
International Journal of Data Science and Analytics (2018) 6:81–107
https://doi.org/10.1007/s41060-018-0107-0

REVIEW

Themany faces of data-centric workflow optimization: a survey

Georgia Kougka1 · Anastasios Gounaris1 · Alkis Simitsis2

Received: 26 May 2017 / Accepted: 24 February 2018 / Published online: 6 March 2018
© Springer International Publishing AG, part of Springer Nature 2018

Abstract
Workflow technology is rapidly evolving and, rather than being limited to modeling the control flow in business processes,
is becoming a key mechanism to perform advanced data management, such as big data analytics. This survey focuses on
data-centric workflows (or workflows for data analytics or data flows), where a key aspect is data passing through and getting
manipulated by a sequence of steps. The large volume and variety of data, the complexity of operations performed, and the long
time such workflows take to compute give rise to the need for optimization. In general, data-centric workflow optimization
is a technology in evolution. This survey focuses on techniques applicable to workflows comprising arbitrary types of data
manipulation steps and semantic inter-dependencies between such steps. Further, it serves a twofold purpose: firstly, to present
the main dimensions of the relevant optimization problems and the types of optimizations that occur before flow execution
and secondly, to provide a concise overview of the existing approaches with a view to highlighting key observations and areas
deserving more attention from the community.

Keywords Data flows · Workflow optimization · Workflow management systems · Data analysis · Data science

1 Introduction

Workflows aim to model and execute real-world intertwined
or interconnected processes, named as tasks or activities.
While this is still the case, workflows play an increasingly
significant role in processing very large volumes of data,
possibly under highly demanding requirements. Scientific
workflow systems tailored to data-intensive e-science appli-
cations have been around since the last decade, e.g., [26,29].
This trend is nowadays complemented by the evolution of
workflow technology to serve (big) data analysis, in settings
such as business intelligence, e.g., [19], and business pro-
cess management, e.g., [11]. Additionally, massively parallel
engines, such as Spark, are becoming increasingly popular
for designing and executing workflows.

B Anastasios Gounaris
gounaria@csd.auth.gr

Georgia Kougka
georkoug@csd.auth.gr

Alkis Simitsis
alkis@hpe.com

1 Aristotle University of Thessaloniki, Thessaloníki, Greece

2 HP Labs, Palo Alto, USA

Broadly, there are two big workflow categories, namely
control-centric and data-centric. A workflow is commonly
represented as a directed graph, where each task corresponds
to a node in the graph and the edges represent the control flow
or the data flow, respectively. The control-centric workflows
are most often encountered in business process manage-
ment [105], and they emphasize the passing of control across
tasks and gateway semantics, such as branching execution,
iterations, and so on; transmitting and sharing data across
tasks is a second class citizen. In control-centric workflows,
only a subset of the graph nodes correspond to activities,
while the remainder denote events and gateways, as in the
BPMN standard. In data-centric workflows (or workflows
for data analytics or simply data flows1), the graph is typi-
cally acyclic (directed acyclic graph—DAG). The nodes of
the DAG represent solely actions related to the manipula-
tion, transformation, access and storage of data, e.g., as in
[27,74,90,114] and in popular data flow systems, such as Pen-
taho Data Integration (Kettle) and Spark. The tokens passing
through the tasks correspond to processed data. The control
is modeled implicitly assuming that each task may start exe-
cuting when the entire or part of the input becomes available.
This survey considers data-centric flows exclusively.

1 Hereafter, these three terms will be used interchangeably; the terms
workflow and flow will be used interchangeably, too.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s41060-018-0107-0&domain=pdf
http://orcid.org/0000-0003-3976-7615

82 International Journal of Data Science and Analytics (2018) 6:81–107

Executing data-centric flows efficiently is a far from trivial
issue. Even in the most widely used data flow tools, flows are
commonly designed manually. Problems in the optimality
of those designs stem from the complexity of such flows
and the fact that in some applications, flow designers might
not be systems experts [2] and consequently, they tend to
design with only semantic correctness in mind. In addition,
executing flows in a dynamic environment may entail that an
optimized design in the past may behave suboptimally in the
future due to changing conditions [39,93].

The issues above call for a paradigm shift in the way data
flow management systems are engineered and more specif-
ically; there is a growing demand for automated optimiza-
tion of flows. An analogy with database query processing,
where declarative statements, e.g., in SQL, are automati-
cally parsed, optimized, and then passed on to the execution
engine is drawn. But data flow optimization ismore complex,
because tasks need not belong to a predefined set of algebraic
operators with clear semantics and there may be arbitrary
dependencies among their execution order. In addition, in
data flows there may be optimization criteria apart from per-
formance, such as reliability and freshness depending on
business objectives and execution environments [89]. This
survey covers optimization techniques2 applicable to data
flows, including database query optimization techniques that
consider arbitrary plan operators, e.g., user-defined functions
(UDFs), and dependencies between them. To the contrary,
we do not aim to cover techniques that perform optimiza-
tions considering solely specific types of tasks, such as filters,
joins and so on; the techniques covered in this survey do not
necessarily rely on any type of algebraic task modeling.

The contribution of this survey is the provision of a tax-
onomy of data flow optimization techniques that refer to the
flow plan generation layer. In addition, a concise overview
of the existing approaches with a view to (i) explaining the
technical details and the distinct features of each approach
in a way that facilitates result synthesis; and (ii) highlighting
strengths and weaknesses, and areas deserving more atten-
tion from the community is provided.

The main findings are that on the one hand, big advances
have been made and most of the aspects of data flow opti-
mization have started to be investigated. On the other hand,
data flow optimization is rather a technology in evolution.
Contrary to query optimization, research so far seems to be
less systematic and mainly consists of ad hoc techniques, the
combination of which is unclear.

The structure of the rest of this article is as follows.
The next section describes the survey methodology and
provides details about the exact context considered. Sec-
tion 3 presents a taxonomy of existing optimizations that

2 The terms technique, proposal, and work will be used interchange-
ably.

take place before the flow enactment. Section 4 describes
the state-of-the-art techniques grouped by the main opti-
mization mechanism they employ. Section 5 presents the
ways in which optimization proposals for data-centric work-
flows have been evaluated. Section 6 highlights our findings.
Section 7 touches upon tangential flow optimization-related
techniques that have recently been developed along with
scheduling optimizations taking place during flow execution.
Section 8 reviews surveys that have been conducted in related
areas, and finally, Sect. 9 concludes the paper.

2 Surveymethodology

We first detail our context with regard to the architecture of a
Workflow Management System (WfMS). Then, we explain
the methodology for choosing the techniques included in the
survey and their dimensions, on which we focus. Finally, we
summarize the survey contributions.

2.1 Our context withinWfMSs

The life cycle of a workflow can be regarded as an iter-
ation of four phases, which cover every stage from the
workflow modeling until its output analysis [71]. The four
phases are composition, deployment, execution, and analy-
sis [71]. The type of workflow optimization, on which this
work focuses, is part of the deployment phase where the
concrete executable workflow plan is constructed defining
execution details, such as the engine that will execute each
task. Additionally, Liu et al. [71] introduce a functional
architecture for each data-centric Workflow Management
System (WfMS), which consists of five layers: (i) presen-
tation, which comprises the user interface; (ii) user services,
such as the workflow monitoring and data provision com-
ponents; (iii) workflow execution plan (WEP) generation,
where the workflow plan is optimized, e.g., through work-
flow refactoring and parallelization, and the details needed
by the execution engine are defined; (iv) WEP execution,
which deals with the scheduling and execution of the (possi-
bly optimized) workflow, but also considers fault-tolerance
issues, and finally, (v) the infrastructure layer, which pro-
vides the interface between the workflow execution engine
and the underlying physical resources.

According to the above architecture, one of the roles of
a WfMS is to compile and optimize the workflow execution
plans just before the workflow execution. Optimization of
data flows, as conceived in this work, forms an essential part
of the WEP generation layer and not of the execution layer.
Although there might be optimizations in theWEP execution
layer as well, e.g., while scheduling the WEP, these are out
of our scope. More specifically, the mapping of flow tasks
to concrete processing nodes during execution, e.g, task X

123

International Journal of Data Science and Analytics (2018) 6:81–107 83

of the flow should run on processing node Y , is tradition-
ally considered to be a scheduling activity that is part of
WEP execution layer rather than the WEP generation one,
on which we focus. Finally, we use the terms task and activ-
ity interchangeably, both referring to entities that are not yet
instantiated, activated or executed.

2.2 Techniques covered

The main part of this survey covers all the data flow opti-
mization techniques that meet the following criteria to the
best of authors’ knowledge:

– They refer to theWEPgeneration layer in the architecture
described above that is the focus is on the optimizations
performed before execution rather than during execution.

– They refer to techniques that are applicable to any type
of tasks rather than being tailored to specific types, such
as filters and joins, or to an algebraic modeling of tasks.

– The partial ordering of the flow tasks is subject to depen-
dency (or, else precedence) constraints between tasks,
as is the generic case for example of scientific and data
analysis flows; these constraints denote whether a spe-
cific task must precede another task or not in the flow
plan.

We surveyed all types of venues where relevant tech-
niques are published. Most of the covered works come from
the broader data management and e-science community, but
there are proposals from other areas, such as algorithms. We
also include techniques that were proposed without generic
data flows in mind, but meet our criteria and thus are appli-
cable to generic data flows. An example is the proposal for
queries over Web Services (WSs) in [94]. The main key-
words we searched for are: “workflow optimization,” “flow
optimization,” “query optimization AND constraints,” and
“query optimization AND UDF,” while we applied snow-
balling in both directions [110] using both the reference list
of and the citations to a paper.

2.3 Technique dimensions considered

We assume that the user initially defines the flow either at a
high-level non-executable form or in an executable form that
is not optimized. The role of the optimizations considered
is to transform the initial flow into an optimized ready-to-
be executed one.3 Analogously to query optimization, it is

3 Through considering optimizations starting from a valid initial flow,
we exclude fromour survey the big area of answering queries in the pres-
ence of limited access patterns, in which, the main aim is to construct
such an initial plan [69,78] through selecting an appropriate subset of
tasks from a given task pool; however, we have considered works from

convenient to distinguish between high-level and low-level
flow details. The former capture essential flow parts, such
as the final task sequencing, at a higher level than that of
complete execution details, whereas the latter include all the
information needed for execution. In order to drive the opti-
mization, a set of metadata is assumed to be in place. This
metadata can be statistics, e.g., cost per task invocation and
size of task output per input data item, information about the
dependency constraints between tasks, that is a partial order
of tasks, which must be always preserved to ensure semantic
correctness, or other types of information as explained in this
survey.

To characterize optimizations that take place before the
flow execution (or enactment), we pose a set of complemen-
tary questionswhenexamining each existingproposal aiming
at shedding light onto and covering all the main aspects of
interest:

1. What is the effect on the execution plan?, which aims to
identify the type of incurred enhancements to the initial
flow plan.

2. Why?, which asks for the objectives of the optimization.
3. How?, which aims to clarify the type of the solution.
4. When?, to distinguish between cases where the WEP

generation phase takes place strictly before theWEP exe-
cution one, and where these phases are interleaved.

5. Where the flow is executed?, which refers to the execution
environment.

6. What are the requirements?, which refers to the input
flow metadata in order to apply the optimization.

7. Inwhich application domain?, which refers to the domain
for which the technique initially targets.

We regard each of the above questions as a different
dimension. As such, we derive seven dimensions: (i) the
Mechanisms referring to the process through which an initial
flow is transformed into an optimized one; (ii) the Objec-
tives that capture the one or more criteria of the optimization
process; (iii) the Solution Types defining whether an opti-
mization solution is accurate or approximate with respect
to the underlying formulation of the optimization problem;
(iv) the Adaptivity during the flow execution; (v) the Exe-
cution Environment of the flow and its distribution; (vi) the
Metadata necessary to apply the optimization technique; and
finally, (vii) the Application Domain, for which each opti-
mization technique is initially proposed.

data integration that optimize the plan after it has been devised, such as
[111] or [34], which is subsumed by Kougka and Gounaris [60].

123

84 International Journal of Data Science and Analytics (2018) 6:81–107

Fig. 1 A taxonomy of
data-centric flow optimization
for each of the identified
dimensions

3 Taxonomy of existing solutions

Based on the dimensions identified above, we build a tax-
onomy of existing solutions. More specifically, for each
dimension, we gather the values encountered in the tech-
niques coveredhereby. In otherwords, the taxonomy is driven
by the current state-of-the-art and aims to provide a bird’s eye
view of today’s data flow optimization techniques. The tax-
onomy is presented in Fig. 1 and analyzed below, followed
by a discussion of themain techniques proposed to date in the
next section. In the figure, each dimension (in light blue) can
take one ormore values. Single-value andmulti-value dimen-
sions are shown as yellow and green rectangles, respectively.

3.1 Flow optimizationmechanisms

A data flow is typically represented as a directed acyclic
graph (DAG) that is defined as G = (V , E), where V
denotes the nodes of the graph corresponding to a set of
tasks and E represents a set of pair of nodes, where each
pair denotes the data flow between the tasks. If a task out-
puts data that cannot be directly consumed by a subsequent
task, then data transformation needs to take place through
a third task; no data transformation takes place through an
edge. Each graph element, either a vertex or an edge, is asso-
ciated with properties, such as how exactly is implemented,
for which execution engine, and under which configuration.
Data flow optimization is a multi-dimensional problem, and
its multiple dimensions are broadly divided according to the
two flow specification levels. Consequently, we identify the

optimization of the high-level (or logical) flow plan and the
low-level (or physical) flow plan, and each type of optimiza-
tion mechanism can affect the set of V or E of the workflow
graph and their properties.

The logical flow optimization types are largely based
on workflow structure reformations, while preserving any
dependency constraints between tasks; structure reforma-
tions are reflected as modifications in V and E . The output
of the optimized flow needs to be semantically equivalent as
the output of the initial flow, which practically means that
two flows receive the same input data and produce the same
output data without considering the way this result was pro-
duced. Given that data manipulation takes place only in the
context of tasks, logical flow optimization is task-oriented.
The logical optimization types are characterized as follows
(summarized also in Fig. 2):

– TaskOrdering,wherewechange the sequenceof the tasks
by applying a set of partial (re)orderings.

– Task Introduction, where new tasks are introduced in the
data flow plan in order, for example, to minimize the data
to be processed and thus, the overall execution cost.

– Task Removal, which can be deemed as the opposite of
task introduction. A task can be safely removed from the
flow, if it does not actually contribute to its result dataset.

– Task Merge is the optimization action of grouping flow
tasks into a single task without changing the semantics,
for example, to minimize the overall flow execution cost
or to mitigate the overhead of enacting multiple tasks.

123

International Journal of Data Science and Analytics (2018) 6:81–107 85

– Task Decomposition, where a set of grouped tasks is split
to more than one flow tasks with less complex func-
tionality for generating more optimal sub-tasks. This is
the opposite operation of merge action and may provide
more optimization opportunities, as discussed in [47,90],
because of the potential increase in the number of valid
(re)orderings.

At the low level, a wide range of implementation aspects
need to be specified so that the flow can be later executed
(see also Fig. 3):

– Task Implementation Selection, which is one of the most
significant lower-level problems in flow optimization.
This optimization type includes the selection of the exact,
logically equivalent, task implementation for each task
that will satisfy the defined optimization objectives [90].
A well-known counterpart in database optimization is
choosing the exact join algorithm (e.g., hash-join, sort-
merge-join, nested loops).

