
International Journal of Data Science and Analytics (2018) 6:3–18
https://doi.org/10.1007/s41060-017-0085-7

REGULAR PAPER

Scoring Bayesian networks of mixed variables

Bryan Andrews1 · Joseph Ramsey2 · Gregory F. Cooper1

Received: 26 May 2017 / Accepted: 9 December 2017 / Published online: 11 January 2018
© Springer International Publishing AG, part of Springer Nature 2018

Abstract
In this paper we outline two novel scoring methods for learning Bayesian networks in the presence of both continuous and
discrete variables, that is, mixed variables. While much work has been done in the domain of automated Bayesian network
learning, few studies have investigated this task in the presence of both continuous and discrete variables while focusing on
scalability. Our goal is to provide two novel and scalable scoring functions capable of handling mixed variables. The first
method, the Conditional Gaussian (CG) score, provides a highly efficient option. The second method, the Mixed Variable
Polynomial (MVP) score, allows for a wider range of modeled relationships, including nonlinearity, but it is slower than CG.
Both methods calculate log likelihood and degrees of freedom terms, which are incorporated into a Bayesian Information
Criterion (BIC) score. Additionally, we introduce a structure prior for efficient learning of large networks and a simplification
in scoring the discrete case which performs well empirically. While the core of this work focuses on applications in the search
and score paradigm, we also show how the introduced scoring functions may be readily adapted as conditional independence
tests for constraint-based Bayesian network learning algorithms. Lastly, we describe ways to simulate networks of mixed
variable types and evaluate our proposed methods on such simulations.

Keywords Bayesian network structure learning · Mixed variables · Continuous and discrete variables

1 Introduction

Bayesian networks are a widely used graphical framework
for representing probabilistic relationships among variables.
In general, a Bayesian network consists of two compo-

Research reported in this publication was supported by Grant
U54HG008540 from the National Human Genome Research Institute
through funds provided by the trans-NIH Big Data to Knowledge
(BD2K) initiative, by Grant R01LM012087 from the National Library
of Medicine, by Grant IIS-1636786 from the National Science
Foundation, and by Grant #4100070287 from the Pennsylvania
Department of Health (PA DOH). The PA DOH specifically disclaims
responsibility for any analyses, interpretations, or conclusions. The
content of this paper is solely the responsibility of the authors and does
not necessarily represent the official views of the granting agencies.

B Gregory F. Cooper
gfc@pitt.edu

Bryan Andrews
bja43@pitt.edu

Joseph Ramsey
jdramsey@andrew.cmu.edu

1 University of Pittsburgh, Pittsburgh, PA 15260, USA

2 Carnegie Mellon University, Pittsburgh, PA 15213, USA

nents, a structure component and a distribution component.
The structure component encodes conditional independence
relationships between variables allowing for an efficient
factorization of the joint distribution, while the distribu-
tion component parameterizes the probabilistic relationships
among the variables. In this paper, our interests lie in learning
the structure component of Bayesian networks, represented
by a Directed Acyclic Graph (DAG). Learning a DAG over
a set of variables is of particular interest, because under
assumptions a DAG can be interpreted as a causal model
[26].

Automated Bayesian network learning from data is an
important and active area of research. However, relatively
few researchers have investigated this task in the presence of
both continuous and discrete variables [3,8,13,15,21,24,25].
In the limited work that has been done, researchers either
ignore the casewhere continuous variables are parents of dis-
crete variables, or do not provide solutions that scale much
beyond 100 variables. The goal of this paper is to provide
solutions for researchers working with datasets containing
hundreds of variables.

Most methods for learning Bayesian networks fall into
one of two categories: search and score or constraint-based.
Search and score methods heuristically search the space

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s41060-017-0085-7&domain=pdf

4 International Journal of Data Science and Analytics (2018) 6:3–18

of possible structures using an objective function to eval-
uate fitness while constraint-based methods use conditional
independence tests find patterns of independence that are
consistent with a set of DAGs. The core of this paper focuses
on the search and score paradigm; however, we also show
how the scoring functionswe proposemay be readily adapted
as conditional independence tests for constraint-based meth-
ods. For additional background information on Bayesian
networks and learning their structures, see [6].

The remainder of this paper is organized as follows. Sec-
tion 2 discusses general properties of scoring functions and
the Bayesian Information Criterion (BIC). Sections 3 and
4 introduce the Conditional Gaussian (CG) score and the
Mixed Variable Polynomial (MVP) score, respectively. Sec-
tion 5 details several adaptations of the introduced methods.
Section 6 reports empirical results of the CG andMVPmeth-
ods on data generated using simulation. Section 7 provides
discussion and conclusions.

2 Scoring Bayesian networks

Search and score methods utilize an objective function to
evaluate the fitness of DAGs on a given datasetD. Let S be a
score function and G be a DAG containing m variables. Let
Yi be the i th variable with parents Pai for i ∈ {1, 2, . . . ,m}.
When scoring G, most search algorithms require that S
decomposes into local components involving only Yi and
Pai . This property is known as decomposability. Given a
score is decomposable, we need only compare the differing
local components to decide which of any two DAGs is better.
To solidify this concept, we say a score S is decomposable if
it can be represented as a sum of local components. We score
DAG G on dataset D using score S as,

S(G,D) =
m∑

i=1

s(Yi , Pai),

where s(Yi , Pai) is the score for the i th local component.
Note that several DAGs can encode the same set of con-

ditional independence relationships. A set of DAGs which
encodes the same independencies is known as a Markov
Equivalence Class (MEC). If a scoring function S scores all
DAGs in the sameMECequally, then S is score equivalent. To
clarify, letG andG′ beDAGsover the variables in datasetD. If
G andG′ encode the same conditional independence relation-
ships and S is score equivalent, then S(G,D) = S(G′,D).
This can be a desirable trait because it allows search algo-
rithms, such as Greedy Equivalent Search (GES) [5], to
search over MECs directly.

Another common trait for scoring functions that algo-
rithms such as GES require for optimality is consistency. Let

D be a dataset and G and G′be DAGs. A scoring function
S is consistent if in the large sample limit the follow-
ing two conditions imply G will score higher than G′, i.e.,
S(G,D) > S(G′,D): (1) There exists a parameterization θ

which allows G to represent the generating distribution of
D and no such parameterization θ ′ exists for G′ or (2) there
exist parameterizations θ and θ ′ which allow G and G′ each
to represent the generating distribution of D, but G contains
fewer parameters.

