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Abstract
Due to different expertise levels, personal preference, or fatigue from long working of the crowd workers, the data obtained
through crowdsourcing are usually unreliable. One big challenge is to obtain true information from such noisy data. Sloppiness,
which represents the phenomena of observed labels which fluctuate around the true labels, is one type of the errors that has
rarely been discussed in research. Moreover, most existing approaches try to derive truths in binary labeling tasks. In this
paper, we deal with the sloppiness in a crowd scoring task, to obtain high-quality estimated labels. Crowd scoring task consists
of ordinal and multiple labels, instead of just two labels. The worker in crowdsourcing can exhibit sloppiness, which can lead
to unreliable scoring. We show that sloppy workers with biases, who constantly give higher (or lower) answers compared
with true labels, can be effectively utilized to improve the quality of the estimated labels. To make use of the labels from
crowd workers with biased sloppy behavior, we propose an iterative two-step model to infer the true labels. The first step
identifies the biased workers and corrects the biases. The second step uses an optimization-based truth discovery framework
to derive true labels from high-quality observed labels and the corrected labels from first step. We also present a hierarchical
categorization for different types of crowdworkers. Experiments on synthetic data as well as real-world datasets are conducted
on the proposed model. The effectiveness of the proposed framework is demonstrated by comparing results with baseline
models such as majority voting and expectation maximization-based aggregating algorithm; up to 16% improvement could
be obtained for the accuracy.
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1 Introduction

The scale and diversity of data from various sources leads
to information explosion and challenge of big data in recent
years. These data are generated with wide variety, i.e., social
networks such as Twitter, Facebook, or Linkedin; business
or entertainment platforms, such as Amazon, IMDb, or Net-
flix; and many other Internet resources, such as the Massive
OpenOnline Classes (MOOCs).Many of the data processing
tasks require human intelligence, such as image label-
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ing, video annotation, natural language processing, machine
translation and product recommendation [18,28,31,38]. This
stimulates the emerge of crowdsourcing systems, which is
human-powered problem-solving methodology for collect-
ing labeled data. Crowdsourcing has been demonstrated as
an effective and important approach among others by Ama-
zon Mechanical Turk, reCAPTCHA [30], Duolingo, and the
ESP Game, etc. [29,33]. Different from traditional way of
solving problems through experts, crowdsourcing mitigates
the expensiveness of time and financial cost for large-scale
tasks. However, despite the promises, key challenge within
the crowdsourcing systems exists: quality of the collected
data is unknown and is highly noisy in many cases. This is
due to the fact of wide-ranging expertise levels of workers
and difficulty levels of tasks. To obtain high-quality labels or
answers for the crowdsourcing tasks, it is crucial to identify
the trustworthiness of the workers.

The trustworthiness defines the reliability of a worker.
In order to aggregate different answers provided by crowd
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workers, it is intrinsic to concentrate more on the reliable
workers instead of untrustworthy ones. The factors which
influence the reliability of a worker include expertise level,
personal preference, understanding of the tasks, andworker’s
interests [33]. Due to the tedious and low reward nature of
crowdsourcing tasks, errors are common even for workers
whomake an effort [18]. Ipeirotis and Gabrilovich [15] men-
tioned in their research that the monetary incentive, which
is the case in many crowdsourcing platforms, is a mixed
blessing: it might attract workers, but has the probability to
make things worse [13,14]. Similar to truth discovery tasks
[8,10,20,24,37], it is desired to discover true answers and
worker reliabilities from multiple crowd answers. Table 1
presents the definitions of truth discovery tasks and crowd-
sourcing aggregation tasks, their similarities and differences
[11].

A lot of research has been proposed to investigate the
problems of inferring true labels and user reliabilities in
crowdsourcing for binary labeling tasks [6,16,34,36]. The
real-world applications, however, are not always with just
yes or no answers. There are many sophisticated labeling
tasks with more than two choices available. Here, we focus
on ordinal crowd labeling tasks, which is also called crowd
scoring tasks, with ordinal and multiple categories of labels.
For example, grading project submissions from students in
a class could be considered as a labeling task. Assume the
scale of the labels is from 1 to 5. In this case, 4 is closer
to 5 than 2. That means, giving label 4 to a submission,
whose true label is 5, is different fromproviding label as 2. To
obtain the true labels and worker reliability, a vast variety of
techniques have been proposed on the basis of principle that
reliable workers tend to provide true labels, and truth should
be reported by many reliable workers [22]. Most of the exist-
ing approaches measures worker reliabilities according to
their accuracy (e.g., inverse of variance [5]). The labels from
more reliable workers contribute more to truth computation.
However, these types of methodologies ignore one group of
workers: highly biased and hence inaccurate workers. Biased
workers are referred to those who constantly provide higher
(or lower) label values comparedwith true labels. In addition,
the labels obtained from the biased workers have the some
patterns which could be used to extract useful information.
As an example, assume the true labels for a set of itemswhich
need to be labeled are {3, 3, 3, 3, 3, 3}. We obtained labels
for this set of items from two different workers. w1 as one of
them provides corresponding labels as {3, 3, 3, 3, 3, 2}. w2
as the other one offers {2, 2, 2, 2, 2, 3}. Although w1 pro-
vides higher-quality labels in this case, w2 actually offers
equal amount of information as w1. In this case, the pattern
shown in labels from w1 is 1 scale higher than true labels in
most of the observed data. By correcting the labels provided
byw2 through adding 1, the accuracy ofw2 equals tow1. As
what Passonneau and Carpenter [23] proposed in their work,

a highly biased and hence inaccurate annotator can provide
as much information as a more accurate annotator.

This type of highly biased workers belongs to the crowd
group which we call workers with sloppy behaviors. The
term sloppy is based on the work of [32], which describes a
worker who “views the question and data, but maybe insuf-
ficiently precise in their judgments” as sloppy worker. The
similar definitions could also be found in [19]. Sloppiness is
the phenomena of observed labels fluctuating around the true
labels. The fluctuation could be caused by personal prefer-
ence, misleading task description, or just fatigue after long
time working, etc. Different from the spam labels, which
are labels independent from truths and provide no useful
information [23,25], the labels with sloppiness could still be
utilized in the process of inferring the truth. A lot of research
has been done to recognize or filter the spam/useless labels
provided by crowd workers. As an example, the answers
which are randomly generated by workers are one type of
spam labels. In contrast, we found few discussions about the
sloppiness within the crowd. Our goal in this research is to
identify the workers with sloppy behaviors, especially the
highly biased workers, and extract useful information from
biased labels in order to get estimated labels as close as pos-
sible to the true labels. The true labels, which are also called
as gold truths, are defined as the labels provided by experts in
our research. It is, however, not reasonable to always have the
gold truths available. For example, in a relevance judgment
task, which requires to rate the relevance of (query, URL)
pairs, there might be millions of pairs need to be rated. It
would be too expensive and time-consuming to hire experts
to sit down and do all the judgments in order to get the gold
truths. With the absence of the gold truths, it is challenging
to distinguish different behaviors of workers and thus diffi-
cult to infer truths from the observed labels. For example,
when the true grade is known for a student submission in a
class is A, on a scale of {A, B,C, D, F}. It is easy to justify
a grader is “reliable” or not by just comparing the observed
grade with the true grade. A reliable worker is defined as
“Performs the tasks as requested. Reads the question and
data and judges sufficiently precise” [32]. However, without
knowing the true grade (in this case, assume true grade A
is unknown), we could not simply claim whether a worker
provides high-quality grades or not.

To deal with the problem of unavailability of true labels,
as well as making use of the labels provided by crowd
workers with biased sloppy behavior, we propose the iter-
ative self-correcting truth discovery algorithm to infer the
true labels and worker reliability from the crowd data. The
approach (a) effectively identifies the biased workers: a bias
score is calculated for each worker, in order to determine
whether he/she belongs to biased worker group; (b) correct-
ing the labels obtained from biased workers: according to
the identified bias pattern, we de-bias the observed labels.
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Table 1 Truth discovery and crowdsourcing aggregation: definitions, similarities, and differences [11]

Truth discovery Crowdsourcing aggregation

Definition Integrates multi-source noisy information by estimating the
reliability of each source

Aggregate noisy answers contributed by
crowd workers to obtain the correct answers

Similarities 1. Both are trying to find trustworthy and accurate information from
multiple sources

2. Their goals are to improve the quality of aggregation results

3. They have similar principles: reliable sources (workers) tend to provide
high-quality information; sources are reliable if they provide accurate
information

4. Techniques used are similar, and ground truth is usually unavailable in
both cases

Differences Passive: data are already generated, and it is available when we
find it

Active: user is able to choose what and how
much data to generate

Data crawled from online Web or collected from databases
might have various types and may change dynamically

More information might be accessed on the
source features, such as workers’ location,
accuracy on historical tasks, and education
background

Bias pattern is recognized as the behavioral feature of the
workers. For example, the positive (or negative) bias pat-
tern discussed in our work indicates the feature of worker
providing labels constantly higher (or constantly lower for
negative pattern) than the truths; and (c) utilizing the truth
discovery framework to iteratively update the truths and
worker reliabilities. Here, the computed worker reliability
is obtained after removing the bias, which reflects the actual
information a worker could provide. The reliabilities are uti-
lized to weight the labels provided by each worker to obtain
estimated true labels. More reliable workers are assigned
with higher weight. Experiments on synthetic and real-world
datasets showed the effectiveness of the proposed methodol-
ogy. At the same time, we also implemented some prevalent
and state-of-the-art approaches for aggregating labels from
crowdsourcing. The results of the proposed method are com-
pared with outcome of these approaches.

There are several contributions of our work, and they are
presented as follows:

(1) Different from many researches which focus on binary
labeling problems, we highlight obtaining high-quality
estimated true labels from the crowdsourced ordinal
labeling tasks. Crowdsourcing researches usually tar-
geted on simple problems such as choosing either 0 or 1
in a task. It is not always the case in real world. We con-
centrate onmore complicated tasks with ordinal labeling.
This type of task is much more like a scoring problem in
which answers are chosen from a scale which consists of
multiple ordinal labels.

(2) A hierarchical categorization of the crowd workers is
introduced. The workers provide biased noisy labels are

separated from reliableworkers and theworkerswho pro-
vide useless labels.

