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Abstract

In this paper, we substantiate our premise that statistics is one of the most important disciplines to provide tools and methods
to find structure in and to give deeper insight into data, and the most important discipline to analyze and quantify uncertainty.
We give an overview over different proposed structures of Data Science and address the impact of statistics on such steps as
data acquisition and enrichment, data exploration, data analysis and modeling, validation and representation and reporting.
Also, we indicate fallacies when neglecting statistical reasoning.
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1 Introduction and premise

Data Science as a scientific discipline is influenced by infor-
matics, computer science, mathematics, operations research,
and statistics as well as the applied sciences.

In 1996, for the first time, the term Data Science was
included in the title of a statistical conference (International
Federation of Classification Societies (IFCS) “Data Science,
classification, and related methods”) [37]. Even though the
term was founded by statisticians, in the public image of
Data Science, the importance of computer science and busi-
ness applications is often much more stressed, in particular
in the era of Big Data.

Already in the 1970s, the ideas of John Tukey [43] changed
the viewpoint of statistics from a purely mathematical set-
ting, e.g., statistical testing, to deriving hypotheses from data
(exploratory setting), i.e., trying to understand the data before
hypothesizing.

Another root of Data Science is Knowledge Discovery in
Databases (KDD) [36] with its sub-topic Data Mining. KDD
already brings together many different approaches to knowl-
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edge discovery, including inductive learning, (Bayesian)
statistics, query optimization, expert systems, information
theory, and fuzzy sets. Thus, KDD is a big building block for
fostering interaction between different fields for the overall
goal of identifying knowledge in data.

Nowadays, these ideas are combined in the notion of
Data Science, leading to different definitions. One of the
most comprehensive definitions of Data Science was recently
given by Cao as the formula [12]:

data science = (statistics + informatics + computing +
communication + sociology + management) | (data +
environment + thinking).

In this formula, sociology stands for the social aspects and |
(data + environment + thinking) means that all the mentioned
sciences act on the basis of data, the environment and the so-
called data-to-knowledge-to-wisdom thinking.

A recent, comprehensive overview of Data Science pro-
vided by Donoho in 2015 [16] focuses on the evolution of
Data Science from statistics. Indeed, as early as 1997, there
was an even more radical view suggesting to rename statis-
tics to Data Science [50]. And in 2015, a number of ASA
leaders [17] released a statement about the role of statistics
in Data Science, saying that “statistics and machine learning
play a central role in data science.”

In our view, statistical methods are crucial in most fun-
damental steps of Data Science. Hence, the premise of our
contribution is:

Statistics is one of the most important disciplines to pro-
vide tools and methods to find structure in and to give deeper
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insight into data, and the most important discipline to analyze
and quantify uncertainty.

This paper aims at addressing the major impact of statistics
on the most important steps in Data Science.

2 Steps in data science

One of forerunners of Data Science from a structural per-
spective is the famous CRISP-DM (Cross Industry Standard
Process for Data Mining) which is organized in six main
steps: Business Understanding, Data Understanding, Data
Preparation, Modeling, Evaluation, and Deployment [10],
see Table 1, left column. Ideas like CRISP-DM are now fun-
damental for applied statistics.

In our view, the main steps in Data Science have been
inspired by CRISP-DM and have evolved, leading to, e.g.,
our definition of Data Science as a sequence of the following
steps: Data Acquisition and Enrichment, DATA STORAGE
AND ACCESS, Data Exploration, Data Analysis and Mod-
eling, OPTIMIZATION OF ALGORITHMS, Model Validation
and Selection, Representation and Reporting of Results, and
BUSINESS DEPLOYMENT OF RESULTS. Note that topics in
small capitals indicate steps where statistics is less involved,
cp. Table 1, right column.

Usually, these steps are not just conducted once but are
iterated in a cyclic loop. In addition, it is common to alter-
nate between two or more steps. This holds especially for
the steps Data Acquisition and Enrichment, Data Explo-
ration, and Statistical Data Analysis, as well as for Statistical

Data Analysis and Modeling and Model Validation and Selec-
tion.

Table 1 compares different definitions of steps in Data
Science. The relationship of terms is indicated by horizontal
blocks. The missing step Data Acquisition and Enrichment
in CRISP-DM indicates that that scheme deals with obser-
vational data only. Moreover, in our proposal, the steps
Data Storage and Access and Optimization of Algorithms
are added to CRISP-DM, where statistics is less involved.

