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Abstract
While rulemining is critical for decision-making applications, rulemining systems still lack support for interactive exploration
of multitude of generated rules and understanding of relationships among rule results produced with various parameter
settings. Based on a novel parameter space-driven approach, our proposed Framework for Interactive Rule Exploration
[FIRE (PARAS/FIRE homepage: http://paras.cs.wpi.edu/)] addresses this usability shortcoming. FIRE features innovative
visual displays and interactions to enable interactive rule exploration. We propose two linked interactive displays, namely
the parameter space view (PSpace) and the rule space view (RSpace) that together enable enhanced sense-making of rule
relationships. The PSpace view visualizes the distribution of rules produced for diverse parameter settings. This not only
facilitates user parameter selection for rule mining but also enhances an analyst’s understanding of rule relationships in the
parameter space context. The RSpace view provides a detailed display of the rules using a novel rule glyph visualization to
facilitate interactive visual rule comparisons. We evaluate the usability and effectiveness of our FIRE framework with two
studies. First, in a case study a researcher explored a dataset of interest using the FIRE paradigm as well as the state-of-the-art
rule visualization techniques from the ARulsViz R package. Further, our user study with 22 subjects establishes the usability
and effectiveness of the proposed visual displays and interactions of FIRE using several benchmark datasets. Overall, this
research encompasses significant contributions at the intersection of data mining and visual analytics.

Keywords Interactive data discovery · Rule space exploration · Data visualization · Rule mining

1 Introduction

1.1 Motivation

Mining of associations and correlations from huge datasets
is critical for applications ranging from market basket anal-
ysis [2], bioinformatics [33] to intrusion detection and web
usage mining [22]. However, even the most advanced rule
mining approaches [3,13,38] are faced with two-key chal-
lenges, namely (a) unacceptably high response times that
are not suitable for interactive analysis (performance); and
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(b) lack of support for sense-making of rule relationships
(usability). Existing rule mining algorithms [2,13,38] tend
to be compute-intensive, rendering even their fast imple-
mentations, such as [3], inadequate for interactive analysis.
Mining systems with delayed response time risk losing a
user’s attention and, more importantly, are thus unacceptable
in mission-critical applications.

Over the years, significant focus has been placed on
addressing the performance challenge [1,3,19,23,38]. Recent
experiments [19] using IBM Quest [2], webdocs [22] and
other benchmark datasets demonstrate that the preprocess-
once-query-many (POQM) solutions [19,23] can offer near
real-time responsiveness due to preprocessing and indexing.
This near real-time responsiveness lays the foundation for
offering speedups essential for interactive rule exploration.
While significant strides have been made on this perfor-
mance challenge, the usability of rule visualization systems
has received little attention [14,15].
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Fig. 1 Distribution of CFIs by datasets

Fig. 2 The rule parameter space

The usability of rule mining systems suffers from the
fact that a large number of rules is typically generated.
A detriment is the lack of support for interactive explo-
ration of relationships among rule results produced with
various parameter settings. Such guided exploration of rule-
sets and their relationships, also referred to as sense-making,
tends not to be the focus of existing rule mining systems
[12,14,15,19,23].

On the other hand, recent works on rule relationships
[5,6,31] and actionable high-utility rules [28] have begun to
make significant advances in defining functions for measur-
ing the utility of rules and complex rule relationships other
than the traditional frequency-basedmeasures. Qin et al. [27]
study rule relationships in the specific domain of multidrug
adverse reactions. However, analysts using these advanced
techniques would still need to sift through the generated
list of rules manually. That is, the focus of any of these
advanced approaches is not the visual support of the rule
discovery and exploration process. Our proposed work on
designing visualizations and interactions thus complements
advanced high-utility and rule relationship techniques, such
that together they can enable sense-making of actionable
rules in real-world applications as further described below.

1.2 Challenges

The challenges hindering the usability of rulemining systems
can be summarized as below.

1. Numerous ways of sense-making One key challenge
ofmining interesting association rules is that there are numer-
ous "interestingness" definitions and parameters; at times
domain-dependent ones [27]. Sense-making means not only
discovering co-occurring itemsets with high support and
confidence (see Appendix A.2 for definitions), but also dis-
tinguishing interesting rules fromobvious ones. For example,
in banking data, if the restriction is that those maintaining a
balance below the minimum limit will be charged a monthly
maintenance fee, then a low account balance and fine paid
will have high support and/or confidence yet be an obvious
rule. Instead, an interesting rule to learn may be "mortgage
payment in the beginning of every month causes the account
to go low balance". However, its support and/or confidence
may not be as strong as those for the obvious rule, because
other reasons for the low balance may exist. Overall, there
is no fixed rule of thumb for sense-making of association
rules. Interestingness depends on several aspects including
the domain, the dataset and the user’s perspective. Thus, a
tool that allows users to systematically explore the mined
rules is needed instead of simply presenting the rules with
high scores.

2. Lack of interactive parameter space view Several rule
visualization techniques have been proposed [12,14,15], yet
none provide a broad view of the parameter space for rule
mining with parameter selections or refinements. In the
absence of parameter space insights, analysts may not be
aware of the appropriate thresholds of support and confi-
dence parameters required to obtain the rulesets of interest
fromanyparticular dataset. Figure 1 (taken from [37]) depicts
how the distribution of closed frequent itemsets (CFIs) differs
significantly fromdataset to dataset.While gazelle andT10I4
benchmarkdatasets [30] havemostCFIs concentrated around
only 0.1% support, chess and mushroom datasets instead
feature ≥ 2000 CFIs at 94 and 50% support, respectively.
Thus, for a dataset, automated learning of parameter ranges
and interactive presentation on a parameter space is desired.
Moreover, existing systems [12,14,15] can only extract top-
k rules based on one parameter at a time. However, certain
interesting rules may have high support yet low confidence,
and vice-versa. Such a two-dimensional combination of sup-
port and confidence (or, recently proposed interestingness
measures [27,28]) for top-k rule extraction is not yet avail-
able. This feature has the potential to provide interactive
mining over a learned parameter space.

3. Limited insights into rule relationships A set of rules
mayconsist of identical itemsets, yet itemsmaybedistributed
differently in antecedent and consequent, few dominating
rules from the set may implicitly imply the others, defined
as redundancy relationship among rules [1] (Appendix A.2).
These relationships could be leveraged to represent the com-
plete ruleset with just a subset of rules, thus reducing the
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clutter. However, in [19] we discover that redundancy is
a query-time phenomenon, i.e., redundancy among rules
must be resolved based on the user selected parameters.
Unfortunately, existing association rule tools [12,14,15] lack
a mechanism to manage these dynamic rule relationships.
Additionally, graphical representation of other rule relation-
ships [5,27] are also required.

4. Lack of support for ruleset comparison When existing
systems are used for discovering interesting rules in a given
dataset, analystsmust go about a tedious and time-consuming
trial-and-error process of parameter selection interleaved
with rule generation and sifting through the extracted rules to
discover interesting ones. Ability to compare rulesets across
different parameter values with minimal clicks in real-time
will truly enable interactive rule exploration.

5. Rule tabular view is inadequate Identifying similarities
and differences among rules based on their attributes is yet
another desired feature. Beyond manual sifting through list
of rules, analysts using existing systems [12,14,15] cannot
gain such insights into rules. Further, grouped rule view to
discover clusters andoutliers among rulesets is also desirable.

Therefore, development of an interactive datamining tech-
nology, capable of not only answering mining requests but
also providing parameter tuning recommendations together
with support for improved sense-making of rules to overcome
the above challenges, is imperative for effective support for
decision-making applications.

1.3 Contributions of the FIRE framework

Our proposed Framework for Interactive Rule Exploration
(FIRE) for rule exploration successfully tackles the above
challenges.While the backend innovations are detailed in our
prior work PARAS [19] targeting mining performance opti-
mizations, data modeling and indexing; here we introduce
complementary visual paradigm that features innovative
visual displays and interactions to enable analysts to con-
duct rule exploration in real-time. While we introduced the
notion of rule distribution across parameter settings in our
short paper [24], in this work, we extend these preliminary
ideas by including the dual-space interactive rule visualiza-
tion paradigm along with its comprehensive evaluation with
conclusive results, as detailed below:

• We propose a novel visual rule exploration framework,
called FIRE. FIRE supports rule exploration at two
layers of abstractions, namely, the overall parameter
space view (PSpace) and the detailed rule space view
(RSpace). Both layers are supplemented with innovative
features and interactions.

• ThePSpace viewdisplays the overall distribution of rules
within the space of interestingness parameters (such as

support and confidence). Salient features of the PSpace
view include (a) parameter recommendations via stable
region abstractions; (b) rich insights into region-wise rule
cardinality; (c) capture of rule redundancy relationships;
and (d) the rule cardinality skyline to explore alternative
results. The PSpace interactions, described in Sect. 4,
focus on resolving the challenges 1 to 3 in Sect. 1.2.

