advent of exciting new technologies, data sci-
ence is more than artificial intelligence (AI) and machine 
learning (ML) algorithms. It is also not just about big data, 
which merely describes the volume of collected information 
(big does not mean useful). While these aspects represent 

incredible technical challenges and have tremendous trans-
formative potential, their purpose is to help the data scientist 
develop new insight and knowledge.

AI/ML provide greater predictive and data modelling 
capabilities than traditional statistical approaches but suffer 
from poor explainability (the decision rules and true quality 
of learning are not immediately discernible to the end user) 
[2, 3]. Furthermore, AI/ML does not provide the data sci-
entist with key information, e.g. they do not reveal distribu-
tion patterns (based on what you have measured), whether 
the selected feature set (correlated variables to what you 
are interested in) makes sense, or if there are hidden con-
founders. Dumping data wholesale into an AI/ML algorithm 
without prior checks and personal understanding constitutes 
poor practice.

Achieving a good personal understanding of data is 
the responsibility of the data scientist [4, 5]. This process 
requires technological tools and mental scaffolds: the tools 
help transform the data into manageable forms, e.g. tables 
and graphs [6]. The mental scaffold is the application of 
our reasoning and logical ability on the transformed data. 
As data become larger, it is impractical to use tables to 
analyse by eye thousands of variables and observations: 
the human brain is only capable of storing limited infor-
mation at any one time [7]. Graphs, as visual abstractions 
of data, are required to help a data scientist understand 
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data distributions, uncover hidden subpopulations and 
check for confounding factors. This role is non-substitut-
able by summary statistics: it is widely known that data 
with different distributions can produce similar means, 
correlations and variances. While this problem is famously 
described by Anscombe’s quartet (a set of four datasets), 
the problem is by no means an idiosyncratic or rare occur-
rence: a simulated annealing algorithm was implemented 
and used to show that any initial dataset with some given 
general parameters (e.g. mean, standard deviation and cor-
relations) can have its distribution changed to any shape, 
while preserving those same general parameters [8].

Recently, we noticed a resurgence of interest on how to 
develop high-quality graphs and how to choose the right 
set of graphs for conveying the intended message [9, 10]. 
This is a highly complex area, involving an interplay of 
cognitive skill, design thinking and other competencies 
[11]. The ability to interpret graphs and extract a reason-
able depth of insight is generally understood as “graph 
literacy” [12]. Graph literacy is increasingly recognized 
as an essential skill in today’s data-centric landscape. As 
data science and big data transform the industrial and 
technological sectors, achieving reasonably deep under-
standing of the data and deriving the correct intuition and 
insight are crucial. One cannot simply rely on computer 
algorithms and AI to do all the work. These tools are only 
as smart as the users are [13].

There are many lessons for improving one’s graph lit-
eracy. We do not need to look at highly complex visuals, as 
many of the most important lessons are found in commonly 
used graph types. We find it fascinating how simple things, 
often taken for granted, are misused or misunderstood. For 
example, Weissgerber et al. [14] recently expounded on 
issues with bar charts, how they mislead and why the scien-
tific field needs to adopt better, more rigorous standards in 
graph communication. They advocate the use of univariate 
scatterplots to check for data distributions first and to avoid 
over-summarizing data prior to checks. Knowing the right 
tools to use for checking data distributions is sound advice, 
but in our opinion, checking for trends can only get one so 
far. In our opinion, minimizing personal bias (honing the 
mental scaffold) is also important for developing structured 
graph interpretation skills.

The requirement to check for trends and avoid bias from 
creeping into graph interpretation suggests a need for more 
structured thinking in data analysis. Because there is a large 
diversity of graph forms with each using different structural 
elements (e.g. axes, points, lines, shapes, etc.) [15], the pro-
cess of extracting insight is not always a trivial or straight-
forward process. In reality, there is always more than one 
way of interpreting a graph, and the degrees of freedom for 
interpretation rapidly increases as graph complexity rises. 
It also does not help that biases can creep in, as French 

philosopher Henri Bergson elegantly phrases it: “The eye 
sees only what the mind is prepared to comprehend”.