2.1 The Bayesian information criterion

The Bayesian Information Criterion (BIC) is a well studied
and widely applied marginal log likelihood approximation
that is generally used for model selection. Let M be a model
we wish to score given a dataset D. We can write the proba-
bility of model M given D using Bayes’ rule as,

p(M |D) = p(D|M)p(M)

p(D)
.

However, since the data are fixed, p(D)will remain constant
across different model choices. Thus, for model selection,
we use,

p(M |D) ∝ p(D|M)p(M). (1)

BIC aims to approximate p(M |D) in (1). For now,we assume
p(M) is distributed uniformly and thus drop it. Later in
Sect. 5.1, we introduce an alternative distribution for p(M),
which we find performs well in practice. Raftery [17] shows
that when assuming a flat prior over the parameters, the log-
arithm of p(D|M) can be approximated as:

log p(D|M) ≈ −2�(θ) + d f (θ) × 2 log n, (2)

where �(θ) is the maximum log likelihood of the data,
d f (θ) are the degrees of freedom, and n is the sample size.
The approximation on the right hand side of (2) characterizes
the BIC, introduced by Schwarz [23]. BIC is decomposable
and can be readily applied to score Bayesian networks. In
Sects. 3 and 4, we detail how to calculate the log likelihood
and degrees of freedom terms for BIC using our proposed
scoring methods. We score DAGs using BIC given such log
likelihood and degrees of freedom calculations.

3 The conditional Gaussian score

In general, the Conditional Gaussian (CG) score calculates
conditional Gaussian mixtures using the ratios of joint dis-
tributions. Since CG uses BIC as a framework to evaluate
its approximations, the score is decomposable into a sum of

123

International Journal of Data Science and Analytics (2018) 6:3–18 5

parent-child relationships. In order to outline such a relation-
ship, we introduce continuous variables C1,C2 and discrete
variables D1, D2. Below we detail the CG score using these
four variables, however, this procedure straightforwardly
generalizes to any number of variables. We compute the con-
ditional distribution whereC1 is a child with parentsC2, D1,
and D2 as,

p(C1|C2, D1, D2) = p(C1,C2, D1, D2)

p(C2, D1, D2)

= p(C1,C2|D1, D2)

p(C2|D1, D2)

(3)

and the conditional distribution where D1 is a child with
parents C1,C2, and D2 as,

p(D1|C1,C2, D2) = p(C1,C2, D1, D2)

p(C1,C2, D2)

= p(C1,C2|D1, D2)p(D1, D2)

p(C1,C2|D2)p(D2)
.

(4)

In (3) and (4), we can readily calculate
p(C1,C2|D1, D2) and p(C1,C2|D2) using Gaussian distri-
butions partitioned on the discrete variables and
p(D1, D2), p(D2) using multinomial distributions. This
raises the first of CG’s assumptions.

Assumption 1 The data were generated from a Gaussian
mixture where each Gaussian component exists for a par-
ticular setting of the discrete variables.

This assumption allows for efficient calculations, but also
assumes that the discrete variables take part in generating
the continuous variables by defining the Gaussian mixture
components, e.g., p(C1,C2, D1, D2) is a Gaussian mixture
with a Gaussian component for each setting of D1 and D2.
Therefore, when scoring a discrete variable as the child of
a continuous variable, our model assumption will inherently
encode the reverse relationship. In Sect. 6, we see that even
with this assumption, CG performs quite well.

Assumption 2 The instances in the data are independent and
identically distributed.

The data are assumed to be i.i.d. so that we can calculate
the log likelihood as a sumover themarginal log probabilities
for each instance in the data.

It is important to note that if we treat
p(C1,C2, D1, D2) as a mixture distribution with a Gaus-
sian component for each setting of D1 and D2, to calculate
p(C1,C2, D2) correctly, we must marginalize D2 out and
treat p(C1,C2, D2) as a mixture distribution with a Gaus-
sian mixture for each setting of D2.

Assumption 3 All Gaussian mixtures are approximately
Gaussian.

For computational efficiency, we approximate all Gaus-
sian mixtures resulting frommarginalizing discrete variables
out as single Gaussian distributions. In Sect. 6.1, we evaluate
this approximation experimentally and find that it performs
well.

Under mild conditions, BIC is consistent for Gaussian
mixture models [10]. Since CG assumes the data are gener-
ated according to a Gaussian mixture, under the same mild
assumptions, CG is consistent. Additionally, CG is score
equivalent; see Appendix A for a proof.

In the remainder of the current section, we provide a high-
level overview of the CG method; Sects. 3.1 and 3.2 provide
details. Let Yi be the i th variable in a DAG G with the set
Pai containing the parents of Yi . Furthermore, let Pai con-
sist of two mutually exclusive subsets Pci and Pdi such
that Pci and Pdi hold the continuous and discrete parents
of Yi , respectively. To evaluate the parent–child relationship
between a variable Yi and its parents Pai , CG calculates the
log likelihood and degrees of freedom for the joint distribu-
tions of two sets of variables, Yi ∪ Pai and Pai . The log
likelihood of Yi given its parents Pai is computed as the dif-
ference between the log likelihood terms for Yi ∪ Pai and
Pai . Similarly, the degrees of freedom are calculated as the
difference in parameters used to fit Yi ∪ Pai and Pai .

When evaluating the two sets of variables, the datasetD is
first partitioned according to the discrete variables in each set.
That is, we divide D using a partitioning set Πi over all the
instances in D. Πi contains a partition for each combination
of values the discrete variables take on inD. Further, we form
a design matrix X p for each partition p ∈ Πi . X p holds the
data corresponding to the instances of the continuous vari-
ables in partition p. Gaussian and multinomial distributions
are fit according to the continuous and discrete variables,
respectively, to calculate log likelihood and degrees of free-
dom terms which BIC uses to compute the score.

3.1 Modeling a set of variables

When using CG, we have three different kinds of sets to
model: Yi ∪ Pai where Yi is continuous, Yi ∪ Pai where Yi
is discrete, and Pai . They all follow the same generic format
so we will describe the process in general while pointing out
any subtle differences where they apply.

