
International Journal of Data Science and Analytics (2018) 5:111–136
https://doi.org/10.1007/s41060-017-0092-8

REGULAR PAPER

Maritime pattern extraction and route reconstruction from incomplete
AIS data

Andrej Dobrkovic1 ·Maria-Eugenia Iacob1 · Jos van Hillegersberg1

Received: 1 February 2017 / Accepted: 15 December 2017 / Published online: 6 January 2018
© The Author(s) 2018. This article is an open access publication

Abstract
Effective barge scheduling in the logistic domain requires advanced information on the availability of the port terminals and the
maritime traffic in their vicinity. To enable a long-term prediction of vessel arrival times, we investigate how to use the publicly
available automatic identification system (AIS) data to identify maritime patterns and transform them into a directed graph
that can be used to estimate the potential trajectories and destination points. To tackle this problem, we use a genetic algorithm
(GA) to cluster vessel position data. Then, we show how to enhance the process to allow fast computation of incremental
data coming from the sensors, including the importance of adding a quad tree structure for data preprocessing. Focusing on a
real case implementation, characterized by partially incomplete and noisy AIS data, we show how the algorithm can handle
routes intersecting the regions with missing data and the repercussions this has on the route graph. Finally, postprocessing
is explained that handles graph pruning and filtering. We validate the results produced by the GA by comparing resulting
patterns with known inland water routes for two Dutch provinces followed by the simulation using synthetic data to highlight
the strengths and weaknesses of this approach.

Keywords Genetic algorithms · Pattern recognition · Data mining · Automatic identification system · Synchromodal logistics

1 Introduction

The availability of reliable information is a prerequisite of
any planning. With the ongoing process of continuous cost
minimization in the logistics sector, the ability to adequately
and timely provide solid information about the present and
future state is essential for any type of planning. For Dutch
logistics service providers (LSPs), it is essential to maximize
the utilization of inland water transportation resources. The
most important such resource of LSPs are barges that in an

This paper is the extended version of the DSAA’2016 special session
paper “Maritime Pattern Extraction from AIS data Using a Genetic
Algorithm”[1].

B Andrej Dobrkovic
a.dobrkovic@utwente.nl

Maria-Eugenia Iacob
m.e.iacob@utwente.nl

Jos van Hillegersberg
j.vanhillegersberg@utwente.nl

1 Industrial Engineering and Business Information Systems,
University of Twente, Enschede, The Netherlands

ideal scenario are fully utilized with no or minimal waiting
times.

LSPs define terminal disturbances as events when a deep
sea vessel makes an unscheduled arrival at the port termi-
nal [2]. Since deep sea vessels have priority over barges,
the occurrence of such an event forces barges into a waiting
state, until the terminal becomes available to service them
again. Minimization of expenses through maximization of
resource utilization is only possible if there is an effective
way to estimate deep sea vessel destinations, and arrival
times, thereby estimating terminal disturbances, and creat-
ing optimal scheduling policies taking those into account.

The problem of estimating destination and arrival time for
more than one hour ahead cannot be solved by relying solely
on position and heading parameters of one entity. As indi-
cated in [3], long-term predictions require identification of
sailing patterns for all vessels in the region of interest. Fol-
lowing the successful completion of that step, it is possible to
estimate the final position of an entity by associating its cur-
rent position, and heading to the known pattern for the area,
and extrapolating all possible destinations from the graph.

This paper focuses on the problem of maritime pattern
extraction. To obtain current positions of the vessels we

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s41060-017-0092-8&domain=pdf
http://orcid.org/0000-0002-1363-1181

112 International Journal of Data Science and Analytics (2018) 5:111–136

use publicly availableAutomatic Identification System (AIS)
data and zoom in on two specific regions in the Netherlands.
The research done by [3] and [4] shows that the basis for
pattern identification is waypoint extraction, and, although
standard clustering algorithms, such as DBSCAN, can be
used for this task, the problem of varying traffic density
requires a different approach. In [3], we have shown that
a genetic algorithm (GA) can be a viable alternative to other
machine learning approaches, and although it is resource
intensive, it can deliver accurate results once good criteria
for the GA fitness function have been found.

Our goal is to show that by sequential waypoint (WP)
discovery using a genetic algorithm, we can extract sailing
patterns and transform them into a directed graph.We address
the main drawback of evolutionary algorithms, characterized
by high computational time, by using quad tree structures to
preprocess AIS data and isolate areas of high concentration
for the genetic algorithm to discover. This is followed by
the discovery of one pair of waypoints at a time. Once those
waypoints are found and saved, all vessel positions from the
waypoint’s neighborhood are removed and the discovery pro-
cess is repeated. This approach allows for fewer checks of
the fitness function, which improves the method’s overall
performance. The process is repeated until there are no more
points that have not been assigned to a cluster. By using this
approach, we show that evolutionary algorithms can be used
to solve real life data mining and prediction problems. Also,
due to its’ ability to reduce the resource requirements, this
approach becomes viable for future usage in real-time pattern
extraction from large volume of streaming data.

Additionally, in the real case business environment, the
AIS data relayed to LSPs contains gaps and noise. Depend-
ing on the resources used to collect data, the range and the
position of AIS receivers, it is expected to have regions with
missing AIS information. To have an industry acceptable
solution, the algorithm is expected to handle routes with
missing data, and give the best possible estimate from the
available input.

Thus, the main contribution of this paper is a novel
approach on how to adapt a genetic algorithm to handle the
real life data mining problem of pattern extraction. While we
use maritime data to prove the approach, the same method
could be applied to other modes of transport without restric-
tions. Finally, asmaritime routes have the tendency to change
over time due to influence of other external factors such as
weather and tides [5], the ability of the genetic algorithm
to gradually evolve with the new data, will make it the best
candidate for providing real-time naval pattern awareness
for typical logistics enterprises, utilizing standard PC hard-
ware and accessing imperfect publicly available AIS data.
Considering data science domain in general, we show the
robustness of the evolutionary algorithms to extract knowl-
edge fromnoisy and incomplete sequential data. Datamining

algorithms in general deal with complete data sets. However,
shifting to the big data domain andprocessing streamingdata,
introduces new challenges, as the typical algorithms provide
the answer based on the snapshot of the actual state. Due to
the fact that the evolutionary algorithms contain memory and
can adapt to the changes in the input data streams, they are
more resilient to the inconsistencies in comparison with the
other data mining approaches. Our novel contribution aims
at expending the data science body of knowledge by show-
ing that periodic inconsistencies in large data sets can be
effectively tackled by memory-based algorithm, such as the
modified genetic algorithm, that we present in this paper.

The overall research methodology followed in this study
is the design science research methodology [6].

The remainder of the paper is organized as follows. In
Sect. 2 we present the problem background and some related
research on this topic. Section 3 is dedicated to the solu-
tion design. Here we present the genetic algorithm and the
required improvement steps. The validation of the extracted
patterns is given in Sect. 4. Section 5 is used to compare
this approach with the current state of the art, and discuss
the future work. Concluding remarks and a summary of the
work done are given in Sect. 6.

2 Problem background

2.1 Synchromodal IT platform

The concept of synchromodality was introduced in the
Netherlands in 2011 with the goal of allowing the usage of
the most suitable mode of transport at all times during the
fulfillment of an order, through cooperation within supply
chains, transport chains and infrastructures [7]. According
to [8] and [9], the core idea of the synchromodal concept is
the real-time switching between the transport modes.

In 2013, the Synchromodal IT project was started, in an
effort to provide a unified platform to integrate various stake-
holders in the logistics domain and manage the process. The
added value the Synchromodal IT platform brings is the
ability to provide essential information for process optimiza-
tion that LSPs either could not acquire on their own, or the
expense of doing so would not justify the potential benefits
[2].

2.2 Long-term arrival time prediction

Asmentioned earlier, deep sea vessels are given priority over
barges at port terminals, as they represent larger clients bring-
ing higher volumes of cargo, and revenue. Consequently, the
arrival of a deep sea vessel, makes the terminal unavailable
for barges, which is referred to as terminal disturbance. If
a barge is forced into idle mode due to this disturbance,

123

International Journal of Data Science and Analytics (2018) 5:111–136 113

or the cargo containers onboard cannot be loaded/unloaded,
expenses for LSPs will increase. Considering the fact that
most barges have to be booked in advance, these disruption
events are posing constant challenges for the planers.