And so, it is important to realize just because we have the 
tools does not mean we use them right: even with powerful 
graphs, one can also make mistakes due to weak mental scaf-
folds. Generalizing from the example of a simple graph type, 
the Venn diagram (or Venn for short), we discuss in one case 
study, how conventional interpretation does not work. We 
also show that depending on the scenario how the relevant 
regions of the Venn need to change accordingly. In other 
words, the intersections of a Venn diagram are not always 
the most important. Amidst the various considerations that 
dictate how a graph should be interpreted, context is most 
important and should always form the first guiding principle 
when attempting interpretation.

2 � Why the Venn diagram?

We chose the Venn diagram not because it is a useful visu-
alization for data science (we are not advocating Venn dia-
grams) but because it is amongst the simplest graph types 
(next to pie charts, bar charts and line plots). Most people 
are likely complacent in their ability to get the interpreta-
tion right.

We also chose the Venn diagram because it is a clean 
visual vehicle for interpretive logic, which we will discuss 
in the next sections. Unlike scatterplots, Venn diagrams (or 
Venns for short) do not show dynamic relationships amongst 
samples, e.g. outliers or variances, which are more subjec-
tive in interpretation. Moreover, Venns have the potential 
to convey complex logical relationships, particular in set 
theory. But because it has a fixed structure, we only need to 
point out which areas (e.g. the complements and/or intersec-
tions) are of interest. This facilitates our discussion on the 
use of context in graph interpretation.

3 � An example where conventional 
interpretation does not work

It is often agreed that domain knowledge is important for 
a data scientist to function well, e.g. performing domain-
driven data mining and devising solutions that work in the 
real-world setting [16]. But domain expertise aside, we point 
out that graph literacy skills are also a must. This is because 
even when data are transformed into a graph, there are many 
different ways of interpreting it. Being objective and system-
atic, which, in turn, allows us to catch our inherent biases, 
is also important for avoiding judgement errors, even for 
domain experts.

To return to the example of Venns, when interpret-
ing these, it is intuitive to look at the intersections (often 
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placed in the middle of a graph) without necessarily think-
ing further, since intersections often convey what is shared, 
common and conserved. This problem is not restricted to 
Venns: in networks, the important measures of importance 
are referred to as centralities [17]. For example, the degree 
centrality is a measure of how connected a node is to others, 
thus also conveying notions of what is shared. If you want 
to see where the most highly connected nodes in a system 
are in a graph-based visualization of a network, you will 
want to place these in the middle of the graph instead of hid-
ing them in a corner. This intuitive mental scaffold, where 
middle positioning is associated with importance, is a form 
of positive-space thinking (also known as figure-ground 
reversal), but this is not always the correct way of thinking 
[18]. Let us consider the scenario below which arose from a 
biological problem we taught in class.

Biological systems are comprised of genes that operate 
as a downward cascade. Lying at the top of the cascade is 
an activator. The activator will turn on genes next in line 
to itself, forming what is effectively a sequential path. For 
example, given genes A, B, C and D, we may express their 
sequential relationship as path: A → B → C → D, where A 
is the activator. Suppose there are two possible paths p1 
(A → B → C → D) and p2 (W → X → Y → Z), where A and 
W are the activators for p1 and p2, respectively. If A is 
turned on, but not W, then we would expect genes in p1 to 
be turned on, but not those in p2. If both A and W are turned 
on, then genes in both p1 and p2 would be turned on.