First we partition the data with respect to a partitioning
set Πi generated according to the discrete variables Pdi .
Note that if our set includes a discrete child Yi , then the
discrete variables are comprised of Yi ∪ Pdi and we partition
according to these variables.Πi contains a partition for every
combination of values in the discrete variables.We define the
partitioning set Πi using a Cartesian product of the discrete
variables. Let |Pdi | = d, then partitioning set Πi = (Yi) ×
Pdi (1)× Pdi (2)×· · ·× Pdi (d)where Yi is the set of values
for the child (included only if Yi is discrete), Pdi (1) is the

123

6 International Journal of Data Science and Analytics (2018) 6:3–18

set of values for the first discrete parent, Pdi (2) is the set of
values for the second discrete parent, and so forth.

Let |Pci | = c, then for each partition p ∈ Πi we define
a design matrix X p with n p observations and c variables.
Here, if our set includes a continuous childYi , thenwe instead
define X p with c+1 variables corresponding to the variables
in Yi ∪ Pci . That is,

X p =

⎡

⎢⎢⎢⎣

x11 x12 . . . x1c (y1)
x21 x22 . . . x2c (y2)
...

...
. . .

... (
...)

xnp1 xnp2 · · · xnpc (ynp)

⎤

⎥⎥⎥⎦ ,

where x jk is the j th value with respect to partition p of
the kth variable in Pci and y j is the j th value with respect
to p of the child Yi (included only if Yi is continuous) for
j ∈ {1, 2, . . . , n p} and k ∈ {1, 2, . . . , c}.

3.2 Calculating the log likelihood and degrees of
freedom

The calculations for the three aforementioned sets are identi-
cal in formulation, so without loss of generality, we demon-
strate the log likelihood and degrees of freedom calculations
for the set Yi ∪ Pai . The log likelihood for a set is calculated
component-wise over each partition and summed together as
follows,

�Yi∪Pai (θ |X) =
∑

p∈Πi

�p(θ p|X p). (5)

The degrees of freedom are calculated in a similar manner,

d fYi∪Pai (θ) =
∑

p∈Πi

d f p(θ p) − 1, (6)

where the minus 1 term accounts for the redundant mix-
ing component. Let n be the number of observations in the
unpartitioned dataset. For each partition p ∈ Πi , let d be the
number of variables in X p and x p, j be the j th observation
from X p. From [2], we calculate the Gaussian log likelihood
for partition p as,

�(μp,Σ p|X p) = −n pd

2
log 2π − n p

2
log |Σ p|

−1

2

n p∑

j=1

(x p, j − μp)
TΣ−1

p (x p, j − μp),

(7)

where μp,Σ p are the mean and variance of the Gaussian
distribution, respectively. The maximum likelihood estimate
Σ̂ p is computed as,

Σ̂ p = 1

n p

np∑

j=1

(x p, j − x̄ p)(x p, j − x̄ p)
T . (8)

Let μp = x̄ p. Note that x̄ p will converge quickly to μp.
Using the estimate in (8), the log likelihood in (7) simplifies
to,

�(Σ̂ p|X p) = −n p

2
(log |Σ̂ p| + d log 2π + d). (9)

We use (9) to compute the log likelihood of a Gaussian
conditioned on discrete variables. However, we still must add
the log probability of an instance being from partition p to
calculate the desired joint log likelihood. These probabili-
ties are computed using the maximum likelihood estimate of
variables distributed according to a multinomial. This esti-
mate is the count of instances in partition p denoted np over
the total count n of all instances: n p

n . Thus, we calculate the
log likelihood for partition p as,

�p(ˆθ p|X p) = −n p

2
(log |Σ̂ p| + d log 2π + d)

+ n p log
n p

n
. (10)

Weuse (10) to calculate �p(θ p|X p) in (5). Tofind the number
of parameters in partition p, we count the number of unique
terms in Σ̂ p plus one for the mixing component. Therefore,

d f p(θ̂ p) = d(d + 1)

2
+ 1. (11)

We use (11) to calculate d f p(θ p) in (6).
Using the form of (3) and (4), we calculate the log likeli-

hood and degrees of freedom terms as,

�i (θ̂ |X) = �Yi∪Pai (θ̂ |X) − �Pai (θ̂ |X), (12)

d fi (θ̂) = d fYi∪Pai (θ̂) − d fPai (θ̂). (13)

BIC uses (12) and (13) to compute the score for the parent-
child relationship of Yi given Pai .

4 Themixed variable polynomial score

The Mixed Variable Polynomial (MVP) score uses higher
order polynomial functions to approximate relationships
between any number of continuous and discrete variables.
Since MVP uses BIC as a framework to evaluate its approxi-
mations, the score is decomposable into a sumofparent–child
relationships. TheMVPmethod scores the decomposed local
components of a DAG G using approximating polynomial
functions. To motivate the ideas underlying this approach,
we note the implications of the Weierstrass Approximation
Theorem for consistency.

123

International Journal of Data Science and Analytics (2018) 6:3–18 7

Weierstrass Approximation Theorem Suppose f is a con-
tinuous real-valued function defined on the real interval
[a, b]. For every ε > 0, there exists a polynomial p such
that for all x ∈ [a, b], we have | f (x) − p(x)| < ε.

In short, as long as a function f is continuous and the
contributing variables exist within a bounded interval, then
there exists a polynomial function which approximates f to
an arbitrary degree of accuracy [11]. This brings us to our
first two assumptions.

Assumption 1 The sample space of each variable is finite.

To shed some light on this assumption,wenote thatMVP’s
approximations are functions of continuous variables in the
data. Thus, the motivation for Assumption 1 becomes appar-
ent as a prerequisite of the previously stated theorem; finite
sample spaces are bounded.

Assumption 2 Each continuous variable is defined by con-
tinuous functions of their continuous parents plus additive
Gaussian noise. The probability mass function of each dis-
crete variable is defined by positive continuous functions of
their continuous parents.

The motivation for this assumption follows from Weier-
strass’s approximation theorem since f , the function to be
approximated, must be continuous. However, along with
assuming continuity, we restrict the model class in the con-
tinuous child case to have additive Gaussian noise. This
assumption allows us to use least squares regression to obtain
efficient maximum likelihood estimates. Additionally, we
assume positive functions in the discrete case since we are
estimating probability mass functions. It is worth noting that
we do not assume linearity unlike other commonly used
scores.

Assumption 3 There are no interaction terms between con-
tinuous parents.

We make this assumption for tractability. Modeling all
interactions among the continuous parents is a combinatorial
problem. Thus, we forgo such interaction terms.

Assumption 4 The instances in the data are independent and
identically distributed.

The data are assumed to be i.i.d. so that we can calculate
the log likelihood as a sumover themarginal log probabilities
for each instance in the data.