– Execution Engine Selection, where we have to decide
the type of processing engine to execute each task. The
need for such optimization stems from the availability of
multiple options in modern data-intensive flows [63,91].
Common choices, nowadays, includeDBMSs,massively
parallel engines, such as Hadoop clusters, apart from the
execution engines that are bundled with data flow man-
agement systems.

– Execution Engine Configuration, where we decide on
configuration details of the execution environment, such
as the bandwidth, CPU, memory to be reserved during
execution or the number of cores allocated [93].

The fact that the optimization types are task-oriented
must not lead to a misinterpretation that they are unsuit-
able for data flows. Again, we draw an analogy with query
optimization, where the main techniques, e.g., dynamic pro-
gramming for join ordering, filter push down, and so on are
operator-oriented; nevertheless, such an approach has proven
sufficient for making query plans capable of processing ter-
abytes of data.

3.2 Optimization objectives

An optimization problem can be defined as either single or
multiple objective one depending on the number of criteria
that considers. The optimization objectives that are typically
presented in the state-of-the-art include the following: per-
formance, reliability, availability, and monetary cost. The
latter is important when the flow is executed on resources
provided at a price, as in public clouds. Other quality metrics
can be applied as well (denoted as other QoS in Fig. 1).

The first two objectives require further elaboration. Per-
formance can be defined in several forms, depending, for
example, on whether the target is the minimization of the
response time, or the resource consumption. The formal def-
initions of the performance objective in data flows that have
appeared in the literature are presented in the next section.
Analogously, reliability may appear in several forms. In our
context, reliability reflects howmuch confidencewe have in a
data flow execution plan to complete successfully. However,
in data flow optimization proposals, we have also encoun-
tered the following two reliability aspects playing the role
of optimization objectives: trustworthiness of a flow (Trust),
which is typically based on the trustworthiness of the indi-
vidual tasks and avoidance of dishonest providers, that is
providers with bad reputation; and Fault Tolerance, which
allows the execution of the flow to proceed even in the case
of failures.

3.3 Optimization solution types

The optimization techniques that have been proposed con-
stitute accurate, approximate or heuristic solutions. Such
solutions make sense only when considered in parallel with
the complexity of the exact problem they aim to solve. Unfor-
tunately, a big set of the problems in flow optimization are
intractable. For such problems, in the case of accurate solu-
tions, a scalable technique cannot be provided. In the case
of approximate optimization solutions, we typically tackle
intractable problems in a scalable way while being able to
provide guarantees on the approximation bound. Finally, in
the last category, we exploit knowledge about the specific
problem characteristics and propose algorithms that are fast
and exhibit good behavior in test cases, without examining
the deviation of the solution from the optimal in a formal
manner.

3.4 Adaptivity of data-centric flow

Data flow adaptivity refers to the ability of technique to re-
optimize the data flow plan during the execution phase. So,
we characterize the optimization techniques as either static,
where once the flow execution plan is derived, it is executed
in its entirety, or dynamic, where the flow execution planmay
be revised on the fly.

3.5 Execution environment

The techniques that are proposed for data flow optimization
problem differ significantly according to the execution envi-
ronment assumed. The execution environment is defined by
the type of resources that execute the flow tasks. Specifically,
in a centralized execution environment, all the tasks of a flow
are executed by a single-node execution engine.Additionally,

123

86 International Journal of Data Science and Analytics (2018) 6:81–107

Fig. 2 Schematic representation
of high-level flow optimizations

Fig. 3 Schematic representation
of low-level flow optimizations

in a parallel execution environment, the tasks are executed in
parallel by an engine on top of a homogeneous cluster, while
in a distributed execution environment, the tasks are executed
by remote and potentially heterogeneous execution engines,
which are interconnected through ordinary network. Typi-
cally, optimizations on the logical level are agnostic to the
execution environment, contrary to the physical optimization
ones.

3.6 Metadata

The set of metadata includes the information needed to apply
the optimizations and as such can be regarded as existen-
tial pre-conditions that should hold. The most basic input
requirement of the optimization solutions is an initial set V
of tasks.However, additionalmetadatawith regard to theflow
graph are typically required as well. These metadata are both

123

International Journal of Data Science and Analytics (2018) 6:81–107 87

qualitative and quantitative (statistical), as discussed below.
Qualitative metadata include:

– Dependencies, which explicitly refer to the definition of
which vertices in the graph should always precede other
vertices. Typically, the definition of dependencies comes
in the form of an auxiliary graph.

– Task schemata, which refer to the definition of schema
of the data input and/or output of each task. Note that
dependenciesmay be produced by task schemata through
simple processing [87], especially if they contain infor-
mation about which schema elements are bound or free
[58]. However, task schemata may serve additional pur-
poses than deriving dependencies, e.g., to check whether
a task contributes to the final desired output of the flow.

– Task profile, which refers to information about the exe-
cution logic of the task, that is the manner it manipulates
its input data, e.g., through analysis of the commands
implementing each task. If there are no such metadata,
the task is considered as a black-box. Otherwise, infor-
mation, e.g., about which attributes are read and which
are written, can be extracted.

Quantitative metadata include:

– Vertex cost, which typically refers to the time cost, but
can also capture other types of costs, such as monetary
cost.

– Edge cost, which refers to the cost associated with edges,
such as data transmission cost between tasks.

– Selectivity, which is defined as the (average) ratio of the
output to the input data size of a task and its knowledge
is equivalent to estimating the data sizes consumed and
produced by each task; sizes are typicallymeasured either
in bytes or in number of records (cardinality).

– QoS properties, such as values denoting the task avail-
ability, reliability, security, and so on.

– Engine details, which cover issues, such as memory
capacity, execution platform configurations, price of
cloud machines, and so on.

3.7 Application domain

The final dimension across, which we classify existing
solutions, is the application domain assumed when each
technique is proposed. This dimension sheds light into dif-
ferentiating aspects of the techniques with regard to the
execution environment and the data types processed that can-
not be captured by the previous dimensions. Note that the
techniques may be applicable to arbitrary data flows in addi-
tional application domains than those initially targeted. In
this dimension, we consider two aspects: (i) domain of ini-
tial proposal, which can be one of the following: ETL flows,

data integration, Web Services (WSs) workflows, scientific
workflows, MapReduce flows, business processes, database
queries or generic; (ii) online (e.g., real time) versus batch
processing. Generic domain proposals aim to a broader cov-
erage of data flow applications, but due to their genericity,
they make miss some optimization opportunities that a spe-
cific domain proposal could exploit.Also, online applications
require more sophisticated solutions, since data are typically
streaming and employ additional optimization objectives,
such as reliability and acquiring responses under pressing
deadlines.

4 Presentation of existing solutions

Here, we describe the main techniques grouped according
to the optimization mechanism. This type of presentation
facilitates result synthesis. Grouping by mechanismmakes it
easier to reason as to whether different techniques employ-
ing the same mechanism can be combined or not, e.g.,
because the make incompatible assumptions. Additionally,
the solutions for each mechanism are largely orthogonal to
the solutions for another mechanism, which means that, in
principle, they can be combined at least in a naive manner.
Therefore, our presentation approach provides more insights
into how the different solutions can be synthesized.

The discussion is accompanied by a summary of each
proposal in Table 1 for the dimensions ofmechanisms, objec-
tives, solution types, and metadata, and Table 2, for the
adaptivity, execution environment, and application domain
dimensions. When an optimization proposal comes in the
form of an algorithm, we also provide the time complexity
with respect to the size of the set of vertices |V | = n. How-
ever, the interpretation of such complexities requires special
attention, when there are several other variables of the prob-
lem size, as is common in techniques employing optimization
mechanisms at the physical level; details are provided within
the main text. The first column of the table mentions also the
publication year of each proposal, in order to facilitate the
understanding of the proposal’s setting and the time evolution
of flow optimization.

Finally, we use a simple running example to present the
application of the mechanisms. Specifically, as shown in
Fig. 4, we consider a data flow that (i) retrieves Twitter posts
containing product tags (Tweets Input), (ii) performs sen-
timent analysis (Sentiment Analysis), (iii) filters out tweets
according to the results of this analysis (Filter1), (iv) extracts
the product to which the tweet refers to (Lookup ProductID),
and (v) accesses a static external data source with additional
product information (Join with External Source) in order to
produce a report (Report Output). In this simple example,
in any valid execution plan step (ii) should precede step (iii)
and step (iv) should precede step (v).

123

88 International Journal of Data Science and Analytics (2018) 6:81–107

Ta
bl
e
1

A
su
m
m
ar
y
of

th
e
m
ai
n
te
ch
ni
qu
es

fo
r
pr
od
uc
in
g
an

op
tim

iz
ed

flo
w
re
ga
rd
in
g
th
e
di
m
en
si
on
s:
m
ec
ha
ni
sm

s,
ob

je
ct
iv
es
,s
ol
ut
io
n
ty
pe
s,
an
d
m
et
ad
at
a

(R
ef
er
en
ce
s,
ye
ar
s)

M
ec
ha
ni
sm

s
O
bj
ec
tiv

es
So

lu
tio

n
ty
pe
s

M
et
ad
at
a

([
1]
,2

00
8)
,(
[4
8]
,2

00
7)

M
er
ge
,E

ng
in
e
Se
le
ct
io
n

Pe
rf
or
m
an
ce

H
eu
ri
st
ic

Ta
sk

Pr
ofi

le

([
6]
,2

01
2)

O
rd
er
in
g

Pe
rf
or
m
an
ce

(B
ot
tle
ne
ck
/
C
ri
tic
al

Pa
th
)

A
cc
ur
at
e
(O

(n
6
))

D
ep
en
de
nc
ie
s,

V
er
te
x
C
os
t,
Se
le
c-

tiv
ity

([
15

],
20
08
)
ex
te
nd
in
g
[9
4]

O
rd
er
in
g,

Im
pl
em

en
ta
tio

n
Se
le
c-

tio
n

Pe
rf
or
m
an
ce

H
eu
ri
st
ic

D
ep
en
de
nc
ie
s,
Ta
sk

Sc
he
m
at
a,
V
er
-

te
x
C
os
t,
Se

le
ct
iv
ity

([
20

],
19
99
)

O
rd
er
in
g

Pe
rf
or
m
an
ce

(S
um

C
os
t)

A
pp
ro
xi
m
at
e

V
er
te
x
C
os
t,
Se
le
ct
iv
ity

([
22

],
20
09
)

Im
pl
em

en
ta
tio

n
Se
le
ct
io
n

Pe
rf
or
m
an
ce

(C
ri
tic
al
Pa
th
),
M
on
e-

ta
ry

C
os
t,
R
el
ia
bi
lit
y

H
eu
ri
st
ic

V
er
te
x
C
os
t,
Q
oS

pr
op

er
tie

s

([
24

],
20
14
)

R
em

ov
al

Pe
rf
or
m
an
ce

H
eu
ri
st
ic
(O

(n
2
))

Ta
sk

Sc
he
m
at
a

([
25

],
20
15
)

E
ng
in
e
C
on
fig

ur
at
io
n

Pe
rf
or
m
an
ce

H
eu
ri
st
ic

Ta
sk

pr
ofi

le

([
30

],
20
05
)

R
em

ov
al

Pe
rf
or
m
an
ce

H
eu
ri
st
ic

D
ep
en
de
nc
ie
s,
Ta
sk

Sc
he
m
at
a

([
31

],
20
12
)

O
rd
er
in
g

Pe
rf
or
m
an
ce

(T
hr
ou
gh
pu
t)

A
cc
ur
at
e
(O

(n
3
))

D
ep
en
de
nc
ie
s,

V
er
te
x
C
os
t,
Se
le
c-

tiv
ity

([
40

],
19
98
)

O
rd
er
in
g

Pe
rf
or
m
an
ce

(S
um

C
os
t)

A
pp
ro
xi
m
at
e

V
er
te
x
C
os
t,
Se
le
ct
iv
ity

([
45

],
20
15
)

E
ng
in
e
C
on
fig

ur
at
io
n

Pe
rf
or
m
an
ce

H
eu
ri
st
ic

Ta
sk

Pr
ofi

le
,E

ng
in
e
D
et
ai
ls

([
46

],
20
15
)
ex
te
nd
in
g
[4
4]

Ta
sk

In
tr
od
uc
tio

n
E
ng
in
e
Se
le
ct
io
n/

C
on
fig

ur
at
io
n

Pe
rf
or
m
an
ce
,M

on
et
ar
y
C
os
t,
R
el
ia
-

bi
lit
y
(F
au
lt
To

le
ra
nc
e)

A
cc
ur
at
e
(e
xp

on
en
tia

l)
V
er
te
x
C
os
t,
E
ng

in
e
D
et
ai
ls

([
47

],
20
12
),
([
81

],
20
15
)

O
rd
er
in
g,

In
tr
od
uc
tio

n/
R
em

ov
al
,

D
ec
om

po
si
tio

n
Pe

rf
or
m
an
ce

(S
um

C
os
t)

A
cc
ur
at
e
(e
xp

on
en
tia

l)
Ta
sk

Sc
he
m
at
a/
Pr
ofi

le
,V

er
te
x
C
os
t,

Se
le
ct
iv
ity

([
57

],
20
11
)

E
ng
in
e
C
on
fig

ur
at
io
n

Pe
rf
or
m
an
ce

(S
um

C
os
t)
,M

on
et
ar
y

C
os
t

H
eu
ri
st
ic

V
er
te
x
C
os
t

([
60

],
20
17
),
([
59

],
20
14
)

O
rd
er
in
g

Pe
rf
or
m
an
ce

(S
um

C
os
t)

A
cc
ur
at
e

(e
xp
on
en
tia
l)
,
A
pp
ro
xi
-

m
at
e
(O

(n
2
))

D
ep
en
de
nc
ie
s,

V
er
te
x
C
os
t,
Se
le
c-

tiv
ity

([
63

],
20
14
)

E
ng
in
e
Se
le
ct
io
n

Pe
rf
or
m
an
ce

(S
um

C
os
t)

H
eu
ri
st
ic
(O

(n
))

D
ep
en
de
nc
ie
s
V
er
te
x/
E
dg
e
C
os
t

123

International Journal of Data Science and Analytics (2018) 6:81–107 89

Ta
bl
e
1

co
nt
in
ue
d

(R
ef
er
en
ce
s,
ye
ar
s)

M
ec
ha
ni
sm

s
O
bj
ec
tiv

es
So

lu
tio

n
ty
pe
s

M
et
ad
at
a

([
65

],
20
10
)

O
rd
er
in
g

Pe
rf
or
m
an
ce

(S
um

C
os
t)

A
pp
ro
xi
m
at
e
(O

(n
2
))

Ta
sk

Sc
he
m
at
a,
V
er
te
x
C
os
t,
Se

le
c-

tiv
ity

([
67

],
20
13
)

Im
pl
em

en
ta
tio

n
Se
le
ct
io
n,

E
ng
in
e

C
on
fig

ur
at
io
n

Pe
rf
or
m
an
ce
,O

th
er

Q
oS

H
eu
ri
st
ic
(O

(n
))

V
er
te
x
C
os
t,
Q
oS

pr
op

er
tie

s

([
68

],
20

08
)

Im
pl
em

en
ta
tio

n
Se

le
ct
io
n

Pe
rf
or
m
an
ce
,
A
va
ila

bi
lit
y,

M
on

e-
ta
ry

C
os
t

H
eu
ri
st
ic
(O

(n
))

V
er
te
x
C
os
t,
y
Q
oS

pr
op

er
tie

s

([
70

],
20

12
)

M
er
ge
,E

ng
in
e
C
on

fig
ur
at
io
n

Pe
rf
or
m
an
ce

H
eu
ri
st
ic

V
er
te
x
C
os
t,
Ta
sk

Sc
he
m
at
a,
Se

le
c-

tiv
ity
,E

ng
in
e
D
et
ai
ls

([
72

],
20
15
)

E
ng
in
e
C
on
fig

ur
at
io
n

Pe
rf
or
m
an
ce

H
eu
ri
st
ic

V
er
te
x
C
os
t,
Ta
sk

Pr
ofi

le

([
84

],
20
14
)

E
ng
in
e
C
on
fig

ur
at
io
n

Pe
rf
or
m
an
ce

E
xh
au
st
iv
e

V
er
te
x
C
os
t,
E
ng
in
e
D
et
ai
ls

([
87

],
20
05
)

O
rd
er
in
g,

M
er
ge

Pe
rf
or
m
an
ce

(S
um

C
os
t)

A
cc
ur
at
e

(e
xp
on
en
tia
l)
,
H
eu
ri
st
ic

(O
(n

2
))

V
er
te
x
C
os
t,
Ta
sk

Sc
he
m
at
a

([
90

],
20
12
),
([
91

],
20
13
),
([
93

],
20
13
)

O
rd
er
in
g,

D
ec
om

po
si
tio

n,
E
ng
in
e/

Im
pl
em

en
ta
tio

n
Se

le
ct
io
n

Pe
rf
or
m
an
ce

(C
on
st
r.