(3) We propose an efficient method to recognize the biased
sloppy workers. Due to the sparsity nature of crowd-
sourced data, we estimate the worker biases through
calculating their expected error rate.

(4) We propose truth discovery-based approach to infer
truths fromboth reliableworkers and the corrected biased
workers. Gold truth is not required to compute the esti-
mated labels and worker reliabilities in our methodology.

The paper is organized as follows: Sect. 2 gives the discussion
of related work. Section 3 describes the proposed method-
ology for recognizing highly biased workers and inferring
true labels. Section 4 shows the experimental results for pro-
posed approach and other prevalent methods for aggregating
crowd labels. In Sect. 5 we draw the conclusions and present
the future work.

2 Related work

Relevantwork on aggregating crowd labels has been reported
by other research [4,7,9,26,35,40]. The simplest aggregating
method is majority voting (MV). MV assumes high-quality
workers are majority among the crowd and they work inde-
pendently from each other. It assigns the same weight to all
the workers and then updates the truths. ZenCrowd [7] was
proposed by Demartini, Difallah, and Cudr-Mauroux. It was
an extension of MV, which weight the workers’ answers by
their corresponding reliability. The approach uses expecta-
tion maximization (EM) to simultaneously estimate the true
labels andworker reliability.Dawid andSkene’s [7] approach
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models a confusion matrix for each worker, as well as the
class prior. They proposed to use EM to estimate true labels,
confusion matrix, and the prior in their work. Snow et al.
[28] utilize a similar model for human linguistic annota-
tion. They consider the fully supervised case of machine
learning estimation. Whitehill et al. [35] proposed GLAD,
which stands for Generative model of Labels, Abilities, and
Difficulties, to simultaneously infer the expertise of each
worker, the difficulty of each item, and the most probable
label of each item. Raykar et al. [26] use a Bayesian approach
to add worker-specific priors for each class. Their algo-
rithm evaluates the different experts and gives an estimate
of the actual hidden labels by using an automatic classifier.
Raykar’s approach requires the feature representation of the
items, however, which is not always available. If such fea-
ture representation does not exist, the method falls back to
maximum-a-posteriori (MAP) estimation. Zhou et al. [40]
utilize aminimax entropy principle to estimate the true labels
from the crowd answers. Their method assumes that labels
are generated by a probability distribution overworker, items,
and labels. By minimizing the Kullback-Leibler (KL) diver-
gence between the probability and unknown truth, they infer
the item confusability and worker expertise. Zhou’s method
is a natural extension to Dawid and Skene’s work [4], and
the essential difference is that theminimax entropy takes into
account item confusability, in addition to worker expertise.
Ertekin et al. [9] present an algorithm called “CrowdSense”
thatworks in an online fashion to dynamically sample subsets
of workers based on exploration/exploitation criterion. The
algorithm produces a weighted combination of the subset of
workers’ votes to approximate the crowd’s opinion.

All the work mentioned above belong to either itera-
tive methods or probabilistic graphical model (PGM)-based
methods to infer the true labels. As an example, MV and
“CrowdSense” are iterative methods. MV approach is a
special case of iterative weighted voting algorithm, where
weights of workers are identical, and thus only one iteration
is required. The remaining presented algorithms are PGM-
based methods. Li et al. [21] provided a survey on these
methods in their work. Here is a summary of the iterative
aggregating algorithms: in iterative methods, truth computa-
tion step and weight estimation step are iteratively conducted
until convergence. In truth computation step, truths are
inferred, while worker weights are assumed to be fixed. In
weight estimation step, the workers’ weights are updated
based on the current estimated truths. PGM models, how-
ever, incorporate the principle of truth discovery: if a worker
provides trustworthy labels frequently, he will be assigned a
high reliability; if a label is provided by a reliable worker, it
will have higher probability to be chosen as truth. The corre-
sponding likelihood of a PGMmodel is presented in formula
(1).

∏

s∈S
p(ωs |β)

∏

o∈∅

(p(v∗
o |α)

∏

s∈S
p(vso|v∗

o , ωs)) (1)

where vso is the labels provided by the worker s for item
o, v∗

o is the true label for the item, and ωs is the worker’s
weight. α and β are the hyperparameters correlated to the
truth and worker reliability. The graphical representation of
the general model is shown in Fig. 1. To infer the hidden true
labels and worker weights, techniques such as expectation
maximization (EM) and Gibbs sampling could be adopted.

In addition to the inference and PGMmodels, another type
of algorithm that could be utilized to generate truths from
crowd answers—optimization-based truth discovery meth-
ods [1,20,22]. This type of approach captures the true labels
by solving the optimization problem, which is in the follow-
ing formulation:

argmin
{ωs },{v∗

o }

∑

s∈S
ωs

∑

o∈∅

d(vso, v
∗
o) (2)

where d(·) is the loss/distance function between the crowd
answer and identified truth. ByminimizingEq. (2), the aggre-
gated results (v∗

o ) will be closer to answers from workers
with higher weights. Meng et al. [22] proposed an effec-
tive optimization-based truth discovery framework to infer
the truths for crowd sensing of correlated entities. Aydin
et al. [1] investigate a novel weighted aggregation method
to improve accuracy of crowdsourced answers for multiple-
choice questions. They deploy the optimization-based truth
discovery algorithm, as well as the lightweight machining
learning (ML) techniques for building more accurate crowd-
sourced question answering systems. Li et al. [20] propose to
identify the true information among multiple sources of data
by using an optimization framework. Their model treats the
truths and source reliability as unknownvariables. The objec-
tive is to minimize the overall weighted deviation between
truths and observations. They also discussed different types
of loss functions which could be incorporated into the frame-
work.

Fig. 1 The general probabilistic graphical (PGM) model [21]
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As stated in [21], there are differences between the three
types of aggregation or truth discovery methodologies; how-
ever, we do not claim that one of them is better than another.
It is, however, possible to see the advantages of different
approaches in various cases. Li et al. [20] proved superi-
ority of the optimization-based methods in their work by
comparing the results of the proposed framework with some
Bayesian analysis-based approaches, on heterogeneous data.
In terms of interpretability, iterative methods are easier to
understand than others. PGMmodels and optimization-based
approaches could take into account the prior knowledge
about true labels and workers compared to iterative algo-
rithms. We utilized an optimization-based framework in our
research since it is easier for us to correct the highly biased
crowd workers in coordinate descent process. In addition, it
will be easier to extend to multiple data type cases in the
future, such as crowd answers contain both numerical and
categorical ordinal data.

Much of the literature has accounted for the labeler bias
[6,16,26,28,33,34,36]. As Wauthier and Jordan [33] stated,
the data collected from crowdsourcing services is often
very noisy: unhelpful labelers may provide wrong or biased
answers which may greatly degrade the learning algorithms.
Bias may be caused by personal preference, systematic
misunderstanding of the labeling task, lack of interest, or
malicious intents. When the levels of bias are low, some
of the consensus or aggregating algorithms could still work
well, but could become unreliable when the quality of work-
ers varies greatly [27]. For example, when the existence of
extreme biased workers in a binary labeling task, the EM
model proposed by Dawid and Skene [4] is able to flip the
labels to achieve higher accuracy. However, if too many of
the workers are highly biased, the model cannot separate the
noise from the true labels [23].

Snow et al. [28] proposed a multinomial model similar
to Naive Bayes for modeling labels and workers. They esti-
mate the worker quality in a Bayesian setting by comparing
with the gold standard and apply the weighted voting rule
which give highly biased workers negative votes. In this
way, they correct the bias in categorical data. Wauthier and
Jordan [33] presented Bayesian bias mitigation for crowd-
sourcing (BBMC), a Bayesian model to capture the sources
of bias by describingworkers as influenced by shared random
effects. These effects are also known as the latent features
which depict the preferences of the workers. Raykar et al.
[26] utilized a Bayesian approach to capture the mislabeling
probabilities by assigning latent variables to workers. Ipeiro-
tis et al. [16] proposed to separate error and bias for the
workers. They pointed out that a biased worker is still more
useful than a worker who reports labels at random. Dekel
and Shamir [6] presented a two-step process to pruning the
low-quality worker in a crowd. They first remove the workers
by how far they disagree with the estimated true label, and

then they reuse the cleaned dataset to build the model. Yan
et al. [36] employed a coin flip observation model to learn
the worker bias and then optimally selecting new training
points and workers. Welinder et al. [34] modeled the worker
in an image labeling process as a multidimensional entity
with variables representing competence, expertise, and bias.
Their work generalizes and extends the research of [35] by
introducing worker bias. The authors in [17] introduced and
evaluated probabilistic models that can detect and correct
task-dependent bias automatically. Zhang et al. [39] proposed
an adaptive weighted majority voting (AWMV) algorithm to
handle the issue of biased labeling. Their work is based on
the statistical difference between the labeling qualities of the
two classes.

Most of the researchmentioned above assume that the task
is binary labeling. Although many of them claim it could be
generalized to more than two labels, it is difficult and have
high computational complexity. Some of the work tackles
the bias workers; however, they did not really separate the
biased ones from the spam workers, those who randomly
select labels for items. The authors in [23] give discussions
about the features of the biased annotators. They, however,
solely utilized expectation maximization (EM)-based prob-
abilistic model for a word sense annotation task as a case
study. They do not handle the biased labeling in [23]. The
model proposed by Snow et al. [28] requires the gold truths
to be compared to observed labels in order to recognize biased
workers. In [16], the methodology would work only if each
worker provides at least a specified number (20 to 30) of
labels, which is difficult to fulfill in many cases. The BBMC
model proposed by Wauthier and Jordan [33] captures the
sources of labeler bias through shared random effects. Differ-
ent from their work, we take into account of the overall effect
of the bias to obtain high-quality estimated labels. In thework
of [17], task-specific bias, such as confusing a specific class
with another, is captured by utilizing the task features. Our
work, however, accounts for the biases of workers through
the observed labels. In other words, we do not rely on the
features of the labeling task to account for biases. In [39],
the authors adaptedmajority voting algorithm to consider the
bias ofworker through bias rate in a binary labeling task. This
paper, unlike [39], proposed an approach to model biases on
an optimization-based truth discovery framework for ordinal
labeling tasks. The authors in [34]modeled the label assigned
by a worker according to a linear classifier. The classifier is
parameterized by a direction and a bias parameter, and the
model is developed under the assumption that the labels are
binary. In contrast, our work deals with theworker separation
problems in a labeling task with multivalued ordinal labels.
Instead of the workers without information offered in the
labels, we focus on correcting the biased workers to improve
the quality of the estimated truths.
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3 Methodology

In this section, we explain the framework of the iterative
self-correcting truth discovery model, which recognizes the
highly biased workers, and computes the truth and weights
from the bias-corrected workers. The model consists of two
steps: (1) bias correcting: compute a bias score for each crowd
worker, and according to the score, determine whether the
worker belongs to the highly biased group. If he/she is highly
biased, de-bias theworker. (2) Truth discovery: formulate the
truth computation problemas an optimization problemwhich
models the truths as weighted voting of the biased corrected
labels from step 1. We also give discussion that the model
could be easily generalized to numerical labeling tasks.