To solve the problem, the platform needs to predict the
occurrence of these disruptions, and this is possible if we
can predict the arrival time of deep sea vessels. The publicly
available AIS data can be used to give current information
about the position of any vessel, its heading, and speed. The
literature review in [2] onusingAISdata for predicting arrival
times, shows that there are twodistinctive approaches for esti-
mating future position of a vessel depending on time frame.

The short-term prediction is used to identify anomalies in
vessel behavior, indicating suspicious activities like smug-
gling, piracy, or illegal dumping. These kinds of predictions
analyze motion patterns of individual vessels and are accu-
rate for time frames of up to one hour in the future. On the
contrary, the long-term prediction is not feasible through the
analysis of individual patterns only. Therefore, it is required
to extract route patterns, and use them for predicting potential
vessel destinations—end points.

2.3 Clustering and route pattern extraction

To extract maritime patterns from AIS data, it is required
to have a good algorithm capable of identifying route way-
points. Pallotta et al. [4] define the TREAD methodology
that uses incremental DBSCAN to isolate turning points, and
connects them afterward to get shipping lanes. Lei et al. [10]
developed the TMP algorithm that also uses DBSCAN to
discover “hot regions” using them into a modified proba-
bilistic suffix tree to obtain the probability distribution for
discrete events occurring in a sequence, thus discovering
moving behavior.

Giannotti et al. [11] introduce the T-pattern algorithm to
extract frequent temporally annotated sequences of dense
spatial regions from trajectories. Rinzivillo et al. [12] use pro-
gressive clustering to aggregate trajectories in their entirety
based on their similarity in geographic, temporal or attribute
space. However, the last two approaches are more suited for
non-naval patterns, where initial trajectories do not have the
tendency to considerably deviate from one to another due to
external factors.

Handl and Knowles [13] show that unsupervised learning
problems, such as data clustering, can be solved using an evo-
lutionary approach. The paper also points out that the correct
clustering solution often corresponds to the trade-off between
two or more clustering objectives, such as minimization of
overall deviation, and connectivity. Taking into account that
the problem of discovering route patterns is based on clus-
tering of positional data, we conclude that the evolutionary
concepts can be used for waypoint identification.

Soares Junior et al. [14] use an unsupervised iterative
procedure to segment trajectories. They identify represen-
tative points in the data, and use Minimum Description
Length to compute similarities, and measure homogeneity
needed by theGRASP-UTSalgorithm to build new route seg-
ments through the modification of the representative points.
Research done by Lee et al. [15] and Li et al. [16] use what
authors refer to as the “partition-and-group framework” to
cluster trajectories. In [15] a trajectory clustering algorithm
TRACULUS is developed, which divides trajectories into
line segments, and clusters each subset in order to discover
common subtrajectories. This process generates a set of rep-
resentative trajectories, that can be used to analyze special
areas of interest. Since the trajectory data are received from
the sensors incrementally, the approach is adopted in [16],
introducing micro cluster maintenance, and macro cluster
creation. This enables the processing of large amounts of data
as it is being received, and allows for incremental trajectory
clustering.We find this approach to be a good fit for our prob-
lem of route extraction as vessel positions coming from the
AIS data are recorded sequentially, preventing the solution
to be applied to an entire data set, and requiring a form of
incremental pattern discovery. However, due to the fact that
already extracted routes may not be valid if weather condi-
tions change, and to the possibility of having incomplete and
partially noisy data from the real case environment, we chose
to base our solution on a genetic algorithm as it can adapt to
trajectory changes, and it is showing robustness when han-
dling imperfect input.

2.4 Varying density

Dobrkovic et al. [3] investigate various algorithms for way-
point discovery in the area of the North sea, including
DBSCAN, modified ant colony optimization, and a genetic
algorithm. They explain that in a real case application algo-
rithms have to cope with clustering maritime data points
where density varies. This makes finding optimal parame-
ters for all clustering algorithms challenging, as shown in
Fig. 1 where DBSCAN either misclassifies an entire area of
the Netherlands as one cluster, or the area in UK as noise.

3 Solution design

3.1 Genetic algorithm

3.1.1 Conceptual idea

The problem calls for finding a way to identify waypoints in
maritime trajectories, i.e., special regions of interest where
lanes intersect, as well as connecting them in such a way that
it allows to depict all possible routes between the points.

123

114 International Journal of Data Science and Analytics (2018) 5:111–136

Fig. 1 Using DBSCAN to
cluster waypoints from AIS
data. Vessel points identified as
the noise are presented as black
dots. Points contained in a
cluster are depicted as circles,
where those that belong to the
same cluster share the same
unique color. This figure shows
the difficulty DBSCAN has
when dealing with varying data
size and density (color figure
online)

Let R be the set of vessel points falling inside the area of
interest. We define a waypoint F as the set of vessel points
falling inside a circle:

F =
{
(x, y) ∈ R

∣∣∣(x − xc)
2 + (y − yc)

2 ≤ r2
}
, (1)

where (xc, yc) is the center of the circle and r is its radius.
Let P denote the cardinality of F, that is:

P = |F | (2)

123

International Journal of Data Science and Analytics (2018) 5:111–136 115

Fig. 2 An illustration of the learning process of a genetic algorithm used to discover predefined routes by converging arbitrary waypoints toward
the areas containing vessel positions

Assuming that every lane is comprised of a finite number
of evenly distanced points, we can build a set of waypoints
that contain all points of that lane. These definitions allow
us to define the fitness function of a genetic algorithm that
seeks to maximize P such that F contains as many points as
possible, by moving the center of F, that is,

max(xc,yc)∈R P (xc, yc) (3)

For n waypoints we can define the maximization function:

max(xc,yc)∈R

∑n

i=1
P

(
xci , yci

)
(4)

An illustration on how these formulas impact the conver-
gence of waypoints toward routes, and their intersections is
shown in Fig. 2. Starting with Fig. 2a, we make an arbitrary
set of routes and simulate vessel movements with varying

density. Then for a fixed number of waypoints, we apply the
genetic algorithm with the fitness function (4). The remain-
ing figures show the result of the learning process after 1 (see
Fig. 2b), 50 (see Fig. 2c), and 500 (see Fig. 2d) generations,
respectively. As expected, GA converges first toward the area
of higher density such as lane C-E. However, if a sufficient
number of waypoints is provided, all points from all lanes
can be covered.

3.1.2 Encoding

We use direct value encoding to represent one waypoint in
one gene. Every gene contains three floating values: latitude,
longitude, and radius. The solution for our problem is con-
tained within the chromosome of the genetic algorithm that
containsNnumber of genes (seeFig. 3). It is important to note
that, while we intend to use waypoints with varying radius in

123

116 International Journal of Data Science and Analytics (2018) 5:111–136

Fig. 3 Chromosome encoding

Fig. 4 One-point crossover

the future, for this problem, that radius value is locked, and
is equal for all genes, and, as such, it can be omitted.

3.1.3 Fitness function

The fitness function of the genetic algorithm is designed to
force waypoints to converge to the area with a high concen-
tration of points. As defined in (1), using values contained
in genes we create circles with the center in (LON, LAT),
and radius r. Then, we count the number of vessel points
contained in this circle. The overall fitness value of each
chromosome is the sum of all points contained within all
waypoints, divided by total number of points (NP) in the
area:

FIT =
∑n

i=1 P
(
xci , yci

)

NP
(5)

The penalty function is also added to prevent the occurrence
of the same waypoint more than once within the chromo-
some. Also, we want to force the genetic algorithm to avoid
placing waypoints close to each other so they start overlap-
ping. Therefore, we check for the intersection between all
circles from a solution, and if found, we penalize the entity
with the minimum fitness score.

3.1.4 Initialization

We generate initial values for each gene in the chromosome
randomly from the possible values within the problem area.
Radius is fixed for all genes, and is area-specific. The num-
ber of genes is fixed before the execution of the algorithm,
and depends on the complexity of the maritime traffic within
the area. Since the number of genes directly influences the
computational intensity, we start the experiments with an
arbitrary small number, and increase it until a good coverage
of the region with waypoints is achieved.

3.1.5 Crossover andmutation

This implementation of the genetic algorithm uses a one-
point crossover, due to the fact that the order of waypoints
is not important, while we want to keep their number fixed.
In GA terms, the chromosome length must remain the same,
while genes are exchanged between two entities. Two parents
are selected by the roulette wheel selection. Then, a random
value in the range from 0 to the number of genes is gener-
ated, and both parents exchange their genetic material before
that random point (see Fig. 4). After two new offspring are
created, a mutation check is performed. If an entity fails, one
of its latitude or longitude values gets replaced with a new,
randomly generated one.