Su
m

C
os
t

B
ot
tle

ne
ck
),
R
el
ia
bi
lit
y
(F
au
lt
To

l-
er
an
ce
)

A
cc
ur
at
e

(e
xp

on
en
tia

l)
,
H
eu
ri
st
ic

(O
(n

2
))

Ta
sk

Sc
he
m
at
a,
V
er
te
x
C
os
t

([
92

],
20
10
)
ex
te
nd
in
g
[8
7]

O
rd
er
in
g,

M
er
ge
,

In
tr
od
uc
tio

n,
Im

pl
em

en
ta
tio

n
Se

le
ct
io
n,

E
ng

in
e

C
on
fig

ur
at
io
n

Pe
rf
or
m
an
ce

(C
on
st
r.

Su
m

C
os
t

B
ot
tle

ne
ck
),
R
el
ia
bi
lit
y
(F
au
lt
To

l-
er
an
ce
)

H
eu
ri
st
ic
(O

(n
2
))

Ta
sk

Sc
he
m
at
a,
V
er
te
x
C
os
t

([
94

],
20
06
)

O
rd
er
in
g

Pe
rf
or
m
an
ce

(B
ot
tle
ne
ck
)

A
cc
ur
at
e
(O

(n
5
))

D
ep
en
de
nc
ie
s,

V
er
te
x
C
os
t,
Se
le
c-

tiv
ity

([
95

],
20

12
)

Im
pl
em

en
ta
tio

n
Se

le
ct
io
n

Pe
rf
or
m
an
ce
,M

on
et
ar
y
C
os
t,
R
el
i-

ab
ili
ty

H
eu
ri
st
ic
(O

(n
))

V
er
te
x
C
os
t

([
98

,9
9]
,2
01
1)

O
rd
er
in
g

Pe
rf
or
m
an
ce

(B
ot
tle
ne
ck
)

H
eu
ri
st
ic
(e
xp
on
en
tia
l)

D
ep
en
de
nc
ie
s,

V
er
te
x/
E
dg
e

C
os
t,

Se
le
ct
iv
ity

([
10
1]
,2

00
7)

Im
pl
em

en
ta
tio

n
Se
le
ct
io
n,

Ta
sk

In
tr
od
uc
tio

n
Pe
rf
or
m
an
ce

(S
um

C
os
t)

A
cc
ur
at
e
(e
xp
on
en
tia
l)

V
er
te
x
co
st

([
10
7]
,2

00
7)

M
er
ge

Pe
rf
or
m
an
ce

H
eu
ri
st
ic

Ta
sk

Pr
ofi

le

([
10
8]
,2

00
5)

Im
pl
em

en
ta
tio

n
Se

le
ct
io
n

Pe
rf
or
m
an
ce
,A

va
ila

bi
lit
y,
R
el
ia
bi
l-

ity
(T
ru
st
)

H
eu
ri
st
ic
(O

(n
))

V
er
te
x
C
os
t,
Q
oS

pr
op

er
tie

s

([
11
1]
,1

99
9)

O
rd
er
in
g

Pe
rf
or
m
an
ce

(S
um

C
os
t)

A
pp
ro
xi
m
at
e
(O

(n
2
))

Ta
sk

Sc
he
m
at
a,
V
er
te
x
C
os
t

([
11
3]
,2

01
5)

E
ng
in
e
Se
le
ct
io
n

Pe
rf
or
m
an
ce
,M

on
et
ar
y
C
os
t

H
eu
ri
st
ic

V
er
te
x
C
os
t,
E
ng
in
e
de
ta
ils

123

90 International Journal of Data Science and Analytics (2018) 6:81–107

Table 2 A summary of the main techniques for producing an optimized flow regarding the dimensions: adaptivity, execution environment, and
application domain

(References, years) Adaptivity Execution environment Application domain

Static Dynamic Centralized Parallel Distributed

([1], 2008), ([48], 2007) � – � – – ETL (Batch)

([6], 2012) � – – � – Queries (Online)

([15], 2008) extending [94] � – – – � Web Services (Online)

([20], 1999) � – � – – Queries (Batch)

([22], 2009) � – – – � Web Services (Batch)

([24], 2014) � – � – – Scientific Workflows (Batch)

([25], 2015) � – – � – Generic

([30], 2005) – � – � – Scientific Workflows (Batch)

([31], 2012) � – – � – Queries (Online)

([40], 1998) � – � – – Queries (Batch)

([45], 2015) – � – � – Map Reduce (Batch)

([46], 2015) extending [44] � – – – � Scientific Workflows (Batch)

([47], 2012), ([81], 2015) � – – � – Scientific Workflows (Batch)

([57], 2011) � – – – � Scientific (Online)

([60], 2017), ([59], 2014) � – � – – Generic

([63], 2014) � – – – � Generic

([65], 2010) � – � – – ETL (Batch)

([67], 2013) – � – – � Generic

([68], 2008) � – – – � Web Services (Online)

([70], 2012) � – – � – Map Reduce (Batch)

([72], 2015) � – – � – ETL (Batch)

([84], 2014) � – – � – MapReduce (Batch)

([87], 2005) � – � – – ETL (Batch)

([90], 2012), ([91], 2013), ([93], 2013) � – – – � ETL (Online)

([92], 2010) extending [87] � – – � – ETL (Online)

([94], 2006) � – – – � Web Services (Online)

([95], 2012) � – – – � Generic

([98,99], 2011) � – – – � Web Services (Online)

([101], 2007) � – � – – ETL (Batch)

([107], 2007) � – – � – Business Processes (Batch)

([108], 2005) � – – – � Web Services (Online)

([111], 1999) � – – – � Data Integration (Online)

([113], 2015) � – – – � Generic

4.1 Task ordering

The goal of Task Ordering is typically specified as that of
optimizing an objective function, possibly under certain con-
straints. A common feature of all proposals is that they assign
a metric m(vi) to each vertex vi ∈ V , i = 1 . . . n. To date,
task ordering techniques have been employed to optimize
performance. More specifically, all aspects of performance
that we introduced previously have been investigated: the
minimization of the sum of execution costs of either all tasks
(both under and without constraints) or the tasks that belong

to the critical path, the minimization of the maximum task
cost, and the maximization of the throughput. Table 3 sum-
marizes the objective functions of these metrics that have
been employed by approaches to task ordering in data flow
optimization to date. Existing techniques can be modeled at
an abstract level uniformly as follows. The metric m refers
either to costs (denoted as c(vi)) or to throughput values
(denoted as f (vi)). Costs are expressed in either time or
abstract units, whereas throughput is expressed as number of
records (or tuples) processed per time unit. A more generic

123

International Journal of Data Science and Analytics (2018) 6:81–107 91

Fig. 4 A data flow processing Twitter posts

modeling assigns a cost to each vertex vi along with its out-
coming edges ei j , j = 1 . . . n (denoted as c(vi , ei j)).

These objective functions correspond to problems with
different algorithmic complexities. Specifically, the prob-
lems that target the minimization of the sum of the vertex
cost are intractable [16]. Moreover, Burge et al. [16] discuss
that “it is unlikely that any polynomial time algorithm can
approximate the optimal plan to within a factor of O(nθ),”
where θ is some positive constant. The generic bottleneck
minimization problem is intractable as well [97]. However,
the bottleneck minimization based only on vertex costs and
the other two objective functions can be optimally solved in
polynomial time [5,31,94].

Independently of the exact optimization objectives, all
the known optimization techniques in this category assume
the existence of dependency constraints between the tasks
either explicitly or implicity through the definition of task
schemata. For the cost or throughput metadata, some tech-
niques rely on the existence of lower-level information, such
as selectivity (see Sect. 4.1.5).

4.1.1 Techniques for minimizing the sum of costs

Regarding the minimization of the sum of the vertex costs
(first row in Table 3), there have been proposed both accu-
rate and heuristic optimization solutions dealing with this
intractable problem; apparently the former are not scalable.
An accurate task ordering optimization solution is the appli-
cation of the dynamic programming; dynamic programming
is extensively used inqueryoptimization [83] and such a tech-
nique has been proposed for generic data flows in [59]. The
rationale of this algorithm is to calculate the cost of task sub-
sets of size n based on subsets of size n−1. For each of these
subsets, we keep only the optimal solution that satisfies the
dependency constraints. This solution has exponential com-
plexity even for simple linear non-distributed flows (O(2n))
but, for small values of n, is applicable and fast.

Another optimization technique is the exhaustive pro-
duction of all the topological sortings in a way that each
sorting is produced from the previous one with the mini-
mal amount of changes [102]; this approach has been also
employed to optimize flows in [59,60]. Despite having a
worst-case complexity of O(n!), it is more scalable than

dynamic programming solution, especially, for flows with
many dependency constraints between tasks.

Another exhaustive technique is to define the problem as a
state space search one [87]. In such a space, each possible task
ordering is modeled as a distinct state and all states are even-
tually visited. Similar to the optimization proposals described
previously, this technique is not scalable either. Another form
of task re-ordering iswhen a single input/output task ismoved
before or after a multi-input or a multi-output task [87,92].
An example case is when two copies of a proliferate single
input/ output task are originally placed in the two inputs of a
binary fork operation and after re-ordering, are moved after
the fork. In such a case, the two task copies moved down-
stream are merged into a single one. As another example, a
single input/output task placed after a multi-input task can be
moved upstream, e.g., when a filter task placed after a binary
fork is moved upstream to both fork input branches (or to just
one, based on their predicates). This is similar to traditional
query optimization where a selective operation can bemoved
before an expensive operation like a join.

The branch-and-bound task ordering technique is similar
to the dynamic programming one in that it builds a complete
flow by appending tasks to smaller sub-flows. To this end, it
examines only sub-flows in terms of meeting the dependency
constraints and applies a set of recursive calls until generating
all the promising data flow plans employing early pruning.
Such an optimization technique has been applied in [47,81]
for executing parallel scientific workflows efficiently, as part
of a new optimization technique for the development of a
logical optimizer, which is integrated into the Stratosphere
system [8], the predecessor of Apache Flink. An interesting
feature of this approach is that following common practice
from database systems it performs static task analysis (i.e.,
task profiling) in order to yield statistics and fine-grained
dependency constraints between tasks going further from the
knowledge that can be derived from simply examining the
task schemata.

For practical reasons, the four accurate techniques
described above are not a good fit for medium and large
flows, e.g., with over 15–20 tasks. In these cases, the space
of possible solutions is large and needs to be pruned. Thus,
heuristic algorithms have been presented to find near opti-
mal solutions for larger data flows. For example, Simitsis
et al. [87] propose a technique of task ordering by allowing
state transitions, which corresponds to orderings that differ in
the ordering of only two adjacent tasks. Such transitions are
equivalent to a heuristic, which swaps every pair of adjacent
tasks, if this change yields lower cost, always preserving the
defined dependency constraints, until no further changes can
be applied. This heuristic, initially proposed for ETL flows,
can be applied to parallel and distributed execution environ-
ments with streaming or batch input data. Interestingly, this
technique is combined with another set of heuristics using

123

92 International Journal of Data Science and Analytics (2018) 6:81–107

additional optimization techniques, such as task merge. In
general, this heuristic is shown to be capable of yielding sig-
nificant improvements. Its complexity is O(n2), but there can
be no guarantee for how much its solutions can deviate from
the optimal one.

There is another family of techniques minimizing the sum
of the tasks by ordering the tasks based on their rank value
defined as 1−sel(vi)

c(vi)
, where sel(vi) is the selectivity of vi . The

first examples of these techniques were initially proposed
for optimizing queries containing UDFs, while dependency
constraints between pairs of a join and UDF are considered
[20,40]. However, they can be applied in data flows by con-
sidering flow tasks as UDFs and performing straightforward
extensions. For example, an extended version of [20], also
discussed in [59], builds a flow incrementally in n steps
instead of starting from a complete flow and performing
changes. In each step, the next task to be appended is the
one with the maximum rank value, for which all the pre-
requisite tasks have been already included. This results in a
greedy heuristic of O(n2) time complexity.

This heuristic has been extended by Kougka et al. [60]
with techniques that leverage the query optimization algo-
rithm for join ordering by Krishnamurthy et al. [64] with
appropriate post-processing steps in order to yield novel and
more efficient task ordering algorithms for data flows. In
[65], a similar rationale is followed with the difference that
the execution plan is built from the sink to source task. Both
proposals build linear plans, i.e., plans in the form of a chain
with a single source and a single sink. These proposals for
generic or traditional ETL data flows are essentially simi-
lar to the Chain algorithm proposed by Yerneni et al. [111]
for choosing the order of accessing remote data sources in
online data integration scenarios. Interestingly, in [111], it is
explained that such techniques are n-competitive, i.e., they
can deviate from the optimal plan up to n times.

The incurred performance improvements can be signifi-
cant. Consider the example in Fig. 4, where let the cost per
single input tweet of the five steps be 1, 10, 1, 1, and 5 units,
respectively. Let the selectivities be 1, 1, 0.1, 1, and 0.15,
respectively. Then, the average cost in Fig. 4 for each initial
tweet is 1+ 10 + 1+ 0.1+ 0.5 = 12.6, whereas the cost of
the flow in Fig. 5 is 1+1+5+1.5+0.15 = 7.65. In general,

Fig. 5 An example of optimized task ordering

for ordering arbitrary flow tasks in order to minimize the sum
of the task costs, any of the above solutions can be used. If
the flow is small, exhaustive solutions are applicable [61];
otherwise, the techniques in [60] are the ones that seem to be
capable of yielding the best plans.

Finally, minimizing the sum of the tasks cost appears also
in multi-criteria proposals that consider also reliability, and
more specifically fault tolerance [90,92]. These proposals
employ a further constraint in the objective function denoted
as function g() (see second row in Table 3). In these propos-
als, g() defines the number of faults that can be tolerated in
a specific time period. The strategy for exploring the search
space of different orderings extends the techniques that pro-
posed by Simitsis et al. [87].