Under these assumptions, the MVP score is consistent in
the large sample limit with an adequate choice of maximum
polynomial degree; see Appendix A for a proof. However,
due to the use of nonlinear functions, it is not score equiva-
lent for any maximum polynomial degree greater than 1. In
Sect. 6, we see that evenwithout this property, theMVP score
still performs quite well. Moreover, in general, we do not
expect causal relationships to be score equivalent, so using

a framework that requires score equivalence would not be
desirable. As an example of previous work suggesting that
asymmetric scores can be beneficial in inferring causation,
see [12].

4.1 Partitioned regression

Let Yi be the i th variable in a DAG G and Pai be the set
containing the parents of Yi in G. Furthermore, let Pai con-
sist of two mutually exclusive subsets Pci and Pdi such that
Pci and Pdi hold the continuous and discrete parents of Yi ,
respectively. In general, to evaluate the local score compo-
nent between Yi and its parents Pai , MVP first partitions the
data with respect to the discrete parents Pdi and performs
least squares regression using the continuous parents Pci .
The log likelihood and degrees of freedom for the model are
calculated depending on the variable type of Yi . BIC uses the
log likelihood and degrees of freedom terms to compute the
score.

A partitioning set Πi partitions D with respect to the
discrete parents Pdi and contains a partition for every combi-
nation of values in the discrete parents. We defineΠi using a
Cartesian product of the discrete parents Pdi . Let |Pdi | = d,
then partitioning set Πi = Pdi (1) × Pdi (2) × · · · × Pdi (d)

where Pdi (1) is the set of values for the first discrete parent,
Pdi (2) is the set of values for the second discrete parent, and
so forth.

Let |Pci | = c, then for each partition p ∈ Πi we define
a design matrix X p with n p observations and c variables.
Additionally, we add a bias term and higher order polyno-
mial terms for each variable in Pci , stopping at a maximum
polynomial order specified by g(n p),

X p =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1 x11 . . . x1c x211 . . . x21c . . . x
g(n p)

11 . . . x
g(n p)

1c

1 x21 . . . x2c x221 . . . x22c . . . x
g(n p)

21 . . . x
g(n p)

2c

...
...

. . .
...

...
. . .

...
. . .

...
. . .

...

1 xnp1 . . . xnpc x2n p1
. . . x2n pc . . . x

g(n p)

n p1
. . . x

g(n p)
n pc

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

,

where x jk is the j th valuewith respect to partition p of the kth
variable in Pci for j ∈ {1, 2, . . . , n p} and k ∈ {1, 2, . . . , c}.
In this paper, we report two choices for g(n p): g(n p) = 1,
and g(n p) = �log n p�. We have tried other choices, such
as g(n p) = 3, but found the above options provide the best
solutions. Define x j and yp as,

x p, j =
[
1 x j1 . . . x jc x2j1 . . . x2jc . . . x

g(n p)

j1 . . . x
g(n p)

jc

]
,

yp =

⎡

⎢⎢⎢⎣

y1
y2
...

ynp

⎤

⎥⎥⎥⎦ ,

123

8 International Journal of Data Science and Analytics (2018) 6:3–18

where x p, j is the j th observation in X p and y j is the j th
value with respect to partition p of Yi for j ∈ {1, 2, . . . , n p}.

We calculate the log likelihood of a variable Yi given a set
of parents Pai as a sum over the log likelihoods from each
partition p,

�i (θ |X, y) =
∑

p∈Πi

�p(θ p|X p, yp), (14)

where �p(θ p|X p, yp) is defined depending on whether Yi is
discrete or continuous. Similarly, the degrees of freedom for
Yi are calculated as a sum over the parameter counts in each
partition p,

d fi (θ) =
∑

p∈Πi

d f p(θ p). (15)

BIC computes the local score component using the log like-
lihood �i (θ |X, y) and degrees of freedom d fi (θ).

4.2 Modeling a continuous child

In the case where Yi is continuous, for partition pwith design
matrix X p and target vector yp, we use the maximum likeli-
hood estimate to determine the log likelihood �p(θ p|X p, yp)
and degrees of freedom d f p(θ p). By Assumption 2, for par-
tition p, each y j = f p(x p, j) + εp where f p is a continuous
function defined on a bounded interval and εp ∼ N (0, σ 2

p) is
additive Gaussian noise with variance σ 2

p . By theWeierstrass
Approximation Theorem, there exists a polynomial function
f̂ p which approximates f p such that y j ≈ f̂ p(x p, j) + εp.
Estimating the parameters of f̂ p using least squares regres-
sion, we have ŷ j ∼ N (X pβ p, σ

2
p). Therefore, the log

likelihood of partition p becomes,

�p(β p, σ
2
p |X p, yp) = −n p

2
log 2π − n p

2
log σ 2

p

− (yp − X pβ p)
T (yp − X pβ p)

2σ 2
p

, (16)

where the maximum likelihood estimates are computed as,

σ̂p
2 = (yp − X pβ̂ p)

T (yp − X pβ̂ p)

n p
, (17)

β̂ p = (XT
p X p)

−1XT
p yp. (18)

Using the estimates in (17) and (18), the log likelihood in
(16) simplifies to,

�p(β̂ p, σ̂p
2|X p, yp) = −n p

2
(log 2π + log σ̂p

2 + 1), (19)

which we use to calculate �p(θ p|X p, yp) in (14). To find the
number of parameters in partition p to calculate d f p(θ p) for
(15), we count the number of terms in β̂ p,

d f p(θ p) = c · g(n p) + 1. (20)

The BIC uses (14) and (15) to compute the parent–child rela-
tionship for Yi given Pai .

4.3 Modeling a discrete child

In the case where Yi is discrete, for partition p with
design matrix X p and target vector yp, we calculate
the log likelihood �p(θ p|X p, yp) and degrees of freedom
d f p(θ p|X p, yp) using least squares regression. Suppose Yi
consists of d categories. Let f p,h calculate the probability
of the hth category in Yi given the values of the continuous
parents Pci where h ∈ {1, . . . , d}. By Assumption 2 and the
Weierstrass Approximation Theorem, there exists a polyno-
mial function f̂ p,h which approximates f p,h arbitrarily well.
With this in mind, we aim to approximate each f p,h with the
polynomial function X pβ̂ p,h where β̂ p,h are the polynomial
coefficients calculated from least squares regression. Our end
goal is to use the approximations of each f p,h as components
of a conditional probability mass function in order to calcu-
late the log likelihood and degrees of freedom terms.