• The PSpace-RSpace hierarchical relationship (Sect. 4.3)
enables real-time exploration using the two views. The
stable regions are selected via the PSpace view and
the RSpace view shows detailed information about par-
ticular rulesets within the selected region. To enable
interactive filtering of rules, the RSpace view includes
antecedent/consequent auto-fill filters and parameterwise
sorting features. This addresses challenge 4 in Sect. 1.2.

• While the tabular RSpace view [24] lists rules with
detailed information, to facilitate visual sense-making
of rulesets (challenge 5), we now introduce an effective
visualization technique called rule glyphs, adapted from
[32], for graphically representing association rules. To
visually capture key properties of rules and their interest-
ingnessmeasures, we design three variants of the RSpace
glyph views, namely, lined, connected and filled glyphs.
We also explore various glyph placement strategies that
enable analysts to gain insights into clusters of similar
rules as well as to detect outliers of rules that deviate
significantly from the norm (Sect. 5).

• In this journal paper we present a case study comparing
FIRE with the state-of-the-art rule visualization tech-
niques in ARulesViz R package [14]. The case study
is qualitative in nature where a researcher learns to use
FIRE for the first time, and is tasked with documenting
his interactions while exploring a new dataset of inter-
est. The researcher also explored the same dataset using
a combination of 10 rule visualization techniques in the
ARulesViz R package. He concluded that FIRE enabled
him to discover patterns in the dataset that were either
undiscovered or cumbersome to derive using state-of-
the-art techniques (Sect. 6).

• We also conducted an extensive user study to evaluate
the diverse capabilities of our FIRE visual paradigm. 22
participants were used to evaluate the usability and effec-
tiveness of various features of the FIRE framework over
several benchmark datasets [30]. The user study is com-
prised of two evaluations, namely, of the PSpace view
(first presented in [24]) and the new RSpace glyph view,
respectively. This extensive user study provides evidence
that our proposed FIRE visualizations are efficient and
effective in helping analysts to understand the rule distri-
bution over the parameter space and to gain rich insights
into the rule relationships via the RSpace glyph view and
the glyph placement strategies (Sect. 7).
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2 Foundation of parameter-driven rule
mining

The core principle we adopt for our interactive rule explo-
ration framework corresponds to the preprocess-once-query-
many (POQM) paradigm [1]. In an offline step, we extract
all rules from a dataset that satisfy a minimum primary sup-
port. Then we compactly index the large number of extracted
rules for subsequent interactive rule exploration by analysts.
In particular, we adopt the parameter space-driven approach
[19] which, in the context of rule mining, consists of a two-
dimensional space of support and confidence (Fig. 2). A
parametric location �1 is a point within this space, denoted
by (�1.supp, �1.conf). Several rules may map to the same
location, e.g., in Fig. 2 rules (X Z ⇒ Y ) and (Y Z ⇒ X )
both map to (0.1, 0.5).

Stable region abstractions In [19] we describe an important
observation that, formany real datasets, several regions of the
parameter space contain no rules at all.Additionally, the same
set of rules may recur in many different regions across a large
range of diverse parameter settings. The parameter space can
thus be divided into several disjoint regions, whichwe hence-
forth call stable regions. The key idea of a stable region is that
the ruleset valid for any possible parametric location within
this region remains unchanged. On the other hand, rulesets
valid for two locations not in the same stable region are guar-
anteed to be distinct. For example, consider the shaded region
S(0.4,0.5)

(0.2,0) in Fig. 2 where (0.4, 0.5) and (0.2, 0) are the upper
and lower bounds of the region’s support and confidence val-
ues. Stable regions form our coarse granularity abstractions
for storing and managing rules. Lastly, while a rule R =
(Y ⇒ X ) first appears in region S(0.4,0.67)

(0,0.5) , it may also be

valid for region S(0.4,0.5)
(0.2,0) . In that case, S(0.4,0.67)

(0,0.5) is said to be

the lending neighbor stable region (l-neighbor) forS(0.4,0.5)
(0.2,0) .

In an offline step, the parameter space is partitioned into
a finite number of non-overlapping stable regions. For each
such stable region the following are maintained (a) the rules
that are valid within that region and (b) the links to its l-
neighbors. For details of these algorithms please refer to
[19].

Rule redundancy resolution Redundancy relationships
among rules can be leveraged to filter out redundant rules
for presenting succinct query results to the user. Two types
of redundancies are defined in [1], namely, simple and strict
(see appendix for definitions). In [19], we observe that rule
redundancy is a query-time phenomenon and depen-
dent on the user parameter selection. Thus, rules cannot
be tagged as redundant and discarded apriori. In [19], we
designed algorithms that effectively precompute rule redun-
dancy relationships in the context of our parameter space.

Fig. 3 The FIRE architecture

Fig. 4 The FIRE visual interface

3 Overview of FIRE visual paradigm

Our FIRE Visualizer (Fig. 3) supports a rich variety of ana-
lytical interactions over the PARAS index. The FIRE visual
interface1 (Fig. 4) enables analysts to explore the stable
region abstractions of the parameter space model and the
corresponding rulesets with ease—thus supporting effective
visual analytics. FIRE is composed of a visual paradigm
with two layers of interlinked visual interfaces, namely, the
PSpace view and the RSpace view. The PSpace view (Sect.
4) displays the overall distribution of rules within the space,
facilitating parameter tuning and exploration at a higher level
of abstraction. The RSpace view (Sect. 5) provides alternate
tabular and rule glyph visuals. The tabular view displays the
rules in text format, including their itemsets in its antecedent
and consequent together with the support and confidence val-
ues. The RSpace glyph view, which is a novel visualization

1 The FIRE tool is available at [11] as a web interface for researchers
to upload their own datasets, generate association rules on the datasets
and visualize the rules.
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Fig. 5 PSpace (all rules) for the mushroom dataset

Fig. 6 PSpace (unique rules) for the mushroom dataset

to show association rules. The glyph view enables analysts to
gain rich insights by applying glyph placement strategies to
find clusters of similar rules and to detect outliers. The FIRE
visualizer is powered by the PARAS backend algorithms
[19]. When a dataset is first loaded into FIRE, the PARAS
backend generates all rules and organizes the rules into the
PARAS index for compact storage. PARAS also includes
query processing algorithms to respond to the user visual
requests efficiently in real-time. The Index Access module
offers anAPI for accessing the PARAS index that would have
been constructed in an offline step using PARAS. When the
same dataset is reloaded, the index is directly used as rules
are already pre-generated.

4 Interactive visual parameter space design

Below we introduce FIRE’s parameter space (PSpace)
visual paradigm where rules are distributed over the two-

Fig. 7 PSpace (unique + non-red.) for the mushroom dataset

Fig. 8 Rule cardinality skyline (>100 rules)

dimensional space of parameters (here, support and confi-
dence) together with all the visual interactions available to
analysts.

4.1 The PSpace visualization

In this work, we design a novel abstract view of the distri-
bution of rules on the parameter space called the PSpace
visualization. As depicted on the left-hand side (LHS) of
Fig. 4, the PSpace view displays rules in a two-dimensional
plot of the stable regions within a space of support (x-axis)
and confidence (y-axis) dimensions. Depending on the dis-
tribution of rules within the two-dimensional space, datasets
may differ in number, size and density of the stable regions.
Two such examples are shown in Fig. 4 (LHS) depicting
the Chess dataset and in Fig. 5 depicting the rule distribu-
tion for the mushroom dataset. Both are benchmark datasets
taken from the UCI Machine Learning Repository [30].
The PSpace view offers a compact rule space driven by a
parameter-centric perspective.
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4.2 The PSpace interactions

The following user interactions are provided on the PSpace
visual engine.

Stable region display for fast parameter exploration For
a dataset with a sparse distribution of rules in the parameter
space, even when a user submits several successive mining
requests with distinct (minsupp,minconf) input parameter
values, a rule miner may often repeatedly return the same
set of rules. When using an existing rule miner [12,14], the
analyst may have to progress through a frustrating trial-and-
error process to finally get a new set of rules. When using
the PSpace visualizations, the analyst can instead explore
the parameter space by clicking through different regions.
Every time she is guaranteed to receive a distinct rule set
for investigation. This way, FIRE saves time and effort by
laying out the complete distribution of rules in the parame-
ter space. In FIRE, analysts can navigate through regions by
either indirectly typing in the support and confidence values
in the textbox (Fig. 4) or by directly clicking on the stable
regions displayed on the PSpace view.

Rich insights into region-wise rule cardinality To provide
rich insights into the density of rules within different regions,
a color map is used where different colors denote different
cardinality/count of rules. Figures 4 (left) and 5 show two
example datasets. Each shade of color denotes the count of
ruleswithin the region.Here, a lighter color depicts low count
and a darker color depicts high count. FIRE offers a variety of
color palettes to choose from including variants of sequential,
diverging and qualitative ramps [35]. This tool enables users
to select color schemes of interest to customize their displays.