3.1 Problem formulation

We give detailed description of the problem which we will
solve in our work, and then the proposed framework will
be presented. Before giving definition of the problem, we
introduce the different types of workers in a labeling task to
give better understanding of the worker behaviors.

3.1.1 Background

There are two general types of workers: reliable workers and
unreliable workers. Reliable workers are ones who would
be able to provide high-quality labels. The definition of this
type of worker is similar to the concept of “proper worker”
from [29]: theworkerwhich “performs the tasks as requested.
Reads the question and data and judges sufficiently precise.”
Unreliable workers, however, give labels which would have
an uncontrolled effect, or even negative influences on obtain-
ing truths, by utilizing learning/aggregating algorithms. We
use the term “noisy worker” in our work to represent unre-
liable workers, due to the fact that the labels provided by
this type of workers are highly noisy. Based on the differ-
ent behavior patterns of the noisy workers, many researches
have been proposed to categorize these workers. For exam-
ple,Vurrens et al. [32] categorized noisyworkers into random
spammer, uniform spammer, and sloppy worker; Kazai et al.
[19] defined a topology of noisy workers as sloppy work-
ers, incompetent workers, and spammers; and Passonneau
andCarpenter [23] proposed spamannotators, biased annota-
tors, and adversarial annotators. Although different literature
gives different names or definitions, the categories of noisy
workers could be generalized into two different groups:

(i) Spam workers This type of workers provides useless
labels, which means not so much information could
be extracted and utilized for the aggregating process.
Instead, they would greatly degrade the estimated true
labels. For example, random spammers and uniform

spammers in [32], spammers in [19], and spam anno-
tators in [23] all belong to this group of worker.

(ii) Useful low-quality workers (sloppy workers) This type
of workers is very special. They provide low-quality
labels, but after processing the labels, we could obtain
high-quality results. For example, in a binary labeling
task, flipping a worker’s provided labels, whose accu-
racy is 0.3, could result 0.7 accuracy on the flipped labels.
The adversarial annotators, which is also extreme biased
workers,mentioned in [23] falls into this group ofworker.
The sloppy workers and incompetent workers presented
in [19] also belong to this category, according to their
definitions. For the easier reference, we call this type of
workers as sloppyworkers.Ourwork concentrates to deal
with sloppy workers in this research.

We give visual presentation between reliable workers and
noisy workers in Fig. 2. The x-axis denotes the deviation
between the observed labels fromworkers and the true labels,
and the y-axis is the probability of the deviation. In Fig. 2, the
reliableworker showed higher accuracy comparedwith noisy
workers. A perfect worker would have probability as 1 at the
point of deviation = 0. Four different examples of noisy
workers were presented. Among them, “noisy worker_1,”
“noisy worker_2,” and “noisy worker_3” are the spam work-
ers, in which they do not provide useful information in the
labels. For example, the “noisy worker_1” has low accuracy,
and errs on both sides of deviations. The distribution of the
deviations spreads over the x-axis. While “noisy worker_2”
mainly has random errors toward the right side (positive) of
the deviations. The “noisy worker_3,” however, tends to give
random labels which lead to negative deviations. The “noisy
worker_4” in the figure belongs to the sloppy worker group.
Similar to spam workers, sloppy worker has low accuracy.
Unlike spam workers, sloppy worker does not give random
labels. In Fig. 2, the sloppy worker provides labels close
enough to truths.

It is much easier to distinguish between the spam workers
and sloppy workers in a binary labeling task. This is due

Fig. 2 Illustration of reliable workers and noisy workers
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to the nature that the accuracy decision threshold of spam
worker is fixed, which is 0.5, for binary labeling tasks [27].
As an example, if worker’s accuracy is higher than 0.5, the
worker could be classified as a reliable or good worker. If
a worker’s accuracy is less than 0.5, by flipping the labels
he/she provided, we could still get acceptable results. Only
when the probabilities of choosing one of the two labels are
equal, the worker is considered as a spammer. In real-world
applications, the scale of the labels actually entails more than
two levels. As an example, a student’s test grade is not always
only fail or pass; the scale is usually like “A, B, C, D, F .” In
this case, the threshold 0.5 is no longer applicable due to the
fact that we cannot just simply flip the labels. To make use
of the labels from sloppy workers, we need to come up with
a different strategy.

Since the accuracy measure could not be used to sep-
arate sloppy workers from spam workers, we investigate
one important attribute discovered by Dawid and Skene [4].
According to the research in [4], mostly, even though reliable
workers make errors, their error will be on the diagonal of the
true labels. As an example, Table 2(a) presents the confusion
matrix of a reliable worker. Instead of giving the results as
the number of instances, the matrix shows the ratio of differ-
ent observed labels regarding true labels. The italic emphasis
gives accuracies based on truths, such as 0.7 in the cell with
True Labels as “A” and Observed Labels as “A” is calculated
as:

AccA = Pr(obsLabels = A|tLabels = A)

= |esA|
| tsA|

(3)

Table 2 Examples of confusion matrix of workers

Observed labels A B C D F

(a)Diagonal o f correct labels f or reliableworkers [4]

True labels

A 0.70 0.30 0.00 0.00 0.00

B 0.30 0.60 0.10 0.00 0.00

C 0.00 0.00 0.80 0.20 0.00

D 0.00 0.00 0.40 0.50 0.10

F 0.00 0.00 0.00 0.30 0.70

(b)Diagonal o f correct labels f or sloppy workers

True labels

A 0.40 0.60 0.00 0.00 0.00

B 0.10 0.20 0.70 0.00 0.00

C 0.00 0.10 0.30 0.60 0.00

D 0.00 0.00 0.00 0.20 0.80

F 0.00 0.00 0.00 0.50 0.50

where “obsLabels” is the observed answers from workers,
and “tLabels” represents the true labels. The tsA is a set with
all the tasks have true labels as “A,” and esA ⊆ tsA, which
contains the tasks with observed labels as “A.” It could also
be interpreted as: if the task has true label as “A,” the worker
has the possibility of 0.7 to provide the correct label (“A”) to
this task. Similarly, the cell (A, B) gives the possibility of the
worker provide grade “B” for a task with true grade as “A.”
As indicated in Table 2(a), the worker only errs one scale up
or down from the true labels. As an example, when the true
label is “B,” although the worker might make error, he/she
only shows possibility> 0 of labeling the task as “A” or “C.”
The possibility of observed grade as “D” or “F” is 0.

However, let us investigate another example of worker
w′s confusion matrix as shown in Table 2(b). Comparing
the confusion matrix of reliable worker in Table 2(a), it
could be seen that w in Table 2(b) provides lower-quality
labels. However, the same as shown in 2(a),w also presented
the diagonal of correct labels attribute. After combining the
characteristics of different types of workers and the dis-
covery, we give a detailed definition for sloppy worker in
our work: sloppy workers have lower accuracy than reliable
workers; at the same time, they are like reliable workers:
they only err on the diagonal of the true labels. The “noisy
worker_4” in Fig. 2 showed the interesting fact that the devi-
ations are chosen from {0,− 1,+1}. “Err on the diagonal”
in this example indicates the worker makes error either as
+ 1 or as− 1. For different real-world applications, the diag-
onal attribute might be as: errors/deviations can be selected
from [−a,+a] instead of just+ 1 or− 1. For example, while
grading a student’s homework from class, a reliable worker
might make errors between [− 5,+ 5] on a grading scale
from 0 to 100. We call the [−a,+a] as the fault tolerance
range. That means, if a worker only errs on this range, he/she
did have the “diagonal attribute.” The following example
gives an intrinsic motivation of defining the range for sloppy
workers: assume a multivalued ordinal labeling task, and the
possible label set is {1, 2, 3, 4, 5}. There are 10 items need
to be labeled, with truths as [2, 3, 3, 4, 3, 2, 3, 5, 4, 3]. Sup-
pose two workers w1 and w2 worked on the task. The labels
provided byw1 as [3, 4, 4, 5, 4, 3, 3, 5, 5, 4], and labels from
w2 are [5, 5, 5, 5, 5, 5, 5, 5, 5, 5]. Both of the workers in the
example have low accuracies w1 = w2 = 0.2. In addition,
both of them tend to have positive deviations for most of their
labels compared to truths. The amount of information, how-
ever, provided by w1 and w2 is different. By correcting the
labels of w1 through subtracting 1, accuracy as 0.9 could be
obtained, while w2’ s labels offer no information regarding
approximating the truths. From the example, we could see
that by defining the fault tolerance range, it would be possi-
ble to utilize the labels from w1, while removing w2 as spam
worker.
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To determine the value for a, which is used in the fault
tolerance range, here are some guidelines:

(1) As discussed above, we constrain the deviation range
of sloppy worker under acceptable range, which is sim-
ilar to reliable workers. One way to choose a would
be applying binary division heuristic approach to decide
the value. Here is howbinary division heuristic approach
could be conducted. Assume the possible ordinal label
set as L .

(a) First set a0 = |L|/2, where |L| is the total number of
possible ordinal labels. Calculate the estimated truths
and selected performancemetrics such as accuracy or
F measure, by utilizing the setting of a.