Let us now consider an actual biological system: there are 
three currently known paths activated by genes IRE1, PERK 
and ATF6 that are associated with a mechanism known as 
the unfolded protein response (UPR) (Fig. 1a). IRE1, PERK 
and ATF6 are activators, and so, when turned on, each will 
turn on the path they control, respectively. Note that this 
scenario, while based on real biology, is a gross simplifica-
tion: all three paths of the UPR are activated during endo-
plasmic reticulum (ER) stress. For simplicity, let us assume 
that when turning on any of these three paths, all respective 
downstream targets of any activator are also all turned on, 
and there is no suppression of any other genes. Let us also 
assume that there is no crosstalk or convergence amongst 
these three paths.

Student S performed a series of gene knockouts (KOs) to 
produce three strains, IRE1-KO, PERK-KO and ATF6-KO. 
A knockout is a type of biological experiment where a gene 
is removed so that it no longer exists in the system. Given 
each knockout strain, we impose ER stress, thereby acti-
vating the UPR generically. Student S then analysed which 
genes are still upregulated in response to the UPR transcrip-
tional programme and then displayed the activated genes of 
the three knockout strains as a Venn diagram (Fig. 1b).

We used this scenario to identify issues with graph inter-
pretation on a group of biological science students attending 

a data science course (BS0004 Introduction to Data Sci-
ence). The first question we asked was whether region A 
(Fig. 1b) corresponds to genes controlled by IRE1. Despite 
the sample being labelled “IRE1-KO”, 2/5 student respond-
ents answered “yes” to this question (Table 1). Amongst 
students who answered “no”, which is the correct answer, 
one provided the wrong explanation, while another reported 
that the Venns were incredibly mind-boggling to interpret 
(suggesting high cognitive load despite the Venn being a 
common graphical tool).

It should be stated that the students taking this module 
are domain familiar, being biology students for a good full 
year prior to taking the data science class. They are also 
familiar with the use of Venn diagrams. (They are endemic 
in biological research.) So if domain expertise and graph 
familiarity are not the issue here, why do students exhibit 
difficulty in interpreting the graphs correctly?

One key reason is cognitive load: although Venns appear 
simple, deploying interpretative logic on these effectively 
is not straightforward once the context shifts from positive-
space to negative-space thinking. In this scenario, when cog-
nitive load is high, students tend to make errors in reasoning. 
We expect that when cognitive load goes up, data scientists 
too would become more fallible.

So what could be done?

4 � Reducing cognitive load using structured 
thinking methods

By breaking down the Venn into its constituent circles, we 
may concentrate on any pathway alone. Suppose if we just 
look at the IRE1-KO circle, we know that a knockout of the 
activator means all its downstream targets are shut down. 
This means that within the IRE1-KO circle, there can be no 
IRE1 downstream genes. By elimination, this means what 
is contained in the circle representing IRE1-KO is the set of 
genes compensated by the other two pathways.

Now that we know what each circle contains, we may 
extend the solution to two circles. Given any pair of circles, 
the intersection refers to downstream targets of the third 
pathway (Fig. 1c). Hence, the intersection between IRE1-KO 
and PERK-KO contains the downstream targets of ATF6. 
And so, in Fig. 1d, region z reports genes regulated by IRE1, 
region y includes genes regulated by PERK and region x 
includes genes regulated by ATF6.

So far, we considered the explanation for the intersec-
tions given any pair of samples. But because we have three 
separate knockout experiments, this can be represented as 
a three-circle Venn (Fig. 1d). Since there are three circles, 
this means what resides inside region v, the intersection 
of all three circles, may provide us with some interesting 
insight. Suppose if region v is empty, that is, there are no 
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upregulated genes shared amongst the three respective 
knockout strains, then it would agree with the idea that only 
three pathways exist AND there is no convergence amongst 
the three pathways. But if region v is not empty, then pos-
sible explanations as to why it is non-empty would be either 
more than three pathways exist, OR there is convergence 
amongst the three pathways. (It is also possible that there are 
genes non-specifically upregulated by other means, but for 
the purpose of discussion, we do not consider this scenario.)