Define the categories of yp such that each y j ∈ {1, . . . , d}.
Expand yp into d binary vectors where the hth vector rep-
resents the hth category. That is, the j th element from the
hth vector asserts whether or not the j th observation of yp is
category h. To represent these binary vectors in matrix nota-
tion, we define 1{condition} as an indicator variable which is 1
if condition is true and 0 otherwise. The hth binary vector is
then defined as,

1{ yp=h} =

⎡

⎢⎢⎢⎣

1{y1=h}
1{y2=h}

...

1{yn p=h}

⎤

⎥⎥⎥⎦ .

We further define 1p to represent an n p × 1 vector of ones.
Using these binary vectors as our targets, we calculate the
least squares regression estimate, which yields,

β̂ p,h = (XT
p X p)

−1XT
p 1{ yp=h}.

If we want to interpret the results of least squares regression
X pβ̂ p,h as probabilities, we first must ensure that,

1.
∑d

h=1 X pβ̂ p,h = 1p
2. x p, j β̂ p,h ≥ 0, ∀ j ∈ {1, . . . , n p}, h ∈ {1, . . . , d}.

We prove condition 1 is necessarily true and that condition
2 holds for an adequate maximum polynomial degree in the
sample limit; see Appendix A for the proofs.

123

International Journal of Data Science and Analytics (2018) 6:3–18 9

Fig. 1 a Shows an estimated conditional probability mass function
for a particular category via least squares. b Shows the same estimated
conditional probability mass function after it has been transformed by
Algorithm 1

Unfortunately, there is no guarantee the values given by
least squares regression will be strictly nonnegative for finite
samples. Instead we define a procedure that maps the values
calculated for each y j to a positive value. In the procedure,we
avoid setting values directly to zero in order to prevent assign-
ing zero probability to any observed instances. Instead, we
use a value which tends toward zero; we insure the minimum
value of each y j is at least 1

n p
and maintain the condition that

each set of estimates sums to one. Therefore, we can treat the
mapped estimates as probabilities. Algorithm 1 outlines how
the procedure accomplishes this mapping. Figure 1 shows
the effect of Algorithm 1 when applied to the least squares
estimates of the conditional probability mass function for a
particular category of a discrete variable.

Algorithm1:Maps least squares estimates to valid prob-
ability distributions

Input: X p, j , β̂ p,h
Output: probs

1 probs = [] ; // list of conditional pdfs
2 for j ← 1 to d do

// calculate least squares estimates

3 l = [x p, j β̂ p,h |∀h ∈ {1, . . . , d}] ; // d-vector

// calculate minimum value

4 mp, j = min{ 1
n p

, l} ;
// calculate scaling term

5 αp, j = (1
n p

− 1
d)/(mp, j − 1

d) ;

// remap estimates

6 l = l − 1
d ; // element-wise shift

7 l = αp, j · l ; // element-wise scale

8 l = l + 1
d ; // element-wise shift

// add remap estimates to output
9 probs.append(l) ;

10 end

In words, our procedure is as follows:

1. Shift the estimates such that they are centered about a
noninformative center by subtracting 1

d (line 6).

2. Scale the estimates such that the smallest final value will
be at least 1

n p
(line 7).

3. Shift the scaled estimates back to the original center by
adding 1

d (line 8).

Since we only want to perform this procedure if one of
the least squares estimates is negative, we define mp, j =
min{ 1

n p
, x p, j β̂ p,h∀h} so that mp, j is either the minimum

estimate for y j or 1
n p

(line 4). We calculate the scaling factor
αp, j (line 5) by noting that we want,

αp, j

(
mp, j − 1

d

)
+ 1

d
= 1

n p
.

Solving for αp, j we find,

α j =
1
n p

− 1
k

m p, j − 1
k

.

Note, that if mp, j = 1
n p
, then αp, j = 1 and we do not

transform the estimates. We compute the log likelihood in
the discrete case as

�p(ˆθ p|X p, yp) =
n p∑

j=1

log
(
αp, j x p, j β̂ p,y j

+ 1

d
(1 − αp, j)

)
. (21)

We use (21) to calculate �(θ p|X p, yp) in (14). To find the
number of parameters in partition p, we count the number of
terms across all β̂ p, j . Each β̂ p, j has c ·g(n p)+1 parameters
and j ranges over d categories. However, since Proposition
1 shows the estimated probabilities sum to one, the number
of free parameters is

d f p(θ̂ p) = (k − 1)(c · g(n p) + 1). (22)

As before, BICuses (14) and (15) to compute the parent-child
relationship for Yi given Pai .

5 Implementation details and adaptations

In this sectionwe consider various adaptations of the two pro-
posed scores. In Sect. 5.1, we discuss a binomial structure
prior which allows for efficient learning of large networks.
In Sect. 5.2, we discuss a simplification for scoring discrete
children which performs well empirically. In Sect. 5.3, we
discuss how to adapt our scores into conditional indepen-
dence test for constraint-based methods.

123

10 International Journal of Data Science and Analytics (2018) 6:3–18

5.1 Binomial structure prior

We introduce a structure prior inspired by the binomial dis-
tribution. The idea is to give a prior distribution over the
number of parents of each variable. We view the addition of
each edge as an independent event that occurs with probabil-
ity q. Therefore, we expect to see q ·m′ parents for any given
variable where m′ is the total number of possible parents.
Then we have,

π(k) = (q)k(1 − q)m
′−k,

where π(k) is the prior probability that any given variable Yi
in DAG G has k parents. Often it is more convenient to work
in log space. Thus we calculate the log prior probability as,

logπ(k) = k log(q) + (m′ − k) log(1 − q).

Note that since DAGs encode an ordering over the variables,
the total number of possible parents is not necessarily all the
variables in the data excluding the variable currently acting
as a child. It is usually the case that m′
= m − 1 where m is
the total number of variables in the data.

In Sect. 6, we letm′ = m in order to calculate the binomial
structure prior more efficiency.

We calculate q as q = r
(m−1) , where r represents a user-

specified upper bound on the expected number of parents of
any given node.

Usually, BIC assumes the prior probability of models in
Eq. (1) is distributed uniformly. By using the binomial struc-
ture prior instead, we adapt BIC to further penalize networks
with complex structure. There are other approaches that use
a nonuniform prior for BIC, notability, the extended BIC
(EBIC) [4]. (EBIC) is a similar modification to BIC which
aims to address the small-n-large-P situation. In Sect. 6.2,we
compare both the binomial structure prior and EBIC against
the use of a uniform prior.