(b) Then set a1 = a0/2, calculate the estimated truths
and performance metrics using a1.

(c) Set a0 equal to a1. Keep repeating (b) step until there
is no significant difference between the calculated
metrics.

(2) For multivalued ordinal labeling tasks, usually the pos-
sible labels would be less than 10 in real-world applica-
tions, and the typical value chosen for a would be 1 as
illustrated in our work.

(3) Another way to decide a in some cases is to request an
expert to define the value regarding the task. For exam-
ple, while labeling side effect level of a new type of
medicine, a doctor who is highly skilled in similar med-
ical domain should be defining the value of a.

For the purpose of easier explanation and experimentation,
we set a just as 1 in the context of the paper.

The curve shown in Fig. 2 indicates a sloppy worker with
the error (deviation from true labels) perfectly evenly dis-
tributed between − 1 and 1. That means, the probability of
worker gives error as − 1 is exactly the same as the prob-
ability error as 1. We call this type of worker as perfectly
erred sloppy worker. As an example, a perfectly erred sloppy
worker j might have probability of 0.6 giving label the same
as the true label, 0.2 for having deviation as + 1, and 0.2 for
giving deviation as − 1. It is not necessary that every sloppy
worker be perfectly erred. In most cases, the probability of
sloppy worker showing error as − 1 is not equal to proba-
bility of error as 1. For example, the possibility of deviation
as − 1 could be greater than probability of deviation of + 1.
Figure 3 presents examples for this type of sloppy workers.
The curve as “sloppy worker_1” gives higher probability for
deviation as 1 than − 1, and “sloppy worker_− 1” shows the
worker tends to have deviation as − 1 more than as 1. We
could further divide the unevenly erred sloppy workers as
follows:

Fig. 3 Examples of biased sloppy workers

(1) Randomly erred sloppy worker This type of sloppy
workers might have probability of giving deviation on
one side slightly more than the other. For example, a
worker j has the probability of 0.4 for providing label
the same as the true label, 0.4 for having deviation as
+ 1, and 0.2 for deviation as− 1. Randomly erred sloppy
workers are quite similar to perfectly erred sloppy work-
ers as to the amount of information they could provide.
Thus in our experimentation section, we only give the
results of the influence of perfectly erred sloppy work-
ers on different models, such as majority voting, GLAD
algorithm, optimization-based truth discovery method,
etc.
In our work, The randomly erred and perfectly erred
sloppy workers are not removed while applying aggre-
gating algorithms. One reason is that both of their errors
are within the fault tolerance range [−a,+a]; thus, they
do not affect the estimated truthsmuch. In addition, their
weights in aggregating algorithms would be much lower
compared to weights of reliable workers and corrected
biased sloppy workers. Overall, the labels of randomly
and perfectly erred sloppy workers would have small
influence on approximating the truths.

(2) Biased sloppy worker Different from randomly erred
sloppy workers, we are able to extract useful infor-
mation from the biased sloppy workers. This type of
sloppy workers is the same as the highly biased annota-
tor mentioned in [23]. Our proposed algorithm focuses
on identifying the biased sloppy workers. The reasons
we do not deal with the perfectly erred sloppy work-
ers are: (1) it is difficult to extract information from
their provided labels. (2) It could be possible to can-
cel some errors between this type of workers in some
extent, by just utilizing average aggregation algorithm
(proved in theoretical in Sect. 3.1.2). The reasons also
apply to randomly erred sloppy workers. The confusion
matrix listed in Table 2(b) is an example of biased sloppy
worker. We can further divide the workers into two sub-
categories: positive biased sloppy workers, who tend to
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give much higher probability for deviation as + 1 com-
paring to − 1. Negative biased sloppy workers. They
biased more toward − 1 rather than + 1.

Table 3 gives the summarization of the definitions of differ-
ent types of workers in this work. The statistic traits column
shows the characteristics we used in this work for categoriz-
ing the crowd. To separate the randomly erred sloppyworkers
from the biased sloppy workers, a threshold value could be
defined. Similar method while fixing the value of a for fault
tolerance range could be utilized here: we first set the thresh-
old value as 0.5 to recognize the randomly erredworkers from
biased sloppy workers. Then binary search a value within
range [0.5, 0.9] as the threshold till convergence. Another
way could be easily implemented to approximate the thresh-
old. We call it incremental heuristic way: test the values
in {0.5, 0.6, 0.7, 0.8, 0.9} on the collected label set, sepa-
rately. The one which gives the best performance is chosen
as the threshold. The incremental method, which is efficient
in some cases, is computationally less complex for obtaining
the threshold value compared to the former one.

3.1.2 Formalization of sloppiness

We define the mathematical notations for the problem of
making use of sloppy workers’ labels. Suppose there are N
items that need to be labeled and M workers for the task.
Let L = {1, 2, . . . ,C} is the set of labels in which work-
ers could choose from, y j

i ∈ L is the label assigned to i th
item by worker j , and yi is the true label of item i . ŷi is the
estimated true label for item i , which is called the consensus
label. Assume ε(= y j

i − yi ) is the deviation/error between
the observed label (obtained from workers) and true label.
Table 4 summarizes the important notations used in the paper.
Define the following probabilities:

P j
ε = Pr(y j

i = c + ε|yi = c) (4)

According to the definition of a perfectly erred sloppy
worker, we know that ε ∈ {0, 1,− 1}, and P j

1 = P j
−1, where

P j
1 = Pr(y j

i = c + 1|yi = c) (5)

P j
−1 = Pr(y j

i = c − 1|yi = c) (6)

P j
0 = Pr(y j

i = c|yi = c) (7)
∑

ε∈{−1,0,1}
P j

ε = 1 and 0 ≤ P j
−1, P

j
0 , P j

1 < 0.5 (8)

We first give proof that under some conditions, the exis-
tence of perfectly erred sloppy workers has no significant
influence on the consensus labels. Let the calculated expecta-
tion of consensus label for item i be E(ŷic). Herewe also give Ta
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Table 4 Frequently used notations

Symbol Definition

M Number of workers

N Number of items

L Set of labels worker could choose from

Y (∗) True labels set of all items

Y ( j) Set of labels obtained from worker j

Y
′( j) Set of labels after bias correction from worker j

W The set contains all worker weights

Θ The set contains all worker accuracies

E(ŷic) Expected consensus label for item i , whose true
label is c

yi True label of item i

y j
i Label assigned to item i by worker j

ŷi Consensus label for item i

ε
j
i Deviation between label from worker j and truth for

item i

ω j Weight of worker j

y j
ic Label assigned by worker j to item i , whose true

label is c

P j
ε Probability of worker j has deviation from true label

as ε

θ j Accuracy of worker j

α j Conditional probability of worker j has error as + 1

β j Conditional probability of worker j has error as − 1

ηa Marginal error threshold on worker is highly biased
or not

ηb Bias score threshold for biased workers

assumption that the estimated labels are obtained by averag-
ing the observed labels from workers, and every worker is
independent from each other. Also, suppose the true label
for item i as c, which means yi = c. Thus,

E(ŷic) = E

⎡

⎣
M∑

j=1

y j
ic/M

⎤

⎦ = 1

M
E

[
y1ic + y2ic + · · · + yMic

]

= 1

M

(
E

[
y1ic] + E[y2ic] + · · · + E[yMic

])

(9)

where y j
ic is the label given to item i whose true label is c,

and ŷic denotes the estimated label for item i , for which true
label is c. The E[y j

ic] is calculated as:

E(y j
ic) =

∑

k∈{c−1,c,c+1}

[
y j
ic × Pr(y j

ic = k)
]

= (c − 1) × P j
−1 + c × P j

0 + (c + 1) × P j
1

= c − (P j
−1 − P j

1 ) or c + (P j
1 − P j

−1)

(10)

Formula (10) is obtained based on the condition∑
ε∈{−1,0,1} P

j
ε = 1 in 8. The hypothesis here is that worker

j is a perfectly erred sloppy worker, which indicates that
P j
1 = P j

−1. The result could be obtained as E(y j
ic = c). We

then could get E(ŷi ) in (9):

E(ŷic) =
∑M

j=1 c

M
= c (11)

Till now, we proved that existence of perfectly erred
sloppy workers has no significant influence on the expected
consensus labels, under the conditions that workers are inde-
pendent from each other and using the average aggregating
algorithm. However, there are two problems in real-world
applications:

(1) Mostly, it is too ideal to have perfectly erred sloppy
workers: a worker should perfectly avoid the true grades
and evenly distribute labels only one scale up and down
around the true grades. In real-world scenarios, the
sloppyworkers would probably have a higher possibility
toward either one of the errors (ε).

(2) It is unrealistic to obtain the exact expected consensus
label as indicated in formula (9) and (11): while inferring
Eq. (11) from (9), we first calculated E(y j

ic), which is c
for perfectly erred sloppy workers. Only when a worker
labeled the same task for large enough time, we could
claim the expectation value. However, in many appli-
cations, only one label is provided from each worker
on the same item. We call this fact as “worker-item-
uniqueness.”Due to this uniqueness, thefinal aggregated
label usually is not as good as what we expected.

These problems lead to the difficulty in making use of per-
fectly erred workers, since they are randomly biased and
we cannot cancel the errors inside the labels. However, it is
possible to use the labels of the biased sloppy workers. Pas-
sonneau and Carpenter [23] proposed and validated in their
work that a highly biased worker, although inaccurate, can
provide asmuch information as amore accurate labeler. They
also mentioned that weighted voting schemes are not proper
approaches to infer true labels. We first examine prevalent
weighted voting approaches to show why this is the case.
From the definition, we could see that an observed label y j

i
from a sloppy worker equals to the sum of true label yi of
item i and ε

j
i . Thus, the generic form for weighted learning

is presented as follows:

ŷic =
M∑

j=1

ω j (yi + ε
j
i ) =

∑

j

ω j yi +
∑

j

ω jε
j
i ,

where
∑

j

ω j = 1 (12)
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where ε
j
i is the bias made by worker j on item i , ω j denotes

the weight of worker j, and it also represents the reliability
of the worker. In state-of-the-art approaches, ω j is usually
set proportional to worker’ s accuracy, such as the inversion
of worker’ s variance 1/v j . In truth discovery algorithms,
the weights are chosen based on the deviation function (loss
function) between true grades and observed grades. In this
case, the worker’ s weight is actually still in proportion to
accuracy. These methods give more weight to workers with
higher Pr(y j

i = c|yi = c).
As we know, biased workers usually are inaccurate, which

means their labels have low accuracy. In order to deal with
the scenarios with highly biased sloppy workers, we propose
the iterative self-correcting approach to estimate the worker
reliability and true labels.