If we are provided only information on the three knockout 
strains and nothing more, it will be impossible to distinguish 
between the two possible explanations as to why region v is 

not empty. In this situation, having prior knowledge outside 
of what is controlled by each of the three pathways specifi-
cally can help. The set of genes not controlled by PERK, 
ATF6 and IRE1 is found in region u (Fig. 1e). Given that if 
only three pathways are known, and there is no prior knowl-
edge of what lies outside the regulatory confines of these 
three pathways, region u will always be empty. But suppose 
if we are able to generate additional or missing knowledge 
by activating UPR generically without PERK, IRE1 and 
ATF6, then region u is not empty. Where region u is known, 
it would now represent alternative pathways. And the inter-
section v, if still not empty, represents convergence events 

Fig. 1   Interpretation of Venn 
diagrams using negative space 
thinking. a Three individual 
pathways of the unfolded 
protein response (UPR): IRE1, 
PERK and ATF6. (The figure 
is created using BioRender.) 
Each individual pathway leads 
to activation of downstream 
genes which, in return, acti-
vates UPR. b Presented with 
this Venn diagram, we asked 
students to figure out if region 
A is controlled by IRE1. c The 
intersection of two knocked-out 
pathways would give rise to 
the set of genes that are highly 
regulated by the third pathway. 
d There are four intersections, 
V, X, Y and Z. Region X corre-
sponds to genes that are highly 
regulated by ATF6, region Y 
corresponds to genes that are 
highly regulated by PERK, 
while region Z corresponds to 
genes that are highly regulated 
by IRE1. The genes controlled 
by region V may vary depend-
ing on context. e Region U 
corresponds to the genes in the 
universal set (denoted by the 
box) that is not controlled by 
the three pathways. If we know 
the true value of U, one can 
figure out the correct value of 
region V
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amongst PERK, ATF6 and IRE1 pathways. (In actuality, 
simultaneous removal of PERK, IRE1 and ATF6 is not pos-
sible, as the cells would not be able to survive).

There is one further point: the three circles represent the 
results of three separate knockout strains done at different 
times. But when some students looked at the Venn diagram, 
especially non-biologists (when we tried the same ques-
tion set amongst students in an introductory bioinformat-
ics course), they misinterpret it as three knockouts done at 
the same time for the centre intersection and two knockouts 
done at the same time for other intersections. Under assump-
tion of simultaneous knockouts, the interpretation is quite 
different.

This example shows that if we rely naively on the struc-
ture of the Venn, we can be led astray via gut feeling and 
intuition. Instead, interpreting Venns becomes significantly 
easier (and less error prone) when the graph structure is 
broken down into individual circles first, reasoned upon, and 
iteratively built up into a final solution. This reduces the 
cognitive load required for interpretation.

The technique shown here is a demonstration of the com-
putational thinking (CT) concept of decomposition. CT is 
strongly advocated as an essential thinking skill for the new 
knowledge economy by Jeanette Wing and others [19]. It 
is not the only thinking paradigm useful to data scientists 
although we think it is very useful for developing interpre-
tive logic for graph literacy, allowing us to get more insight 
from data. And therefore, such “habits of mind” could be 
emphasized more in data science education [20].

In the final part of the proposed solution, notice that 
depending on whether the three paths converge or not, it 
changes the expectation value of v. This is a vital aspect of 
deploying context—it is not just meant for helping the data 
scientist make correct interpretations—when used correctly, 
it can also help create hypothetical models and expectation 
values that can be verified together with the graph. In other 
words, context matters greatly. In the following sections, 
we shall see how some non-domain-specific considerations 
change the way Venns should be interpreted.

5 � Context changes how Venns should be 
interpreted

5.1 � Context Problem 1: Venn diagrams hide sample 
size information

Weissgerber et al. discussed that bar charts hide critical 
information regarding sample size [14]. Since each bar in 
a bar chart essentially represents a mean or standard devia-
tion/error, sample size information can be readily hidden. 
As an aside, it should be stated here that statisticians have Ta
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recommended for years that dot charts with intervals are 
much better than bars in this particular situation.