123

International Journal of Data Science and Analytics (2018) 5:111–136 117

3.2 Improving the algorithm

3.2.1 The bottleneck of the classic approach

The algorithm presented in the previous section is a typi-
cal genetic algorithm, applied to the problem of discovering
waypoints. Given a large enough chromosome length, and
processing power, all points from the area will be clustered
into a set of neighboring circles. However, industry applica-
tions require the processing of a large number of points in a
limited time frame, utilizing standard PCs only.

At the core of the fitness function is the radius distance
check (based on the Pythagorean theorem), which tests if
the point (xp, yp) is inside a circle with center (xc, yc), and
radius r.
√∣∣xp − xc

∣∣2 + ∣∣yp − yc
∣∣2 < r (6)

or

∣∣xp − xc
∣∣2 + ∣∣yp − yc

∣∣2 < r2 (7)

This function will be executed NC times:

NC = POP ∗ EP ∗ N ∗ PT, (8)

where parameters POP, EP, N and PT, represent the GA pop-
ulation size, number of epochs, chromosome length, and
number of points in the area, respectively. The multiplica-
tion of N, and PT is the bottleneck of the process, requiring
exponentially more computational power with the increase
in traffic density.

The choice of distance function to be used significantly
impacts the speed and the execution time of the algorithm.
The Euclidian distance function (7) favors fast execution on
standard PC hardware, and is acceptable for general route
extraction within small regions. In the specific maritime case
we calculate the distance using the Haversine formula (9).

d = 2r∗arcsin
(√

sin2
(
yp − yc

2

)
+ cos

(
yp

)
cos (yc) sin2

(
xp − xc

2

))

(9)

Inserting the generally accepted value for the Earth’s mean
radius of 6371km into 2r in (9) the distance check can be
expressed as the following formula:

r>6371∗arcsin
(√

sin2
(
yp−yc

2

)
+cos

(
yp

)
cos (yc) sin2

(
xp−xc

2

))

km

(10)

Since Earth is not a perfect circle, the distance function (10)
will give minor inaccuracies, and the usage of trigonometric

calculations will make this function slower in comparison
with (7), yet for our specific problemwefind these constraints
acceptable. If higher precision is required, or greater speed,
then alternative distance checks have to be considered.

3.2.2 Improving the genetic algorithm

Improving the solution requires adding several steps to
reduce the number of point-to-circle distance checks. First
we use a quad tree structure [17] to quickly subdivide the
area into smaller regions, and query only those with points
adjacent to the testing circle. We also use the same structure
to discover areas of high concentration, and direct the GA
to converge toward them. Second, we change the process of
discovering solutions, and reduce the size of the chromosome
to two waypoints only. After solving their position, all points
contained inside waypoints, as well as extended neighboring
ones are removed from data structure. This leads to fewer
checks at every consecutive call. Third, we use the center of
mass (COM) to fine tune the final position of waypoints to
the data. The fourth step is the creation of a directed graph,
by checking the trajectories of every individual vessel and
connecting the WPs, which intersected the trajectory of that
vessel. Finally, we prune the graph to remove faulty nodes,
and edges, caused by noise in AIS data.

In Fig. 5, all steps required to perform maritime route
extraction are given. Those that are part of the new incre-
mental genetic algorithm are also highlighted.

3.2.3 Data preprocesing with quad tree

While most clustering algorithms struggle with finding good
sets of clusterswith varying data density, a quad tree structure
has the ability to effectively identify such areas, and also
do it in only one pass. Using a quad tree we partition the
region by recursively subdividing it into four smaller regions,
until a threshold, designating themaximum number of points
per region, is reached. We also introduce one adaptation, to
prevent further partitions after the specified depth level. This
prevents high concentration of very small regions in the area
with the highest density. In Fig. 6a, we focus on the example
with data in the vicinity of the Rotterdam port. We use a
quad tree to subdivide the area, limiting it to the maximum
depth level seven. To reduce the number of calls to the GA’s
fitness function, we start by sending only the regions with the
highest depth level in the quad tree as input, and omitting all
the others. When completed, we add another layer of data,
and repeat the process. Since the GA will ignore all points in
the neighborhood of already discovered waypoints, we can
assure that the evolution will be done on the number of points
within the acceptable range.

We show the result of preprocessing the data of 17.099,
and 1.370.346 points in Fig. 6b, d, and c, e, respectively.

123

118 International Journal of Data Science and Analytics (2018) 5:111–136

Fig. 5 Steps in improving
pattern extraction

For the smaller one, the quad tree returns four subregions
containing 2.150 points. In the other example, we signifi-
cantly reduce the area, while still containing 94.57% points
(1.296.065 out of 1.370.346).

3.2.4 Incremental waypoint discovery

Complementary with the previous process is the incremental
waypoint discovery. In this step, we use GA to discover a pair
of waypoints, and then remove all points within bounding
circles and near neighborhood from further consideration.
The process is divided into phases. Per each phase a pair of

waypointswill be added to the solution. Every phase contains
the following steps:

– load data, and solution waypoints,
– remove data in vicinity of previously discovered (solu-
tion) waypoints,

– initialize genetic algorithm, and use it to find the best fit
for two new waypoints,

– add new waypoints to the solution and return it.

To give a visual representation of waypoint discovery we
select six phases that illustrate the learning process the best.
The results after completing phases 0, 1, 2, 5, 9 and 17 are

123

International Journal of Data Science and Analytics (2018) 5:111–136 119

Fig. 6 Subdividing the region
using a quad tree, and
identifying high-density areas.
Section a shows all subregions
returned by the quad tree. In the
bottom section b, c we show
how this helps to reduce the
number of points that will be
processed later. Green and red
points are AIS vessel positions.
Green points will be ignored at
the present density level, while
the red ones are contained
within high-density regions, and
will be used. The images at the
bottom d, e show only the points
that the GA will see (color
figure online)

123

120 International Journal of Data Science and Analytics (2018) 5:111–136

Fig. 7 Incremental waypoint
discovery. Here we have six
phases of the learning process.
Discovered waypoints are
shown as blue circles. Vessel
points classified as part of a
waypoint are depicted as black
and they will be ignored from
further GA epochs. The
remaining points are shown as
yellow dots on the map (color
figure online)

123

International Journal of Data Science and Analytics (2018) 5:111–136 121

Fig. 8 Waypoints before and after fine tuning

given in Fig. 7. We start by loading 2.000.000 AIS points
worldwide, and extract only those contained in the desired
region, leaving us with 17.099. Using a quad tree this num-
ber is further reduced to 2.150, and sent as input for the
genetic algorithm. The GA finds centers for two waypoints,
and adds them to the solution, thus ending phase 0. For phase
1, 5.000.000 AIS points are being loaded, and the same steps
are repeated, providing two more waypoints to the solution.
Since there are still more points to be clustered within new
pair, no additional data are loaded in phase 2. Instead, using
the same data, another WP pair is extracted and saved. The
output of phase 1 and phase 2 also shows how algorithm dis-
cards points in the WP vicinity, improving execution speed
for all successive epochs of the GA. On the map two types of
points are displayed. Black color is used for the points that
are within the cluster or in its neighborhood, and as such, will
be removed from all further considerations. Yellow ones are
those not clustered, and will be the input for the next phase
of the GA. These processes are being repeated until all AIS
points are loaded, and waypoints are extracted.

Improving distance check function
The quad tree structure used to subdivide the area can

be applied to reduce the number of distance check points in
the fitness function of the GA. Instead of checking distance
between the circle encoded in a gene, and all available points,
a bounding box can be created around that circle, and then
can be tested for intersection with regions in the quad tree.
This returns only areas that intersected with the circle, and
then the tree structure can be used to quickly retrieve the
points from that area only. The benefit of this approach is
that it reduces the search area for all distance checks, thereby
reducing processing power used to calculate fitness.