The list of steps for Data Science may even be enlarged,
see, e.g., Cao in [12], Figure 6, cp. also Table 1, middle
column, for the following recent list: Domain-specific Data
Applications and Problems, Data Storage and Management,
Data Quality Enhancement, Data Modeling and Represen-
tation, Deep Analytics, Learning and Discovery, Simulation
and Experiment Design, High-performance Processing and
Analytics, Networking, Communication, Data-to-Decision
and Actions.

In principle, Cao’s and our proposal cover the same main
steps. However, in parts, Cao’s formulation is more detailed;
e.g., our step Data Analysis and Modeling corresponds to
Data Modeling and Representation, Deep Analytics, Learn-
ing and Discovery. Also, the vocabularies differ slightly,
depending on whether the respective background is com-
puter science or statistics. In that respect note that Experiment
Design in Cao’s definition means the design of the simulation
experiments.

In what follows, we will highlight the role of statistics
discussing all the steps, where it is heavily involved, in
Sects. 2.1-2.6. These coincide with all steps in our proposal
in Table 1 except steps in small capitals. The corresponding

Table 1 Steps in Data Science: comparison of CRISP-DM (Cross Industry Standard Process for Data Mining), Cao’s definition and our proposal

CRISP-DM Cao’s definition

Our proposal

Business Understanding Domain-specific Data,

Applications and Problems
Data Storage and Management

Data Understanding, Data Quality Enhancement

Data Preparation

Data Acquisition and Enrichment (cp. Sect. 2.1)

DATA STORAGE AND ACCESS

Data Exploration (cp. Sect. 2.2)

Data Analysis and Modeling (cp. Sects. 2.3, 2.4)

OPTIMIZATION OF ALGORITHMS
Model Validation and Selection (cp. Sect. 2.5)
Representation and Reporting of Results (cp. Sect. 2.6)

BUSINESS DEPLOYMENT OF RESULTS

Modeling Data Modeling and Representation,
Deep Analytics, Learning and Discovery
High-performance Processing and Analytics
Evaluation Simulation and Experiment Design
Deployment Networking, Communication
Deployment Data-to-decision and Actions
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entriecs DATA STORAGE AND ACCESS and OPTIMIZATION
OF ALGORITHMS are mainly covered by informatics and
computer science, whereas BUSINESS DEPLOYMENT OF
RESULTS is covered by Business Management.

2.1 Data acquisition and enrichment

Design of experiments (DOE) is essential for a systematic
generation of data when the effect of noisy factors has to be
identified. Controlled experiments are fundamental for robust
process engineering to produce reliable products despite
variation in the process variables. On the one hand, even con-
trollable factors contain a certain amount of uncontrollable
variation that affects the response. On the other hand, some
factors, like environmental factors, cannot be controlled at
all. Nevertheless, at least the effect of such noisy influencing
factors should be controlled by, e.g., DOE.
DOE can be utilized, e.g.,

— to systematically generate new data (data acquisition)
(331,

— for systematically reducing data bases [41], and

— for tuning (i.e., optimizing) parameters of algorithms
[1], i.e., for improving the data analysis methods (see
Sect. 2.3) themselves.

Simulations [7] may also be used to generate new data. A
tool for the enrichment of data bases to fill data gaps is the
imputation of missing data [31].

Such statistical methods for data generation and enrich-
ment need to be part of the backbone of Data Science. The
exclusive use of observational data without any noise control
distinctly diminishes the quality of data analysis results and
may even lead to wrong result interpretation. The hope for
“The End of Theory: The Data Deluge Makes the Scientific
Method Obsolete” [4] appears to be wrong due to noise in
the data.

Thus, experimental design is crucial for the reliability,
validity, and replicability of our results.

2.2 Data exploration

Exploratory statistics is essential for data preprocessing to
learn about the contents of a data base. Exploration and
visualization of observed data was, in a way, initiated by
John Tukey [43]. Since that time, the most laborious part of
data analysis, namely data understanding and transformation,
became an important part in statistical science.

Data exploration or data mining is fundamental for the
proper usage of analytical methods in Data Science. The most
important contribution of statistics is the notion of distribu-
tion. It allows us to represent variability in the data as well
as (a-priori) knowledge of parameters, the concept underly-

ing Bayesian statistics. Distributions also enable us to choose
adequate subsequent analytic models and methods.