Analysts can use the left bottom panel of the PSpace
visualizer for a variety of interactions with the PSpace. For
example, users can interactively show either all rules that
appear in a region or only the rules unique to each region.
For a dense dataset such as Chess [30], each parameter set-
ting produces a huge number of rules. Suppose that an analyst
changes the parameter values by clicking on the PSpace inter-
active UI from (minsuppold,minconfold) to (lsupp,lconf) such
that minsuppold ≥ lsupp and minconfold ≥ lconf. Then the
ruleset {R}(lsupp,lconf) would also contain the rules in the orig-
inal ruleset satisfying (minsuppold,minconfold). The change
in the ruleset may be difficult to quickly grasp by manual
inspection. Here, a delta output of rules is desirable which
can be achieved in FIRE simply by selecting the Unique
option. While Fig. 5 depicts an All rules view, Fig. 6 shows
the PSpace view for the same dataset when the user selects
the Unique option via the radio button.

Rule redundancy resolution To the best of our knowledge,
FIRE is the first rule visualization system that allows ana-
lysts to optionally select to display only the non-redundant
rules for a data set. By excluding redundant rules, a suc-

cinct set of fewer rules can be displayed in the PSpace view
that covers all rules for ease of analysis. In the context of
the stable region abstractions, interesting patterns can be
observed when redundancies are excluded (Fig. 7) compared
to when they are included (Fig. 6). In fact, any combina-
tion of unique/all and redundant/ non-redundant rules can be
selected via the radio buttons to observe different patterns of
rule distributions over the PSpace view. Further the results
displayed can be analyzed using interactions.

Rule cardinality skyline interaction Figure 8 depicts the
skyline view that provides recommendations beyond a sin-
gle stable region boundary. Consider the situation when the
analyst wants to find the top-k (say, 100) rules in a dataset.
However, at times it is unclear which parameter (support
or confidence) to give priority to. By selecting the skyline
option on the LHS bottom panel the analyst can input the
desired cardinality in the skyline cardinality textbox (say,
100). The skyline is then drawn on the PSpace view to mark
for each support value (x-axis), the confidence value (y-axis)
having ≥ 100 rules. As a lower confidence value will result
in a higher number of rules, the regions below the skyline
will contain ≥ 100 rules while those above the skyline will
contain < 100 rules. Therefore, the analyst can now select
from a range of support and confidence settings that will all
return up to the top 100 rules based on particular support and
confidence combinations. Furthermore, the analyst can now
quickly determine various observations about the dataset. For
instance, using the rule cardinality skyline in Fig. 8 one can
observe that no region contains ≥ 100 rules above support =
0.61.

Assisted navigation through PSpace visualization Addi-
tional features such as cursor positions, optional grid line
and zooming are provided to assist the analyst in navigating
through the PSpace view. Some of these features can be seen
in Fig. 9. In our early user study, we found that while using
FIRE, analysts may not be comfortable initially in identi-
fying the support and confidence of desired regions on the
PSpace view. Therefore, we have introduced the cursor posi-
tion feature. Namely, as the analyst moves the cursor over the
PSpace, the current cursor position is displayed. In Fig. 9, the
current cursor position is (0.74. . .,0.84. . .).

4.3 Visualizing the PSpace–RSpace relationship

Viewing the rule distribution in the PSpace stable region dis-
play is at a level of abstraction higher than theRSpace viewof
individual rules or rulesets with their respective antecedent
and consequent. PSpace-RSpace linkage enables real-time
exploration using the two views as described below. By
default, the RSpace view loads with all rules mined from
the dataset.
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Fig. 9 PSpace-RSpace linkage

Fig. 10 Comparing two regions

Drill-down via PSpace-RSpace linkageAs shown in Fig. 9,
when the analyst selects a single region on PSpace view
(highlighted in black) the rules valid within that region can
be viewed in the RSpace view via cross-links between the
two views. This supports instant drill-down into individual
ruleswhile stillmaintaining the global context via the PSpace
view.

Visual region ruleset comparison Analysts can also select
two regions at a time to compare their respective rulesets. In
Fig. 10 comparing two stable regions facilitates the anal-
ysis of how the change in parameter settings effects the
output. Region A is selected with a left click (highlighted
in black) and region B is selected with shift + click (high-
lighted in gray). Through cross-links, the RSpace view then

will present a comparative display of unique rules within
each region and also the common rules shared among these
two regions A and B, if any. Here, we see that region A 71
unique rules and region B has 2 unique rules, with 3 common
rules.

5 Interactive visual rule space design

Here, we describe the design of the two RSpace views,
namely, tabular and glyph views along with their respective
interactions.
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Fig. 11 Lined glyph 1

Fig. 12 Lined glyph 2

Fig. 13 Con’ted glyph

Fig. 14 Filled glyph

5.1 The RSpace tabular view

In most mining tools, rules are listed in a tabular RSpace
view as depicted on the right-hand side (RHS) of Fig. 9. Tab-
ular view provides detailed information such as antecedents
and consequents of each rule together with support and con-
fidence values. The total number of rules within the selected
region on the PSpace view is displayed at the bottom of the
RSpace table.

Fig. 15 Lined glyphs

Fig. 16 Connected glyphs

Fig. 17 Filled glyphs

5.2 The RSpace glyph view

The purpose of the detailed RSpace view is for the analysts to
visually analyze similarities or differences between the rules
being displayed. However, as confirmed by initial user test-
ing, this task is difficult to accomplish by using only the tab-
ular view due to the overload of textual information. Beyond
the straightforward tabular view described above, we thus
designed a novel RSpace glyph view for graphically repre-
senting association rules to facilitate efficient visual analysis
of rulesets. A glyph is known to be an effective visualiza-
tion technique for displaying multivariate data [32]. Glyphs
are effective for visual shape comparisons as well as finding
clusters or outliers by applying glyph placement strategies.
However, to the best of our knowledge, glyphs have never
been used to visualize association rules before. Below we
describe three variants of our proposed RSpace glyph views.
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Fig. 18 Tabular RSpace

Lined glyph design A lined glyph (Fig. 11) resembles a 360
degree clock dial with multiple hands. Given a dataset with
n attributes, we represent each attribute with a hand on the
dial. Attribute hands are placed at equal angles to each other
within the total of 360 degree dial. In Fig. 11, the mushroom
data set [30] containing 22 attributes is represented with 22
hands. The lined glyph represents the rule {poisonous? =
edible} −→ {gill-attachment = free, veil-type = partial, veil-
color = white} from the mushroom dataset. The attributes
that participate in a rule are highlighted while the rest of the
attributes are displayed in a faded manner.

For each attribute the distinct values are displayed using
different hand lengths. For example, the attribute poisonous?
has 2 distinct values, namely, {edible, poisonous}. Thus, the
hand lengths are encoded such that poisonous? = edible is
represented by a full length hand (blue hand in Fig. 11),
whereas a half length hand would represent poisonous? =
poisonous (blue hand in Fig. 12).

Further, in order to distinguish the antecedents from the
consequents, we propose to draw them using two different
colors. In Fig. 11, the single antecedent poisonous? = edible
is represented with a blue hand, whereas the three conse-
quents {gill-attachment = free, veil-type = partial, veil-color
= white} are each represented with a red hand.

Connected glyph design The intuition for the connected
glyph design is that it is easier to visually comprehend the
similarities and differences between different shapes rather
than those of the combination of hand positions. For the same
example rule discussed above using the lined glyph shown
in Fig. 11, we now depict the connected glyph in Fig. 13.
The connected glyph is a simple modification of the line

Fig. 19 PCA placement of rules

glyph with the outside ends of the highlighted attribute hands
connected to each other so as to give it a shape. Two adjoining
hands are connected only if they are within less than 180
degrees of each other in the clockwise direction. Otherwise,
this will introduce ambiguity. Further, we use a distinct color
for the connection lines (here,black) to distinguish them from
the antecedents and the consequents.

Filled glyph design Initial user trials revealed that the con-
nected glyphs were not effective for certain tasks such as
distinguishing between antecedents and consequents. Thus,
we propose a third glyph design called the filled glyph. The
filled glyph display further fills colors inside the shapes cre-
ated by connecting adjoining hands. The space between two
adjoining highlighted attribute hands is filled with the color

123



210 International Journal of Data Science and Analytics (2019) 7:201–226

Fig. 20 MDS placement of rules

of the first attribute hand in a clockwise manner. In Fig. 14,
the space between hands representing attribute stalk-color-
above-ring = white and stalk-color-below-ring = white is
filled with blue, i.e., the color of the antecedent. Namely,
in this case the antecedent is stalk-color-above-ring = white.
The space between the attribute hands stalk-color-below-ring
=white and veil-type= partial is filledwith red, i.e., the color
of the consequent stalk-color-below-ring = white. Again, the
space between two adjoining hands is filled only if the hands
arewithin less than 180degrees of each other in the clockwise
direction.