Fine tuning waypoints using the center of mass
The second, trivial yet effective improvement, to find posi-

tions of the waypoints is to use their center of mass. When
the genetic algorithm reaches its objective, we can use genes
of the best entity to obtain waypoint centers. However, the
fitness function in the present form can only find the center
in the close proximity of the ideal one. Adding an additional
constraint to make this possible, would only further decrease

the execution speed. Therefore, this step is postponed until
the genetic algorithm completes the evolution, and is used
only on the best entity. We take all the points contained in the
circle defined by a gene’s parameters, separate them along x,
and y axis and calculate the new center of a circle by dividing
the sum with the number of points.

xc = 1

n
∗

∑n

k=1
xpk , and yc = 1

n
∗

∑n

k=1
ypk (11)

Figure 8 shows the readjustments of WP positions after
applying the formula for the center of mass.

3.3 Route extraction

3.3.1 Creating the graph

The process of route extraction begins when the GA com-
pletes the waypoint discovery. The objective is to create a
directed graph. Nodes of this graph are waypoints provided
by the GA, while edges still need to be discovered. This is
a straightforward task of separating AIS data according to a
unique identifier (MMSI) of every vessel. For eachMMSIwe
check the sequence of waypoints the vessel travels through,
and create edges between them. Every time a unique MMSI
passes through two nodes, we increase the weight of the edge
by one. An example of such a directed graph is given in Fig.
9a, while in Fig. 9b the same graph is drawn on top of AIS
positional data used for the calculation.

Although waypoint centers are ideal to be converted to
nodes, future enhancements require an alternative approach.
Maritime routes are not as stable as the road, and railroad
networks, and have the tendency to change, due to external
factors such as weather conditions and tides. Our aim is to
use this solution for future real-time route extraction from
streaming data. This will cause some routes to appear, and
disappear depending on external influences, and with them
their nodes, and edges will also change status from active to
inactive. The GA cannot guarantee that the same waypoint
will be discoveredmore than oncewith the exact same center.
To avoid losing history when nodes and their corresponding

123

122 International Journal of Data Science and Analytics (2018) 5:111–136

Fig. 9 Extracted routes
represented by the graph

123

International Journal of Data Science and Analytics (2018) 5:111–136 123

Fig. 10 Inaccuracies in AIS data

edges become inactive, we split the region into cells. The
nodes of our graph will become cells that contain centers of
waypoint circles. Thus, by partially sacrificing some preci-
sion, we are able to store all historical data for each cell. If a
node has to be reactivated in the future, it will immediately
connect with all active nodes it was connected with edges
before.

3.3.2 Pruning and noise filtering

The graph in Fig. 9 was created on a reduced data set with
negligible noise. The difficulty when working with AIS data,
especially that obtained from free public sources, is the occur-
rence of noise, and inconsistencies. The genetic algorithm
assumes that all inputs are correct. If the data are not clean,
there will be a negative impact on the result, as false nodes,
and edges are created.

When dealing with AIS data, it is also important to be
aware that some vessels may turn off their AIS transponders,
or radio stations occasionally fail to pick AIS signals sent
over radio waves. This causes gaps in ship trip data. Figure
10 shows three unique vessel trips as received by the algo-
rithm, together with nodes that get connected with this data.
The trip on the left has one negligible data loss (marked by
the red ellipse), but still allows the algorithm to create valid
edges between the nodes. The second one, in the middle is
also acceptable in terms of quality, although it is important
to point out that this trip narrowly misses one node, due to
the waypoint to cell conversion. The last one, on the right, is
problematic, with large segments of trajectorymissing. From
those points that were available, the algorithm ran intersec-
tion tests with nodes, and added edges where the collision
was true. Due to large segments missing, distant nodes will
be incorrectly connected.

Real-time applications require to use data in its impure
form. If we assume that data contains irregularities, but that

their occurrence is low, we have to adjust the algorithm to
handle them. In Fig. 11 we show the result of the same
algorithm using all available data. In Fig. 11a, we show the
waypoints on top of positional data, as discovered by the
GA. Next to it (see Fig. 11b), we see the route graph, which
contains an unacceptable level of wrong connections due to
inconsistencies in the AIS data.

Solving this problem requires postprocessing. First, we
store average weights of all edges. If a node is connected by
more than one edge, and if one of the edges has a weight
with very low value, then that edge is treated to be the result
of noisy data, and is removed. In the image, the color shows
the weight range for every edge. Blue: 50 or more, Red: 10–
50. Yellow: 2–10. Green: 1. Another way to remove faulty
routes is to reduce the weight of all edges by a given small
value (1–3). This leads to the deletion of some of the wrong
connections. Figure 11c, d shows the same graph after noise
filtering. On the left we show the new graph with nodes and
edges, while on the right, the same graph is drawn with the
input AIS positions on top.We can conclude from the picture
that all major routes are still contained in the graph after
filtering.

The last step in the postprocessing, and route extraction is
graph pruning. In Fig. 12a, we zoom on one segment of the
previously extracted graph. In the path from A to E and vice
versa, nodes labeled B, C and D are only intermediaries, and,
as such, can be removed without losing route information. In
Fig. 12b, we can also find a one way route from A to G via F.
Since F is only a transit node, it can also be safely removed.
The result is shown in Fig. 12c. Utilizing these steps, we
make the graph easier to read.

3.3.3 Handling missing region data

In the real case implementation, it is not possible to assume
perfect coverage of the entire region. While AIS receivers

123

124 International Journal of Data Science and Analytics (2018) 5:111–136

Fig. 11 Postprocessing—noise filtering

typically cover coastal regionswell, the high seas areas can be
beyond the reception range. Consequently, AIS data broad-
casted by the vessels will not be recorded.

Depending on the location of the missing data, it is possi-
ble to minimize the impact of the missing data. The question
this solution has to answer is what routes a vessel may take
based on the current position, and the corresponding end

points of the voyage. Hence the resulting graph must do the
same. Let us consider an example where a ship can sail from
waypoint M to waypoint N either visiting waypoints A and
B, or taking a route through waypoint C (see Fig. 13a). The
shape of the routes between the waypoints is not important
(e.g., it can be either a straight line, a curved path avoiding
an island, or any other shape), as long as the main charac-

123

International Journal of Data Science and Analytics (2018) 5:111–136 125

Fig. 12 Graph pruning

Fig. 13 Graph extraction from complete data set. Section a shows an
arbitrary route connecting two points M, and N, via points A, and B,
or point C. Section b gives the illustration of GA fitting waypoints for

routes. In c waypoints are connected with edges to form a directed
graph. Section d shows the same graph after filtering, and pruning

teristics related to average speed, and sailing time can be
maintained. Therefore, if there are data segments missing
from the high seas, the number of waypoints extracted will

be reduced. Yet, as long as the starting, and ending points are
contained, the algorithm is capable of extracting the possi-
ble routes. The first example will assume that the algorithm

123

126 International Journal of Data Science and Analytics (2018) 5:111–136

Fig. 14 Graph extraction with missing data points. Section a shows
an arbitrary route between points M, and N with areas p, and q from
which no AIS data are received. In b waypoint discovery is illustrated

for this example. Section c shows how the algorithm connects nodes
with edges. Section d shows the result after filtering, and pruning

uses the complete data set. In Fig. 13a, we can identify two
arbitrary routes where a vessel can sail from M to N via the
route M–A–B–N, or using the route M–C–N. The next one,
Fig. 13b shows waypoints discovered by GA, and in Fig. 13c
those waypoints are connected, and form a directed graph.
After removing transition nodes the graph will look like the
depiction shown in Fig. 13d.

The next picture (Fig. 14) uses the same example with
addition of two blank areas p, and q. The data that the algo-
rithm will receive, including the missing regions is shown
in Fig. 14a. The discovery process is the same as described
above, with Fig. 14b showing waypoint discovery, Fig. 14c
the process of connecting the waypoints to form the graph,
and Fig. 14d the final result after removing the transition
nodes. Comparing Figs. 13b, and 14b we can see that the
second one will not be able to discover waypoints in the
missing regions p, and q. This will have some impact on the
graph creation, as the algorithm will use vessel data to con-
nect the waypoint where the vessels were last seen with the

first one that follows, hence the shape of the two graphs will
be different. However, since the blank regions did not contain
the areas A, B or C, the graphs will look the same after the
pruning process, which removes transition nodes.

The last example (Fig. 15) illustrates the most difficult
case. Here blank regions p, and q overlap areas A, and C.
The waypoint discovery Fig. 15b, and the graph creation Fig.
15c will be handled as in the previous examples. Due to the
fact that no waypoints could be discovered in A and C, the
algorithm will connect the nodes for which there are data,
and that will impact the shape of the graph result after the
pruning is complete, which is shown in Fig. 15d.