2.3 Statistical data analysis

Finding structure in data and making predictions are the most
important steps in Data Science. Here, in particular, statistical
methods are essential since they are able to handle many
different analytical tasks. Important examples of statistical
data analysis methods are the following.

a) Hypothesis testing is one of the pillars of statistical anal-
ysis. Questions arising in data driven problems can often
be translated to hypotheses. Also, hypotheses are the
natural links between underlying theory and statistics.
Since statistical hypotheses are related to statistical tests,
questions and theory can be tested for the available data.
Multiple usage of the same data in different tests often
leads to the necessity to correct significance levels. In
applied statistics, correct multiple testing is one of the
most important problems, e.g., in pharmaceutical studies
[15]. Ignoring such techniques would lead to many more
significant results than justified.

b) Classification methods are basic for finding and predict-
ing subpopulations from data. In the so-called unsuper-
vised case, such subpopulations are to be found from a
data set without a-priori knowledge of any cases of such
subpopulations. This is often called clustering.

In the so-called supervised case, classification rules
should be found from a labeled data set for the predic-
tion of unknown labels when only influential factors are
available.

Nowadays, there is a plethora of methods for the unsu-
pervised [22] as well for the supervised case [2].

In the age of Big Data, a new look at the classical meth-
ods appears to be necessary, though, since most of the
time the calculation effort of complex analysis methods
grows stronger than linear with the number of observa-
tions n or the number of features p. In the case of Big
Data, i.e., if n or p is large, this leads to too high calcula-
tion times and to numerical problems. This results both,
in the comeback of simpler optimization algorithms with
low time-complexity [9] and in re-examining the tradi-
tional methods in statistics and machine learning for Big
Data [46].

c) Regression methods are the main tool to find global
and local relationships between features when the tar-
get variable is measured. Depending on the distributional
assumption for the underlying data, different approaches
may be applied. Under the normality assumption, linear
regression is the most common method, while gener-
alized linear regression is usually employed for other
distributions from the exponential family [18]. More
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advanced methods comprise functional regression for
functional data [38], quantile regression [25], and regres-
sion based on loss functions other than squared error loss
like, e.g., Lasso regression [11,21].

In the context of Big Data, the challenges are similar
to those for classification methods given large numbers
of observations n (e.g., in data streams) and / or large
numbers of features p. For the reduction of n, data
reduction techniques like compressed sensing, random
projection methods [20] or sampling-based procedures
[28] enable faster computations. For decreasing the num-
ber p to the most influential features, variable selection
or shrinkage approaches like the Lasso [21] can be
employed, keeping the interpretability of the features.
(Sparse) principal component analysis [21] may also be
used.

d) Time series analysis aims at understanding and predict-
ing temporal structure [42]. Time series are very common
in studies of observational data, and prediction is the most
important challenge for such data. Typical application
areas are the behavioral sciences and economics as well
as the natural sciences and engineering. As an example,
let us have a look at signal analysis, e.g., speech or music
data analysis. Here, statistical methods comprise the anal-
ysis of models in the time and frequency domains. The
main aim is the prediction of future values of the time
series itself or of its properties. For example, the vibrato
of an audio time series might be modeled in order to
realistically predict the tone in the future [24] and the
fundamental frequency of a musical tone might be pre-
dicted by rules learned from elapsed time periods [29].
In econometrics, multiple time series and their co-
integration are often analyzed [27]. In technical appli-
cations, process control is a common aim of time series
analysis [34].

2.4 Statistical modeling

(a) Complex interactions between factors can be modeled
by graphs or networks. Here, an interaction between
two factors is modeled by a connection in the graph
or network [26,35]. The graphs can be undirected as,
e.g., in Gaussian graphical models, or directed as, e.g.,
in Bayesian networks.

The main goal in network analysis is deriving the network
structure. Sometimes, it is necessary to separate (unmix)
subpopulation specific network topologies [49].

(b) Stochastic differential and difference equations can
represent models from the natural and engineering sci-
ences [3,39]. The finding of approximate statistical mod-
els solving such equations can lead to valuable insights
for, e.g., the statistical control of such processes, e.g., in
mechanical engineering [48]. Such methods can build
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a bridge between the applied sciences and Data Sci-
ence.

(c) Local models and globalization Typically, statistical
models are only valid in sub-regions of the domain of
the involved variables. Then, local models can be used
[8]. The analysis of structural breaks can be basic to iden-
tify the regions for local modeling in time series [5]. Also,
the analysis of concept drifts can be used to investigate
model changes over time [30].