5.2 Multinomial scoring with continuous parents

Both scores presented in this paper reduce to multino-
mial scoring in the case of a discrete child with exclu-
sively discrete parents. As an alternative, we explore the
use of multinomial scoring when there are discrete chil-
dren and any combination of parents. Before starting a
search, we create discretized versions of each continuous
variable using equal frequency binning with a predefined
number of bins b. Whenever scoring a discrete child, we
replace any continuous parents with the precomputed dis-
cretized versions of those variables. This allows us to
quickly and efficiently perform multinomial scoring for all
discrete children. We will henceforth refer to this adap-
tation as the discretization heuristic and report our find-

ing when choosing b = 3 as a modification to CG in
Sect. 6.4.

5.3 As a conditional independence test

We can readily adapt CG and MVP to produce conditional
independence tests; to do so, we calculate the log likelihood
and degrees of freedom as usual, but perform a likelihood
ratio test instead of scoring with BIC. Suppose we wish
to test Y0 ⊥⊥ Y1|Z where Y0 and Y1 are variables (nodes)
and Z is a conditioning set of variables. Define �0 and d f0,
respectively, as the log likelihood and degrees of freedom
for Y0 given Pa0 where Pa0 = Y1 ∪ Z . Further, define �′

0
and d f ′

0, respectively, as the log likelihood and degrees of
freedom for Y0 given Pa′

0 where Pa′
0 = Z . Perform a like-

lihood ratio test with test statistic 2(�0 − �′
0) and d f0 − d f ′

0
degrees of freedom. This tests whether the model encoding
Y0 ⊥
⊥ Y1|Z or the model encoding Y0 ⊥⊥ Y1|Z fits the data
better. If the scoring method used is not score equivalent,
then we must also perform a likelihood ratio test with test
statistic 2(�1 − �′

1) and d f1 − d f ′
1 degrees of freedom where

Y0 and Y1 are swapped. In this case, we decide the variables
are dependent if there is enough evidence in either test to
support that hypothesis.

6 Simulation studies

To simulate mixed data, we first randomly generate a DAG G
and designate each variable in G as either discrete or contin-
uous. G is generated by randomly defining a causal order and
adding edges between thevariables. Edges are addedbetween
randomly chosen pairs of nodes such that the connections
are true to the pre-specified ordering; they are continually
added until the average degree of the graph reaches a user-
specified amount. Variables in the network without parents
are generated according to Gaussian and multinomial dis-
tributions. We create temporary discretized versions of each
continuous variable using equal frequency binning with 2–
5 bins uniformly chosen, for reasons described below. In
causal order, we simulate the remaining variables as fol-
lows. Continuous variables are generated by partitioning on
the discrete parents and randomly parameterizing the coef-
ficients of a linear regression for each partition. Discrete
variables are generated via randomly parameterized multi-
nomial distributions of the variable being simulated, the
discrete parents, and the discretized versions of the con-
tinuous parents. All temporary variables are removed after
the simulation is completed. For all simulations, each vari-
able is assigned either continuous or discrete with equal
probability. Additionally, discrete variables will have a uni-
formly chosen number of categories between 2 and 5,
inclusive.

123

International Journal of Data Science and Analytics (2018) 6:3–18 11

Fig. 2 Distribution of node degrees in graphs of average degree 2

Fig. 3 Distribution of node degrees in graphs of average degree 4

In order to prevent the number of multinomial cells for
discrete variables from getting too large, we bound the max-
imum degree of any node in the generated graph to 5. In our
experiments, we tested on graphs of average degree 2 and
4. Figures 2 and 3 show the distribution of the node degrees
for different settings of average degree. All simulations and
comparison took place within the Tetrad system’s algorithm
comparison tool [20]. AppendixB contains details about how
the data were simulated and the parameters used.

We compare CG with and without the discretization
heuristic and MVP with g(n p) = 1, g(n p) = �log(n p)�
using the following performance measures.

AP - adjacency precision: the ratio of correctly predicted
adjacent to all predicted adjacent

AR - adjacency recall: the ratio of correctly predicted adja-
cent to all true adjacent

AHP - arrowhead precision: the ratio of correctly predicted
arrowheads to all predicted arrowheads

AHR - arrowhead recall: the ratio of correctly predicted
arrowheads to all true arrowheads (in found adjacen-
cies)

T - elapsed time (seconds)

All results are averaged over 10 randomly simulated
graphs and were run on a laptop with an Intel(R) Core I7 @
3.1 GHz with 16 GB of memory. The results in Tables 1–5
use the same simulated dataset and can be directly compared
to each other. The results in Tables 6 and 7 each required a
different set of simulation parameters and thus use different
simulated datasets. Prior to running tests on any algorithm,
all continuous data were standardized to have mean 0 and
standard deviation 1. As a search algorithm, we use fGES
[18], an optimized version of GES [5]. In general, algorithms
in the GES family perform a two phased search. Starting
from a completely disconnected graph, the first phase of the
search algorithmgreedily adds edges until there is no addition
that can improve the score. The second phase then removes
edges in the same greedy fashion until no more removals can
improve the score. At that point, the current graph will be
returned.

6.1 The conditional Gaussian approximation

We empirically evaluated the choice of approximating amix-
ture of Gaussians with a single Gaussian for CG (Assump-
tion 3) in Table 1. We denote the use of a single Gaussian
as Approx and the use of the correct mixture calculation as
Exact. Originally the results did not appear comparable as
the approximate method output a much denser graph than
the exact method. In the results shown, we use the binomial
structure prior proposed in Sect. 5.1 and achieve compara-
ble results. We see that the approximation performs better
in term of precision and comparably in term of recall when
compared to the exact method. In the comparisons, we sim-
ulate graphs of average degree 2 and 4 with 200 and 1000
samples and 100measured variables using fGES. Results are
given with the binomial structure prior adjustment set to 1.