4.1.2 Techniques for minimizing the bottleneck cost

Regarding the problem of minimizing the maximum task
cost (third row in Table 3), which acts as the performance
bottleneck, there is a Task Orderingmechanism initially pro-
posed for the parallel execution of online WSs represented
as queries [94]. The rationale of this technique is to push the
selective flow tasks (i.e., those with sel < 1) in an earlier
stage of the execution plan in order to prune the input dataset
of each service. Based on the selectivity values, there may be
caseswhere the output of a servicemay be dispatched tomul-
tiple other services for executing in parallel or in a sequence
having time complexity in O(n5) in theworst case. The prob-
lem is formulated in away that it is tractable and the solutions
is accurate.

Another optimization technique that considers task order-
ing mechanism for online queries overWeb Services appears
in [98,99]. The formulation in these proposals extends the

Table 3 A summary of the
objective functions in task
ordering

Description Objective functions References

Sum cost min
∑

c(vi), where i = 1 . . . n [47,59,65,81,87,111]

Constrained sum cost min
∑

c(vi), where i = 1 . . . n and g(vi) < 0 [90–93]

Bottleneck cost min max(c(vi)), where i = 1 . . . n [5,6,94]

min max(c(vi , ei j)), where i = 1 . . . n [98,99]

Critical path cost min
∑

c(vi), where vi belongs to critical path [5,6]

Throughput max
∑

f (vi), where i = 1 . . . n [31]

123

International Journal of Data Science and Analytics (2018) 6:81–107 93

one proposed by Srivastava et al. [94] in that it considers also
edge costs. Thismodification renders the problem intractable
[97]. The practical value is that edge costs naturally capture
the data transmission between tasks in a distributed setting.
The solution proposed by Tsamoura et al. [98,99] consists of
a branch-and-bound optimization approach with advanced
heuristics for early pruning and despite its exponential com-
plexity, it is shown that it can apply to flows with hundreds of
tasks, for reasonable probability distributions of vertex and
edge costs.

The techniques for minimizing the bottleneck cost can be
combined with those for the minimization of the sum of the
costs. More specifically, the pipelined tasks can be grouped
together and for the corresponding sub-flow, the optimization
can be performed according to the bottleneck cost metric.
Then, these groups of tasks can be optimized considering the
sum of their costs. This essentially leads to a hybrid objec-
tive function that aims to minimize the sum of the costs for
segments of pipelining operators, where each segment cost
is defined according to the bottleneck cost. A heuristic com-
bining the two metrics has appeared in [92].

4.1.3 Techniques for optimizing the critical path

Atechnique that considers the critical path providing an accu-
rate solution has appeared in [6]. This work has O(n6) time
complexity and has been initially proposed for online queries
in parallel execution environments, but is also applicable to
data flows. The strong point of this solution is that it can
perform bi-objective optimization combining the bottleneck
and the critical path criteria.

4.1.4 Techniques for maximizing the throughput

Re-ordering the filter operators of a workflow can be used to
find an optimal query execution plan thatmaximizes through-
put leveraging pipelined parallelism. Such a technique has
been presented by Deshpande et al. [31] considering queries
with tree-shaped constraints for parallel execution environ-
ment providing an accurate solution that has O(n3) time
complexity. In this proposal, each task is assumed to be
executed on a distinct node, where each node has a certain
throughput capacity that should not be exceeded. The unique
feature of this proposal is that it produces a set of plans that
need to be executed concurrently in order to attain throughput
maximization. The drawback is that it cannot handle arbi-
trary constraint graphs, which implies that its applicability
to generic data flows is limited.

4.1.5 Task cost models

Orthogonally to the objective functions in Table 3, differ-
ent cost models can be employed to derive c(vi), the cost of

the i th task vi . The important issue is that a task cost model
can be used as a component in any cost-based optimization
technique, regardless of whether it has been employed in the
original work proposing that technique. A common assump-
tion is that c(vi) depends on the volume of data processed by
vi , but this feature can be expressed in several ways:

– c(vi) = ∏|T prec
i |

j=1 sel j ∗ cpii : this cost model defines the
cost of the i th task as the product of (i) the cost per input
data unit (cpii) and (ii) the product of the selectivities sel
of preceding tasks; T prec

i is the set of all the tasks between
the data sources and vi . This cost model is explicitly used
in proposals such as [58–60,65,111].

– c(vi) = rs(vi) : In this case, the cost model is defined as
the size of the results (rs) of vi ; it is used in [111], where
each task is a remote database query.

– c(vi) = αi · CPU (vi) + βi · I O(vi) + γi · Ship(vi):
this cost model is a weighted sum of the three main
cost components, namely the cpu, I/O, and data shipping
costs. Further, CPU (vi) can be elaborated and speci-

fied as
∏|T prec

i |
j=1 sel j ∗ cpii (defined above) plus a startup

cost. I/O costs depends on the cost per input data unit
to access secondary storage. Data communication cost
Ship(vi) depends on the size of the input of vi , which, as
explained earlier, depends also on previous tasks and the
vertex selectivity seli . α, β, and γ are the weights. Such
an elaborate cost model has been employed by Hueske
et al. [47].

– c(vi) = proc(vi) + part(vi): This cost model is sug-
gested by Simitsis et al. [92]. It explicitly covers task
parallelization and splits the cost of a tasks into the pro-
cessing cost proc and the cost to partition andmerge data
part . The former cost is divided into a part that depends
on input size and a fixed one. The proposal in [92] con-
siders the tasks in the flow that add recovery points or
create replicas by providing differently specific formulas
for them.

4.1.6 Additional remarks

Regarding the execution environment, since the task (re-)
ordering techniques refer to the logical WEP level, they can
be applied to both centralized and distributed flow execution
environments. However, in parallel and distributed environ-
ments, the data communication cost needs to be considered.
The difference between these environments with regard to
the communication cost is that in the latter, this cost depends
both on the sender and receiver task and as such, it needs to
be represented, not as a component of vertex cost but as a
property of edge cost.

Additionally, very few techniques, e.g., [87], explic-
itly consider re-orderings between single input/output and

123

94 International Journal of Data Science and Analytics (2018) 6:81–107

Fig. 6 Examples of Task
Introduction techniques

multiple-input or multiple-output tasks; however, this type
of optimization requires further investigation in the context
of complex flow optimization.

Finally, none of the proposed techniques for task order-
ing technique discussed are adaptive ones, that is they do
not consider workflow re-optimization during its execution
phase. In general, adaptive flow optimization is a subarea in
its infancy. However, Böhm et al. [13] have proposed solu-
tions for choosing when to trigger re-optimization, which, in
principle, can be coupled with any cost-based flow optimiza-
tion technique.

4.2 Task introduction

Task introduction has been proposed for three reasons.
Firstly, to achieve fault-tolerance through the introduc-

tion of recovery points and replicator tasks in online ETLs
[92]. For recovery points, a new node storing the current flow
state is inserted in the flow in order to assist recovering from
failures without needing to recompute the flow from scratch.
Adding a recovery (to a specific point in the plan) depends on
a cost function that compares the projected recovery cost in
case of failure against the cost to maintain a recovery point.
Additionally, the replicator nodes produce copies of spec-
ified sub-flows in order to tolerate local failures, when no
recovery points can be inserted, e.g., because the associated
overhead increases the execution time above a threshold. In
both cases of task introduction, the semantics of the flow are
immutable. The proposed technique extends the state space
search in [87] after having pruned the state search space. The
objective function employed is the constrained sum cost one
(2nd row in Table 3), where the constraint is on the number
of places where a failure can occur. The cost model explic-
itly covers the recovery maintenance overhead (last case in
Sect. 4.1.5). The key idea behind the pruning of search space
is first to apply task re-ordering and then, to detect all the
promising places to add the recovery points based on heuris-
tic rules. An example of the technique is in Fig. 6 and suppose
thatwe examine the introduction of up to two recovery points.
The two possible places are just after the Sort and Join tasks,
respectively. Assume that the most beneficial place is the
first one, denoted as RP1. Also, given RP1, RP2 is discarded
because it incurs higher cost than re-executing the Join task.
Similarly to the recovery points above, the technique pro-

posed by Huang et al. [46] introduces operations that copy
intermediate data from transient nodes to primary ones, using
a cluster of machines containing both transient and primary
cloud machines; the former can be reclaimed by the cloud
provided at any time, whereas the latter are allocated to flow
execution throughout its execution.

Secondly, task introduction has been employed by Rhein-
länder et al. [81] to automatically insert explicit filtering
tasks, when the user has not initially introduced them. This
becomes plausible with a sophisticated task profiling mech-
anism employed in that proposal, which allows the system to
detect that some data are not actually needed. The goal is to
optimize a sum cost objective function, but the technique is
orthogonal to any objective function aiming at performance
improvement. For example, in Fig. 6, we introduce a filtering
task if the final report needs only a subset of the initial data,
e.g., it refers to a specific range of products.

Third, task introduction can be combined with Implemen-
tation Selection (Sect. 4.6). An example appears in [101],
where the purpose is to exploit the benefit of processing
sorted records. To this end, it explores the possibility of intro-
ducing new vertices, called sorters, and then to choose task
implementations that assume sorted input; the overhead of
the insertion of the new tasks is outweighed by the benefits
of sort-based implementations. In Fig. 6, we add such a sorter
task just before the Join if a sort-based join implementation
and report output is preferred. Proactively ordering data to
reduce the overall cost has been used in traditional database
query optimization [35] and it seems to be profitable for ETL
flows as well.

Finally, all these three techniques can be combined; for
example, in the example all can apply simultaneously yield-
ing the complete plan in the figure.

4.3 Task removal

A set of optimization proposals support the idea of remov-
ing a task or a set of tasks from the workflow execution plan
without changing the semantics in order to improve the per-
formance; these proposals have been proposed mostly for
offline scientific workflows, where it is common to reuse
tasks or sub-flows from previous workflows without nec-
essarily examining whether all tasks included are actually
necessary or whether some results are already present. Three

123

International Journal of Data Science and Analytics (2018) 6:81–107 95

Fig. 7 An example of the Task
Removal technique

techniques adopt this rationale [24,30,81], which are dis-
cussed in turn.

The idea of Rheinländer et al. [81] is to remove a task or
multiple tasks until the workflow consists only of tasks that
are necessary for the production of the desired output. This
implies that the execution result dataset remains the same
regardless of the changes that have been applied. It aims to
protect users that have carelessly copied data flow tasks from
previous flows. In Fig. 7, we see that, initially, the example
data flowcontains anExtractDates task,which is not actually
necessary.

The heuristic of Deelman et al. [30] has been proposed
for a parallel execution environment and is one of the
few dynamic techniques allowing the re-optimization of the
workflow during the workflow execution. At runtime, it
checkswhether any intermediate results already exist at some
node, thus making part of the flow obsolete. Both [81] and
[30] are rule-based and do not target an objective function
directly.

Another approach for applying task removal optimization
mechanism is to detect the duplicate tasks, i.e., tasks per-
forming exactly the same operation and keep only a single
copy in the execution workflow plan [24]. This might be
caused by carelessly combining existing smaller flows from
a repository, e.g., myExperiment.4 A necessary condition in
order to ensure that there will be no precedence violations is
that these tasks must be dependency constraint free, which is
checked with the help of the task schemata. Such a heuristic
has O(n2) time complexity.

4.4 Taskmerge

TaskMerge has been also employed for improving the perfor-
mance of the workflow execution plan. The main technique
is to apply re-writing rules to merge tasks with similar func-
tions into one bigger task. There are three techniques in this
group, all tailored to a specific setting. As such, it is unclear
whether they can be combined.

First, in [107], tasks that encapsulate invocations to an
underlying database are merged so that fewer (and more
complex) invocations take place. This rule-based heuristic
has been proposed for business processes, for which it is

4 www.myexperiment.org/ in bio-informatics.

common to access various data stores, and such invocations
incur a large time overhead.

Second, a related technique has been proposed for SQL
statements in commercial data integration products [1,48].
The rationale of this idea is to group the SQL statements into
a bigger query in order to push the task functionalities to the
best processing engine. Both approaches presented in [1,48]
derive the necessary information about the functionality of
each task with the help of task profiling and produce larger
queries employing standard database technology. For exam-
ple, instead of processing a series of SQLqueries to transform
data, it is preferable to create a single bigger query. As previ-
ously, the proposed optimization is a heuristic that does not
target to optimize any objective function explicitly. A gener-
alization of this idea to languages beyond SQL is presented
by Simitsis et al. [90,93], and a programming language trans-
lator has been described by Jovanovic et al. [53,54].

Third,Harold et al. [70] presents a heuristic non-exhaustive
solution formergingMapReduce jobs.Merging occurs at two
levels: first MapReduce jobs are tried to be transformed into
Map-only jobs. Then, sharing commonMap or Reduce tasks
is investigated. These two aspects are examined with the help
of a 2-phase heuristic technique.

Finally, in the optimizations in [87,92], which rely on a
state space search as described previously, adjacent tasks that
should not be separatedmay be grouped together during opti-
mization. The aim of this type of merger is not to produce a
flow execution plan with fewer and more complex tasks (i.e.,
no actual task merge optimization takes place), but to reduce
the search space so that the optimization is speeded up; after
optimization, the merged tasks are split.

4.5 Task decomposition

An advanced optimization functionality is Task Decomposi-
tion, according to which, the operations of a task are split
into more tasks, this results in a modification of the set V
of vertices. This mechanism has appeared in [47,81] as a
pre-processing step, before the task ordering takes place. Its
advantage is that it opens up opportunities for ordering, i.e.,
it does not optimize an objective function in its own, but it
enables more profitable task orderings.

Task decomposition is also employed by Simitsis et al.
[90,91,93]. In these proposals, complex analysis tasks, such

123

www.myexperiment.org/

96 International Journal of Data Science and Analytics (2018) 6:81–107

as sentiment analysis presented in previous examples, can be
split into a sequence of tasks at a finer granularity, such as
tokenization, and part-of-speech tagging.

Note that both these techniques are tightly coupled to the
task implementation platform assumed.

4.6 Task implementation selection

A set of optimization techniques target the Implementation
Selection mechanism. At a high level, the problem is that
there exist multiple equivalent candidate implementations
for each task and we need to decide which ones to employ in
the execution plan. The issue of whether the different imple-
mentationsmay produce different results is orthogonal to this
discussion as far as all implementations are acceptable by the
user; however, we mostly refer to settings where equivalence
implies also the production of the same result set. For exam-
ple, a task encapsulating a call to a remote WS can contact
multiple equivalent WSs, or a task may be implemented to
run either in a single-threaded or in a multi-threaded mode.
These techniques typically require as input metadata the ver-
tex costs of each task implementation alternative. Suppose
that, for each task, there are m alternatives. This leads to
a total of O(mn) of combinations; thus, a key challenge is
to cope with the exponential search space. In general, the
number of alternatives for each task may be different and the
total number of combinations is the product of these numbers.
For example, in Fig. 8, there are four and three alternatives
(Impl1, . . . , Impln) for the Sentiment Analysis and Lookup
Product tasks, respectively, corresponding to twelve combi-
nations.

It is important to note that, conceptually, the choice of
the implementation of each task is orthogonal to decisions
on task ordering and the rest of the high-level optimization
mechanisms. As such, the techniques in this section can be
combined with techniques from the previous sections.

Abrute force, and thus of exponential complexity approach
to finding the optimal physical implementation of each flow
task before its execution has appeared in [101]. This approach
models the problem as a state space search one and, although
it assumes that the sum cost objective function is to be
optimized, it can support other objective functions too. An
interesting feature of this solution is that it explicitly explores
the potential benefit from processing sorted data. Also, the
ordering and task introduction algorithm in [92] allows for
choosing parallel flavors of tasks. The parallel flavors, apart
from cloning the tasks as many times as the degree of par-
titioned parallelism decided, explicitly consider issues, such
as splitting the input data, distributing them across all clones,
and merging all their outputs. These issues are reflected in
an elaborate cost function as mentioned previously, which is
used to decide whether parallelization is beneficial.