Using these illustrations we demonstrate the potential of
this solution to reconstruct the route in relation to the avail-
able data. As long as the blank regions do not occlude key
waypoints, we can assume that it is possible to preserve key
route information. Since these data gaps typically occur in
high seas, we can use this approach to discover main route
characteristics even without an ideal input set. Also, it is

123

International Journal of Data Science and Analytics (2018) 5:111–136 127

Fig. 15 Graph extraction with blank regions overlapping key areas. Routes are given in (a), waypoint discovery in (b), the graph creation in (c),
and the final result after filtering and pruning in (d)

important to note that these examples assume that there may
be other routes leading to, or from the areas A, B and C. If
that was not the case, then these areas would also be removed
by the algorithm as transition nodes, resulting in a straight
line from M to N.

4 Testing and validation

4.1 Execution time

The GA enhancement steps described in the solution design
aremade to enable the genetic algorithm to efficiently process
large data volumes, which is typical for real life industrial
applications. Therefore, we measure the time it takes for
the improved algorithm to discover maritime waypoints and
compare it with the execution time of the standard approach.

Since these two algorithms process data in a differentman-
ner, we design the test and set up algorithm parameters such

that we can measure execution time of every epoch in similar
conditions. For the time test, we set the area to the coordi-
nates of South Holland province. The population size is set
to 50, mutation is 1%, and both algorithms are capped at 100
epochs. The standard algorithm is tested with a chromosome
length of 20. In the case of the improved algorithm, it is set
to run 20 phases.

We run the standard genetic algorithm three times, using
data sets containing 2150, 165,200, and 591,300 points.With
each epoch, as the algorithm converges toward the solution,
the number of intersection tests between WP, and points
increases, slowing down the execution time. In direct rela-
tion to the formula (8), addingmore points has a considerable
negative effect on the performance as shown in Fig. 16. This
reveals the limitation of the standard approach, as with the
increase in points increases the requirement for additional
WPs. In terms of the GA that means that the number of chro-
mosomes also has to increase, resulting in exponential surge
of the required time per epoch.

123

128 International Journal of Data Science and Analytics (2018) 5:111–136

0

200

400

600

800

1000

0

100000

200000

300000

400000

500000

600000

700000

Time (sec)Data size Epoch

Data size GA 1 GA 2 GA 3

Fig. 16 Execution time per epoch in relation to data size. Time in
seconds per each of 100 epoch is shown as the line on top of the bar
depicting the number of points the GA is processing

0

0.5

1

1.5

2

2.5

0

100000

200000

300000

400000

500000

600000

700000

Time (sec)Data size Epoch per Phase

Fig. 17 Epoch execution time of the enhanced genetic algorithm. The
algorithm is running 20 phases. The number of points used per phase are
given as gray bars. Above, every phase also contains the curve depicting
the execution time for each of the 100 epochs ran by theGA in that phase

Next, we focus on the performance of the enhanced solu-
tion. In Fig. 17, we show by means of a scatter plot the
execution time in seconds for all 20 phases, each running
100 epochs. Associated with each phase is the bar plotted
value showing the number of points loaded. From the chart
we can see that the time for each epoch stays within the inter-
val 0.5–2.0 s.While the execution slows down throughout the
epochs (which is typical for the GA), we notice that switch-
ing to the next phase enables the algorithm to omit the points
used in the fitness check, and maintain a steady execution
time. The chart highlights the main positive characteristic of
the improved genetic algorithm, namely the ability to handle
the increased amount of data without a significant impact on
the overall performance.

4.2 Extraction quality

The second essential test is the extraction quality of the
algorithm, i.e., the extent to which it accurately represents
maritime routes. To make that assessment in a real case
environment, we can only rely on the visual comparison.

Therefore, we choose to test the algorithm on the area corre-
sponding to two Dutch provinces, while focusing on inland
waterways. A good algorithm will generate the graph cor-
responding to the map of rivers and canals in these two
provinces. If there is an edge across nonexistent waterway,
that would be a clear indication of the poor extraction quality.

In Figs. 18, and 19, we show: the AIS positional data used
for the experiment with the discovered waypoints, extracted
graph after pruning, and the noise reduction, the same graph
on top of positional data, and the actual waterways map for
the region. The South Holland was chosen as the province
with the heaviest inland traffic, andmany intersections, while
Overijssel was chosen as its opposite. In both cases we do not
identify any inconsistencies such as routes going through the
land areas, and the main routes from the map are also present
in the graph. Therefore, we conclude that the algorithm pro-
duces an acceptable/correct route representation. However,
we note the presence of noise in closely positioned way-
points, mostly attributed to the inaccuracies in input data, as
shown in Fig. 10. In Test 1—Overijssel, there are some routes
that the algorithm does not identify, but this not a defect of
the algorithm: it is due to the fact that there are narrow canals,
on which commercial vessels that are required to broadcast
AIS signals, cannot sail (Fig. 18, blue dotted lines).

For the actual maps we used the online source from the
“Waterrecreatie Nederland”[18].

4.3 Simulation with complete and incomplete AIS
data

The extraction quality test from the previous section gives
an indication that the algorithm performs as expected, but it
does not allow us to quantify its quality, and compare it with
other approaches. Due to the fact that different algorithms
use different AIS data sets that are not publicly available, we
are not able to compare the performance of this solution with
others under the same conditions. To lessen this drawback,
and allow future comparisons we propose to use a set of
simulated AIS data with enumerated routes.

We use the same test used in [3] containing four overlap-
ping routes, twohorizontal and twovertical (seeFig. 20). This
configuration allows for the clear comparison of the extracted
routes with the simulated ones. The routes are labeled a, b, c
and d. For every route, the simulation generates new vessels
at both ends. The simulation runs for a given number of inter-
vals, and during each one, the vessel position is updated, and
new vessels are generated at route ends. The vessel trajectory
is given as a vector with direction toward the opposite end,
and the magnitude of the vector is set according to the pre-
defined lane specific parameter indicating the average speed.
To prevent all vessels having the exact same path, another
vector is added representing the deviation from the path. The
movement delta per every interval is calculated as the sum

123

International Journal of Data Science and Analytics (2018) 5:111–136 129

Fig. 18 Test 1—Overijssel. Starting from a AIS data and waypoints discovered from it, b shows the directed graph representing extracted routes,
c shows the same graph plotted on top of the loaded AIS points, and d the actual waterways map for the province

of these two vectors. Since we want to test our algorithm on
lanes that have different traffic density, the lane b is set to
generate five times more vessels per interval than the lanes a,
and d. The lane c represents a less travelled route generating
one third of the traffic from the lanes a, and d. The average
speed of the vessels is the same for lanes a, b, and c, while

ships in lane d are set to move twice as fast. The intersections
between the routes are labeled as capital red letters A, B, C,
and D.

We run the simulation, setting it to generate 8000 ships
over the interval of 200 time units. The position of every ves-
sel is stored and used by the following experiments. Since the

123

130 International Journal of Data Science and Analytics (2018) 5:111–136

Fig. 19 Test 2—South Holland. Starting from a AIS data and waypoints discovered from it, b shows the directed graph representing extracted
routes, c shows the same graph plotted on top of the loaded AIS points and d the actual waterways map for the province

Fig. 20 Simulated AIS data for the benchmark test

test presented in the Execution time section showed that the
enhanced GA solution offers much higher execution speed
with the same or better extraction quality, the standard GA
was ignored, and all tests were performed on the enhanced
GA. The algorithm was run ten times, using 100, 800 and
2000 epochs. For the same number of epochs the test was
repeated three times. The first, and the second run had popu-
lation, and elite size set to 50 and2, respectively.The third one
has those values doubled: 100 and 4. After these nine tests,
we run one more test with significant increase on mutation
size to 20%. To evaluate the algorithm we calculate the num-
ber of correctly extracted lanes in comparison with the total
number of lanes, and do the same for the intersection points.
The final score is the average of these two values. The results
are given in Table 1

First we set our attention to the route accuracy. Based
on the scores, we conclude that with sufficient number of

123

International Journal of Data Science and Analytics (2018) 5:111–136 131

Ta
bl
e
1

Si
m
ul
at
io
n
re
su
lts

N
o.