6.2 Binomial structure prior

We tested the usefulness of the binomial structure prior by
simulating 200 and 1000 samples from graphs of average
degree 2 and 4 with 100 measured variables using fGES. We
compare our scoring functions with andwithout the binomial
structure prior. Additionally, we compare against extended

123

12 International Journal of Data Science and Analytics (2018) 6:3–18

Table 1 Compares the
approximate method to the exact
method for CG on graphs of
average degree 2 and 4 with 100
measured variables

Sample size 200 1000

Statistic AP AR AHP AHR T (s) AP AR AHP AHR T (s)

Avg Deg 2 Exact 0.56 0.56 0.37 0.31 1.03 0.79 0.79 0.65 0.55 2.94

Approx 0.82 0.53 0.75 0.19 0.31 0.91 0.81 0.85 0.49 0.59

Avg Deg 4 Exact 0.59 0.39 0.44 0.26 0.73 0.84 0.64 0.73 0.51 3.73

Approx 0.82 0.36 0.69 0.23 0.17 0.92 0.62 0.84 0.51 0.99

Sample size is varied to be 200 or 1000 and the binomial structure prior is used with the expected number of
parents set to 1
The best results in each group are shown in bold, and all reported results are averaged over 10 repetitions

Table 2 Compares the use of
different priors for CG, MVP 1,
and MVP log n on graphs of
average degree 2 with 100
measured variables

Sample Size 200 1,000

Statistic AP AR AHP AHR T (s) AP AR AHP AHR T (s)

CG Uniform 0.54 0.59 0.40 0.38 0.29 0.76 0.83 0.66 0.59 0.63

EBIC 0.85 0.45 0.80 0.12 0.26 0.93 0.78 0.88 0.43 0.53

Binomial 0.82 0.53 0.75 0.19 0.18 0.91 0.81 0.85 0.49 0.55

MVP 1 Uniform 0.36 0.57 0.24 0.35 9.32 0.70 0.81 0.56 0.57 6.43

EBIC 0.84 0.39 0.69 0.17 1.35 0.85 0.71 0.74 0.46 3.53

Binomial 0.53 0.53 0.35 0.31 1.53 0.83 0.77 0.70 0.52 3.93

MVP log n Uniform 0.37 0.55 0.23 0.31 7.51 0.77 0.79 0.60 0.50 14.47

EBIC 0.84 0.31 0.65 0.09 2.50 0.87 0.65 0.73 0.37 7.25

Binomial 0.52 0.51 0.33 0.28 2.51 0.84 0.76 0.68 0.47 8.54

Sample size is varied to be 200 or 1000. The best results in each group are shown in bold, and all reported
results are averaged over 10 repetitions

Table 3 Compares the use of
different priors for CG, MVP 1,
and MVP log n on graphs of
average degree 4 with 100
measured variables

Sample Size 200 1000

Statistic AP AR AHP AHR T (s) AP AR AHP AHR T (s)

CG Uniform 0.66 0.41 0.52 0.31 0.23 0.87 0.66 0.79 0.57 1.09

EBIC 0.85 0.30 0.70 0.16 0.15 0.94 0.57 0.86 0.43 0.92

Binomial 0.82 0.36 0.69 0.23 0.16 0.92 0.62 0.84 0.51 0.85

MVP 1 Uniform 0.45 0.42 0.34 0.30 16.85 0.85 0.66 0.77 0.56 7.24

EBIC 0.84 0.27 0.69 0.16 0.98 0.92 0.54 0.84 0.43 4.29

Binomial 0.53 0.36 0.39 0.25 6.24 0.90 0.61 0.83 0.51 4.90

MVP log n Uniform 0.44 0.37 0.30 0.23 20.70 0.89 0.62 0.78 0.49 16.74

EBIC 0.85 0.18 0.64 0.08 2.06 0.94 0.46 0.84 0.34 9.25

Binomial 0.52 0.33 0.36 0.20 6.50 0.93 0.58 0.84 0.46 11.55

Sample size is varied to be 200 or 1000
The best results in each group are shown in bold, and all reported results are averaged over 10 repetitions

Table 4 Compares the use of
CG, CGd, MVP 1, and MVP
log n in the constraint-based
paradigm with α set to 0.001 on
graphs of average degree 2 and
4, respectively, with 100
measured variables

Sample Size 200 1000

Statistic AP AR AHP AHR T (s) AP AR AHP AHR T (s)

Avg Deg 2 CG 0.91 0.40 0.96 0.04 0.57 0.93 0.68 0.93 0.24 1.26

CGd 0.92 0.42 0.98 0.05 0.46 0.95 0.69 0.94 0.26 1.15

MVP 1 0.77 0.27 0.67 0.01 1.37 0.88 0.60 0.67 0.15 6.63

MVP log n 0.97 0.29 0.75 0.01 2.03 0.92 0.67 0.68 0.23 16.82

Avg Deg 4 CG 0.93 0.26 0.93 0.05 0.44 0.94 0.50 0.93 0.24 4.47

CGd 0.93 0.26 0.89 0.05 0.44 0.95 0.50 0.95 0.24 8.55

MVP 1 0.81 0.14 0.43 0.01 1.28 0.92 0.41 0.65 0.16 11.21

MVP log n 0.98 0.15 0.56 0.01 2.01 0.93 0.48 0.60 0.21 48.73

Sample size is varied to be 200 or 1000. The best results in each group are shown in bold, and all reported
results are averaged over 10 repetitions

123

International Journal of Data Science and Analytics (2018) 6:3–18 13

Table 5 Compares the use of
CG, CGd, MVP 1, LR 1, MVP
log n, LR log n, and MN using
linear data from graphs of
average degree 2 and 4,
respectively, with 100 measured
variables

Sample Size 200 1000

Statistic AP AR AHP AHR T (s) AP AR AHP AHR T (s)

Avg Deg 2 CG 0.82 0.53 0.75 0.19 0.29 0.91 0.81 0.85 0.49 0.56

CGd 0.90 0.45 0.82 0.17 0.19 0.95 0.77 0.93 0.47 0.53

MVP 1 0.53 0.53 0.35 0.31 1.92 0.83 0.77 0.70 0.52 4.01

LR 1 0.53 0.53 0.36 0.32 18.55 0.84 0.78 0.71 0.51 52.34

MVP log n 0.52 0.51 0.33 0.28 2.63 0.84 0.76 0.68 0.47 8.55

LR log n 0.53 0.51 0.34 0.28 34.86 0.87 0.78 0.71 0.49 165.53

MN 0.93 0.41 0.85 0.07 0.09 0.97 0.72 0.90 0.36 0.48

Avg Deg 4 CG 0.82 0.36 0.69 0.23 0.16 0.92 0.62 0.84 0.51 0.90

CGd 0.92 0.32 0.80 0.18 0.15 0.96 0.58 0.91 0.48 0.73

MVP 1 0.53 0.36 0.39 0.25 8.82 0.90 0.61 0.83 0.51 5.20

LR 1 0.53 0.36 0.39 0.25 27.22 0.91 0.63 0.83 0.52 62.08

MVP log n 0.53 0.33 0.36 0.20 6.25 0.93 0.58 0.84 0.46 12.00

LR log n 0.53 0.33 0.36 0.20 45.97 0.93 0.59 0.84 0.47 215.93

MN 0.93 0.26 0.86 0.07 0.06 0.98 0.51 0.84 0.36 0.19

Sample size is varied to be 200 or 1000 and the binomial structure prior is used with the expected number of
parents set to 1. The best results in each group are shown in bold, and all reported results are averaged over
10 repetitions