Suppose if we have a good sample size, then it is more 
likely we would be able to get a good estimation of the popu-
lation mean. In other words, the calculated sample mean is 
a more reliable estimate. But when multiple samplings of 
vastly different sample sizes are placed next to each other, it 
makes the less reliable samplings look just as confident as 
those which are more reliable.

Unsurprisingly, this problem also exists in other com-
monly used graphs. Given two experiments A and B, and 
we wished to compare what is common amongst the set 
of differential features derived from each of these experi-
ments, respectively. The sample sizes of datasets A and B are 
1000 and 100, respectively. Assuming no other confounding 
issues, then A has greater power than B. Let us also assume 

that the false-discovery rates for A and B are negligible. If 
we took the intersection between A and B, then the findings 
are essentially limited by the power of the smaller experi-
ment (which is B) (Fig. 2a) (see Box 1 for what intersections 
mean in terms of reliability rates). Suppose A reports 1000 
features (and they are all correct) and B reports 100 fea-
tures (and they are also all correct), then the intersection is 
capped at 100 features. Nine hundred relevant and important 
features are omitted not because they are irrelevant, but due 
to unequally powered experiments. What should be done in 
this case, is to take the union of both experiments, instead 
of merely focusing on the intersection.

As with bar charts and other simple graph forms, it is not 
customary to include sample size information on the Venn 
circles themselves. Instead, each experiment is represented 
by an independent circle, usually of the same size relative 

Fig. 2   Interpretation of Venn diagrams with differing class effects. 
a Two sets, A and B, are shown here with varying sample sizes and 
no other confounding factors. False-discovery rates are assumed to 
be negligible. Following the traditional method of taking only the 
intersection between sets A and B, there would be 900 other posi-
tive results that are not taken into account due to the smaller sample 
size of set B. b Two scenarios shown here have the same power of 
0.9 and alpha of 0.05 with differing class-effect proportions (or CEP; 
this is defined as the proportion of correlated variables amongst all 
measured variables, with outcome of interest). In scenario A, when 
the machine learner predicts on a dataset with high CEP (90%), 180 
would be predicted as true and 20 false. The following branch splits 
the predictions into true positives (TP), false negatives (FN), false 
positives (FP) and true negatives (TN). Power works on the positive 

space, while alpha works on the negative space. With a power of 0.9, 
180 positive predictions would split into 162 TP and 18 FN, and an 
alpha of 0.05 would split 20 negative predictions to 1 FP and 19 TN. 
In scenario B, low CEP (10%) would split a sample size of 200 into 
20 positive predictions and 180 negative predictions. With the same 
power and alpha, 20 positive predictions would further split into 18 
TP and 2 FN and 180 negative predictions would split into 9 FP and 
171 TN. c When two simulated datasets of high CEP are compared, 
the traditional method of taking only the intersection would lead to 
many but not all correct predictions. Hence, taking the union of both 
sets as seen in the figure would be better. (d) Conversely, when two 
simulated datasets of low CEP are compared, due to the large nega-
tive space, the traditional method of taking intersections is recom-
mended
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to other experiments. And so, when interpreting the Venn, 
it is important to know necessary background information. 
Otherwise, it can lead to poor analytical choices.

5.2 � Context Problem 2: Class‑effect proportion

Class-effect proportion (CEP) is the percentage of corre-
lated-with-class variables in a dataset. Examples of high 
CEP include dysregulated genes in cancer, where 80% of 
genes could be correlated with the cancer phenotype [21] 
or gender wage imbalance, where one gender is always paid 
higher irrespective of profession.