In
pu
td

at
a

Pa
ra
m
et
er
s

R
es
ul
ts

Si
m
ul
at
io
n

R
ou

te
s

In
te
rs
ec
tio

ns
A
lg
or
ith

m
Po

pu
la
tio

n
si
ze

E
lit
e

si
ze

M
ut
at
io
n
(%

)
M
ax
.e
po

ch
s

R
ou

te
s

C
or
re
ct
(%

)
In
te
rs
ec
tio

ns
C
or
re
ct
(%

)
To

ta
l(
%
)

1
SI
M

1—
co
m
pl
et
e
da
ta

4
4

E
nh
an
ce
d
G
A

50
2

8
10
0

3
75
.0
0

1
25
.0
0

50
.0
0

2
SI
M

1—
co
m
pl
et
e
da
ta

4
4

E
nh
an
ce
d
G
A

50
2

8
10
0

2
50

.0
0

0
0.
00

25
.0
0

3
SI
M

1—
co
m
pl
et
e
da
ta

4
4

E
nh
an
ce
d
G
A

10
0

4
8

10
0

3
75
.0
0

0
0.
00

37
.5
0

4
SI
M

1—
co
m
pl
et
e
da
ta

4
4

E
nh
an
ce
d
G
A

50
2

8
80
0

4
10
0.
00

3
75
.0
0

87
.5
0

5
SI
M

1—
co
m
pl
et
e
da
ta

4
4

E
nh
an
ce
d
G
A

50
2

8
80
0

4
10
0.
00

1
25
.0
0

62
.5
0

6
SI
M

1—
co
m
pl
et
e
da
ta

4
4

E
nh
an
ce
d
G
A

10
0

4
8

80
0

4
10
0.
00

3
75
.0
0

87
.5
0

7
SI
M

1—
co
m
pl
et
e
da
ta

4
4

E
nh
an
ce
d
G
A

50
2

8
20
00

4
10
0.
00

3
75
.0
0

87
.5
0

8
SI
M

1—
co
m
pl
et
e
da
ta

4
4

E
nh
an
ce
d
G
A

50
2

8
20
00

4
10
0.
00

3
75
.0
0

87
.5
0

9
SI
M

1—
co
m
pl
et
e
da
ta

4
4

E
nh
an
ce
d
G
A

10
0

4
8

20
00

4
10
0.
00

3
75
.0
0

87
.5
0

10
SI
M

1—
co
m
pl
et
e
da
ta

4
4

E
nh
an
ce
d
G
A

10
0

4
20

20
00

3
75

.0
0

0
0.
00

37
.5
0

11
SI
M

2—
bl
an
k
re
gi
on
s

4
3

E
nh
an
ce
d
G
A

50
2

8
10
0

3
75

.0
0

0
0.
00

37
.5
0

12
SI
M

2—
bl
an
k
re
gi
on
s

4
3

E
nh
an
ce
d
G
A

50
2

8
10
0

3
75

.0
0

1
33
.3
3

54
.1
7

13
SI
M

2—
bl
an
k
re
gi
on
s

4
3

E
nh
an
ce
d
G
A

10
0

4
8

10
0

3
75

.0
0

0
0.
00

37
.5
0

14
SI
M

2—
bl
an
k
re
gi
on
s

4
3

E
nh
an
ce
d
G
A

50
2

8
80
0

4
10
0.
00

2
66
.6
7

83
.3
3

15
SI
M

2—
bl
an
k
re
gi
on
s

4
3

E
nh
an
ce
d
G
A

50
2

8
80
0

4
10
0.
00

3
10
0.
00

10
0.
00

16
SI
M

2—
bl
an
k
re
gi
on
s

4
3

E
nh
an
ce
d
G
A

10
0

4
8

80
0

4
10
0.
00

1
33
.3
3

66
.6
7

17
SI
M

2—
bl
an
k
re
gi
on
s

4
3

E
nh
an
ce
d
G
A

50
2

8
20
00

4
10
0.
00

3
10
0.
00

10
0.
00

18
SI
M

2—
bl
an
k
re
gi
on
s

4
3

E
nh
an
ce
d
G
A

50
2

8
20
00

4
10
0.
00

2
66
.6
7

83
.3
3

19
SI
M

2—
bl
an
k
re
gi
on
s

4
3

E
nh
an
ce
d
G
A

10
0

4
8

20
00

4
10
0.
00

2
66
.6
7

83
.3
3

20
SI
M

2—
bl
an
k
re
gi
on
s

4
4

E
nh
an
ce
d
G
A

10
0

4
20

20
00

3
75

.0
0

0
0.
00

37
.5
0

123

132 International Journal of Data Science and Analytics (2018) 5:111–136

epochs, the enhanced GA handles route extraction very well.
The tests 1–3 were run with setting the limit to only 100
epochs. As this number of epochs is typically insufficient for
the GA to converge to a good solution, we use it to compare
how the accuracy increases with the increase in the epoch
limit. Decreasing the number of epochs allows for fast exe-
cution, yet lowers the quality. However, due to preprocessing
provided by the quad tree structure, the algorithmwas able to
quickly converge waypoints to the lanes, and correctly iden-
tify 2 or 3 out of 4, scoring between 50–75% for this part.
Upon close inspection of the missed routes, we found the
spread of waypoints to be correct in the large segment of the
lane, yet the low number of epochs prevented the algorithm
to accurately extract waypoints near the starts, and the ends,
hence impacting the score. All tests (1–10) show that increas-
ing the population size has negligible effect on the overall
score, and this parameter is removed from further consider-
ations. With tests 4–9, increasing the number of epochs to
800, and finally to 2000, allowed the algorithm to fit all the
waypoints, and correctly identify all the lanes. From this we
conclude that the further increase in the number of epochs
would only decrease the execution speed without providing
improved precision.

The intersection points proved to be more challenging for
the GA. Although tests 4–9 had 75% score, not a single con-
figuration managed to achieve 100% precision. This is due to
the fact that the AIS point density within the intersection was
not significantly greater than the density of the points in the
neighborhood, hence in all of those tests the GA tended to be
stuck in the local maximum, close to the optimal. Yet without
a highmutation value, could not reach it. Test no. 5 illustrates
this well, with the number of accurate intersection detections
dropping to only one, due to the fact that the close neighbor-
ing waypoints were discovered first. The final test (no. 10)
was performed to check the algorithm’s behavior with a large
mutation value, and see if that would improve, or decrease
the ability to detect the intersection points. As shown in Table
1, where the final score for the test 10 dropped to 37.5%, a
large mutation value in the long run negatively impacts the
solution contained within the elite chromosomes, eventually
preventing the genes of the best entity to be preserved for
future epochs. This causes accuracy to drop in both lane, and
intersection detection. Balancing between the speed, and the
extraction quality we find that the algorithm performs the
best by using the parameters given in test 4. The graphical
representation of the input data, waypoint extraction, graph
creation, and the final result after filtering, and pruning for
test 4 is given in Fig. 21, which scored 87.5% on our test.
To explain the missing 12.5%, we zoom in on the intersec-
tion point B (the lover right one) in Fig. 21b, c. We can see
how GA narrowly missed the intersection, and the impact it
had on the final result Fig. 21d, even though the routes were
accurately extracted.

The tests are repeated again with the same parameters, but
instead of the complete data, we use the same simulation, and
occlude two regions. We pick the regions in such a way that
one occludes part of the lane a, and the other the intersection
point C. Table 1 contains the parameters, and results for the
tests 11–20. The simulation input data, after introducing the
blank regions, are shown in Fig. 22a. As with the tests 1–3,
small epoch limit of 100 in tests 11–13 prevents the algorithm
to find a good solution, yet the preprocessing of quad tree still
allows for a 75% accuracy of the route extraction. From 800
to 2000 epochs (tests 14–19) the solution performed with
an incomplete data set in a similar fashion as in the case
with the complete AIS data. There is a good extraction result
for lanes, and intersections are either correctly identified, or
there is a narrow miss attributed to the algorithm being stuck
in the localmaximum in the vicinity of those points. This time
the genetic algorithm was more successful in identifying the
intersection points, but this is attributed to the random choice
of picking initial waypoints, and cannot be guaranteed. Test
20 with a high mutation again showed that increasing this
parameter has considerable negative effect on the score.