3.2 Bias detection on sloppy worker

Before we explain the details of the iterative self-correcting
algorithm, we first introduce some terms and measure-
ment metrics. For each worker j , assume the accuracy of
j as θ j , and it is calculated as θ j = Pr(y j

i = yi ) =
∑N

i=1 Pr(y
j
i = c|yi = c) × Pr(yi = c). If we know the truth

labels for all the items, we can try to estimate the worker’ s
accuracy with the ratio θ j = a/(a + b), where a is the num-
ber of correct and b is the number of incorrect answers from
the worker. Since the workers are assumed to make errors
between + 1 and − 1, we use α j and β j to denote the con-
ditional probability of j has error/deviation as + 1 and − 1,
respectively. In other words, we assign parameters to each
worker: if this worker makes errors while labeling an item,
the probability of getting deviation + 1 is α j , and deviation
as − 1 is β j .

α j = Pr(ε = 1|y j
i �= yi )

β j = Pr(ε = −1|y j
i �= yi ) (13)

It is also true that α j + β j = 1. When α j >> β j , it indi-
cates the worker tends to give positive deviations. While if
β j >> α j , the worker is more likely to have negative devia-
tions. Similarly, once we know the estimated true labels set,
we could approximate α j and β j . Due to the sparsity prob-
lemwhile approximating all these parameters, it is necessary
to fix another way to estimate θ j , α j , and β j . Based on the
work of [12,15], we use vanilla Bayesian estimation strategy
for estimating them. We treat θ j as a distribution and pre-
sume the conjugate prior for Pr(θ j ) as uniform distribution
in the [0, 1] interval. Thus, after collecting a correct and b
incorrect answers from the worker, the posterior probability
Pr(θ j ) follows a beta distribution B(a + 1, b + 1):

Pr(θ j ) = [θ j ]a[1 − θ j ]b 1

B(a + 1, b + 1)
(14)

Similarly, for each worker j , we set the prior distribution
over the bias (α j and β j ) as uniform distribution. Then the
posterior would be a beta distribution with hyperparameter
b = (b1, b−1) for α j and β j , where b1 is the prior + 1 bias
count, and b−1 is the prior − 1 bias count.

Pr(α j ) = [α j ]b1[β j ]b−1
1

B(b1 + 1, b−1 + 1)
(15)

Since α j + β j = 1, so β j = 1 − α j , then we get:

Pr(α j ) = [α j ]b1[1 − α j ]b−1
1

B(b1 + 1, b−1 + 1)
(16)

To measure the highly biased worker’ s reliability, we define
a bias score for each of them. Higher bias score indicates the
worker with higher bias; thus, the more information he/she
would be able to provide as those accurate workers. The bias
score (BS) is derived from the information gain:

BS(α j ) = H(bias|0.5) − H(bias|α j ) (17)

where H(bias|0.5) denotes the entropy of choosing error as
+ 1 with probability of 0.5 and − 1 with probability of 0.5.
H(bias|α j ) represents the entropy for the specific worker j
with error probability α j and β j . Since β j = 1 − α j , we
present the entropy based on α j .

H(bias|0.5) = −[0.5log0.5 + 0.5log0.5] = −log0.5

H(bias|α j ) = −[α j logα j + (1 − α j )log(1 − α j )] (18)

When α j = 0.5, then β j = 0.5, BS= 0. It indicates that
the worker is not biased. In this case, the worker is actually
perfectly erred. When α j → 1 or β j → 1, H(bias|α j ) = 0;
thus, BS= log2. Due to the fact that we treat the worker’ s
error/bias as distribution, the expected BS(α j ) can be calcu-
lated as (α j is a random variable):

E(BS(α j )) =
∫

Pr(α j ) · BS(α j )dα j (19)

We know Pr(α j ) from Eq. (16). After some algebraic manip-
ulations for Eq. (19), we could obtain the expectation of
BS(α j ) as:

E(BS(α j )) = log2 − Ψ (b1 + b−1 + 1)

+ b1Ψ (b1 + 1) + b−1Ψ (b−1 + 1)

b1 + b−1

(20)

where Ψ (x) is the digamma function. By setting a thresh-
old ηb, we could correct the highly biased workers with
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E(BS(α j )) > ηb. However, it is also necessary to take
into account the worker’ s accuracy, before we correct the
bias/error. This is because the error α j and β j are assumed
as conditional probability in this work. The true error prob-
ability (marginal probability) of a worker will depend also
on the accuracy of the worker. For example, if a worker’ s
accuracy is 0.9, thus the possibility of the worker making
errors is only at 0.1. Although it is possible that the worker
might have a 0.9 possibility with + 1 error for any item he
made mistake, we should not correct his labels (by subtract-
ing 1). If we do so, all the items with correct answers will be
changed also, thus degrading the final results.

In order to determine whether to correct bias behavior of
a worker, we proceed in the following way: as mentioned
before, the worker’ s accuracy θ j is assumed as a distribu-
tion, and set beta distribution as its conjugate prior. Thus, the
error rate of worker is 1 − θ j . We give the posterior mean
of the marginal probability of errors, which is the best point
estimation for α j (1− θ j ) and β j (1− θ j ): E(α j (1− θ j )) =∫ 1
θ j=0

∫ 1
α j=0 ((1 − θ j ) × Pr(θ j ))(α jPr(α j ))dθ jdα j , so:

E(α j (1 − θ j )) =
[
1 − a + 1

a + b + 2

]
· b1 + 1

b1 + b−1 + 2
(21)

Similarly, estimation for E(β j (1 − θ j )) could be obtained.
By setting threshold for expected error rate of the worker

as ηa , we would be able to determine whether take into
account the bias behavior. Only if when E(α j (1− θ j )) > ηa
or E(β j (1 − θ j )) > ηa , we will then consider correcting
errors made by the workers based on their bias score. The
ηa could be chosen through incremental heuristic way or
binary search (binary division heuristic) approach, both were
presentedwhile choosing the threshold for separating the ran-
domly erred sloppy workers from biased workers. The value
which has the best performancewill be selected as the thresh-
old ηa .

3.3 Proposed iterative self-correcting framework

The iterative self-correcting algorithm is detailed in Algo-
rithm 1. The algorithm is based on the general principle of
optimization-based truth discovery models. As Li et al. [20]
concluded in their work, the general principle of truth dis-
covery is captured through the optimization formulation in
formula (2).

The proposed framework is an optimization-basedmethod
for bias-corrected observations. In Algorithm 1, line 4–25
represents the process of detecting and correcting the biased
sloppy workers. After obtaining the de-biased answers Y

′( j)

for each worker, we discover the truths through the following
formulation:

Algorithm 1 Iterative self-correcting truth discovery algo-
rithm.
Input: Observations from M workers: {Y (1), Y (2), . . . , Y (M)}, thresh-

old ηa , and ηb.
Output: Estimated true labels for N items Y (∗) = {yi }Ni=1, worker

weights W = {ω j }Mj=1, estimated worker accuracies set Θ =
{θ j }Mj=1, and workers bias correcting factor B.

1: Initialize the truths Y (∗);
2: repeat
3: Remove spam workers first from the crowd;
4: for j = 1 . . . M do
5: a ← number of correct labels
6: b ← number of incorrect labels
7: b1 ← number of +1 error (y j

i − yi as +1)

8: b−1 ← number of −1 error (y j
i − yi as −1)

9: Calculate E(BS(α j )) from equation (20)
10: if E(BS(α j )) < ηb then
11: Y

′( j) ← Y ( j)

12: Continue
13: else
14: Calculate max(E(α j (1 − θ j ), E(β(1 − θ j )))

15: if maximum > ηa then
16: if α j > β j then
17: {Correcting Y

′( j) by subtracting 1}
18: Y

′( j) ← Y ( j) − 1
19: else
20: {Correcting Y ( j) by adding 1}
21: Y

′( j) ← Y j + 1
22: end if
23: end if
24: end if
25: end for
26: {Calculate the worker’ s weight}
27: Update worker’ s weight W using equation (24) to infer worker

reliability after bias correction, based on the estimated truths.
28: {Calculate the estimated truths}
29: for i = 1 . . . N do
30: Update the truth of i th item yi based on observations and

current weight estimations, from the worker who contributed to this
item, according to equation (25).

31: end for
32: until Convergence
33: {Calculate the worker’ s bias}
34: for j = 1 . . . M do
35: Compare the Y

′( j) and Y ( j), get the bias of worker j , insert the
bias into B.

36: end for
37: Return Y (∗), W , Θ , and B

min{ω j },{yi }
f (Y (∗),W ) =

N∑

i=1

M∑

j=1

ω j d(y j
i , yi ),

where y j
i ∈ Y

′( j) s.t.
M∑

j=1

exp(−ω j ) = 1 (22)

where the d(·) is called the loss function as mentioned in
[20]. Since originally the sloppy worker only errs + 1 or
− 1 around the ground truths, it would be the same to either
use 0–1 loss or (normalized) squared loss. However, after
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correcting the bias for the worker, it is possible that worker
might err +2 or −2 from the truth answers, for example, if a
highly biased worker has 80% of his answers with + 1 error.
According to Algorithm 1, all the observed answers from the
worker are corrected by subtracting 1 from Y ( j). Thus, if the
worker has any answer with − 1 error, then the de-biasing
would result err −2 from the truths. Thus we propose to use
the 0–1 loss in this case:

d(y j
i , yi ) =

{
1, if y j

i �= yi
0, otherwise

(23)

To learn the truth answer set Y and worker’ s weights
and biases, we optimize the objective function in Eq. (22)
by applying the block coordinate descent approach [2]. The
approach iteratively conducts two-step procedure until con-
vergence:

(i) Update worker weights while fixing truths of the items
Y (∗) = {y1, y2, . . . , yN }: in this step, the true label for
each item is fixed, and we estimate the worker weights
W based on the difference between true label and corre-
sponding observed answer. The weight of each worker
is calculated through formula (28).