Additionally to the optimization techniques above, there
is a set of multi-objective optimization approaches for Imple-
mentation Selection. These multi-objective heuristics, apart
from the vertex cost, require further metadata that depend on
the specified optimization objectives. For example, several
multi-objective optimization approaches have been proposed
for flows, where each task is essentially an invocation to an
onlineWS that may not be always available; in such settings,
the aim of the optimizer is the selection of the best service
for each service type taking into account both performance
and availability metadata.

Three proposals that target this specific environment are
[68,95,108]. To achieve scalability, each task is checked in
isolation, thus resulting in O(nm) time complexity, but at the
expense of finding local optimal solutions only. Kyriazis et
al. [68] consider availability, performance, and cost for each
task. As initial metadata, scalar values for each objective
and for candidate services are assumed to be in place. The
main focus of the proposed solution is (i) on normalizing and
scaling the initial values for each of the objectives and (ii) on
devising an iterative improvement algorithm for making the
final decisions for each task. The multi-objective function is
either the optimization of a single criterion under constraints
on the others or the optimization of all the objectives at the
same time. However, in both cases, no optimality guarantees
(e.g., finding a Pareto optimal solution) are provided.

The proposal in [108] is similar in not guaranteeing pareto
optimal solutions. It considers performance, availability, and
reliability for each candidate WS, where each criterion is
weighted and contributes to a single scalar value, according
to which services are ordered. The notion of reliability in
this proposal is based on its trustworthiness. [95] is another
service selection proposal that considers the three objec-
tives, namely performance, monetary cost, and reliability in
terms of successful execution. The service metadata are nor-
malized, and the technique proposed employs a max-min
heuristic that aims to select a service based on its smallest
normalized value. An additional common feature of the pro-
posals in [68,95,108] is that no objective function is explicitly
targeted.

Another multi-objective optimization approach to choos-
ing the best implementation selection of each task consists
of linear complexity heuristics [67]. The main value of those
heuristics are that they are designed to be applied on the fly,
thus forming one of the few existing adaptive data flow opti-
mization proposals. Additionally, the technique proposed by
Braga et al. [15] extends the task ordering approach in [94]
so that, for each task, the most appropriate implementation
is first selected. None of these proposals employ a specific
objective function as well. Finally, multi-objectiveWS selec-
tionmechanism can be performedwith the help of ant colony
optimization algorithms; an example of applying this opti-
mization technique for selecting WS instantiations between

123

International Journal of Data Science and Analytics (2018) 6:81–107 97

Fig. 8 An example where Task
Implementation Selection is
applicable, where there are four
equivalent ways to implement
sentiment analysis and three
ways to extract product ids

multiple candidates in a setting where the workflows mainly
consist of a series of remote WS invocations appears in [22],
which is further extended by Tao et al. [96].

Based on the above descriptions, two main observations
canbedrawn regarding themajority of the techniques. Firstly,
they address a multi-objective problem. Secondly, they are
proposed for a WS application domain. The latter may
imply that transferring the results to data flows where tasks
exchange big volumes of data directly may not be straight-
forward. As a final note, there are numerous proposals that
perform task implementation selection considering specific
types of tasks, such as classification tasks in data mining data
flows (e.g., [73]), and file descriptors in ETLs (e.g., [79]).We
do not discuss in detail such techniques, because they do not
meet the criteria in Sect. 2.2; further, when generalized to
arbitrary tasks, they typically correspond to non-interesting
enumeration solutions.

4.7 Execution engine selection

The techniques in this category focus on choosing the best
execution engine for executing the data flow tasks in dis-
tributed environments, where there are multiple options. For
example, assume that the sentiment analysis in our running
example can take place on either aDBMS server or aMapRe-
duce cluster. As previously, for the techniques using this
mechanism, the vertex cost of each task for each candidate
execution engine is a necessary piece of metadata for the
optimization algorithm. Also, corresponding techniques are
orthogonal to optimizations referring to the high-level exe-
cution plan aspects.

For those tasks that can be executed by multiple engines,
an exhaustive solution can be adopted for optimally allocat-
ing the tasks of a flow to different execution engines in order
to meet multiple objectives. The drawback is that an exhaus-
tive solution in general does not scale for large number of
flow tasks and execution engines similarly to the case of task
implementation selection. To overcome this, a set of heuris-

tics can be used for pruning the search space [90,91,93]. This
technique aims to improve not only the performance, but also
the reliability of ETL workflows in terms of fault tolerance.
Additionally, a multi-objective solution for optimizing the
monetary cost and the performance is to check all the possi-
ble execution plans that satisfy a specific time constraint; this
approach cannot scale for execution plans with high number
of operators. The objective functions are those mentioned
in Sect. 4.1. The same approach to deciding the execution
engine can be used to choose the task implementation in
[90,91,93].

Anytime single-objective heuristics for choosing between
multiple engine have been proposed Kougka et al. [63]. Such
heuristics take into account, apart from vertex costs, the edge
costs and constraints on the capability of an engine to execute
certain tasks and are coupled with a dynamic programming
pseudo-polynomial algorithm that canfindoptimal allocation
for a specific form of DAG shapes, namely linear ones. The
objective function is minimizing the sum of the costs for
both tasks and edges, extending the definition in Table 3:
min

∑
c(vi , ei j), where i, j = 1 . . . n. An extension in [36]

explains how these techniques can be extended to optimizing
the degree of parallelism in Spark flows taking into account
two criteria.

A different approach to engine selection has appeared in
the commercial tools in [1,48]. There, themain option is ETL
operators to execute on a specialized data integration server,
unless a heuristic decides to delegate the execution of some
of the tasks to the underlying databases, after merging the
tasks and reformulating them as a single query.

Finally, the engine selection mechanism can be employed
in combination with configuration of execution engine
parameters. An example technique is presented by Huang
et al. [44], where the initial optimization step deals with
the decision of the best type of execution engine and then,
the configuration parameters are defined, as it is analyzed in
Sect. 4.8. This technique is extended by Huang et al. [46],
which focuses on how to decide on the usage of a specific

123

98 International Journal of Data Science and Analytics (2018) 6:81–107

type of cloud machines, namely spot instances. The problem
of deciding whether to employ spot instances in clouds is
also considered by Zhou et al. [113].

4.8 Execution engine configuration

This type of flow optimization has recently received attention
due to the increasing number of parallel data flow plat-
forms, such as Hadoop and Spark. The Engine Configuration
mechanism can serve as a complementary component of
an optimization technique that applies implementation or
engine selection, and in general, can be combined with the
other optimization mechanisms. For example, the rationale
of the heuristic presented by Kumbhare et al. [67] (based on
variable sized bin packing) is also to decide the best imple-
mentation for each task and then, dynamically configure the
resources, such as the number of CPU cores allocated, for
executing the tasks. A common feature of all the solutions
in this section is that they deal with parallelism, but from
different perspectives depending on the exact execution envi-
ronment.

A specific type of engine configuration, namely to decide
the degree of parallelism inMapReduce-like clusters for each
task andparameters, such as the number of slots on eachnode,
appears in [44]. The time complexity of this optimization
technique is exponential. This is repeated for each different
type of machines (i.e., different type of execution engine),
assuming a context where several heterogeneous clusters are
at user’s disposal. Both of these techniques have been pro-
posed for cloud environments and aim to optimize multiple
optimization criteria.

In general, execution engines comewith a large number of
configuration parameters and fine tuning them is a challeng-
ing task. For example, MapReduce systems may have more
than one hundred configuration parameters. The proposal in
[84] aims to provide a principle approach to their configu-
ration. Given the number of MapReduce slots and hardware
details, the proposed algorithm initially checks all combi-
nations of four key parameters, such as the number of map
and reduce waves, and whether to use compression or not.
Then, the values of a dozen other configuration parameters
that have significant impact on performance are derived. The
overall goal is to reduce the execution time taking to account
the pipeline nature of MapReduce execution.

An alternative configuration technique is employed by
Lim et al. [70], which leverages the what-if engine ini-
tially proposed by Herodotou et al. [41]. This engine is
responsible to configure execution settings, such as memory
allocation and number ofmap and reduce tasks, by answering
questions on real and hypothetical input parameters using a
random search algorithm. What-if analysis is also employed
by Huang et al. [45] for optimally configuring memory con-
figurations. The distinctive feature of this proposal is that it

is dynamic in the sense that it can take decisions at runtime
leading to task migrations.

In a more traditional ETL setting, apart from the opti-
mizations described previously, an additional optimization
mechanism has been proposed by Simitsis et al. [92] in order
to define the degree of parallelism. Specifically, due to the
large size of data that aworkflowhas to process, data are parti-
tioned to be executed following the intra-operator parallelism
paradigm. The parallelism is considered profitable whenever
the overhead of data partitioning and merging does not incur
an overhead higher than the expected benefits. Sometimes,
it might be worth investigating whether splitting an input
dataset into partitions could reduce the latency in ETL flow
execution on a single server as well. An example study can
be found in [72].

Another approach to choosing the degree of parallelism
appears in [57], where a set of greedy and simulated anneal-
ing heuristics that decide the degree of parallelism are
proposed. This proposal considers two objectives, perfor-
mance andmonetary cost assuming that resources are offered
by a public cloud at a certain price. The objective func-
tion targets either the minimization of the sum of the task
costs constrained by a defined monetary budget, or the mini-
mization of the monetary cost under a constraint on runtime.
Additionally, both metrics can be minimized simultaneously
using an appropriate objective function, which expresses the
speedup when budget is increased.

Another optimization technique in [25] proposes a set of
optimizations at the chip processor level and more specif-
ically, proposes heuristics to drive compiler decisions on
whether to execute low-level commands in a pipelined fash-
ion or to employ SIMD (single instruction multiple data)
parallelism. Interestingly, these optimizations are coupled
with traditional database-like ones at a higher level, such
as pushing selections as early as possible.

5 Evaluation approaches

The purpose of this section is to describe what approach
the authors of the proposals have followed to evaluate their
work. Due to the diversity of the objectives and the lack
of a common and comprehensive evaluation approach and
benchmark, in general, the proposals are not comparable to
each other; therefore, no performance evaluation results are
presented.

We can divide the proposals in three categories (see also
Fig. 9). The first category includes the optimization proposals
that are theoretical in their nature and their results are not
accompanied by experiments. Examples of this category are
[6,31]. The second category consists of optimizations that
have found their way into data flow tools; the only examples
in this category are [1,48].

123

International Journal of Data Science and Analytics (2018) 6:81–107 99

Fig. 9 The three main evaluation approaches followed and the aspects
discussed in the experimental one

The third category covers the majority of the propos-
als, for which experimental evaluation has been provided.
We are mostly interested in three aspects of such experi-
ments, namely the workflow type used in the experiments,
the data type used to instantiate the workflows, and the
implementation environment of the experiments. In Table 4,
the experimental evaluation approaches are summarized,
along with the maximum DAG size (in terms of number
of tasks) employed. Specifically, the implementation envi-
ronment defines the execution environment of a workflow
during the evaluation procedure. The environment can be a
real-world one, which considers either the customization of
an existing system to support the proposed optimization solu-
tions or the design of a prototype system, which is essentially
a new platform, possibly designed from scratch and tailored
to support the evaluation. A common approach consists of
a simulation of a real execution environment. Discussing
the pros and cons of each approach is out of our scope,
but in general, simulations allow the experimentation with
a broader range of flow types, whereas real experiments can
better reveal the actual benefits of optimizations in practice.

The type of the workflows considered are either synthetic
or real-world. In the former case, arbitrary DAGs are pro-
duced, e.g., based on the guidelines in [86]. In the latter
case, the flow structure is according to real-world cases. For
example, the evaluation of [22,24,30,57,63,113] is based on
real-world scientific workflows, such as the Montage and
Cybershake ones described in [55]. Another example of real-
world workflows are derived by TPC-H queries (used for
some of the evaluation experiments in [47,70,81] along with
real-world textmining and information extraction examples).
In [90–93], the evaluation of the optimization proposals is
based on workflows that represent arbitrary, real-world data
transformations and text analytics. The case studies in [25,70]
include standard analytical algorithms, such as PageRank, k-
means, logistic regression, and naive bayes.

The datasets used for workflow execution may affect the
evaluation results, since they specify the range of the sta-
tistical metadata considered. The processed datasets can be
either synthetic or real ones extracted by repositories, such
as the Twitter repository with sample data of real tweets.
Examples of real datasets used in [47,81] include biomed-
ical texts, a set of Wikipedia articles, and datasets from
DBpedia. Additionally, Braga et al. [15] have evaluated the
proposed optimization techniques using real data extracted
by www.conference-service.com, www.bookings.com, and
www.accuweather.com.Typically,when employing standard
scientific flows, the datasets used are also fixed; however, in
[63] a wide range of artificially created metadata have been
used to cover more cases.

As shown in Table 4, a big portion of the optimization
techniques have been evaluated by executing workflows in a
simulated environment. The real environments that have been
employed include amongothersETL tools, such asKettle and
Talend, extensions to MapReduce, tailored prototypes, and
DBMSs.

Finally, for many techniques, only small data flows com-
prising no more than 15 nodes were used, or the information
with regard to the size of the flows could not be derived.
In the latter case, this might be due to the fact that well-
known algorithms have been used (e.g., k-means in [25] and
matrix-multiplication in [44]) without explaining how these
algorithms are internally translated to data flows. All exper-
iments with workflows comprising hundreds of tasks used
synthetic datasets.

6 Discussion on findings

Data flow optimization is a research area with high potential
for further improvements given the increasing role of data
flows in modern data-driven applications. In this survey, we
have listedmore than thirty research proposals,most ofwhich
have been published after 2010. In the previous sections, we
mostly focused on themerits and the technical details of each
proposal. They can lead to performance improvements, and
more importantly, they have the potential to lift the burden of
manually fixing all implementation details from the data flow
designers, which is a keymotivation for automated optimiza-
tion solutions. In this section, we complement any remarks
made beforewith a list of additional observations, whichmay
also serve as a description of directions for further research:

– In principle, the techniques described previously can
serve as building block toward more holistic solutions.
For instance, task ordering can, in principle, be com-
bined with (i) additional high-level mechanisms, such as
task introduction, removal, merge, and decomposition;
and (ii) low-level mechanisms, such as engine configura-

123

www.conference-service.com
www.bookings.com
www.accuweather.com

100 International Journal of Data Science and Analytics (2018) 6:81–107

Table 4 Experimental evaluation of proposals

(References, years) Workflow type Data type Implementation environment Max. DAG size

([40], 1998) Synthetic Synthetic Real (DBMS) 4

([20], 1999) Synthetic Synthetic Real (DBMS) 16

([111], 1999) Synthetic Synthetic Simulation 15

([87], 2005) Synthetic Synthetic Simulation 70

([30], 2005) Real Real Real (Pegasus) N/A

([108], 2005) Synthetic Synthetic Simulation 200

([94], 2006) Synthetic Synthetic Real (ad hoc prototype) 4

([101], 2007) Synthetic Synthetic Simulation 15

([107], 2007) Synthetic Synthetic Real (Web-Sphere Process Server [107]) N/A

([15], 2008) Real Real Simulation 7

([68], 2008) Synthetic Synthetic Real (ad hoc prototype) 8

([22], 2009) Synthetic Synthetic Simulation 120

([65], 2010) Synthetic Synthetic Simulation 60

([92], 2010) Real Synthetic Real (Kettle ETL tool) 80

([57], 2011) Real Synthetic Real (ADP prototype) 500

([98,99], 2011) Synthetic Synthetic Simulation 100

([47], 2012), ([81], 2015) Real Real Real (Stratosphere [8]) 15

([70], 2012) Real Synthetic Real (extensions to MapReduce) 14

([90], 2012), ([91,93], 2013) Real Real Real (Kettle ETL tool) 15

([44], 2013), ([46], 2015) Real Synthetic Real (extensions to MapReduce) N/A

([67], 2013) Synthetic Synthetic Simulation 4

([63], 2014) Real Synthetic Simulation 200

([84], 2014) Real Synthetic Real (extensions to MapReduce) <10

([24], 2014) Real Real Real (Taverna) N/A

([25], 2015) Real Synthetic Real (Tupleware prototype) N/A

([45], 2015) Real Real Real (extensions to MapReduce) N/A

([60], 2015), ([59], 2014) Synthetic Synthetic Simulation 200

([72], 2015) Real Synthetic Real (Talend ETL tool) 11

([113], 2015) Real Synthetic Both (Pegasus) >10,000

tion, thus yielding added benefits. The main issue arising
when mechanisms are combined is the increased com-
plexity. An approach to mitigating the complexity is a
two-phase approach, as commonly happens in database
queries. An additional issue is to determine which mech-
anism should first be explored. For some mechanisms,
this is straightforward, e.g., decomposition should pre-
cede task ordering and task removal should be placed
afterward. But, for mechanisms, such as configuration,
this is unclear, e.g., whether it is beneficial to first con-
figure low-level details before higher level ones remains
an open issue.