Comparison of glyph designs The purpose of these three
glyph representations is to enable the analysts to visually
comprehend the similarities and differences between the
rules displayed in the glyph view. Our intuition is that these
graphical representations are easier to comprehend and work
with than the tabular display. Further, the purpose of provid-
ingmultiple glyph options is that for different tasks, different
glyph displays may be more effective, as confirmed by our
evaluation. In Figs. 15, 16 and 17, a set of 4 rule glyphs
are shown using lined, connected and filled glyph designs,
respectively. Our hypothesis is the following, based on ini-
tial user trials. If a task involves counting of hands such as
"to find the rule with the minimum number of consequents
(red hands)", the lined glyphs are most effective. On the
other hand, if a task involves similarity detection such as "to
find the rules containing the same antecedents (blue hands)",
then the filled glyphs can effectively reveal the most promi-
nent pattern. Connected glyphs, however, will be efficient
for tasks that may involve both counting hands and requir-
ing some shape information. A formal user study (Sect. 7)
examines the glyph designs and their relative effectiveness
in detail.

5.3 The RSpace interactions

Using different interactions designed for the RSpace view,
analysts can drill-down to gain rich insights into rule subsets
as described below.

Filtering and sorting of rulesets In case of an overwhelm-
ingly large number of rules being displayed in the RSpace
view, the analyst can filter the rules based on antecedent
and/or consequent values using an auto-fill control. In gen-
eral, this allows the analyst to determine which rules are
prominent for a given item/itemset. For example, in Fig. 18,
the antecedent is filtered on veil-type = partial and the con-
sequent is filtered on gill-spacing = close. We note that only
8 rules out of the original 74 rules (Fig. 9) satisfy the fil-
ter. This is a more manageable number for human analysis.
The antecedent and consequent filters are available for both
the RSpace views, namely tabular and glyph. As shown in
Fig. 18, the rules can also be sorted by descending/ ascend-
ing support or confidence. This is achieved by clicking on
the support or confidence column header, respectively. This
is particularly useful if a set contains some rules that have
high support yet low confidence and others have high confi-
dence yet low support.

Customizable glyphs. Lastly, the ability to customize col-
ors for distinguishing between antecedent and consequent
provides a powerful visualization as certain patterns can be
visualized with contrasting color schemes. Further, analysts
can choose among any of the three glyph displays; each facil-
itating easy discovery of different pattern types.

5.4 RSpace glyph placement

Yet another important capability in information visualiza-
tion is the placement or layout of glyphs on a display to
communicate significant information regarding the values
of individual glyphs themselves as well as relationships
between the objects represented by the glyphs [32]. Here,
we explore various placement strategies in the context of our
proposed RSpace glyph view. The explored methods range
from data-driven strategies that use data dimensions as posi-
tional attributes to structure-driven strategies that base the
placement on implicit or explicit structure inherent within
the dataset. A comprehensive taxonomy of placement strate-
gies has been developed in [32] to assist the visualization
designer in selecting the technique most suitable to his or her
data and task. In our context, this feature enables analysts
not only to gain insights about clusters of similar rules (e.g.,
rules with identical antecedents) but also to detect outliers
that are separated from the rest of the rules.

In this work, we employ derived data-driven placement
techniques that generate glyph positions using analytics
applied to the data values as a whole input. Thus, instead
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of a location reflecting only one, two, or three of the data
dimensions, it reflects a combination of all the dimensions in
an attempt to convey N-dimensional relational information
in the smaller number of dimensions. Common dimension-
ality reduction techniques [32] include Principal Component
Analysis (PCA), Multidimensional Scaling (MDS), Self-
Organizing Maps (SOMs), spring-based models and so on.

We have adapted two of these layout techniques, namely,
PCA-based placement (Fig. 19) and MDS-based (Fig. 20)
placements in our FIRE visualization. PCA finds linear com-
binations of the dimensions that best explains the largest
variation in the multivariate dataset. The first two princi-
pal components are then used to determine the position of
a glyph in a 2-D space as they capture the most prominent
combinations of the original attributes that distinguish the
data. In contrast, MDS is an iterative refinement process that
attempts to adjust weights or positions until a certain crite-
rion is met. In the context of rule glyphs the criteria would
be common antecedents and/or consequents. In our case, the
distances (or similarities) between glyphs in 2-D is a good
approximation of the similarity of the rules based on the par-
ticipating itemsets as antecedents and consequents.

6 Case study of a bike sharing dataset

We evaluated the usability and effectiveness of our FIRE
framework in two stages. In this first stage, we introduce a
case study2 during which a researcher explored a dataset
of interest. The case study is qualitative in nature. The
researcher independently explored the bike sharing dataset
[29] from the UCI machine learning repository using (a)
FIRE and (b) ARulesViz as described below.

6.1 Exploring the dataset using FIRE

Dataset description The bike sharing dataset contains two
years of bike usage data. Each data instance contains the
counts of casual (walk-ins) and registered users in a given
day and information about weather conditions (temperature,
humidity) and holiday status (weekday, weekend, holiday).
The contributors of the dataset claim that "most of the impor-
tant events in the city could be detected by monitoring these
data" [29]. The aim is tomine rules that link bike usage to hol-
idays, workday status and weather conditions. While a brief
preamble is given below, detailed description of the prepro-
cessingperformedon the dataset canbe found inAppendixA.

Generating rules and loading them into FIRE The data
was loaded into FIRE with a minimum support of 5% and

2 This case study was performed by an avid bike user with an interest
in data mining.

minimum confidence of 60%. As the dataset contains 732
instances, each representing a day, 5% support means a rule
would be mined only if it is present in at least 36 days,
or in more than 1 month out of 24 months. Therefore, the
researcher believes this value constitutes a good primary sup-
port. Given these parameters FIRE generated the rules and
loaded them within a few seconds. The total number of rules
generated was 9673. In the ALL rules setting (Sect. 4.1), the
set of 9673 rules can be listed in the RSpace view by click-
ing on the lowest stable region (0.05, 0.6) on the PSpace
view. The highest rules are located in the upper right cor-
ner (Fig. 21). However, from the PSpace view, we find that
the stable region with maximum support and confidence is
empty. The two neighboring stable regions are as follows.
The region (0.683,1) contains a rule with confidence = 1
and support <1 and the region (0.807, 0.976) contains a rule
withmaximum possible support (80.7%) and confidence<1.
These rules are listed below:

1. {workingday = yes −→ holiday = no} (support = 0.683,
confidence=1): a common knowledge rule, correctly
derived by the data, yet uninteresting.

2. {adjusted_casual = low −→ holiday = no} (support =
0.807, confidence = 0.976): this rule can be interpreted
as the number of casual users being low during non-
holidays.

As holidays are rare (∼ 11 days per year, or less than 5%
of the data), the primary support of 5% does not cover rules
with “holiday = yes”. The PSpace view for the bike sharing
dataset in Fig. 21 clearly lets us learn with just one glance
that the rules with support > 50% are rare in this dataset. We
were able to quickly explore all such regions. One interest-
ing rule we found in this space is: {workingday = yes −→
adjusted_casual = low} (support: 0.671, confidence = 0.982).
This means that overall walk-ins are low on working days. It
is common knowledge that 5 out of 7 days are working days,
which gives an expected maximum support level of 71%.
However, 22 of the working days are holidays for the dura-
tion the bike sharing dataset was collected, or approximately
3% of data. Thus, working days make up approximately 68%
of the data. Dividing support by confidence serves as a san-
ity check, and arrives at the same number without the need
to have prior knowledge about the data: 0.671/0.98 � 0.68
(68%). In other words, this rule implies that working days
are ∼ 68% of the instances, and for ∼ 98% of those working
days, the casual user count is low.

Using rule filtering and sorting features Having explored
all regions with support > 50%, the next step was to explore
rules with support ≤ 50%. The rule mentioned in the pre-
vious section is: {workingday = yes −→ adjusted_casual =
low} (support: 0.671, confidence = 0.982). This rule has a
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Fig. 21 Finding the highest rules: the highest no common knowledge rule

Fig. 22 Filtering for weekends

strong support value due to the large number of instances
that contain working days. What about rules when “work-
ingday = no”? In the bike sharing dataset “workingday = no”
includes all weekends as well as holidays. To find these rules
The researcher took the following steps:

1. In the PSpace view, he clicked on the stable region with
the lowest coordinates (0.05, 0.6). This then resulted in
9673 rules being listed,

2. Then in the RSpace view, he filtered for rules with “work-
ingday = no” in the antecedent. This resulted in 550 rules
being listed,

3. Lastly in the RSpace view, he sorted rules by descending
support values.

The same three steps can be repeated by filtering for “work-
ingday = no” in the consequent. These features of FIRE are
described in Sect. 4.1.