W ← argmin
W

f (Y (∗),W ) s.t.
M∑

j=1

exp(−ω j ) = 1 (24)

(ii) Update the truths yi while fixing the worker weights and
every other item’ s truths {W , y1, . . . , yi−1, yi+1, . . . ,

yN }: in this step, the true label of each item is updated
byminimizing theweighted differences between the true
labels and observations.

yi ← argmin
yi

f (Y (∗),W ) (25)

This two-step approach corresponds to line 26–31 in Algo-
rithm 1. Step (i) is the worker weight updating process from
line 26 to 27. Line 28–31 is the estimated truths updating
procedure as described in step (ii).

To derive the source weight in step (i) of the block coordi-
nate descent method, the Lagrange multiplier approach can
be utilized on optimization problem in (22):

L(W , λ) =
M∑

j=1

ω j

N∑

i=1

d(y j
i , yi ) + λ(exp(−ω j ) − 1) (26)

By taking the partial derivative with respect to ω j be 0, it
would be able to obtain:

λ =
∑N

i=1 d(y j
i , yi )

exp(−ω j )
(27)

From the constraint, we know that
∑M

j=1 exp(−ω j ) = 1,
thus,

ω j = −log

∑M
i=1 d(y j

i , yi )
∑M

j ′=1

∑N
i=1 d(y

j′
i , yi )

(28)

In order to give an overview of the proposed framework,
we present the diagram of the procedure in Fig. 4. We first
initialize the truths for all the items. The initialization val-
ues are randomly selected from the prior uniform distribution
we assumed for the truths. Then we iteratively estimate the
true labels as indicated in Algorithm 1, line 2–32. The spam
detection approach used in our work for real-world dataset
is based on the mean squared error measurement. The algo-
rithm is adopted from the work of Vuurens et al. [32]. The
authors proposed a function called RandomSep to recognize
the workers who provide random labels. The RandomSep
is defined as:

RandomSep =
∑

v∈V ε2r

|V | (29)

where εr is the error which represents the ordinal difference
between the label a worker given and the estimated true label.
V is the collection of all labels offered by each worker. By
setting threshold for RandomSep, we could detect the spam
worker. For example, through setting the threshold value as
1, we could filter out the workers with RandomSep > 1 and
leave the workers only err + 1 or − 1 around the estimated
truths.

The bias correcting process corresponds to line 4–25 in
Algorithm 1. Finally, the labels after spam removing and bias
correction are used to estimate the truths through coordinate
descent algorithm (line 26–31 in Algorithm 1).

4 Experiments

In this section, we present the performance measures for the
proposed framework. The experimental results are shown on
both synthetic and real-world datasets. We also compare our
method with some baseline approaches.

4.1 Experimental setup

4.1.1 Performance measures

In the experiments, the inputs for themodels are observations
for the items from crowd workers. The aggregating algo-
rithms are applied to output the estimated truths and worker
weights. Our proposed methodology and some of the state-
of-artmethods are conducted in an unsupervisedmanner, and
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Fig. 4 Diagram of the proposed ITSC-TD framework

the ground truths will be only used for evaluating the perfor-
mance. Here, we focus on categorical type of data; thus, we
adopt the following measures.

– Accuracy Accuracy is computed as the percentage of the
approach’ s output that is the same as the ground truths.

– F1 measure It is a weighted average of precision and
recall of an approach. F measure is different from the
accuracy,which equallyweights the positive and negative
results.

Accuracy and F1 measure how well the model estimate the
truths. The higher the measures, the closer the method’ s
outputs to the ground truths, and thus the better it performs.

4.1.2 Baseline and proposed methods

Theproposed iterative self-correcting truth discoverymethod
in the experiment is denoted as ITSC-TD. We compare our
model with the following methods which are designed to
infer truths and worker weights in crowdsourcing systems:

Majority voting (MV) simply takes the majority label as
the truth for an item. If there is a tie while applying MV,
we randomly select an answer from the voted results in
our work. Expectation maximization [4] (EM) model pro-
posed by Dawid and Skene (EM-DS) models a confusion
matrix for each worker and using EM to estimate the true
labels. GLAD [35] models the expertise of each worker
through a single parameter, and estimates truths via EMalgo-
rithm. Optimization-based truth discovery (TD) [20] is also
a weighted voting scheme to infer the true labels.

We implement all the baselines, and the parameters in
the models are set according to corresponding papers. The

experimental results are compared using different datasets.
In the proposed ITSC-TD methodology, we need to set the
accuracy (ηa) and bias score (BS) threshold (ηb) to deter-
mine a highly biased sloppy worker. Here, we initially set
the ηa equals to 0.5, and a j as 0.5 to obtain ηb. Then 10 val-
ues are selected randomly for ηa and a j respectively, in the
range [0.5, 0.7], for parameter sensitivity investigation. The
final output are obtained through averaging the results of the
different settings.

4.2 Experiments on synthetic dataset

In this section, we focus on experimenting the influence of
sloppy workers to the quality of estimated truths. The syn-
thetic data are simulated based on the work of Alfaro and
Shavlovsky [5]. We consider 50 workers and 50 items in
the simulated environment. Assume each item is labeled
by 6 workers, and the labels are chosen from the scale:
{1, 2, 3, 4, 5}. Suppose we would like to simulate the grad-
ing process for a set of students’ submissions, which are the
items, in class. A latent variable model is utilized to approxi-
mate the gold truths: let the true quality of each item i denoted
as yi . To simulate all the yi , we assume the existence of a real-
valued latent variable q, where q is normally distributed with
mean μ = 0 and standard deviation σ = 1. The variable yi
results from an “incomplete measurement” of q, where one
only determines the interval into which q falls:

yi =

⎧
⎪⎨

⎪⎩

1, if q < μ − 2σ

2 or 3 or 4, if q ∈ [μ − 2σ,μ + 2σ ]
5, i f q > μ + 2σ

(30)
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In Eq. (30), while q ∈ [μ − 2σ,μ + 2σ ], yi could choose
from 2, 3, and 4. In order to assign one of the labels to yi ,
we assume another latent real-valued variable u which is
uniformly distributed on [0, 3]. The label of yi is determined
as follows:

yi =

⎧
⎪⎨

⎪⎩

2, if u ∈ [0, 1)
3, if u ∈ [1, 2)
4, if u ∈ [2, 3]

(31)

Combining Eqs. (30) and (31), we could obtain the for-
mula for determining yi :

yi =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

if q < μ − 2σ, 1

if q ∈ [μ − 2σ,μ + 2σ ],

⎧
⎪⎨

⎪⎩

if u ∈ [0, 1), 2

if u ∈ [1, 2), 3

if u ∈ [2, 3], 4

if q > μ + 2σ, 5

(32)

Two types of workers are simulated: reliable and sloppy
worker. Each worker j was assigned a specific accuracy. For
reliable workers, the accuracies are uniformly distributed on
(0.5, 0.9]. For sloppyworkers, their accuracies are uniformly
distributed on [0.1, 0.5]. It is also necessary to allocate a bias
rate for sloppyworkers. The bias rate is the percentage of pos-
itive (negative) errors existing among incorrect answers for
positive (negative) biased worker. A perfectly erred sloppy
worker should have a bias rate as 0.5. The items are then
randomly distributed to workers for labeling: each item is
required to be labeled by 6 workers, and each worker needs
to label 6 items. The observations which are labels obtained
from workers are simulated in the following way:

– If the worker i is reliable According to the accuracy of i ,
determine whether to assign true label to the item or not.
If an incorrect answer should be given, randomly select
label one scale up or down (if possible) of the true label
for the item.

– If the worker i is sloppy Accuracy is still first utilized to
decide to provide a correct or incorrect answer. If wrong
answer is supposed to be given, the sloppy worker type
(positive, negative, or perfectly erred) and bias rate are
then applied to provide the observed label.

Once all the simulated observations are generated, we are
able to apply the aggregating models to estimate truths and
worker weights from them. For each setting, the data are
simulated through 100 runs, and the results are reported as
the average over the 100 runs.

Fig. 5 Influence of perfectly erred sloppy workers with multiple
labels/worker on consensus labels

4.2.1 Simulation on perfectly erred sloppy workers

First of all, we investigate the perfectly erred sloppyworkers’
influence on the consensus results in ideal occasions.Assume
eachworker providesmultiple labels (k) for the itemwhich is
assigned for them. Three different settings for k were exper-
imented here: 6, 12, and 18 labels were generated by each
worker. That means, if item i is assigned to worker j to get
observed labels, j is responsible to provide k labels for i . We
assume that workers are independent from each other, and
the k labels from the same worker are also independently
given. Figure5 shows the outcome. The consensus labels are
given through averaging all the observations. In Fig. 5, the
x-axis represents the proportion of the perfectly erred sloppy
workers among the crowd, and y-axis shows accuracy and f1
measure, respectively. Although the metrics start decreasing
at the point of 0.5 for the proportion of sloppy workers, we
could still obtain high-quality results. For example, at the
worst case scenario, with proportion equals to 1, the accu-
racy is> 0.95, and f1measure> 0.9. The results proved that
given perfectly erred sloppy workers, under the specific con-
ditions, it is still possible to obtain high-quality consensus
results, as we mentioned in Sect. 3.1.2.

Due to the “worker-item-uniqueness,” it is necessary to
investigate the influence of sloppy workers on aggregating
results with only one observation per worker for item i . Fig-
ure 6 presents the metrics calculated for the results with
single label provided per worker for one item. Comparing
to the accuracies and f1 measures with average (AVG) as
aggregating algorithm in Figs. 5 and 6, we can see that with-
out multiple labels per worker, the perfectly erred sloppy
workers degrade the aggregated results greatly. The reason
that performance in Fig. 6 is worse than Fig. 5 is: while
a worker independently provides multiple labels/item, the
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Fig. 6 Influence of perfectly erred sloppy workers with one
label/worker on consensus labels

sloppiness within their labels is most likely be canceled with
each other (probability of negative error=probability of pos-
itive error=0.5). When only one label is given for each
item/worker, the label is randomly given and independent
from each worker; thus, the overall probability of obtaining
error as + 1 is not necessarily equal to the probability of
error− 1. Average algorithm could cancel some of the errors
among the grades; however, it is usually used for numeri-
cal data instead of categorical ordinal data. Majority voting
(MV) is the simplest and one of the prevalent aggregating
methods for getting consensus labels for categorical ordi-
nal data. The dotted line with triangle sign in Fig. 6 gives
results of majority voting. MV showed even worse results
compared to AVG method. While setting the percentage of
perfectly erred workers as 100%, the difference of accuracy
between AVG and MV could reach around 60%.