– In general, there is little work on low-complexity, holis-
tic, and multi-objective solutions. Toward this direction,
Simitsis et al. [92] consider more than one objective and
combines mechanisms at both high- and low-level exe-
cution plan details; for instance, both task ordering and

engine configuration are addressed in the same technique.
But clearly more work is needed here. In general, most
of the techniques have been developed in isolation, each
one typically assuming a specific setting and targeting
a subset of optimization aspects. This and the lack of a
common agreed benchmark makes it difficult to under-
stand how exactly they compare to each other, the details
of how the various proposals can be combined in a com-
mon framework and how they interplay.

– There seems to be no common approach to evaluat-
ing the optimization proposals. Some proposals have
not been adequately tested in terms of scalability, since
they have considered only small graphs. In some data
flow evaluations, workloads inspired from benchmarks
such as TPC-DI/DS have been employed, but as most
of the authors report as well, it is doubtful whether these
benchmarks can completely capture all dimensions of the

123

International Journal of Data Science and Analytics (2018) 6:81–107 101

problem. There is a growing need for the development of
systematic and broadly adopted techniques to evaluate
optimization techniques for data flows.

– A significant part of the techniques covered in this sur-
vey have not been incorporated in tools, nor have been
exploited commercially. Most of the optimization tech-
niques described here, especially regarding the high-level
execution plan details, have not been implemented in real
data flow systems apart from very few exceptions, as
explained earlier. Hence, the full potential and practi-
cal value of the proposals have not been investigated in
actual execution conditions, despite the fact that evalua-
tion results thus far are shown to provide improvements
by several orders ofmagnitude over non-optimized plans.

– A plethora of objective functions and cost models have
been investigated, which, to a large extent, they are com-
patible with each other, despite the fact that original
proposals have examined them in isolation. However, it
is unclear whether any of such cost models can capture
aspects, such as the execution time of parallel data flows,
which are very common nowadays, in a fairly accurate
manner.Amore sophisticated costmodel should take into
account sequential, pipelined and partitioned execution
in a unified manner, essentially combining the sum, bot-
tleneck and critical path cost metrics. An early work on
this topic has appeared in [62].

– Developing adaptive solutions that are capable of revis-
ing the flow execution plan on the fly is one important
open issue, especially for online, continuous, and stream
processing. Also, very few optimization techniques con-
sider the cost of the graph edges. Not considering edge
metadata does not reflect entirely real data flow execu-
tion in distributed settings, where the cost of transmitting
data depends both on sender and receiver.

– In this survey, we investigated single flow optimizations.
Optimizing multiple flows simultaneously is another
area requiring attention. An initial effort is described by
Jovanovic et al. [52], which builds upon the task ordering
solutions of [87].

– There is early work on statistics collection [23,39,76,85],
but clearly, there is more to be done here given that
without appropriate statistics, cost-based optimization
becomes problematic and prone to significant errors.

– On the other hand, a different school of thought advo-
cates that in contrast to relational databases, automated
optimization cannot help in practice in flow optimiza-
tion due to flow complexity and increased difficulty in
maintaining flow statistics, and developing accurate cost
models. Based on that, there is a number of commercial
flow execution engines (e.g., ETL tools) that instead of
offering a flow optimizer they provide users with tips and
best practices. No doubt, this is an interesting point, but
we consider this category as out of the scope of this work.

6.1 Future research directions

Given the above observations and the trend in developing new
solutions in the recent years, data flow optimization seems to
be technology in evolution rather than an area, where most
significant problems have been resolved. Moreover, provid-
ing solutions to all these problems is more likely to yield
significantly different and more powerful new approaches to
data flow optimization, rather than delta improvements on
existing solutions.

The main future research directions foreseen in this
survey directly relate to tackling the limitations implied
by the observations above, and call for a paradigm shift
toward:

– Multiple optimization mechanisms considered concur-
rently. The fact that data flows increasingly operate
on continuously arriving and evolving data renders
task ordering a key optimization mechanism. But since
modern data flow engines provide multiple alternatives
ranging from the implementation type to the degree of
parallelism and geo-distributed data analytics is becom-
ing a reality, task ordering needs to be combined with
all lower-level mechanisms defined. This will further
explode the already exponential search space. As men-
tioned above, two-phase optimization solutions are a
promising approach to tackle scalability issues, but may
significantly diverge from good solutions because the
optimizations on one level directly impact on decisions
on the other, e.g., re-ordering tasks may ungroup tasks
supposed to run a single location.

– Multiple and additional KPIs (key performance indica-
tors). Novel data flow optimization solutions are foreseen
to account for at least two objectives, for example,
running time and monetary costs for employing cloud
resources. This entails that both bi-objective techniques
need to be developed and the corresponding cost models
need to be devised.

– Several flows optimized simultaneously. Modern data
flow engines very commonly run on top of clusters,
which already benefit frommanagers, such as YARN and
MESOS, that take responsibility for sharing resources
among multiple users and applications. Since the execu-
tion layer naturally supports simultaneous flow execu-
tions, a step going beyond the current state-of-the-art in
data flow optimization is to account for such concurrent
flows.

– End-to-end optimization solutions. The optimization
solutions cannot be incorporated into real systems unless
the practical issues of acquiring and maintaining flow
statistics are resolved; therefore, data flowmetadataman-
agement is a promising direction for future
research.

123

102 International Journal of Data Science and Analytics (2018) 6:81–107

7 Additional issues in data-centric flow
optimization;

Additional issues are split into four parts. First, we describe
optimizations enabled in current state-of-the-art parallel data
flow systems, which, however, cannot cover arbitrary DAGs
and tasks, and as such, have not been included in the previous
sections. Next, we discuss techniques that although they do
not perform optimization in their own, they could, in princi-
ple, facilitate optimization. We provide a brief overview of
optimization solutions for theWEP execution layer, comple-
menting the discussion of existing scheduling techniques in
Sect. 8. We conclude with a brief note on implementing the
optimization techniques into existing systems.

7.1 Optimization inmassively parallel data flow
systems

A specific form of data flow systems are massively paral-
lel processing (MPP) engines, such as Spark and Hadoop.
These data flow systems can scale to a large number of
computing nodes and are specifically tailored to big data
management taking care of parallelism efficiency and fault
tolerance issues. They accept their input in a declarative
form (e.g., PigLatin [75], Hive, SparkSQL), which is then
automatically transformed into an executable DAG. Several
optimizations take place during this transformation.

We broadly classify these optimizations in two categories.
The first category comprises database-like optimizations,
such as pushing filtering tasks as early as possible, choosing
the join implementation, and using index tables, corre-
sponding to task ordering and implementation selection,
respectively. This can be regarded as a direct technology
transfer from databases to parallel data flows and to date,
these optimizations do not cover arbitrary user-defined trans-
formations.

The second category is specific to the parallel execu-
tion environment with a view to minimizing the amount
of data read from disk, transmitted over the network, and
being processed. For example, Spark groups pipelining tasks
in larger jobs (called stages) to benefit from this type of
parallelism.Also, it leverages cached data and columnar stor-
age, performs compression, and reduces the amount of data
transmitted during data shuffling through early partial aggre-
gation, when this is possible. Grouping tasks into pipelining
stages is a case of runtime scheduling. Early partial aggre-
gation can be deemed as a task introduction technique. The
other forms of optimizations (leveraging cached data, colum-
nar storage, and compression) can be deemed as specific
forms of implementation selection. Flink is another system
employing optimizations, but it has not yet incorporated
all the (advanced) optimization proposals in its predeces-
sor projects, as described in [47,81]. The proposal in [14] is

another example that proposes optimizations for a specific
operator, namely ParFOR.

We do not include these techniques in Tables 1 and 2
because they apply to specific DAG instances and have
not matured enough to benefit generic data flows includ-
ing arbitrary tasks. Finally, in terms of scheduling tools for
data-intensive flows, several software artefacts have started
emerging, such asApacheOozie,ApacheCascading.Wealso
do not cover these because they refer to the WEP execution
rather than the WEP generation layer.

7.2 Techniques facilitating data-centric flow
optimization

Statistical metadata, such as cost per task invocation and
selectivity, play a significant role in data flow optimiza-
tion as discussed previously. References [23,39,76,85] deal
with statistics collection and modeling the execution cost of
workflows; such issues are essential components in perform-
ing sophisticated flow optimization. Vassiliadis et al. [104]
analyze the properties of tasks, e.g., multiple-input vs single-
input ones; such properties alongwith dependency constraint
information complement statistics as the basis on top of
which optimization solutions can be built.

In principle, algebraic approaches to workflow execution
and modeling facilitate flow optimization, e.g., in estab-
lishing dependency constraints. Examples of such proposals
appear in [74,81]. The techniques that we discuss go beyond
any type of modeling; however, when an algebraic approach
is followed, further operator-specific optimizations become
possible capitalizing on the vast literature of query optimiza-
tion as already mentioned.

Some techniques allow for choosing among multiple
implementations of the same tasks using ontologies, rather
than performing cost-based or heuristic optimization [28]. In
[109], improving the flowwith the help of user interactions is
discussed. Additionally, in [74], different scheduling strate-
gies to account for data shipping between tasks are presented,
without however proposing an optimization algorithm that
takes decisions as to which strategy should be employed.

Apart from the optimizations described in Sect. 4, the pro-
posal in [92] considers also the objective of data freshness.
To this end, the proposal optimizes the activation time of ETL
data flows, so that the changes in data sources are reflected on
the state of a Data Warehouse within a time window. Never-
theless, this typeof optimizationobjective leads to techniques
that do not focus on optimizing the flow execution plan per
se, which is the main topic of this survey.

For the evaluation of optimization proposals, benchmarks
for evaluating techniques are proposed in [86,88]. Finally,
in [42,66], the significant role of correct parameter config-
uration in large-scale workflow execution is identified and
relevant approaches are proposed. Proper tuning of the data

123

International Journal of Data Science and Analytics (2018) 6:81–107 103

flow execution environment is orthogonal and complemen-
tary to optimization of flow execution plan.

7.3 On scheduling optimizations in data-centric
flows

In general, data flow execution engines tend to have built-
in scheduling policies, which are not configured on a single
flow basis. In principle, such policies can be extended to
take into account the specific characteristics of data flows,
where the placement of data and the transmission of data
across tasks, represented by the DAG edges, requires spe-
cial attention [21]. For example, in [56], a set of scheduling
strategies for improving the performance through the min-
imization of memory consumption and the execution time
of Extract–Transform–Load (ETL) workflows running on a
single machine is proposed. As it is difficult to execute the
data in pipeline in ETLs due to the blocking nature of some
of the ETL tasks, the authors suggest splitting the workflow
into several sub-flows and apply different scheduling policies
if necessary. Finally, in [50], the placement of data manage-
ment tasks is decided according to the memory availability
of resources taking into account the trade-off between co-
locating tasks and the increased memory consumption when
running multiple tasks on the same physical computational
node.

A large set of scheduling proposals target specific exe-
cution environments. For example, the technique in [38]
targets shared resource environments. Proposals, such as
[17,22,66,80,82,112], are specific to grid and cloud data-
centric flow scheduling. Agrawal et al. [7] discuss optimal
time schedules given a fixed allocation of tasks to engines,
provided that the tasks belong to a linear workflow.

Also, a set of optimization algorithms for scheduling flows
based on deadline and time constraints is analyzed in [3,4].
Another proposal of flow scheduling optimization is pre-
sented in [77] based on soft deadline rescheduling in order
to deal with the problem of fault tolerance in flow execu-
tions. In [17], an optimization technique for minimizing the
performance fluctuations that might occur by the resource
diversity, which also considers deadlines, is proposed. Addi-
tionally, there is a set of scheduling techniques based on
multi-objective optimization, e.g., [33].

7.4 On incorporation optimization techniques into
existing systems

Without loss of generality, there are two main types of
describing the data flow execution plan in existing tools
and prototypes: either in an appropriately formatted text
file or using internal representations in the code. These two
approaches are exemplified in systems, like the Pentaho Ket-
tle, Spark, Taverna, and numerous others. In the former case,

an optimization technique can be inserted as a component
that processes this text file and produces a different execu-
tion plan. As an example, in Pentaho, each task and each
graph edge are described as different XML elements in an
XML document. Then, a technique that performs task re-
ordering can consist of an independent programmingmodule
that parses the XML file and modifies the edge elements. On
the other hand, systems, such as Spark, transform the flow
submitted by the user in a DAG, but without exposing a high-
level representation to the end user. The internal optimization
component, called Catalyst, then performs modifications to
the internal code structure that captures the executable DAG.
Extending the optimizer to add new techniques, such as those
described in this survey, requires using the Catalyst exten-
sibility points. The second approach seems to require more
effort from the developer and bemore intrusive. Finally, tools
that allow for rapid feedback to the developer and the human
expert designer being in the loop, e.g., as in [43], can also
benefit for automated optimization solutions like those dis-
cussed in this survey.

8 Related work

To the best of our knowledge, there is no prior survey or
overview article on data flow optimization; however, there
are several surveys on related topics.

Related work falls into two categories: (i) surveys on
generic DAG scheduling and on narrow-scope scheduling
problems, which are also encountered in data flow optimiza-
tion; and (ii) overviews of workflow systems.

DAG scheduling is a persisting topic in computing and
has received a renewed attention due to the emergence of
Grid and cloud infrastructures, which allow for the usage
of remote computational resources. For such distributed set-
tings, the proposals tend to refer to the WEP execution layer
and to focus on mapping computational tasks ignoring the
data transfer between them, or assume a non-pipelined mode
of execution that does not fit will into data-centric flow
setting [32]. A more recent survey of task mapping is pre-
sented in [37], which discusses techniques that assign tasks to
resources for efficient execution in Grids under the demand-
ing requirements and resource allocation constraints, such
as the dependencies between the tasks, the resource reser-
vation, and so on. In [10], an overview of the pipelined
workflow time scheduling problem is presented, where the
problem formulation targets streaming applications. In order
to compare the effectiveness of the proposed optimization
techniques, they present a taxonomy of workflow optimiza-
tion techniques taking into account workflow characteristics,
such as the structure of flow (i.e., linear, fork, tree-shaped
DAGs), the computation requirements, the size of data to be
transferred between tasks, the parallel or sequential task exe-

123

104 International Journal of Data Science and Analytics (2018) 6:81–107

cution mode, and the possibility of executing task replicas.
Additionally, the taxonomy takes into consideration a perfor-
mancemodel that describes whether the optimization aims to
a single or multiple objectives, such as throughput, latency,
reliability, and so on. However, in data-centric flows, tasks
are activated upon receipt of input data and not as a result of
an activation message from a controller, as assumed in [10].
None of the surveys above provides a systematic study of the
optimizations at the WEP generation layer.