The highest support value for a rule containing “working-
day = no" was 28.7%. However, this rule represents common
knowledge (Fig. 22) {workingday = no −→ holiday = no}
(support = 0.287, confidence = 0.909). Thus, in other words,
90.9% of the non-working days are weekends and the rest are
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Fig. 23 Filtering for registered users

Fig. 24 Skyline cardinality: distinguishing regions with > 20 rules and ≤ 20 rules

holidays. However, a non-common knowledge rule found in
this space was: {adjusted _casual = High −→ workingday =
no} (support = 0.0519, confidence = 0.974). This rule indi-
cates that bike rentals by walk-in users were high 6% of the
days (0.0519/0.974) and that in 97% of these instances it was
not a working day. This rule makes sense as walk-in users
have other means of transport for their daily lives and they
are instead much more likely to rent bikes on weekends and
holidays.

Thus far the researcher found rulesmostly related to casual
users.He further explored rules related to the registered users.
For this purpose, he followed the same three steps as in the

case of filtering for “workingday = no”. Instead, in step 2, he
then filtered for rules with “adjusted_registered = High” in
the antecedent as shown in Fig. 23. There are 998 such rules.
He then sorted them by their descending support. The highest
support possible for a rule with “adjusted_registered=High”
is 28.3%with a 99.5% confidence (highlighted in blue color).
The top 3 rules indicate that registered bike users are high
in numbers during working days. However, the fourth rule:
{adjusted_ registered = High −→ adjusted_casual = Low}
(support = 0.264, confidence = 0.932) shows an interest-
ing inverse relationship between the count of registered and

123



214 International Journal of Data Science and Analytics (2019) 7:201–226

Fig. 25 Comparing rule glyphs

Fig. 26 Clustered rule glyphs

casual users. Specifically, whenever “adjusted_registered =
High”, 93% of those days “adjusted_casual = Low”.

Utilizing the Skyline feature over the PSpace view for
retrieving the regions with a certain cardinality The case
study thus far involved exploring the different stable regions
and going through the list of rules in each region. In the
ALL rules view, the count of rules cumulatively increases
as the researcher moves toward lower support or confidence
settings. Further, he wanted to list the top-k (say, 20) rules.
However, as there are two rule ranking criteria, namely, sup-
port and confidence, he employed the skyline cardinality
feature that allowed him to separate stable regions with more
than k rules from those with less than k rules (Fig. 24).

The regions adjacent to the skyline were the most inter-
esting, because they had a high number of rules with good
support and confidence value. For example, the highlighted
region (0.4, 0.8), which is above the skyline, contains 18
rules. In addition to the rules explored thus far, several new
rules involving temperature, humidity, weather situation can
be found in this region. One of these rules is {adjusted_total
= MEDIUM −→ holiday = no} with a support of 44% and
a high confidence of 97.8%. Here, the total rentals are dis-
cretized into three values {LOW,MEDIUM,HIGH}.
Comparing rules using the glyph view For the stable region
(0.4, 0.8) that the researcher explored above, he noticed from
the tabular view that several of the 18 rules had common
attributes in the antecedent and/or the consequent. Thus, he
next wanted to compare the rules and see which ones are
similar, i.e., have common attribute values. In order to com-
pare all rules, he needed to manually compare C(n, r) =
n!/(r !(n − r)!) possible combinations of rules. In our con-
crete example n = 18 and the r = 2, we have 153 possible
comparisons to make. This problem becomes increasingly
complex with a large number of rules and is difficult to do

Fig. 27 ARulesViz scatterplot UI
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Table 1 Comparison of association rule visualization techniques

Technique Rule set Measures Interactive Reordering Ease of use

Scatterplot Large 3 � ++

Two-Key plot Large 2 + order � ++

Matrix-based Medium 1 � 0

Matrix-based (2 measures) Medium 2 � –

Matrix-based (3D bar) Small 1 � +

Grouped matrix Large 1 � � 0

Graph-based Small 2 ++

Graph-based (external) Large 2 � � +

Parallel coordinates Small 1 � -

Double-decker Single rule (2) -

FIRE PSpace Large 2 � � +++

FIRE Rule Glyph Large 2 � � +++

in the tabular list of rules. While the glyph view does not
reduce the number of comparisons he had to make, he found
it easier to look for the similarity among shapes using the rule
glyph view (rule glyphs are defined in Sect. 5.2). Figure 25
shows several such examples. The two rules depicted using
the blue boxes are opposite to each other, i.e., one with “hol-
iday = no” in the antecedent and “adjusted_casual=Low”
in the consequent, and the other vice versa. Similarly, the
two rules within the red box contain three attributes each
and their antecedent/consequent sequence (“adjusted_casual
= Low”/“workingday = yes”) is swapped. Further, we see
that the rules depicted in the red box can be obtained by
combining the attributes of the rules in the blue box and the
rule highlighted within the green box. Overall, the researcher
found the glyph representation convenient for visual shape
comparisons among rules and rulesets.

Glyph clustering functionality The next step in the explo-
rationwas to enable clustering for the group of rules as above.
The goal was to look for outliers that might contain interest-
ing rules. When enabling clustering, as expected, the rules
described in the previous section grouped together based on
the commonality of attributes (see Fig. 26). Further, sev-
eral rules that have common set of attribute-value pairs are
grouped together such that the common attribute-value pairs
are depicted by a shared line or lines close to each other.

6.2 Exploring the dataset using ARulesViz

ARulesViz is a popular R package that contains a total of
10 state-of-the-art association rule visualization techniques
[14]. The visualizations include: (a) scatterplot (2 variants),
(b) matrix-based (4 variants), (c) graph (2 variants), (d) par-
allel coordinates, and, (e) double-decker. Details of each
visualization technique can be found in [14]. Inside the
R environment, the researcher typed in R commands to

Fig. 28 ARulesViz grouped matrix UI

load the Bike Sharing dataset [29]. Then using the ARules
package association rules were generated. Finally, using the
ARulesViz package the ruleswere visualized using the differ-
ent rule visualization techniques available in the ARulesViz
package. The overall comparison of these visualization tech-
niques is shown in Table 1. This comparison extends the
original comparison given in [14] by adding the two primary
visualization techniques of FIRE, namely, (a) FIRE PSpace
stable regions view, and (b) FIRE RSpace rule glyph view.

Three of the matrix-based visualizations, graph-based,
parallel coordinates and double-decker visualizations sup-
port a medium to a small number of rules at a time. On the
other hand, scatterplot variants, grouped matrix, and graph-
based (external) as well as FIRE PSpace and Glyph views
can support a large rule set. In the interactive scatterplot view
(Fig. 27), one can select an arbitrary region (shown as a red
shaded box) and show the list of rules that qualify for the
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selected support and confidence in the region in the console
output (here, a total of 43 rules). This interaction in effect
is equivalent to the unique rules view in the FIRE PSpace
visualization. The limitation of the scatterplot view is that
for an arbitrarily chosen region that includes several rules, a
high number of rules will be listed in the console view. Thus
several rules may be hidden unless the rule list is explored
exhaustively. Moreover, no reordering support is available in
the scatterplot visualizations.

The FIRE PSpace view can be considered as a layer of the
stable region abstraction over the scatterplot view.Additional
features of theFIREPSpace view such as unique rules, redun-
dancy exclusion, and skyline provide semantic filters based
on support and confidence measurements, rule redundancy
definitions as well as the cardinality of rules, respectively.
Further, all these techniques (Table 1) can be categorized
by the number of measures (e.g., support, confidence and
lift) that can be simultaneously visualized. While the scat-
terplot allows three measures (two on the axes, one using
color/shade), most other approaches allow two measures at a
time. The FIRE PSpace view utilizes color mapping schemes
to denote the density of rules in the stable regions.

As described in [14], to explore large sets of rules with
graph-based visualization, advanced interactive features like
zooming, filtering, grouping and coloring nodes are needed.
Such features are available in interactive visualization and
exploration platforms for networks and graphs like Gephi.
From the ARulesViz package [14], graphs for sets of asso-
ciation rules can be exported in the GraphML format or
as a Graphviz dot-file to be explored in tools like Gephi.
This process of exporting the rule graphs is cumbersome for
interactive exploration. On the other hand, the FIRE RSpace
tabular view is enabled with antecedent and consequent auto-
fill filters as well as support and confidence ordering for
enhanced exploration through list of rules. The FIRE rule
glyph viewutilizes color schemes to differentiate antecedents
from consequents. The details of each rule represented by a
glyph, such as the antecedent and consequent values of the
rule can be seen at the bottomof theRSpace viewby hovering
over or selecting the glyph.