Themain point of tests 11–20 is to see how theGAhandles
missing data. Comparing Figs. 21 and 22 and the scores in
Table 1, we can see that there is no performance drop caused
by the blank region overlapping a part of the lane a. The
variations in score are solely due to the stochastic nature of
the GA. The waypoint C could not be detected as there was
no input data in the vicinity, yet in this example it didn’t have
a significant influence on the results. Figure 22 shows the
input data set, waypoint discovery, and graph creation for the
test 15. From the presented experiments, we may conclude
that the enhanced GA provides a robust solution to extract
maritime routes in a real case scenario using standard PC
hardware.

5 Related and future work

5.1 Future requirements of the synchromodal
platform

The solution presented in this paper shows how to perform
maritime route reconstruction using a genetic algorithm.
Although related research such as [4,12,19] also deal with
route extraction, and [20] can also provide up to 60 minute
prediction in milliseconds, our decision to use an evolution-
ary approach is based on future needs of the Synchromodal
IT platform.

The ideal Synchromodal IT platform should be able to
handle data from large waterways areas, such as entire
Atlantic ocean, and be able to estimate vessel arrival times
48 hours in the future. The current process of collecting, and
storing AIS data, the available computational power, and the

123

International Journal of Data Science and Analytics (2018) 5:111–136 133

Fig. 21 Simulation with complete data set. Section a shows AIS points used as input. Section b shows the final result of GA fitting the waypoints.
In c waypoints are connected to form the directed graph. Section d shows the same graph after filtering and pruning

extant algorithms’ efficiency are limiting factors to achieve
such an objective. However, working toward this scenario
imposes that the following requirements and limitationsmust
be taken into account:

– The solutionmust handle large volumes of streamingAIS
data in real time,

– Preferred collection method for AIS data is through a
range of independent costal receivers, limiting visibility,
and causing periodic blank areas,

– The AIS data comes from different sources, and is typi-
cally fragmented,

– As sailing patterns away from harbor areas change due
to the influence of external factors such as the weather,

the result from the algorithm with the corresponding pre-
dictions must be capable to adapt to these changes in real
time.

The current state of the art approaches treats input AIS data
on an “as is” basis. The area under consideration is fully cov-
ered byAIS receivers, and the collected vessel data is deemed
complete. There are no missing regions. On top of that, the
patterns are extracted from the coastal areas where the route
changes due to weather factors are not observed. In such con-
ditions, the genetic algorithm can be outperformed both in
terms of precision and speed. To the best of our knowledge,
there is no solution that is addressing the problemofmaritime
route extraction between points including partially occluded

123

134 International Journal of Data Science and Analytics (2018) 5:111–136

Fig. 22 Simulation with two blank areas occluding the data set. Section a shows AIS points used as input. Section b shows the final result of GA
fitting the waypoints. In c waypoints are connected to form the directed graph. Section d shows the same graph after filtering. and pruning

areas. As demonstrated on waypoint extraction in [3], clus-
tering solutions such as DBSCAN that contain no memory,
are highly vulnerable, and intolerant to missing regions. The
novelty of our approach lies in providing the means to dis-
cover maritime patterns when dealing with imperfect data,
typical for a real case business environment.

Additionally, the requirements of the future Synchro-
modal IT platform suggest that the improved solution must
not only be able to remember and adapt, but also to for-
get. To clarify, we consider the scenario when one sailing
pattern changes due to external factors (weather, tide) [5].
If we consider a large waterway area, such as the Atlantic
ocean, it is unfeasible to recalculate all patterns every time the
change occurs. Storing the AIS data for such a large region,

in contrast to handling real-time data streams would pose an
additional challenge. Therefore, the solution must adapt in
real time relying on the fragmented data currently available.
Our GA approach has shown it is capable of evolving with
the changes. It is our intention to explore what is the most
suitable option to fade, and forget waypoints over time, if the
traffic density decreases, thus endowing the solution with
real-time adaption capabilities. To that end, the evolutionary
approach seems to be a good candidate.

5.2 Discussion on related work

Ideally, the strong and weak points of this solution can best
be illustrated by comparing them with other route extraction

123

International Journal of Data Science and Analytics (2018) 5:111–136 135

algorithms. Due to unavailability of AIS data used by the
other approaches, we are unable to measure the differences
in precision, and execution speed. As different environments
can favor one solution over the other, in this section we
present the current state of the art, and discuss the similarities
with, and differences from our approach.

By short-term prediction, we assume estimating vessel
points up to 60 minutes in the future [2]. For such a time
interval the routes are not considered, instead the prediction
is solely based on the data of the individual vessel, and its his-
tory. Perera and Soares [21] use Extended Kalman Filter to
estimate the position, velocity, and acceleration of an vessel,
and use these values to predict its position. Ristic et al. [22]
focus on anomaly detection. With the assumption that the
sailing patterns are extracted, they use Kernel density esti-
mator to estimate the future position of a vessel, and compare
it with known patterns to identify anomalous behavior.

Long-term predictions, and analysis of maritime patterns
calls for a different approach. Rather than learning from each
individual vessel, the data are grouped, and analyzed to dis-
cover route waypoints, lanes, and their characteristics. The
common line for all approaches is the clustering algorithm,
and typically it is based on DBSCAN or an improved version
of it. Pallotta et al. [4] use incremental DBSCAN to identify
waypoints as part of the THREAD algorithm to identify mar-
itime routes. The challenge we faced when testing DBSCAN
was that thefine tuningof parameters for goodwaypoint iden-
tification is not possiblewhen dealingwith areaswith varying
density. Due to the very high traffic density in the vicinity
of Rotterdam, DBSCAN would give one of two options: a
good waypoint spread within the Rotterdam harbor, and the
rest treated as noise, or a good waypoint spread around the
Rotterdam area, while the entire Rotterdam harbor area was
classified as one huge cluster. Therefore, we conclude that
this approach is possible as long as the region under consid-
eration maintains a similar level of traffic density, but does
not suffice for our needs.

The improvements of clustering have been addressed in
[12] and [20]. Rinzivillo et al. [12] use OPTICS algorithm to
achieve the progressive clustering and aggregate trajectories.
Xiao et al. [20] use lattice-based DBSCAN, and with that
approach significantly reduce the problem scale, allowing
for fast route extraction, that the authors claim to be in mil-
liseconds on standard PC computer. Containing DBSCAN
within the lattice also solves the density problem. The genetic
algorithm we use also successfully handles areas with vary-
ing density, although we have to report a slower execution
time, which increases with the number of epochs. Rinzivillo
et al. [12] and Xiao et al. [20] both use the complete data
for the area of their consideration, and do not report any
missing regions, or incorrect data. If the entire data set is
available, both OPTICS, and lattice-based DBSCAN can
effectively identify thewaypoints.However, ifAISdata come

in streams which contain fragmented routes, DBSCAN (and
its enhanced versions) is unable to cope, as it contains no
memory. On the other hand, our genetic algorithm is proving
to be more robust, clustering first the available points, and
then converging to the higher density area, as additional AIS
data become available. In section 2.3.3, we have showed that
unless starting waypoints have been occluded, our solution
is able to cope with missing regions.

Big data represent an additional dimension to the com-
plexity of clustering moving entities, and trajectories, due to
the fact that clustering algorithms used to group the objects
according to their properties, do not scale effectively to the
increasing volume. Extending the work of Rinzivillo et al.
[12], Andrienko et al. [19] use a human analyst to com-
bine clustering, and classification for large data sets. That
approach implies that a human analyst will first select a sub-
set of the objects, and experiment with various parameters,
in order to build a suitable classifier. That classifier is then
used to cluster data points, with the option that the analyst
can further supervise the process, and alter the clusters when
needed. The solution we propose in this paper is also able to
scale with an increasing number of AIS data through incre-
mental waypoint discovery, illustrated in section 0. Due to
the quad tree preprocessing, and the removal of data in the
vicinity of the extracted waypoints, the genetic algorithm is
able to maintain the execution speed even with a continuous
increase in input data (see Fig. 17). Although the require-
ments of the Synchromodal IT platform favor the option of
fully autonomous solution, the potential benefits to improve
the results through human–machine symbiosis are consider-
able, and will be investigated in the future.