CEPs are important as they directly affect false-discovery 
rates (FDR) and therefore the overall reliability of the study. 
To understand how this happens, let us look at two scenarios 
A and B involving 200 samples. In A, there is high CEP 
(90%) and in B, there is low CEP (10%) (Fig. 2b). Let us also 
assume we have a power of 90% and a type I error rate of 
5%. In A, given 200 samples, where 180 are positive and 20 
are negative. Since power is 90%, of the 180 positives, 162 
would be reported as true positives, leaving 18 false nega-
tives (positive but unreported). Amongst the 20 negatives, 
given a type I error rate of 5%, we will get 1 false positive 
and 19 true negatives. Since FDR is the proportion of false 
positives over all positive predictions made. This gives us 1 
over 1 plus 162, which leaves us with a very small number, 
at 0.006. This suggests most predictions are reliable. And 
so, when comparing two experiments involving high CEPs, 
taking the union makes more sense (Fig. 2c).

In scenario B, given 200 samples, where 20 are positive 
and 180 negative. Since power is 90%, of the 20 positives, 18 
will be reported as true positives, leaving 2 false negatives 
(positive but unreported). Amongst the 180 negatives, given 
a type I error rate of 5%, 9 will be reported as false positives, 
whereas 171 will be left alone as true negatives. The FDR in 
this case is 9 over 9 plus 18, which is one-third or ~ 33.3%.

When CEP is low, it also means that we expect many false 
positives. And so, when comparing experiments involving 
low CEPs, this approach of looking at the intersection makes 
sense (Fig. 2d).

Given these two simple scenarios, it becomes clear that 
while we may be inclined to delve straight into the inter-
secting areas of the Venn, this is not always meaningful. It 
makes sense to consider the context (be it different CEP or 

sample sizes) carefully first, before deciding how to interpret 
the graph.

6 � Graphs and cognitive load

Earlier, we discussed how a reversal from positive to nega-
tive space thinking imposes high cognitive load, and leads 
towards error in judgement. Graphs are meant to help scaf-
fold our thinking process, and when it becomes unnecessar-
ily complex, alternatives should be sought.

Graphs are imperfect tools, and we need to understand 
their limitations well. For example, Venns must show all 
possible intersecting spaces amongst samples, even if some 
of these spaces are empty. They are also usually not drawn to 
scale, and so, the extent of the overlaps between circles is not 
directly correlated with how close two samples are. While 
there have been attempts to create Venns where overlaps do 
correlate with closeness [22], this is not ideal: the human 
eye is poor at perceiving areas and volumes accurately (it 
is also for the same reason why graph visualization experts 
eschew pie charts) [6].

Once Venns extend beyond four samples, the structure 
becomes quite complex (Fig. 3). The odd shapes make it dif-
ficult to find the regions of interest and keeping track of what 
has already been considered before. And so, when extending 
beyond four samples, interpreting the graph imposes high 
cognitive load. This is not to say that when n > 4, Venns are 
uninterpretable. It is just that the effort required to do so 
has little returns on investment, while the chance of error or 
missing out critical information is high.

In such instances, it is important for the data scientist to 
be aware of reasonable visualization alternatives, i.e. possess 
good graph literacy skills [6]. In the case of Venns, mosaic 
and UpSet plots could be used instead [23].

7 � Implications for the data science 
community

Data science education is work-in-progress [24, 25]. But 
even with the advent of powerful ML and AI technologies, 
these are merely tools and are only as good as the quality of 
the data scientist [13].

Box 1   Intersections in terms of reliability rates

False-discovery rate (FDR) is the proportion of type I error, or proportion of false positives amongst all rejected null hypothesis. The 
higher the FDR, the higher the probability for the test statistics to exhibit a type I error. FDR is important for visualization of Venn dia-
grams because each set is a visualization of FDR components, the false positives and true positives. When we compare two datasets with 
different FDRs, keeping all else equal, the probability that the intersection is true positive is 1 minus the product of the two FDRs. FDR is 
also sensitive to the proportion of true features within data.