The grouped matrix view (Fig. 28) is a variant of matrix-
based visualization technique such that the rules are grouped
based on common antecedents and consequents (see [14] for
details). The view utilizes a K-mean clustering algorithm for
the same, where the user needs to provide the value of K
(default value of K = 20). In Fig. 28, all 9673 rules are
shown with K = 20. The appropriate value of K for any
dataset needs to be learnt using trial-and-error. Moreover,
the LHS, shown in the top x-axis, consists of clusters of
multiple antecedent values grouped together. This made it
difficult for the researcher to comprehend the items other
than the single one listed in each column. Similar in flavor
to the grouped matrix view is the FIRE rule glyph clustering

Table 2 User study schedule

Tested feature Tasks Duration
(min)

S1. PSpace stable region and interaction T1 2–4

T2 2–5

T3 3–6

S2. PSpace-redundancy/RSpace-tabular-filter T4 3–6

S3. PSpace skyline exploration T5 4–6

S4. RSpace glyph rule analysis T6 2–3

T7 2–3

S5. RSpace glyph placement analysis T8 2–3

T9 4–8

T10 2–3

Total 26–47

approach,where the researcher utilizedPCAandMDS layout
(see Sect. 5.4 for details). However, the full details of the
attributes in the antecedent and the consequent can be viewed
in the RSpace view by hovering over the group.

Conclusions Overall, the FIRE PSpace view together with
its rich diversity of features effectively supports interactive
exploration for a high number (∼9673) of rules for the bike
sharing dataset [29]. In addition the RSpace view, in particu-
lar, the rule glyphvisualizations enables effective comparison
of rules. Having graphical displays and interactions on oth-
erwise static sets of rule enable novel interactions with the
data and a rapid exploration of the rule space. Moreover,
compared to the state-of-the-art association rule visualization
techniques in [14], that required the researcher to understand
and type in syntactically correct R command line inputs or
scripts, FIRE is a completely graphical visualization tool as
every feature is available through intuitive clicks through
labeled interactions.

7 Evaluation using a user study

7.1 Evaluationmethodology

Here, we further present the second stage of our evaluation
of the FIRE system. We conducted a controlled user study to
compare the features of FIRE to that of the state-of-the-art
systems such asWeka [12] andmeasured the effectiveness of
different visual representations compared to the list of rules
provided by Weka.

7.1.1 User study procedure

The overall process was as follows: The subjects perform a
series of 5 studies listed in Table 2. As the studies progressed,
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the study administrator explained the purpose and process for
each task with examples. Lastly, the subject fills out an exit
questionnaire. On average the study took between 26 and 47
minutes per subject.

7.1.2 Tools compared

Our user study compares our FIRE visualizer to the cached
association rule miner (CRM). CRM is a association rule
miner based on the APRIORI algorithm [2] but with instant
response time due to the cached rules. CRM provides users
with a tabular view of rules and all functions offered by exist-
ing rule mining systems (e.g., WEKA [12]).

7.1.3 Metrics of evaluation

We measured both efficiency and accuracy of the subjects
in accomplishing the tasks. For efficiency, we measured the
time consumed by each subject for each task. For accuracy,
we measured the percentage of correctly answered tasks by
the subjects.

7.1.4 Datasets

We chose two datasets from the UC IrvineMachine Learning
Repository [30], namely, chess and mushroom. The chess
dataset is derived from the game step. The mushroom dataset
contains characteristics of various species of mushrooms.
Chess and mushroom datasets have ≥ 2000 closed frequent
itemsets at 94% and 50% support, respectively (see Fig. 1).

7.1.5 General method

Each subject was asked to perform all of the five studies
(S1–S5) described in Sect. 7.2. To avoid carryover effects
and learned knowledge about a dataset, we counter-balanced
the order of tasks, datasets and tools. For S1, we switched
datasets and tools. For example, half of the subjects per-
formed the task T1 on the chess dataset using CRM, and T1
on the mushroom dataset using FIRE. On the other hand, the
other half of the subjects performed the task T1 instead on the
mushroom dataset using CRM and T1 on the chess dataset
using FIRE. For S2 and S3, we switched both the questions
and the tools. Particularly, we asked subjects to find charac-
teristics of edible mushrooms using CRM and characteristics
of poisonous mushrooms with FIRE. This way addressed
the "pre-knowledge” problem. For S4, we randomized the
order of showing different glyph displays for each subject.
For S5, we randomized the order of applying different glyph
placement strategies for each subject. In general, we avoided
practice and fatigue effects by randomizing the order of tools
and tasks. In these task assignments, no carryover problems

arose, as each subject was asked to only finish a particular
task on a given dataset using the tools in a random order.

7.1.6 Environment setup

We conducted our experiments on a Windows 7 PC with
Intel(R) Core(TM)i5-2410M CPU@2.3 GHz processor and
4 GB of RAM, with a display resolution of 1600 by 900. Our
visualizations displayed in a 1000 by 600 window.

7.1.7 Study population

We performed the user study with a population of 22 sub-
jects (10 undergraduate students and 12 graduate students).
Theywere either from computer science, computer engineer-
ing or mathematical sciences programs. The user study was
conducted on a one-to-one basis, i.e., a tester to subject test.

7.2 Design of our user study

7.2.1 S1: Stable region usage study

In our stable region usage tests, we asked the subjects to
perform three different tasks (T1–T3) by varying tools and
datasets, such that each dataset was tested for each visual-
ization in a random order. The three tasks were designed
to verify the ability of the subjects to explore the parameter
space, to utilize the stable region abstractions and to compare
rulesets. The questions were as follows:

T1 What are the most prominent rules by support and/or
confidence?

T2 Which setting (out of 4 choices) gives a different set of
rules than the given setting?

T3 Find the common and unique rules for two different
parameter settings.

7.2.2 S2: Filter/redundancy study

In this study, we used only the mushroom dataset. We asked
our subjects to first filter the antecedents of the rules and then
to remove redundant rules. Some users used FIRE first and
CRM next, and vice-versa. The goal was to test the ability
of our subjects to use filter and redundancy removal features
by asking them to perform the following task.

T4 Find the most frequent characteristics of edible/ poi-
sonous mushrooms.

7.2.3 S3: Skyline view study

In the skyline view study, we asked the subjects to find the
top-k rules from the mushroom dataset by varying the tools
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(FIRE and CRM). The goal was to test if our subjects can
make use of the rule skyline cardinality. For this, we pre-
sented our subjects with the following task.

T5 Find the parameter settings that produce top-k rules in
the dataset, where k = 20, 50, or 100.

7.2.4 S4: Glyph display study

In our glyph view study, we showed the subjects a set of
6 glyphs using different glyph designs, namely, lined, con-
nected and filled. We told the subjects that the antecedent(s)
is/are represented by the blue color and the consequent(s)
is/are represented by the red color. We verified the hypoth-
esis that different glyph designs may be more effective for
different tasks. We presented our subjects with the following
tasks.

T6 Given a set of 6 glyphs, find the rules with the same
antecedents. Three questions were asked, each using a
different glyph design.

T7 Given a set of 6 glyphs, find the rule(s) with the great-
est number of consequents. Three questions were asked,
each using a different glyph design.

7.2.5 S5: Glyph placement study

In this study, three glyph placement strategies were presented
using the glyphs generated from the mushroom dataset. The
goal was to test if the subjects are able to leverage glyph
placement strategies to identify cluster or outlier among a
set of glyphs. In addition, we verified the hypothesis that
different glyph placement strategy may be more effective for
different tasks. In these tests, the connected glyph design was
chosen to present the questions due to the fact that the con-
nected glyph gives a visual shape to the glyph together with
serving the purpose of showing each hand (attribute) clearly.

T8 Identify outliers within a given set of glyphs using two
different glyph placement strategies (i.e., the unclus-
tered layout versus the clustered layout). Two questions
were asked-each using a different glyph placement
strategy.

Fig. 29 Time spent on tasks 1, 2 and 3. aMushroom. b Chess

Fig. 30 Accuracy of tasks T1, T2 and T3. a Mushroom. b Chess
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T9 Given a set of glyphs, identify glyph(s) with a certain
attribute-value pair using three different glyph layout
strategies, i.e., unsorted layout, sorted layout and clus-
tered layout. Total of six questions were asked, two
questions using each of the placement strategies.

T10 Using the clustered layout, identify groups of simi-
lar glyphs and count the groups containing a given
attribute-value pair. Two different sets of glyphs were
tested.

7.2.6 Exit questionnaire

A survey questionnaire was presented to the subjects at the
end of the studies. We asked them to rate the two alternative
tools, namely, FIRE and CRM in terms of their ease of use
on a scale of 1–5 (where 5 = very easy, 1 = very difficult).
We also asked them which tool they preferred for each of
the 3 studies (S1–S3). We also asked the subjects to rank the
alternate glyph designs (S4) and glyph layouts (S5) by their
ease of use. Overall, they were asked the following questions
about each task.