4.2.2 Simulation on biased sloppy workers

In order to show the influence of biased sloppy workers on
the consensus results, we first conduct the experiments on
either one of the two types of biases. Table 5 gives the met-
rics calculated for the proposed and baseline methods for
different proportions of positive biased sloppy workers. In
Table 5, when the proportion of positive biased sloppy work-
ers is smaller or equals to 0.5, the selected evaluation metrics
show good results among all the listed methods. Among the
four baseline models, EM-DS method gives relatively better
results compared to other three. If we compare the accuracy
and F measure of EM-DSwith the proposed algorithmwhile
the ratio of positive biased sloppy workers within range [0.1,
0.5], the improvement by utilizing ITSC-TD is only from
around 0 to 3%. After increasing the proportion till > 0.5,
the proposed ITSC-TDmethod shows a significant improve-
ment compared to other baseline models for both accuracy
and F measure. As an example, 14% accuracy improvement
can be obtained by applying ITSC-TD compared to EM-DS
approach.

Similar process and results could be obtained while exper-
imenting on negative biased sloppy workers. Figure 7 shows
the calculated measurements. The solid line with the triangle
symbol represents the metrics results for proposed ITSC-TD
methodology. The “knee point” in Fig. 7 is the point at the
proportion of negative biased sloppy workers = 0.5, and
it means while the proportion > 0.5, there is a significant
improvement on the calculated measurements for proposed
algorithm compared to other approaches.

The experiments above assumed the existence of only one
type of biased sloppy workers: either positive biased or neg-
ative biased. In order to examine the influence of mixture of
positive and negative biased sloppy workers, we do simula-
tions on various ratios of these two types of workers. The
results are presented in Table 6. The ITSC-TD method has
the best performance among all the algorithms applied. As

Table 5 Accuracy and F
measure calculated for different
proportions of positive biased
sloppy workers

Method Metric Proportion of positive biased sloppy workers
10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

MV Accuracy 0.98 0.96 0.92 0.88 0.82 0.62 0.46 0.34 0.24 0.20

F1 0.98 0.97 0.93 0.89 0.84 0.63 0.52 0.38 0.25 0.23

TD Accuracy 1.00 0.96 0.96 0.94 0.86 0.66 0.52 0.36 0.26 0.24

F1 1.00 0.97 0.97 0.95 0.87 0.68 0.57 0.40 0.27 0.27

GLAD Accuracy 0.98 0.96 0.94 0.94 0.92 0.66 0.56 0.38 0.26 0.22

F1 0.98 0.97 0.95 0.93 0.92 0.68 0.60 0.38 0.27 0.24

EM-DS Accuracy 0.98 0.96 0.98 0.95 0.93 0.70 0.60 0.38 0.26 0.24

F1 0.98 0.96 0.98 0.95 0.94 0.72 0.60 0.42 0.26 0.24

ITSC-TD Accuracy 1.00 0.98 0.98 0.96 0.95 0.76 0.74 0.50 0.36 0.34

F1 1.00 0.99 0.99 0.96 0.96 0.80 0.76 0.56 0.39 0.35
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Fig. 7 Results of accuracy and F measure for different proportions of
negative biased sloppy workers

the results shown in Table 6, when the proportion of sloppy
workers > 50%, the proposed approach has significant dif-
ference on the performance compared to other methods. The
results are consistent with what we obtained with the exis-
tence of only one type of biased sloppy workers.

By comparing the results in Tables 5 and 6, we could
see that there are differences between them even with the
same proportions of sloppy workers. The explanation of the
distinctions is that for each table, we utilize the approach
mentioned at the beginning of Sect. 4.2 to simulate the sloppy
workers through 100 runs. The average over the 100 runs is
then used as final outcome, which is presented in the table.

Although the percentage of the biased sloppy workers might
be set same in both of the tables, each worker’ s individual
bias rate could be different. Thus the final results vary. For
example, assume a worker with 60% of her labels positively
biased, and another worker with 80% of her labels positively
biased. The result by taking into account the former worker
will be different from the result of using the latter one. In
order to see the differences of the performance between only
using positive biased workers and having both positive and
negative biased workers, we could set one essential baseline
for each table. As an example, we set the GLAD approach as
baselinemodel for Tables 5 and 6. The accuracies andFmea-
sures obtained for ITSC-TD, with high proportion of biased
sloppy workers, have significant improvement in contrast to
the metrics calculated for GLAD in both of the tables. We
could conclude that the proposed methodology is efficient in
both scenarios: when there is only one type of biased work-
ers, or both types of biased sloppy workers exist among the
crowd.

4.2.3 Simulation onmixed sloppy workers

Before showing the results for datasets with crowd includes
all types of sloppy workers, we would like to first investigate
the performance of the proposed approach on the worker set
with the mixture of perfectly erred sloppy workers and reli-
able workers. Like all the other baseline models we selected,
the proposed ITSC-TD method utilize the labels given by
perfectly erred sloppy workers without correcting or remov-
ing them. Figure 8 presents the outcome of the experiments.

Table 6 Results for various ratios of mixture of positive and negative biased sloppy workers

Method MV TD GLAD EM-DS ITSC-TD
Prop. of sloppy
workers (%)

Ratio of positive and
negative biased

Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1

20 0.5:0.5 0.96 0.96 0.98 0.97 0.98 0.98 0.98 0.97 0.98 0.98

0.8:0.2 0.96 0.97 0.98 0.98 0.92 0.91 0.98 0.98 1.00 1.00

0.4:0.6 0.97 0.96 0.98 0.98 0.98 0.97 0.98 0.98 0.98 0.98

40 0.5:0.5 0.84 0.85 0.92 0.92 0.90 0.89 0.96 0.96 0.98 0.98

0.8:0.2 0.80 0.81 0.94 0.93 0.89 0.86 0.94 0.94 0.96 0.96

0.4:0.6 0.80 0.81 0.88 0.89 0.84 0.83 0.90 0.90 0.95 0.94

50 0.5:0.5 0.75 0.76 0.84 0.84 0.83 0.82 0.90 0.90 0.92 0.91

0.8:0.2 0.76 0.78 0.88 0.87 0.82 0.81 0.88 0.88 0.94 0.94

0.4:0.6 0.72 0.77 0.80 0.83 0.78 0.80 0.86 0.86 0.90 0.91

60 0.5:0.5 0.60 0.68 0.80 0.81 0.78 0.79 0.86 0.86 0.92 0.92

0.8:0.2 0.58 0.57 0.78 0.78 0.69 0.67 0.74 0.74 0.88 0.87

0.4:0.6 0.60 0.59 0.68 0.67 0.68 0.66 0.78 0.78 0.82 0.80

80 0.5:0.5 0.46 0.49 0.56 0.58 0.54 0.55 0.58 0.58 0.72 0.71

0.8:0.2 0.32 0.36 0.46 0.48 0.38 0.40 0.44 0.43 0.64 0.64

0.4:0.6 0.44 0.46 0.56 0.56 0.52 0.51 0.56 0.55 0.66 0.67
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Fig. 8 Results of accuracy andF measure for mixture of perfectly erred
sloppy workers and reliable workers for proposed and baseline methods

The proportion of the perfectly erred sloppy workers ranges
from 0 to 100% as shown in x-axis. From the figure, we could
see that compared to other baseline approaches, the proposed
method has no significance difference between them. This is
due to the fact that the ITSC-TD algorithm does not tackle
with perfectly erred sloppy workers.

While varying the ratio of the perfectly erred sloppywork-
ers, we could observe the influence of this type of workers
on the quality of the estimated truths, which is presented in
Fig. 8. When the percentage < 50%, most of the baseline
models (except MV) and our proposed methodology give
estimated labels precise enough. In other words, the perfectly
sloppyworkers have very small influence onweighted voting
aggregating algorithms with their proportion less than 50%.
One reason is that they make errors within the fault tolerance
range, which denotes that they give labels close enough to
truths. The other reason is in weighted voting, the weights
given to workers are proportional to their accuracies. The
perfectly erred sloppy workers thus would have low weights
assigned to them. If we change the percentage till most of
the workers are perfectly erred sloppy workers (> 50%),
the results are greatly degraded as shown in Fig. 8. Espe-
cially when the proportion of perfectly erred sloppy workers
≥ 90%, all the used weighted voting algorithms’ perfor-
mance is almost same as MV. In order to achieve higher
accuracies, it might be useful to filter out this type of work-
ers and remove their labels. This leads to removal of most
workers from the crowd. It leaves many items remain unla-
beled.Due to the fact that perfectly erred sloppyworkers only
have errors within the fault tolerance range, in many occa-
sions, it is acceptable to utilize their labels to approximate
the truths when there is not enough precise labels available.
Based on the analysis, we do not remove the perfectly erred

sloppy workers. For randomly erred sloppy workers, same
conclusion could be drawn.

Next, we present the results obtained for simulations with
different types of sloppy workers incorporated. Table 7 gives
themetrics calculated for themixture of different proportions
of positive biased sloppy workers, perfectly erred sloppy
workers, and reliable workers. In order to show how biased
and perfectly erred sloppyworkers influence the performance
of the ITSC-TD algorithm, we also present results of the
crowd consists of positive biased and reliable workers, as
well as the crowd with perfectly erred and reliable workers.
Since the results for the mixture of negative biased work-
ers with reliable workers are quite similar to positive biased
workers, we only present the calculated metrics for PB:RE.