The second class of related work deals with a broader-
scope presentation of workflow systems. The survey in [29]
aims to present a taxonomy of the workflow system fea-
tures and capabilities to allow end users to take the best
option for each application. Specifically, the taxonomy is
inspired by the workflow lifecycle and categorizes the work-
flow systems according to the lifecycle phase they are capable
of supporting. However, the optimizations considered suf-
fer from the same limitations as those in [32]. Similarly, in
[9], an evaluation of the current workflow technology is also
described, considering both scientific and business work-
flow frameworks. The control and data flow mechanisms
and capabilities of workflow systems both for e-science, e.g.,
Taverna and Triana, and business processes, e.g., YAWL and
BPEL-based engines, are discussed in [26]. [106] discusses
how leading commercial tools in the data analysis market
handle SQL statements, as a means to perform data man-
agement tasks within workflows. Liu et al. [71] focus on
scientificworkflows,which are an essential part of data flows,
but does not delve into the details of optimization. Finally,
Jovanovic et al. [51] present a survey that aims to present
the challenges of modern data flows through different data
flow scenarios. Additionally, related data flow optimization
techniques are summarized, but not surveyed, in order to
underline the importance of low data latency in Business
Intelligence (BI) processes,while an architecture of next gen-
eration BI systems that manage the complexity of modern
data flows in such systems is proposed.

Modeling and processing ETL workflows [103] focuses
on the detailed description of conceptual and logical model-
ing of ETLs. Conceptual modeling refers to the initial design
of ETL processes by using UML diagrams, while the log-
ical modeling refers to the design of ETL processes taking
into account required constraints. This survey discusses the
generic problems in ETL data flows, including optimization
issues in minimizing the execution time of an ETL workflow
and the resumption in case of failures during the processing
of large amount of data.

Data flow optimization bears also similarities with query
optimization over Web Services (WSs) [100], especially
when the valid orderings of the calls to the WSs are sub-
ject to dependency constraints. This survey includes all the
WSs related techniques that can also be applied to data flows.

Part of the optimizations covered in this survey can be
deemed as generalizations of the corresponding techniques in
database queries. An example is the correspondence between
pushing selections down in the query plan and moving
filtering tasks as close to data source as possible [12]. Com-
prehensive surveys on database query optimization are in
[18,49], whereas lists of semantic equivalence rules between
expressions of relational operators that provide the basis
for query optimization can be found in classical database
textbooks (e.g., [35]). However, as discussed in the introduc-
tion, there are essential differences between database queries
and data flows, which cannot be described as expressions
over a limited set of elementary operations. At a higher
level, data flow optimization covers more mechanisms (e.g.,
task decomposition and engine selection) and a broader set-
ting with regard to the criteria considered and the metadata
required.

Nevertheless, it is arguable that data flow task ordering
bears similarities to optimization of database queries contain-
ing user-defined functions (UDFs) (or expensive predicates),
as reported in [20,40]. This similarity is based on the intrinsic
correspondence between UDFs and data flow tasks, but there
are two main differences. First, the dependency constraints
considered in [20,40] refer to pairs of a join and aUDF, rather
than between UDFs. As such, when joins are removed and
only UDFs are considered, the techniques described in these
proposals are reduced to unconstrained filter ordering. Sec-
ond, the straightforward extensions to the proposals [20,40]
are already covered and improved by solutions targeting data
flow task ordering explicitly as discussed in Sect. 4.1.

9 Summary

This survey covers an emerging area in data management,
namely optimization techniques that modify a data-centric
workflow execution plan prior to its execution in an auto-
mated manner. The survey first provides a taxonomy of the
main dimensions characterizing each optimization proposal.
These dimensions cover a broad range, from the mechanism
utilized to enhance execution plans to the distribution of the
setting and the environment for which the solution is initially
proposed. Then, we present the details of the existing propos-
als, divided into eight groups, one for each of the identified
optimization mechanisms. Next, we present the evaluation
approaches, focusing on aspects, such as the type of work-
flows and data used during experiments. We complete this
survey with a discussion of the main findings, while also,
for completeness, we briefly present tangential issues, such
as optimizations in massively parallel data flow systems and
optimized workflow scheduling.

123

International Journal of Data Science and Analytics (2018) 6:81–107 105

References

1. IBM infosphere datastage balanced optimization. http://www-
01.ibm.com/software/data/integration/info_server/ (2008).
Accessed Jan 2018

2. Abadi,D.J.,Agrawal,R.,Ailamaki,A.,Balazinska,M.,Bernstein,
P.A., Carey, M.J., Chaudhuri, S., Dean, J., Doan, A., Franklin,
M.J.,Gehrke, J.,Haas, L.M.,Halevy,A.Y.,Hellerstein, J.M., Ioan-
nidis, Y.E., Jagadish, H.V., Kossmann, D., Madden, S., Mehrotra,
S., Milo, T., Naughton, J.F., Ramakrishnan, R., Markl, V., Olston,
C., Ooi, B.C., Ré, C., Suciu, D., Stonebraker, M., Walter, T.,
Widom, J.: The beckman report on database research. SIGMOD
Rec. 43(3), 61–70 (2014)

3. Abrishami, S., Naghibzadeh, M., Epema, D.H.: Deadline-
constrained workflow scheduling algorithms for infrastructure as
a service clouds. Future Gener. Comput. Syst. 29(1), 158–169
(2013)

4. Abrishami, S., Naghibzadeh, M., Epema, D.H.J.: Cost-driven
scheduling of grid workflows using partial critical paths. IEEE
Trans. Parallel Distrib. Syst. 23(8), 1400–1414 (2012)

5. Agrawal, K., Benoit, A., Dufossé, F., Robert, Y.:Mapping filtering
streaming applications with communication costs. In: SPAA, pp.
19–28 (2009)

6. Agrawal, K., Benoit, A., Dufossé, F., Robert, Y.:Mapping filtering
streaming applications. Algorithmica 62(1–2), 258–308 (2012)

7. Agrawal, K., Benoit, A.,Magnan, L., Robert, Y.: Scheduling algo-
rithms for linear workflow optimization. In: IPDPS, pp. 1–12
(2010)

8. Alexandrov, A., Bergmann, R., Ewen, S., Freytag, J., Hueske, F.,
Heise, A., Kao, O., Leich, M., Leser, U., Markl, V., Naumann,
F., Peters, M., Rheinländer, A., Sax, M.J., Schelter, S., Höger, M.,
Tzoumas, K., Warneke, D.: The stratosphere platform for big data
analytics. VLDB J. 23(6), 939–964 (2014)

9. Barker, A., van Hemert, J.I.: Scientific workflow: a survey and
research directions. In: PPAM, Lecture Notes in Computer Sci-
ence, vol. 4967, pp. 746–753 (2007)

10. Benoit, A., Çatalyürek, U.V., Robert, Y., Saule, E.: A survey of
pipelined workflow scheduling: models and algorithms. ACM
Comput. Surv. 45(4), 50:1–50:36 (2013)

11. Bhattacharya, K., Hull, R., Su, J.: A data-centric designmethodol-
ogy for business processes. In:Handbook ofResearch onBusiness
Process Modeling, Chapter 23, 503–531 (2009)

12. Böhm, M.: Cost-based optimization of integration flows. Ph.D.
thesis (2011)

13. Böhm, M., Habich, D., Lehner, W.: On-demand re-optimization
of integration flows. Inf. Syst. 45, 1–17 (2014)

14. Böhm, M., Tatikonda, S., Reinwald, B., Sen, P., Tian, Y., Bur-
dick, D., Vaithyanathan, S.: Hybrid parallelization strategies for
large-scale machine learning in systemml. PVLDB 7(7), 553–564
(2014)

15. Braga, D., Ceri, S., Daniel, F., Martinenghi, D.: Optimization of
multi-domain queries on the web. PVLDB 1(1), 562–573 (2008)

16. Burge, J., Munagala, K., Srivastava, U.: Ordering pipelined query
operators with precedence constraints. Technical Report 2005-40,
Stanford InfoLab (2005)

17. Calheiros, R.N., Buyya, R.: Meeting deadlines of scientific work-
flows in public clouds with tasks replication. IEEE Trans. Parallel
Distrib. Syst. 25(7), 1787–1796 (2014)

18. Chaudhuri, S.: An overview of query optimization in relational
systems. In: Proceedings of the Seventeenth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Sys-
tems, June 1–3, 1998, Seattle, Washington, pp. 34–43 (1998)

19. Chaudhuri, S., Dayal, U., Narasayya, V.: An overview of business
intelligence technology. Commun. ACM 54, 88–98 (2011)

20. Chaudhuri, S., Shim, K.: Optimization of queries with user-
defined predicates. ACM Trans. Database Syst. 24(2), 177–228
(1999)

21. Chen, W., Deelman, E.: Partitioning and scheduling workflows
across multiple sites with storage constraints. In: Proceedings
of the 9th International Conference on Parallel Processing and
Applied Mathematics—Volume Part II, PPAM’11, pp. 11–20
(2012)

22. Chen, W.N., Zhang, J.: An ant colony optimization approach to a
gridworkflow scheduling problemwith various qos requirements.
IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 39(1), 29–43
(2009)

23. Chirkin, A.M., Belloum, A., Kovalchuk, S.V., Makkes, M.X.:
Execution time estimation for workflow scheduling. In: Proceed-
ings of the 9thWorkshop onWorkflows in Support of Large-Scale
Science, pp. 1–10. IEEE Press (2014)

24. Cohen-Boulakia, S., Chen, J., Goble, C., Missier, P., Williams,
A., Froidevaux, C.: Distilling structure in taverna scientific work-
flows: a refactoring approach. BMC Bioinformatics 15(1), S12
(2014)

25. Crotty, A., Galakatos, A., Dursun, K., Kraska, T., Binnig, C., Çet-
intemel, U., Zdonik, S.: An architecture for compiling udf-centric
workflows. PVLDB 8(12), 1466–1477 (2015)

26. Curcin, V., Ghanem, M.: Scientific workflow systems—can one
size fit all? In: Biomedical EngineeringConference, 2008. CIBEC
2008. Cairo International, pp. 1–9 (2008)

27. Dayal, U., Castellanos, M., Simitsis, A.,Wilkinson, K.: Data inte-
gration flows for business intelligence. In: Proceedings of EDBT,
pp. 1–11 (2009)

28. deOliveira, D., Ogasawara, E.S., Dias, J., Baio, F.A.,Mattoso,M.:
Ontology-based semi-automatic workflow composition. JIDM
3(1), 61–72 (2012)

29. Deelman,E.,Gannon,D., Shields,M.,Taylor, I.:Workflowsand e-
science: an overviewofworkflowsystem features and capabilities.
Future Gener. Comput. Syst. 25(5), 528–540 (2009)

30. Deelman, E., Singh, G., Su, M.H., Blythe, J., Gil, Y., Kesselman,
C.,Mehta, G., Vahi, K., Berriman,G.B., Good, J., Laity, A., Jacob,
J.C., Katz, D.S.: Pegasus: a framework for mapping complex sci-
entific workflows onto distributed systems. Sci. Program. 13(3),
219–237 (2005)

31. Deshpande, A., Hellerstein, L.: Parallel pipelined filter ordering
with precedence constraints. ACM Trans. Algorithms 8(4), 41:1–
41:38 (2012)

32. Dong, F., Akl, S.G.: Scheduling algorithms for grid computing:
state of the art and open problems. Technical report (2006)

33. Fard, H., Prodan, R., Fahringer, T.: A truthful dynamic workflow
scheduling mechanism for commercial multicloud environments.
IEEE Trans. Parallel Distrib. Syst. 24(6), 1203–1212 (2013)

34. Florescu, D., Levy, A., Manolescu, I., Suciu, D.: Query optimiza-
tion in the presence of limited access patterns. In:ACMSIGMOD,
pp. 311–322 (1999)

35. Garcia-Molina, H., Ullman, J.D., Widom, J.D.: Database Sys-
tems: The Complete Book. Prentice Hall, Upper Saddle River
(2001)

36. Gounaris, A., Kougka, G., Tous, R., Tripiana, C., Torres, J.:
Dynamic configuration of partitioning in spark applications.
IEEE Trans. Parallel Distrib. Syst. (2017). https://doi.org/10.
1109/TPDS.2017.2647939

37. Grehant, X., Demeure, I., Jarp, S.: A survey of task mapping on
production grids. ACM Comput. Surv. 45(3), 37:1–37:25 (2013)

38. Gu, Y., Wu, Q., Rao, N.S.V.: Analyzing execution dynamics of
scientific workflows for latency minimization in resource sharing
environments. In: Proceedings of the 2011 IEEEWorld Congress
on Services, pp. 153–160 (2011)

123

http://www-01.ibm.com/software/data/integration/info_server/
http://www-01.ibm.com/software/data/integration/info_server/
https://doi.org/10.1109/TPDS.2017.2647939
https://doi.org/10.1109/TPDS.2017.2647939

106 International Journal of Data Science and Analytics (2018) 6:81–107

39. Halasipuram, R., Deshpande, P.M., Padmanabhan, S.: Determin-
ing essential statistics for cost based optimization of an ETL
workflow. In: EDBT, pp. 307–318 (2014)

40. Hellerstein, J.M.:Optimization techniques for querieswith expen-
sive methods. ACM Trans. Database Syst. 23(2), 113–157 (1998)

41. Herodotou, H., Babu, S.: Profiling, what-if analysis, and cost-
based optimization ofmapreduce programs. PVLDB 4(11), 1111–
1122 (2011)

42. Holl, S., Zimmermann, O., Hofmann-Apitius, M.: A new opti-
mization phase for scientific workflow management systems. In:
eScience, pp. 1–8 (2012)

43. Holzinger, A., Stocker, C., Ofner, B., Prohaska, G., Brabenetz,
A., Hofmann-Wellenhof, R.: Combining HCI, natural language
processing, and knowledge discovery—potential of IBM con-
tent analytics as an assistive technology in the biomedical field.
In: Human–Computer Interaction and Knowledge Discovery in
Complex, Unstructured, Big Data—Third International Work-
shop, HCI-KDD, pp. 13–24 (2013)

44. Huang, B., Babu, S., Yang, J.: Cumulon: optimizing statistical
data analysis in the cloud. In: Proceedings of the 2013 ACM SIG-
MOD International Conference onManagement ofData, pp. 1–12
(2013)

45. Huang, B., Böhm,M., Tian,Y., Reinwald, B., Tatikonda, S., Reiss,
F.R.:Resource elasticity for large-scalemachine learning. In: SIG-
MOD’15, pp. 137–152 (2015)

46. Huang, B., Jarrett, N.W.D., Babu, S., Mukherjee, S., Yang, J.:
Cümülön: Matrix-based data analytics in the cloud with spot
instances. Proc. VLDB Endow. 9(3), 156–167 (2015)