6 Conclusion

In this paper, we have shown how to apply the genetic algo-
rithm to cluster waypoints, and used them to create a directed
graph to representmaritime lanes.Wehave discussed the lim-
itations of the standard approach, and proposed a set of steps
to improve the speed of the algorithm, enabling it to be used
in real life business situations, where large data volumes have
to be processed quickly. Additionally, we have shown how to
connect waypoints to form nodes and edges in a route graph,
and how to perform pruning and noise filtering on it. Adding
more focus on the problem of dealing with missing AIS data,
usually from the high seas, we have shown that our approach
is robust, and can identify the lanes without significant drop
in accuracy, even when it is not possible to have complete
vessel data. Finally, we have tested the proposed solution on
real time, and simulated data to assess the extraction qual-
ity/accuracy and the execution speed.

Based on the work, and test results presented in this paper,
we conclude that evolutionary machine learning is suitable

123

136 International Journal of Data Science and Analytics (2018) 5:111–136

for data mining purposes of synchromodal logistics, and that
this improved genetic algorithm is a good foundation for
industrial applications. For the future work we are interested
in exploring how to handle periodic changes inmaritime traf-
fic due to external factors, such as tides, or changing weather
conditions. This will also require a mechanism for the algo-
rithm to “forget” a portion of the previous data, and adapt
in real time with the new AIS info. Further improvements in
terms of data processing are required to enable the handling
of big data. Narrow misses of close waypoints also have to
be addressed through the introduction of niching schemes,
making it possible to jump out of the local maximum and
correctly converge to the optimal waypoints.

Acknowledgements This work is part of the SynchromodalIT pro-
ject (http://www.dinalog.nl/nl/projects/r_d_projects/synchromodalit/)
which is partly funded by the Dutch Institute of Advanced Logistics
(DINALOG).

Compliance with ethical standards

Conflict of interest On behalf of all authors, the corresponding author
states that there is no conflict of interest.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

1. Dobrkovic,A., Iacob,M.E.,VanHillegersberg, J.:Maritime pattern
extraction from AIS data using a genetic algorithm. In: 2016 IEEE
International Conference onData Science and Advanced Analytics
(DSAA), pp. 642–651. IEEE (2016)

2. Dobrkovic, A., Iacob, M.E., van Hillegersberg, J., Mes, M., Glan-
drup, M.: Towards an approach for long termAIS-based prediction
of vessel arrival times. In: Logistics and Supply Chain Innovation,
pp. 281–294. Springer (2016)

3. Dobrkovic, A., Iacob, M.E., van Hillegersberg, J.: Using machine
learning for unsupervised maritime waypoint discovery from
streaming AIS data. In: Proceedings of the 15th International Con-
ference on Knowledge Technologies and Data-driven Business, p.
16. ACM (2015)

4. Pallotta, G., Vespe, M., Bryan, K.: Vessel pattern knowledge dis-
covery fromAISdata: a framework for anomaly detection and route
prediction. Entropy 15(6), 2218–2245 (2013)

5. Lampe, O.D., Kehrer, J., Hauser, H.: Visual analysis ofmultivariate
movement data using interactive difference views. In: VMV, pp.
315-322 (2010)

6. Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S.:
A design science research methodology for information systems
research. J. Manag. Inf.Syst. 24(3), 45–77 (2007)

7. Oonk, M.: Smart logistics corridors and the benefits of intelligent
transport systems. In: Transport Research Arena (TRA) 5th Con-
ference: Transport Solutions from Research to Deployment (2014)

8. van Riessen, B., Negenborn, R.R., Dekker, R.: Synchromodal con-
tainer transportation: An overview of current topics and research
opportunities. In: Computational Logistics, pp. 386-397. Springer
(2015)

9. Lu, M., Borbon-Galvez, Y.: Advanced logistics and supply chain
management for intelligent and sustainable transport. In: 19th ITS
World Congress (2012)

10. Lei, P.-R., Su, J., Peng, W.-C., Han, W.-Y., Chang, C.-P.: A frame-
work of moving behavior modeling in the maritime surveillance.
J. Chung Cheng Inst. Technol. 40(2), 33–42 (2011)

11. Giannotti, F., Nanni, M., Pinelli, F., Pedreschi, D.: Trajectory
pattern mining. In: Proceedings of the 13th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining,
pp. 330–339. ACM (2007)

12. Rinzivillo, S., Pedreschi, D., Nanni, M., Giannotti, F., Andrienko,
N., Andrienko, G.: Visually driven analysis of movement data by
progressive clustering. Inf. V. 7(3–4), 225–239 (2008)

13. Handl, J., Knowles, J.: An evolutionary approach to multiobjective
clustering. IEEE Trans. Evolut. Comput. 11(1), 56–76 (2007)

14. Soares Júnior, A., Moreno, B.N., Times, V.C., Matwin, S., Cabral,
L.D.A.F.: GRASP-UTS: an algorithm for unsupervised trajectory
segmentation. Int. J. Geogr. Inf. Sci. 29(1), 46–68 (2015)

15. Lee, J.G., Han, J., Whang, K.Y.: Trajectory clustering: a partition-
and-group framework. In: Proceedings of the 2007ACMSIGMOD
International Conference on Management of Data, pp. 593–604.
ACM (2007)

16. Li, Z., Lee, J.-G., Li, X., Han, J.: Incremental clustering for trajec-
tories. In: Kitagawa, H., Ishikawa, Y., Li, Q., Watanabe, C. (eds.)
Database Systems for Advanced Applications: 15th International
Conference,DASFAA2010, Tsukuba, Japan,April 1–4, 2010, Pro-
ceedings, Part II, pp. 32–46. Springer, Berlin Heidelberg (2010)

17. Finkel, R.A., Bentley, J.L.: Quad trees a data structure for retrieval
on composite keys. Acta Inf. 4(1), 1–9 (1974)

18. Waterrecreatie Nederland: BRTN 2008–2013. http://
waterrecreatienederland.nl/themas-projecten/landelijk-
routenetwerk/brtn-2008-2013/ (2016). Accessed 29 Jan 2016

19. Andrienko,G., Andrienko,N., Rinzivillo, S., Nanni,M., Pedreschi,
D., Giannotti, F.: Interactive visual clustering of large collections
of trajectories. In: IEEE Symposium on Visual Analytics Science
and Technology, 2009, VAST 2009, pp. 3-10. IEEE (2009)

20. Xiao, Z., Ponnambalam, L., Fu, X., Zhang, W.: Maritime traffic
probabilistic forecasting based on vessels’ waterway patterns and
motion behaviors. IEEE Trans. Intell. Transp. Syst. 18(11), 3122–
3134 (2017)

21. Perera, L.P., Soares, C.G.: Ocean vessel trajectory estimation and
prediction based on ExtendedKalman filter. In: Proceedings of 2nd
International Conference on Adaptive and Self-adaptive Systems
and Applications, pp. 14–20 (2010)

22. Ristic,B., LaScala,B.,Morelande,M.,Gordon,N.: Statistical anal-
ysis of motion patterns in AIS data: anomaly detection and motion
prediction. In: 2008 11th International Conference on Information
Fusion, pp. 1–7. IEEE (2008)

123

http://www.dinalog.nl/nl/projects/r_d_projects/synchromodalit/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://waterrecreatienederland.nl/themas-projecten/landelijk-routenetwerk/brtn-2008-2013/
http://waterrecreatienederland.nl/themas-projecten/landelijk-routenetwerk/brtn-2008-2013/
http://waterrecreatienederland.nl/themas-projecten/landelijk-routenetwerk/brtn-2008-2013/

	Maritime pattern extraction and route reconstruction from incomplete AIS data
	Abstract
	1 Introduction
	2 Problem background
	2.1 Synchromodal IT platform
	2.2 Long-term arrival time prediction
	2.3 Clustering and route pattern extraction
	2.4 Varying density

	3 Solution design
	3.1 Genetic algorithm
	3.1.1 Conceptual idea
	3.1.2 Encoding
	3.1.3 Fitness function
	3.1.4 Initialization
	3.1.5 Crossover and mutation

	3.2 Improving the algorithm
	3.2.1 The bottleneck of the classic approach
	3.2.2 Improving the genetic algorithm
	3.2.3 Data preprocesing with quad tree
	3.2.4 Incremental waypoint discovery

	3.3 Route extraction
	3.3.1 Creating the graph
	3.3.2 Pruning and noise filtering
	3.3.3 Handling missing region data

	4 Testing and validation
	4.1 Execution time
	4.2 Extraction quality
	4.3 Simulation with complete and incomplete AIS data

	5 Related and future work
	5.1 Future requirements of the synchromodal platform
	5.2 Discussion on related work

	6 Conclusion
	Acknowledgements
	References