Looking at scenario B (Fig. 2d), two datasets have a high FDR rate of 0.33. The probability that the intersection would be a true positive is 
1 − (0.33) (0.33) = 0.8911. This is a much higher true-positive rate than the 0.67 of a single dataset
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Furthermore, the data science field is also rapidly finding 
its own footing regarding logical and interpretative issues 
in commonly associated areas. There are a great number 
of conflicting issues regarding explainability and interpre-
tive issues in AI and ML [2, 26]. There are also differing 
perspectives on how to use ML to decipher actionable rules 
[27], and interpretive errors due to a lack of understanding 
of the limitations of mainstream benchmarks such as the 
ROC curve [28] and prediction accuracy work [29]. Despite 
the heterogeneity and disparity of these issues, the takeaway 
is often that solutions needs to be context aware [30] and 
domain driven [31]. In other words, customize solutions that 

take into account the various idiosyncrasies of the problem, 
instead of proffering a cookie cutter approach.

But just as the data science field recognizes the impor-
tance of context and domains in crafting customized solu-
tions in the AI and ML applications, these only form part 
of the data science process. Before data can be used for 
modelling, its relevance and cleanliness must be taken into 
account [32]. These tasks fall to the discerning data scien-
tist. The Anscombe’s quartet, and other recent examples, 
has taught us not to trust summary statistics but to use our 
eyes to check and understand data in the form of graphs 
[8]. However, a blithe interpretation of the graphs in terms 

Fig. 3   Complexity of Venn diagrams. When the number of sets 
increases, Venn diagrams become increasingly more complex and 
harder to interpret. As the number of sets increases from 4 to 7, the 
number of intersections increases, making it incredibly hard to find 

specific intersections between sets other than the intersection which 
all sets are involved in  (the Venn diagrams were made using the R 
package venn)
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of sheer distributions is not enough. For any given graph, 
there are different ways of drawing inferences. The Venn 
examples discussed here show that context and domain are 
not just the bailiwick of ML and AI, they are also influential 
in determining how a graph should be interpreted.

And depending on how the graph is interpreted, this, in 
turn, influences the tasks of feature selection and feature 
engineering. This can have strong downstream consequences 
in the data modelling pipeline.

8 � Conclusion: What has Venn diagrams 
taught us about data science?

Graphs can be useful, but they can also mislead if we rely 
on raw intuition and instinct, without considering context 
properly or applying logic carefully. This has implications 
for doing good data science. We summarize our points as 
follows:

First, one should understand the context well before 
attempting to interpret a graph (especially where there 
are other, albeit less obvious, ways, to interpret the graph 
structurally). Context includes a good understanding of the 
domain (whether it is the biosciences or business) and also 
includes information pertaining to experiment parameters 
(sample size, false-discovery rate, etc.). It is important to 
realize that the structure of a graph can induce judgement 
errors: in the case of Venns, the intersections are not always 
the most interesting, depending on the context.

Next, if a graph does not work well for you, you should 
reduce your cognitive load by systematically dissecting the 
graph. While there are many ways of developing one’s criti-
cal thinking ability, we find the computational thinking con-
cept of decomposition particularly useful (we are not saying 
computational thinking must have immediate relevance for 
data science. Its relevance and co-evolution with data sci-
ence need to be further explored, with data supporting its 
essentiality for data science training) [19].

We suggest that one should never tackle a complex graph 
head on. After all, when overloading one’s cognitive abil-
ity, mistakes and errors in judgement can easily arise. You 
can break the graph down into simpler structural represen-
tations and establish a series of logical rules as you rebuild 
back upwards into the original graph. Interestingly, we note 
that decomposition is similar to the educational concept of 
instructional scaffolding.

Finally, graph literacy skills are important to any data 
scientist. Graphs are useful mental scaffolds, but they are 
only as useful as one is knowledgeable about the diversity 
and limitations of each graph type. The importance of good 
data visuals and acquiring “habits of mind” is increasingly 
recognized, especially in professional practice [10]. As 
data science develops as a field and data science educators 

deliberate on core curricula, it is important to emphasize 
graph literacy training.
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