47. Hueske, F., Peters, M., Sax, M., Rheinländer, A., Bergmann, R.,
Krettek, A., Tzoumas, K.: Opening the black boxes in data flow
optimization. PVLDB 5(11), 1256–1267 (2012)

48. Informatica:How to achieveflexible, cost-effective scalability and
performance through pushdown processing. White Paper (2007)

49. Ioannidis, Y.E.: Query optimization. ACM Comput. Surv. 28(1),
121–123 (1996)

50. Jin, T., Zhang, F., Sun, Q., Bui, H., Parashar, M., Yu, H., Klasky,
S., Podhorszki, N., Abbasi, H.: Using cross-layer adaptations
for dynamic data management in large scale coupled scientific
workflows. In: International Conference for High Performance
Computing, Networking, Storage and Analysis, SC’13, p. 74
(2013)

51. Jovanovic, P., Romero, O., Abelló, A.: A unified view of data-
intensive flows in business intelligence systems: a survey. In:
Transactions onLarge-ScaleData- andKnowledge-Centered Sys-
tems XXIX, pp. 66–107. Springer, Berlin (2016)

52. Jovanovic, P., Romero, O., Simitsis, A., Abell, A.: Incremental
consolidation of data-intensive multi-flows. IEEE Trans. Knowl.
Data Eng. 28(5), 1203–1216 (2016)

53. Jovanovic, P., Simitsis,A.,Wilkinson,K.: Babbleflow: a translator
for analytic data flowprograms. In: SIGMOD,pp. 713–716 (2014)

54. Jovanovic, P., Simitsis, A., Wilkinson, K.: Engine independence
for logical analytic flows. In: ICDE, pp. 1060–1071 (2014)

55. Juve, G., Chervenak, A.L., Deelman, E., Bharathi, S., Mehta, G.,
Vahi,K.: Characterizing and profiling scientificworkflows. Future
Gener. Comput. Syst. 29(3), 682–692 (2013)

56. Karagiannis,A.,Vassiliadis, P., Simitsis,A.: Scheduling strategies
for efficient ETL execution. Inf. Syst. 38(6), 927–945 (2013)

57. Kllapi, H., Sitaridi, E., Tsangaris, M.M., Ioannidis, Y.: Schedule
optimization for data processing flows on the cloud. In: Proceed-
ings of the 2011 ACM SIGMOD International Conference on
Management of Data, pp. 289–300 (2011)

58. Kougka, G., Gounaris, A.: Declarative expression and optimiza-
tion of data-intensive flows. In: DaWaK, pp. 13–25 (2013)

59. Kougka, G., Gounaris, A.: Optimization of data-intensive flows:
is it needed? is it solved? In: Proceedings of the 17th Interna-

tionalWorkshop on DataWarehousing and OLAP, DOLAP 2014,
Shanghai, November 3–7, 2014, pp. 95–98 (2014)

60. Kougka, G., Gounaris, A.: Cost optimization of data flows based
on task re-ordering. In: LNCS Transactions on Large-Scale Data-
and Knowledge-Centered Systems (2017, to appear)

61. Kougka, G., Gounaris, A.: Optimal task ordering in chain data
flows: exploring the practicality of non-scalable solutions. In:
DaWaK (2017)

62. Kougka, G., Gounaris, A., Leser, U.: Modeling data flow execu-
tion in a parallel environment. In: DaWaK (2017)

63. Kougka, G., Gounaris, A., Tsichlas, K.: Practical algorithms for
execution engine selection in data flows. Future Gener. Comput.
Syst. 45, 133–148 (2015)

64. Krishnamurthy, R., Boral, H., Zaniolo, C.: Optimization of non-
recursive queries. In: VLDB, pp. 128–137 (1986)

65. Kumar, N., Kumar, P.S.: An efficient heuristic for logical opti-
mization of ETL workflows. In: BIRTE, pp. 68–83 (2010)

66. Kumar, V.S., Sadayappan, P., Mehta, G., Vahi, K., Deelman, E.,
Ratnakar, V., Kim, J., Gil, Y., Hall, M., Kurc, T., Saltz, J.: An inte-
grated framework for parameter-based optimization of scientific
workflows. In: HPDC, pp. 177–186 (2009)

67. Kumbhare, A.G., Simmhan, Y., Prasanna, V.K.: Exploiting appli-
cation dynamism and cloud elasticity for continuous dataflows.
In: SC, p. 57 (2013)

68. Kyriazis, D., Tserpes, K., Menychtas, A., Litke, A., Varvarigou,
T.A.: An innovative workflow mapping mechanism for grids in
the frame of quality of service. FutureGener. Comput. Syst. 24(6),
498–511 (2008)

69. Li, C.: Computing complete answers to queries in the presence of
limited access patterns. VLDB J. 12(3), 211–227 (2003)

70. Lim, H., Herodotou, H., Babu, S.: Stubby: a transformation-based
optimizer for mapreduce workflows. Proc. VLDB Endow. 5(11),
1196–1207 (2012)

71. Liu, J., Pacitti, E., Valduriez, P., Mattoso, M.: A survey of data-
intensive scientificworkflowmanagement. J. GridComput. 13(4),
457–493 (2015)

72. Liu, X., Iftikhar, N.: An ETL optimization framework using par-
titioning and parallelization. In: SAC’15 (2015)

73. Nguyen, P., Hilario, M., Kalousis, A.: Using meta-mining to sup-
port data mining workflow planning and optimization. J. Artif.
Intell. Res. 51, 605–644 (2014)

74. Ogasawara, E.S., de Oliveira, D., Valduriez, P., Dias, J., Porto,
F., Mattoso, M.: An algebraic approach for data-centric scientific
workflows. PVLDB 4(12), 1328–1339 (2011)

75. Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig
latin: a not-so-foreign language for data processing. In: SIGMOD
Conference, pp. 1099–1110 (2008)

76. Pietri, I., Juve, G., Deelman, E., Sakellariou, R.: A performance
model to estimate execution time of scientific workflows on the
cloud. In: Proceedings of the 9thWorkshop onWorkflows in Sup-
port of Large-Scale Science, pp. 11–19. IEEE Press (2014)

77. Plankensteiner, K., Prodan, R.: Meeting soft deadlines in scien-
tific workflows using resubmission impact. IEEE Trans. Parallel
Distrib. Syst. 23(5), 890–901 (2012)

78. Preda, N., Kasneci, G., Suchanek, F.M., Neumann, T., Yuan,
W., Weikum, G.: Active knowledge: dynamically enriching RDF
knowledge bases by web services. In: Proceedings of the ACM
SIGMODInternationalConference onManagement ofData, SIG-
MOD 2010, Indianapolis, IN, June 6–10, 2010, pp. 399–410
(2010)

79. Quiroz, A., Huang, E., Ceriani, L.: A robust and extensible tool
for data integration using data type models. In: Proceedings of the
Twenty-Ninth AAAI, pp. 3993–3998 (2015)

80. Rahman, M., Hassan, M.R., Ranjan, R., Buyya, R.: Adaptive
workflow scheduling for dynamic grid and cloud computing envi-
ronment. Concurr. Comput. Pract. Exp.25(13), 1816–1842 (2013)

123

International Journal of Data Science and Analytics (2018) 6:81–107 107

81. Rheinländer, A., Heise, A., Hueske, F., Leser, U., Naumann, F.:
SOFA: an extensible logical optimizer for udf-heavy data flows.
Inf. Syst. 52, 96–125 (2015)

82. Schikuta, E., Wanek, H., Ul Haq, I.: Grid workflow optimization
regarding dynamically changing resources and conditions. Con-
curr. Comput. Pract. Exp. 20, 1837–1849 (2008)

83. Selinger, P.G., Astrahan, M.M., Chamberlin, D.D., Lorie, R.A.,
Price, T.G.: Access path selection in a relational database man-
agement system. In: Proceedings of the 1979 ACM SIGMOD
International Conference on Management of Data, pp. 23–34
(1979)

84. Shi, J., Zou, J., Lu, J., Cao, Z., Li, S., Wang, C.: MRTuner: a
toolkit to enable holistic optimization for mapreduce jobs. Proc.
VLDB Endow. 7(13), 1319–1330 (2014)

85. Shivam, P., Babu, S., Chase, J.S.: Active and accelerated learning
of cost models for optimizing scientific applications. In: VLDB,
pp. 535–546 (2006)

86. Simitsis, A., Vassiliadis, P., Dayal, U., Karagiannis, A., Tziovara,
V.: Benchmarking ETL workflows. In: TPCTC 2009, 199–220
(2009)

87. Simitsis, A., Vassiliadis, P., Sellis, T.K.: State-space optimization
of ETL workflows. IEEE Trans. Knowl. Data Eng. 17(10), 1404–
1419 (2005)

88. Simitsis, A., Wilkinson, K.: Revisiting ETL benchmarking: the
case for hybrid flows. In: TPCTC, pp. 75–91 (2012)

89. Simitsis, A., Wilkinson, K., Castellanos, M., Dayal, U.: QoX-
driven ETL design: reducing the cost of ETL consulting engage-
ments. In: Proceedings of the SIGMOD, pp. 953–960 (2009)

90. Simitsis, A., Wilkinson, K., Castellanos, M., Dayal, U.: Opti-
mizing analytic data flows for multiple execution engines. In:
SIGMOD Conference, pp. 829–840 (2012)

91. Simitsis, A.,Wilkinson,K., Dayal, U.: Hybrid analytic flows—the
case for optimization. Fund. Inf. 128(3), 303–335 (2013)

92. Simitsis, A., Wilkinson, K., Dayal, U., Castellanos, M.: Optimiz-
ing ETL workflows for fault-tolerance. In: ICDE, pp. 385–396
(2010)

93. Simitsis, A.,Wilkinson,K., Dayal, U., Hsu,M.:HFMS:managing
the lifecycle and complexity of hybrid analytic data flows. In:
ICDE, pp. 1174–1185 (2013)

94. Srivastava, U., Munagala, K., Widom, J., Motwani, R.: Query
optimization over web services. In: Proceedings of VLDB, pp.
355–366 (2006)

95. Tan,W., Sun, Y., Lu, G., Tang, A., Cui, L.: Trust services-oriented
multi-objects workflow scheduling model for cloud computing.
In: ICPCA/SWS, pp. 617–630 (2012)

96. Tao, F., Zhang, L., Laili, Y.: Configurable Intelligent Optimization
Algorithm: Design and Practice in Manufacturing. Springer, New
York, Incorporated (2014)

97. Tsamoura, E., Gounaris, A., Manolopoulos, Y.: Brief announce-
ment: on the quest of optimal service ordering in decentralized
queries. In: Proceedings of the 29th Annual ACM Symposium on
Principles of Distributed Computing, PODC 2010, Zurich, July
25–28, 2010, pp. 277–278 (2010)

98. Tsamoura, E., Gounaris, A., Manolopoulos, Y.: Decentralized
execution of linear workflows over web services. Future Gener.
Comput. Syst. 27(3), 341–347(2011)

99. Tsamoura, E., Gounaris, A., Manolopoulos, Y.: Optimal service
ordering in decentralized queries over web services. IJKBO 1(2),
1–16 (2011)

100. Tsamoura, E., Gounaris, A., Manolopoulos, Y.: Queries over web
services. In: New Directions in Web Data Management, vol. 1,
pp. 139–169 (2011)

101. Tziovara, V., Vassiliadis, P., Simitsis, A.: Deciding the physical
implementation of ETL workflows. In: Proceedings of the ACM
10th International Workshop on Data Warehousing and OLAP
DOLAP, pp. 49–56 (2007)

102. Varol, Y.L., Rotem, D.: An algorithm to generate all topological
sorting arrangements. Comput. J. 24(1), 83–84 (1981)

103. Vassiliadis, P.: A survey of extract–transform–load technology.
IJDWM 5(3), 1–27 (2009)

104. Vassiliadis, P., Simitsis, A., Baikousi, E.: A taxonomy of ETL
activities. In: DOLAP 2009, ACM 12th International Workshop
on DataWarehousing and OLAP, HongKong, November 6, 2009,
Proceedings, pp. 25–32 (2009)

105. vom Brocke, J., Sonnenberg, C.: Business process management
and business process analysis. In: Information Systems and Infor-
mation Technology. Computing Handbook, 3rd edn., pp. 26: 1–31
(2014)

106. Vrhovnik, M., Schwarz, H., Radeschütz, S., Mitschang, B.: An
overview of SQL support in workflow products. In: Proceedings
of ICDE, pp. 1287–1296 (2008)

107. Vrhovnik, M., Schwarz, H., Suhre, O., Mitschang, B., Markl, V.,
Maier, A., Kraft, T.: An approach to optimize data processing in
business processes. In: VLDB, pp. 615–626 (2007)

108. Vu, L.H., Hauswirth, M., Aberer, K.: Qos-based service selec-
tion and ranking with trust and reputation management. In:
Proceedings of the Cooperative Information System Conference
(CoopIS05, pp. 466–483 (2005)

109. Whrer, A., Brezany, P., Janciak, I., Mehofer, E.: Modeling and
optimizing large-scale data flows. Future Gener. Comput. Syst.
31, 12–27 (2014)

110. Wohlin, C.: Guidelines for snowballing in systematic literature
studies and a replication in software engineering. In: Proceedings
of the 18th International Conference on Evaluation and Assess-
ment in Software Engineering, EASE’14, pp. 38:1–38:10 (2014)

111. Yerneni, R., Li, C., Ullman, J.D., Garcia-Molina, H.: Optimizing
large join queries in mediation systems. In: ICDT, pp. 348–364
(1999)

112. Zeng, L., Veeravalli, B., Zomaya, A.Y.: An integrated task com-
putation and data management scheduling strategy for workflow
applications in cloud environments. J. Netw. Comput. Appl. 50,
39–48 (2015)

113. Zhou, A.C., He, B., Liu, C.: Monetary cost optimizations for
hosting workflow-as-a-service in IaaS clouds. IEEE Trans. Cloud
Comput. 4(1), 34–48 (2016)

114. Zinn, D., Bowers, S., McPhillips, T., Ludäscher, B.: Scientific
workflow design with data assembly lines. In: Proceedings of the
4th Workshop on Workflows in Support of Large-Scale Science,
pp. 14:1–14:10 (2009)

123

	The many faces of data-centric workflow optimization: a survey
	Abstract
	1 Introduction
	2 Survey methodology
	2.1 Our context within WfMSs
	2.2 Techniques covered
	2.3 Technique dimensions considered

	3 Taxonomy of existing solutions
	3.1 Flow optimization mechanisms
	3.2 Optimization objectives
	3.3 Optimization solution types
	3.4 Adaptivity of data-centric flow
	3.5 Execution environment
	3.6 Metadata
	3.7 Application domain

	4 Presentation of existing solutions
	4.1 Task ordering
	4.1.1 Techniques for minimizing the sum of costs
	4.1.2 Techniques for minimizing the bottleneck cost
	4.1.3 Techniques for optimizing the critical path
	4.1.4 Techniques for maximizing the throughput
	4.1.5 Task cost models
	4.1.6 Additional remarks

	4.2 Task introduction
	4.3 Task removal
	4.4 Task merge
	4.5 Task decomposition
	4.6 Task implementation selection
	4.7 Execution engine selection
	4.8 Execution engine configuration

	5 Evaluation approaches
	6 Discussion on findings
	6.1 Future research directions

	7 Additional issues in data-centric flow optimization;
	7.1 Optimization in massively parallel data flow systems
	7.2 Techniques facilitating data-centric flow optimization
	7.3 On scheduling optimizations in data-centric flows
	7.4 On incorporation optimization techniques into existing systems

	8 Related work
	9 Summary
	References