In Table 7, the highlighted cells represent the meth-
ods with best performance. By comparing the experimental
results, the ITSC-TD methodology shows superiority than
other baseline approaches with existence of biased sloppy
workers among the crowd. As an example, while the crowd
contains only perfectly erred sloppy workers and reli-
able workers, TD algorithm gives best performance with
PE:RE=0.4:0.6. Although while PE:RE=0.8:0.2, ITSC-
TD has the largest accuracy value, only 1.9% improvement
could be obtained compared to TD approach. It could be
further verified by comparing the metrics calculated for
PB : RE and PB : PE : RE . For example, in Table 7,
when the sloppy worker : reliable worker as 0.4 : 0.6, if
we compare the accuracy obtained for EM-DS and ITSC-
TD: 2.1% improvement was achieved by applying ITSC-TD,
with PB:RE=0.4:0.6. However, there was 0% improve-
ment while PB:PE:RE=0.2:0.2:0.6. This indicates that with
same proportion of sloppy workers, better results could be
obtained with higher ratio of biased sloppy workers. Same
conclusion could be drawn when sloppy worker : reliable
worker as 0.8 : 0.2. The reason that there is 0% improve-
ment comparing accuracy of EM-DS and ITSC-TD, while
PB:PE:RE=0.2:0.2:0.6, is because no significant improve-
ment could be obtained while the proportion of sloppy
workers < 0.5.

4.3 Experiments on real-world dataset

We use real-world data to investigate the effectiveness of
the proposed ITSC-TDmethodology. Two publicly available
datasets are utilized to evaluate the models, namely TREC
andAdultContent2 (AC2). The original TRECdataset,which
used in [3], has AMT ordinal graded relevance judgments for
pairs of search queries and URLs (web pages). Each (Search
query, Web page) pair was provided to workers, to ask
for topical relevant assessment. The relevance judging has
multiple-choice responses as “very relevant (2),” “relevant
(1),” and “not relevant (0).” It consists of 98,453 ratings cor-
responding to 766 workers, 100 queries, and 20,232 (query,
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Table 7 Results for the crowd
with mixture of positive biased
sloppy workers, perfectly erred
sloppy workers, and reliable
workers

Method Metric Ratios of different types of workers

PB : RE PB : PE : RE PE : RE PB : RE PB : PE : RE PE : RE
0.4 : 0.6 0.2 : 0.2 : 0.6 0.4 : 0.6 0.8 : 0.2 0.6 : 0.2 : 0.2 0.8 : 0.2

MV Accuracy 0.80 0.88 0.82 0.42 0.48 0.44

F1 0.83 0.89 0.84 0.43 0.49 0.49

TD Accuracy 0.92 0.92 0.96 0.46 0.54 0.54

F1 0.92 0.93 0.97 0.47 0.56 0.58

GLAD Accuracy 0.88 0.90 0.92 0.46 0.52 0.48

F1 0.89 0.89 0.91 0.46 0.53 0.49

EM-DS Accuracy 0.94 0.96 0.94 0.50 0.60 0.52

F1 0.93 0.96 0.94 0.50 0.60 0.52

ITSC-TD Accuracy 0.96 0.96 0.94 0.66 0.71 0.55

F1 0.95 0.96 0.95 0.65 0.73 0.57

PB Positive biased, RE reliable, and PE perfectly erred

Table 8 Some statistics about the TREC and AC2 datasets

Label levels Instances Workers Ratings Reliable Spam Biased Perfectly/randomly erred

TREC 3 3275 722 19,699 433 0 143 146

AC2 4 333 269 3324 190 19 44 16

URL) pairs. The ratingswere on a scale of {− 2,− 1, 0, 1, 2},
where -1 means missing ground truth label, and − 2 corre-
sponds to broken link. We processed this dataset by filtering
the ratings with value − 2 and only take into account the
data with gold ground truth. The final dataset contains 3275
(query, URL) instances, 722 workers and 19,699 collected
labels. The ratings were mapped from {0, 1, 2} to {1, 2, 3}.
This mapping does not affect the values of accuracy and F
measure, it is for just easier implementing of all the models.

TheAC2datasetwas originally used in [16] includesAMT
judgments for websites for the presence of adult content on
the page. The judgments are ordinal ratings on G, P, R, X:
G for no adult content, P refers to content requires parental
guidance, Rmeans content mainly for adults, and X for hard-
core porn. The original AC2 dataset consists of 97271 ratings
from workers. We filter the data by only taking into account
the items with gold truths. This leads to a subset of the
data which consists of 3324 ratings from 269 workers for
333 websites. The ratings are mapped from {G, P, R, X} to
{1, 2, 3, 4}. The mapping has no influence on the measure-
ment metrics. Due to the fact that we would want to deal
with sloppy workers in our work, we further filter the data by
choosing the ratings within the set gold truth, gold truth+ 1,
gold truth− 1. The final AC2 dataset used has 3057 ratings
corresponding to 333 items, 265 workers.

There are only three levels for the rating task in TREC
dataset, so it might be difficult to define and filter spamwork-
ers in this dataset. Table8 gives some of the statistics for these
two datasets. The “Instances” column indicates the number

Table 9 Comparison between different methods on TREC and AC2
dataset (without spam workers included)

TREC AC2

Method Accuracy F1 Accuracy F1

MV 0.476 0.481 0.763 0.741

TD 0.483 0.496 0.765 0.743

GLAD 0.498 0.501 0.761 0.739

EM-DS 0.502 0.506 0.772 0.748

ITSC-TD 0.513 0.524 0.770 0.746

Detected biased 96 29

Bold values indicate the best results obtained in each column

of items to be labeled. The last four columns present the num-
ber of different types of workers in the crowd. We give two
types of experimental analysis on the real-world datasets: (i)
focus on dealing with the sloppyworkers. In this analysis, we
remove the spam workers by comparing the observed labels
with gold truths. In other words, we only keep the worker
judgments that are at most one level away from the gold
labels. The results are presented in Table9. (ii)We investigate
the impact of both spam and sloppy workers on our proposed
methodology. The AC2 dataset is used here for the analysis.
As mentioned above, TREC dataset incorporates only three
levels of labels, in which no spam worker is defined. The
results are shown as Table 10.

Table 9 summarizes the performance of all the methods in
terms of accuracy and F measure on TREC and AC2 dataset
without spam workers included. The last row of the table
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Table 10 Results for AC2 dataset with both spam and sloppy workers
incorporated

Method Accuracy F1

MV 0.756 0.725

TD 0.759 0.735

GLAD 0.752 0.731

EM-DS 0.759 0.736

ITSC-TD 0.762 0.741

Detected spam 16

Detected biased 21

gives the number of biased workers recognized while apply-
ing ITSC-TD framework. The proposed method in our work
showed the best performance compared to other baseline
approaches on TREC dataset. Although for AC2, EM-DS out
performs the proposed methodology, there is no significant
difference between all the methods applied. The different
effectiveness of the proposed method on the two datasets can
be explained through the statistics presented in Table 8. There
are more biased workers (around 23%) in TREC compared
to AC2 dataset (around 16%). Thus the ITSC-TD approach
gives best quality outcome compared to other baseline mod-
els for TREC, while it does not show superiority in AC2
due to the low proportion of biased workers. In addition,
most workers (more than 70%) in AC2 belong to reliable
worker group, which makes even the MV approach already
good enough for approximating the truths. Finally, the exper-
imental results are consistent with conclusion drawn from the
synthetic dataset:when the proportion of biased sloppywork-
ers ≤ 0.5, no significant improvement could be obtained.

We next give an insight of the proposed ITSC-TD frame-
work performance on the datasetwhere both spamand sloppy
workers exist. As mentioned earlier, the AC2 dataset is uti-
lized for the analysis. To detect the spam workers, a mean
squared error based function, which is explained in Sect. 3.3,
is applied. The results are presented in Table 10. The last
two rows of the table give the number of spam workers and
biased sloppy workers recognized in ITSC-TD framework.
Different from the calculated metrics indicated in Table 9 for
AC2, in which EM-DS showed superior performance, the
proposed ITSC-TD algorithm offered the most precise esti-
mated truths here. It is also clear that the overall quality of the
estimated labels is lower in Table 10 than Table9. The reason
for the differences is that the spam workers are included in
the experiments here for Table 10. Due to the fact that ITSC-
TD approach deals with both spam and biased workers, we
could obtain better results by utilizing the proposed method
than the baseline models.

5 Conclusion and discussion

In this paper, we introduced a hierarchical categorization of
the crowd workers. Instead of investigating binary labeling
tasks, our work focuses on more complicated scoring tasks
with the scale of multiple and ordinal labels. We investigated
the influence of sloppy workers, especially the biased sloppy
workers, on the performance of estimating the worker relia-
bility and truth discoveries. An iterative self-correcting algo-
rithm combined with truth discovery (ITSC-TD) approach
was proposed to deal with the highly biased crowd work-
ers and infer the truths from observed labels. Both synthetic
and real-world datasets were applied to present the effective-
ness of the proposed methodology. Finally, the experimental
results are compared with several prevalent baseline mod-
els, which include MV, TD, GLAD, and EM-DS methods.
The comparisons showed that our proposed ITSC-TD out-
performs other baseline approaches while the ratio of biased
sloppy workers > 0.5, and a significant improvement could
be obtained in the simulated datasets. As a result, around 10%
to 16% improvement for the accuracy was presented in this
case. For real-world data, ITSC-TD is able to achieve bet-
ter results regarding the selected measurement metrics while
proportion of highly biased workers > 0.5, comparing with
multiple baseline methods. For example, comparing with
baseline methods with TREC dataset, 2 and 8% improve-
ment for accuracy, and 4–9% improvement for F measure
can be obtained by using proposed approach.

In the proposed approach, we assume there is no gold
truth available while recognizing biased sloppy workers and
inferring truths and worker reliability. It would be interesting
to investigate the performance of the ITSC-TD method if a
subset of the true labels is known. By utilizing these known
truths, it might be possible to adjust the proposed method,
such as the settings of prior distributions, for better infer-
encing of the unknown truths. Furthermore, efforts could be
made to explore the possibility of utilizing the data from
sloppy workers when there is mixture of ordinal and con-
tinuous scale labels. The optimization-based truth discovery
framework utilized in our work makes it easier to extend the
proposed ITSC-TD approach to mixed ordinal and continu-
ous data types.
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