Q1 Which task(s) is/are easier with FIRE than CRM? (list
tasks)

Q2 Which task(s) is/are easier with CRM than FIRE? (list
tasks)

7.3 Hypotheses

As FIRE provides several features for interactive rule explo-
ration, we anticipated that conducting certain tasks using
FIRE would be faster and more accurate than using CRM.
Also, we expected that the glyph designs and glyph layout
strategies may vary in their effectiveness for different tasks.
This led to the following hypotheses.

H1 ForT1, T2, T3, T4 andT5, subjects performbetter using
FIRE thanCRMin termof both time spent and accuracy.

Fig. 31 Time spent on tasks T4 and T5

Fig. 32 Accuracy of tasks t4 and t5

Fig. 33 Time spent on tasks T6 and T7

H2 For T6, the filled glyph is more effective than other
glyph designs, whereas for T7, the lined glyph is more
effective than others.

H3 For T8, the clustered layout is more effective than other
glyph placement strategies in detecting outlier glyphs.

H4 For T9, the sorted layout is more effective than other
layouts in aiding the analyst in finding glyph(s) with a
certain attribute-value pair.

H5 ForT10, the subjects can easily identify group of similar
glyphs using the clustered layout.

7.4 Results and discussion

Stable region usage studyAs confirmed in Fig. 29, subjects
took less time when working with FIRE compared to that
while using CRM.

This is because the tabular view in CRM does not provide
any aid or intuition for subjects to accomplish the tasks.

As shown in Figs. 29a and 30a, for task T1, subjects spent
9 s on average using FIRE to get 100% accuracy while sub-
jects used 62s on average with CRM to achieve the same
accuracy. For T2, the minimum time spent was 2 seconds
using FIRE while that using CRM required was at least 26
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Fig. 34 Accuracy of tasks T6 and T7

Fig. 35 Time spent on tasks T8

Fig. 36 Accuracy of tasks T8

seconds. Thus for T2, FIRE outperformed CRM in measures
of accuracy by 5%. For T3, the maximum time spent with
FIRE was 55s, while in CRM it was 255s. Subjects using
FIRE achieved 100% correctness while in CRM this figure
was 80%.

Similarly, in Figs. 29b and 30b, our subjects took less time
usingFIRE thanCRMto complete all three tasks.At the same
time, they made fewer mistakes using FIRE than CRM. In
particular, the accuracy of T1 using FIRE was 30% higher
than the accuracy of CRM. This is because more than one
rule existed that satisfied the question in the chess dataset.
Subjects tended to omit some rules that resulted in this low
accuracy. In contrast, FIRE is able to reveal the full answer
with just 1 or 2 clicks.

Filter/redundancy + skyline view studies In Figs. 31 and
32, we show the time spent and accuracy for tasks T4 and
T5, respectively. Again, subjects using FIRE spent less time
to perform the tasks, yet were able to achieve better accuracy
than subjects using CRM for the same task. More specifi-
cally, subjects used 29s on average with FIRE yet achieved
near 100% accuracy for T4. The subjects using CRM, on
the other hand, took 80s and reached only 84% accuracy.
Overall, the results confirmed our hypothesis H1, i.e., our
FIRE technology is a win-win in terms of both efficiency
and accuracy.

Glyph view study Figures 33 and 34 show the time spent
and the accuracy when using the three glyph designs. The
results confirmed our hypothesis H2. For task T6 that asked
for antecedent similarity detection, the filled glyph indeed
is proven to be the most effective among the three glyph
designs. In particular, subjects spent 20 s on average to cor-
rectly answer this similarity detection question using filled
glyphs. Those using other glyph displays took longer time
and yet committed several mistakes. For T7 involving count-
ing of the number of consequents, the lined glyph showed
an impressive efficiency (avg. 6 s) and 100% accuracy. Most
subjects rated the lined glyph as the easiest to use in their
exit questionnaire. In T7 subjects using the connected glyph
design also achieved 100% accuracy with a slightly higher
time spent.

Glyph placement study In Figs. 35 and 36, we show the
time spent and the accuracy of task T8 when using unclus-
tered and clustered layouts. The subjects used less time when
supported by our clustered layout, while they needed signif-
icantly more time using the unclustered layout. The fastest
subject took only 1 s to complete this task with the help of
our clustered layout. Accuracy-wise, subjects achieved 97%
correctness using the clustered layout while only 80% accu-
racy was achieved by subjects with the unclustered layout.
This is because our clustered layout essentially groups simi-
lar glyphs together and simultaneously unveils the outliers to
subjects. The results confirmed our hypothesis H3. The sub-
jects are able to leverage our clustered layout to recognize
the outlier within a set of glyphs effectively.

For task T9, which asked the user to identify glyphs with
a certain attribute-value pair, the sorted view indeed was
proven to bemost effective among the three placement strate-
gies. As shown in Figs. 37 and 38, the subjects using the
sorted layout achieved 99% accuracy and took less time,
while the subjects using the unsorted layout achieved 80%
correctness and took more time. This is because the sorted
view allows subjects to sort glyphs by a single attribute using
the ”sort-by” function. The set of glyphs is thus classified by
the specified attribute and the glyphs with the same value
are naturally grouped together to facilitate search. Notable
among these three layout strategies was the clustered layout,
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Fig. 37 Time spent on tasks T9

Fig. 38 Accuracy of tasks T9

Fig. 39 Time spent on task T10

which does not behave well in this task. Clustered layout
tends to group glyphs using all of their attributes instead of
a designated one, which renders it less suitable for this task.

Figures 39 and 40 show the effectiveness of identifying
groups of glyphs using the clustered layout. In particular, the
subjects used on average 11 and 6s, respectively, to achieve
near 100% correctness on both questions in task T10. Our
hypothesisH5 is thus confirmed. In our initial trial on the sub-

Fig. 40 Accuracy of task T10

jects, they were unable to perform this task well without the
help of the clustered layout. The subjects could not group the
glyphs correctly within an acceptable response time. There-
fore, this task is best suited for the clustered layout.

Exit questionnaire Answers to Q1 and Q2 on the exit ques-
tionnaire are shown inFig. 41. There is a clear endorsement in
favor of FIRE versus CRM, especially in test T5 where none
of the subjects chose CRM over FIRE. The most common
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Fig. 41 Votes on the preference of CRM and FIRE in term of tasks

Fig. 42 Survey question on task T8

Fig. 43 Survey question on task T9

reason cited for this choice was the facilitated exploration of
PSpace. The only exception was T1, as some subjects stated
that they are more familiar with the sorted rules in the tabular
view. In terms of ease of use, on a scale from 1 to 5, FIRE
was rated 4.3 on average and CRM was rated 3. Here, 1 =
very difficult and 5 = very easy. Figures 42 and 43 show the
results for the glyph placement study that verified the task of
finding glyphs with a given attribute-value pair using differ-
ent layouts. On a scale from 1 to 5, the clustered layout was

Fig. 44 Overall accuracy using CRM and FIRE

rated 2.7, the sorted layout was rated 4.5 and the unsorted
glyph layout was rated 3.8. In terms of identifying dissimilar
glyphs, the clustered view was rated 3 and the unclustered
view was rated 3.7.

Overall, as shown in Fig. 44, the user study showed that
92% of our subjects could perform the task correctly with
FIRE while 82% of them produced correct answers with
CRM. In addition, the glyph representation of rules and the
glyph layout strategies offered users great benefits in asso-
ciation rule exploration. In conclusion, all hypotheses were
confirmed by our user study. Our study shows that FIRE
indeed aids human analysts in performing interactive rule
exploration tasks efficiently and accurately.

8 Related work

Parameter space exploration Prior research has explored
the space of parameters for handling parameterized database
queries [7] and tuning database configuration parameters
[10]. Most data mining queries are parameterized, which,
while making the algorithm flexible and tunable to one’s
own problem, often causes huge difficulty as typically the
selection of appropriate parameter values is left to the human
analysts. Closest to our work, [36] aims to help analysts
understand the relationship among clusters produced with
different parameter settings to better understand good results
for density-based clusters. We instead explore the parame-
ter space for rule mining. Closest to our proposed parameter
space display is the recent demonstration called AssocEx-
plorer [21] that proposes a scatterplot of rules on a 2-D space.
However, they overlook the visual clutter problem that is
common even for a moderate number of rules. We tackle the
clutter problemwith our proposed stable region abstractions,
zoom and granularity features.

Interactive association rule mining Hahsler et al. [14] pre-
sented the R-extension package arulesViz which implements
several visualization techniques to display individual rules. In
that sense, these efforts only focus on subset of our problem,
namely, on designing displays for visualizing association
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rules as in our RSpace view. Analogous to our RSpace view,
they work with standard visualizations found in visualization
toolkits including variants of scatterplots, histograms and
parallel coordinates visualization techniques. In this paper,
we instead propose three variants of RSpace glyph views
for graphically representing individual rules. We found rule
glyphs and associated placement strategies to be well-suited
to facilitate exploration and comparison among rules. These
core techniques can potentially be integrated into ARulesViz
as well.