In time series, there are often hierarchies of more and
more global structures. For example, in music, a basic
local structure is given by the notes and more and more
global ones by bars, motifs, phrases, parts etc. In order to
find global properties of a time series, properties of the
local models can be combined to more global character-
istics [47].

Mixture models can also be used for the generalization
of local to global models [19,23]. Model combination
is essential for the characterization of real relationships
since standard mathematical models are often much too
simple to be valid for heterogeneous data or bigger
regions of interest.

2.5 Model validation and model selection

In cases where more than one model is proposed for, e.g.,
prediction, statistical tests for comparing models are help-
ful to structure the models, e.g., concerning their predictive
power [45].

Predictive power is typically assessed by means of so-
called resampling methods where the distribution of power
characteristics is studied by artificially varying the subpop-
ulation used to learn the model. Characteristics of such
distributions can be used for model selection [7].

Perturbation experiments offer another possibility to
evaluate the performance of models. In this way, the stability
of the different models against noise is assessed [32,44].

Meta-analysis as well as model averaging are methods to
evaluate combined models [13,14].

Model selection became more and more important in the
last years since the number of classification and regression
models proposed in the literature increased with higher and
higher speed.

2.6 Representation and reporting

Visualization to interpret found structures and storing of
models in an easy-to-update form are very important tasks
in statistical analyses to communicate the results and safe-
guard data analysis deployment. Deployment is decisive for
obtaining interpretable results in Data Science. It is the last
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step in CRISP-DM [10] and underlying the data-to-decision
and action step in Cao [12].

Besides visualization and adequate model storing, for
statistics, the main task is reporting of uncertainties and
review [6].

3 Fallacies

The statistical methods described in Sect. 2 are fundamental
for finding structure in data and for obtaining deeper insight
into data, and thus, for a successful data analysis. Ignoring
modern statistical thinking or using simplistic data analyt-
ics/statistical methods may lead to avoidable fallacies. This
holds, in particular, for the analysis of big and/or complex
data.

As mentioned at the end of Sect. 2.2, the notion of dis-
tribution is the key contribution of statistics. Not taking
into account distributions in data exploration and in mod-
eling restricts us to report values and parameter estimates
without their corresponding variability. Only the notion of
distributions enables us to predict with corresponding error
bands.

Moreover, distributions are the key to model-based data
analytics. For example, unsupervised learning can be
employed to find clusters in data. If additional structure like
dependency on space or time is present, it is often important
to infer parameters like cluster radii and their spatio-temporal
evolution. Such model-based analysis heavily depends on the
notion of distributions (see [40] for an application to protein
clusters).

If more than one parameter is of interest, it is advisable
to compare univariate hypothesis testing approaches to mul-
tiple procedures, e.g., in multiple regression, and choose the
most adequate model by variable selection. Restricting one-
self to univariate testing, would ignore relationships between
variables.

Deeper insight into data might require more complex mod-
els, like, e.g., mixture models for detecting heterogeneous
groups in data. When ignoring the mixture, the result often
represents a meaningless average, and learning the subgroups
by unmixing the components might be needed. In a Bayesian
framework, this is enabled by, e.g., latent allocation variables
in a Dirichlet mixture model. For an application of decom-
posing a mixture of different networks in a heterogeneous
cell population in molecular biology see [49].

A mixture model might represent mixtures of components
of very unequal sizes, with small components (outliers) being
of particular importance. In the context of Big Data, naive
sampling procedures are often employed for model estima-
tion. However, these have the risk of missing small mixture
components. Hence, model validation or sampling according

to a more suitable distribution as well as resampling methods
for predictive power are important.

4 Conclusion

Following the above assessment of the capabilities and
impacts of statistics our conclusion is:

The role of statistics in Data Science is under-estimated as,
e.g., compared to computer science. This yields, in particular,
for the areas of data acquisition and enrichment as well as
for advanced modeling needed for prediction.

Stimulated by this conclusion, statisticians are well-
advised to more offensively play their role in this modern
and well accepted field of Data Science.

Only complementing and/or combining mathematical
methods and computational algorithms with statistical rea-
soning, particularly for Big Data, will lead to scientific results
based on suitable approaches. Ultimately, only a balanced
interplay of all sciences involved will lead to successful solu-
tions in Data Science.
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