Couturier et al. [9] proposed an integrated framework
covering both rule extraction and visualization steps of the
mining process. They provided a guided exploration based
on clustering of rules. Neither of these approaches provide
support for understanding the distribution of rules within the
space of interestingness parameters (such as support, con-
fidence and lift). Last but not least, unlike other efforts on
interactive rule mining, a key contribution of our work is its
focus on evaluating the usability of our FIRE framework via
a formal user study.

Online association rule mining Online mining techniques
[1,16,17] typically prestore the intermediate frequent item-
sets. Here, we instead adopt the approach of rule prestoring
from [19] to achieve the required real-time interactive behav-
ior. [19,23] propose to store the final rule results instead. They
achieve near real-time responsiveness, laying the foundation
for offering speedups sufficient for interactive rule explo-
ration. However, sense-making of rulesets extracted from a
dataset, which is the topic of our current study, is not the
focus of these rule mining systems [12,14,15,19,23].

Interestingness measures as parameters Han et al. [34]
identify the importance of analyzing the interestingness
measures of rules. They compare different null-invariant
measures, such as confidence, to provide insights into sim-
ilarities and differences among them. However, they do not
tackle interactive rule mining through precomputation as
undertaken by our work. In a more recent work, Cao et al.
[5] propose a new interestingness parameter Max Coverage
Gain. They introduce the MCGminer algorithm to handle
complex rule interactions and reduce the computational com-
plexity of identifying the globally optimal rule set in a large
imbalanced dataset. By extensive evaluation over 13 UCI
datasets [30], their metric is proven to be accurate and effec-
tive.Ourwork is orthogonal to [5,34] aswe provide an overall
framework for interactive rule mining. The parameters and
strategies proposed in theseworks can be added to our frame-
work to provide a richer experiences to analysts.

Rule relationships and actionable high-utility rules Com-
bined mining [6] techniques focus on determining and
managing various aspects of patterns such as rules, e.g.,
relationships among patterns, pattern representation. Works
on actionable high-utility itemset mining [28] establish that

itemsets that are frequent may not necessarily be of high-
utility. Further, [31] presents a framework that integrates
both explicit and hidden item dependencies and an algo-
rithm IRRMiner that captures such implicit relations with
implicit rule inference. Theseworks propose utility functions
to establish how significant a itemset/rule is, and bridge the
gap between research outcomes and business needs. While
these two works make significant advances in discovering
high-utility rules and defining complex rule relationships, our
interactive FIRE engine powers the discovery process itself
by presenting rules in an easy explorablemanner.We use rule
redundancy relationships as an example of rule relationships,
the concepts in these relevant works can be adopted into the
backend (PARAS) of our visual FIRE engine to then together
provide richer insights to the analysts for sense-making of
association rules.

9 Conclusion

In this work we designed, implemented and evaluated
an innovative visualization technology for interactive rule
exploration called the FIRE framework.FIRE offers param-
eter recommendations and enhanced sense-making of rule
relationships. Particularly, we propose two linked visualiza-
tions, namely, the PSpace and RSpace views. Both views are
supplementedwith innovative visualizations and interactions
that enable analysts to effectively conduct visual rule explo-
ration. While PSpace offers a rule distribution abstraction,
RSpace facilitates a detailed analysis of rules and their rela-
tions. In addition, our novel RSpace glyph display enables
visual comparison of rule shapes further augmented by glyph
placement strategies [32].

Our case study using the Bike sharing dataset [29] illus-
trates the capabilities of the FIRE system and compares it
with that of the state-of-the-art ARulesViz rule visualization
techniques. Further, our user study with 22 subjects demon-
strates the usability and effectiveness of the proposed FIRE
framework using several benchmark datasets.

FIRE is being maintained as a system [11] and fur-
ther extended [20,25–27] to include additional capabilities
including negative rules, enhanced interactivity, and inter-
estingness measures with respect to specific domains. In the
future, new interestingness measures [5,6,28,31] could be
incorporated to make FIRE more useful.
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A Appendix

A.1 Preprocessing of the bike sharing dataset

The Bike Sharing dataset [29] was preprocessed before load-
ing into FIRE [11] andRARulesViz [14], as described below.

1. Data corresponding to three of the attributes was elim-
inated. The attributes are instant (unique identifier),
dteday (date) and yr (contains 2 values: year 1 andyear 2).

2. The casual and registered users increased over time. In
particular, the casual users increase at 0.895 users per day,
whereas the registered users increase at a rate of 4.874
users per day. To cancel the effect of the overall growth,
the data was rotated to negate the slope of the trend lines.
In Figs. 45 and 46, we show the original user counts, and
inFigs. 47 and48we show the adjusted user counts for the
casual and registered users categories. This processing is
similar in flavor to season trend decomposition in [8].

3. Further, the attributes were discretized as shown in Table
3.

Fig. 45 Original casual user count

Fig. 46 Original Registered User Count

Fig. 47 Adjusted casual user count

Fig. 48 Adjusted registered user count

Table 3 Discretized attributes: bike sharing dataset

Attribute Discretization Category

adjusted_casual [0,986.006) LOW

[986.006,1972.0118) MEDIUM

[1972.0118,∞) HIGH

adjusted_registered [0,1334.0613) LOW

[1334.0613,2668.1227) MEDIUM

[2668.1227,∞) HIGH

air_temperature [0, 0.333012) LOW

[0.333012, 0.586954) MEDIUM

[0.586954,∞) HIGH

humidity [0, 0.324167) LOW

[0.324167,0.648333) MEDIUM

[0.648333,∞) HIGH

windspeed [0,0.184082324167) LOW

[0.184082,0.345773) MEDIUM

[0.345773,∞) HIGH

A.2 Association rules and redundancy

An adjacency lattice (Fig. 49) denotes items such as X , Y
and Z . The support value of each item (say, X ) or itemset
(say, XY ) indicates the total instances of the item or itemset
in the dataset. For example, in a set of 100 records, X occurs
in 80 and Y in 60 records. Itemset XY has a support of 40
records. For a rule R = (X −→ Y ), its confidence can be

represented as confidence (R) = support(X∪Y )

support(X)
.

Aggarwal et al. [1] define rule redundancy relationships,
such that redundant rules may be filtered out to present suc-
cinct results to the user. The redundant rules could always
be derived on demand, if so desired. We examine how these

Fig. 49 Adjacency lattice example

123



International Journal of Data Science and Analytics (2019) 7:201–226 225

Table 4 Redundancy in generated association rules

Rule Support Confidence

X ⇒ Y Z S(X ∪ Y ∪ Z) = 0.1 S(X∪ Y ∪ Z)/S(X) = 0.125

XY ⇒ Z S(X ∪ Y ∪ Z) = 0.1 S(X ∪ Y ∪ Z)/S(X ∪ Y ) = 0.25

X Z ⇒ Y S(X ∪ Y ∪ Z ) = 0.1 S(X ∪ Y ∪ Z)/S(X ∪ Z) = 0.5

X ⇒ Y S(X ∪ Y ) = 0.4 S(X ∪ Y )/S(X) = 0.5

X ⇒ Z S(X ∪ Z) = 0.2 S(X ∪ Z)/S(X) = 0.25

redundancy relationships can be identified in the parameter
space model. In particular, redundancy can be of two types
[1], as defined below.

Definition 1 Simple redundancy Let A ⇒ B and C ⇒ D
be two rules such that the itemsets A, B,C and D satisfy
the condition A ∪ B = C ∪ D. The rule C ⇒ D is simply
redundant with respect to the rule A ⇒ B, if C ⊃ A.

Definition 2 Strict redundancyWe consider two rules gen-
erated from itemsets Xi and X j , respectively, such that
Xi ⊃ X j . Let A ⇒ B and C ⇒ D be rules satisfying
A∪B = Xi ,C∪D = X j , andC ⊇ A. Then the ruleC ⇒ D
is strictly redundant with respect to the rule A ⇒ B.

The concept of redundancy can be illustrated using the
rules generated from the lattice (Fig. 49) as listed in Table 4.
Based on Definitions 1 and 2, if a rule R1 is simple or strict
redundant with respect to another rule R2, then R2 is said
to simple or strict dominateR1, respectively. In Table 4, the
rule (X ⇒ Y Z ) simple dominates the rules (XY ⇒ Z ) and
(X Z ⇒ Y ) (Def. 1). In Table 4, the rule (X ⇒ Y Z ) strict
dominates rules (X ⇒ Y ) and (X ⇒ Z ) (Def. 2). In general,
a rule may be dominated by several dominating rules and
may in turn dominate several other dominated rules.
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