Table 6 Compares the use of
CG, CGd, MVP 1, LR 1, MVP
log n, LR log n, and MN using
nonlinear data from graphs of
average degree 2 and 4,
respectively, with 100 measured
variables

Sample Size 200 1000

Statistic AP AR AHP AHR T (s) AP AR AHP AHR T (s)

Avg Deg 2 CG 0.53 0.54 0.35 0.33 0.47 0.58 0.67 0.45 0.45 1.91

CGd 0.82 0.52 0.61 0.23 0.23 0.83 0.68 0.67 0.39 1.03

MVP 1 0.67 0.55 0.45 0.32 0.82 0.76 0.69 0.58 0.41 3.37

LR 1 0.67 0.55 0.45 0.31 10.93 0.76 0.68 0.58 0.41 46.03

MVP log n 0.75 0.54 0.51 0.29 1.42 0.87 0.67 0.71 0.42 6.90

LR log n 0.75 0.54 0.51 0.29 22.07 0.87 0.67 0.71 0.42 158.09

MN 0.95 0.49 0.96 0.05 0.11 0.96 0.65 0.83 0.31 0.24

Avg Deg 4 CG 0.48 0.34 0.34 0.24 0.57 0.70 0.51 0.60 0.41 1.38

CGd 0.81 0.32 0.64 0.19 0.33 0.86 0.51 0.77 0.39 1.00

MVP 1 0.71 0.35 0.53 0.23 1.03 0.83 0.52 0.73 0.41 3.82

LR 1 0.72 0.35 0.54 0.23 12.50 0.82 0.52 0.72 0.40 48.62

MVP log n 0.81 0.33 0.63 0.23 1.88 0.93 0.52 0.84 0.41 8.29

LR log n 0.81 0.34 0.63 0.23 35.04 0.93 0.53 0.84 0.42 191.39

MN 0.95 0.27 0.85 0.05 0.06 0.95 0.44 0.75 0.29 0.20

Sample size is varied to be 200 or 1,000 and the binomial structure prior is used with the expected number of
parents set to 1. The best results in each group are shown in bold, and all reported results are averaged over
10 repetitions

BIC (EBIC). In these experiments, the binomial structure
prior is set to 1 and EBIC’s gamma parameter is set to 0.5
upon suggestion of the authors [4]. In Tables 2 and 3 report
findings when the average degrees of the graphs are 2 and 4,
respectively.

While we set the binomial structure prior’s parameter to
1 for the experiments presented in this paper, it is important
to note that this parameter can be chosen to be any value
greater than 0. By varying the expected number parents, we

can influence how sparse or dense the output graph will be.
The choice of a low value results in a relatively sparse graph
and a high value in a denser one.

From Table 2 and 3, for both the binomial structure prior
and EBIC, we see boosts in precision with a reduction in
recall. Additionally, we see vast reductions in the computa-
tion times. In general, EBIC seems to work better with small
sample sizes. This makes sense, since EBIC is aimed at the
small-n-large-P situation. However, for 1000 samples, we

123

14 International Journal of Data Science and Analytics (2018) 6:3–18

Table 7 Compares the use of
CG, CGd, MVP 1, MVP log n,
and MN using linear data from
graphs of average degree 2 and
4, respectively, with 500
measured variables

Sample Size 200 1000

Statistic AP AR AHP AHR T (s) AP AR AHP AHR T (s)

Avg Deg 2 CG 0.67 0.51 0.48 0.28 2.11 0.88 0.77 0.81 0.50 7.28

CGd 0.86 0.44 0.75 0.19 1.74 0.94 0.71 0.89 0.46 8.42

MVP 1 0.40 0.49 0.24 0.27 56.83 0.81 0.73 0.67 0.51 44.68

MVP log n 0.40 0.46 0.23 0.24 81.20 0.84 0.72 0.68 0.46 96.91

MN 0.93 0.39 0.84 0.07 1.79 0.97 0.67 0.89 0.36 14.74

Avg Deg 4 CG 0.75 0.35 0.59 0.25 2.21 0.91 0.61 0.84 0.51 9.70

CGd 0.88 0.31 0.78 0.19 2.22 0.95 0.58 0.90 0.48 16.59

MN 0.93 0.26 0.77 0.07 1.32 0.98 0.51 0.86 0.37 12.43

Sample size is varied to be 200 or 1000 and the binomial structure prior is used with the expected number of
parents set to 1. Omitted scores failed to return a result. The best results in each group are shown in bold, and
all reported results are averaged over 10 repetitions

find the binomial structure prior performs relatively well.
We use the binomial structure prior for the remainder of our
score based experiments.

6.3 Conditional independence tests

We tested the usefulness of the CG and MVP scores as con-
ditional independence tests by simulating, 200 and 1000
samples from graphs of average degree 2 and 4 with 100
measured variables. As a search algorithm,we usedCPCSta-
ble [19], which is a modified version of PC [26] that treats
ambiguous triples as noncolliders. For independence testing,
we set the significance level α = 0.001. Here we also use
the discretization heuristic with b = 3 for CG, denoted CGd,
however we do not use a structure prior since we are no
longer scoring a full Bayesian network in this paradigm. We
did not include results for a version of MVP which uses the
discretization heuristic because it had little effect. The results
are shown in Table 4.

In general, we find that our methods perform better as
scores, but still perform reasonably well as conditional inde-
pendence tests. This is promising for use in algorithms, such
as FCI, that model the possibility of latent confounding [26].

6.4 Tests against baseline scores

We used two simple baseline scores as a point of compari-
son for our methods. The first, which we denote MN, uses
multinomial scoring for all cases. In order to do so, we essen-
tially extend the discretization heuristic to the continuous
child case so that we are always scoring with a multinomial.
The second, which we denote as LR, uses partitioned lin-
ear regression in the continuous child case and partitioned
logistic regression in the discrete child case. In our experi-
ments, we applied Lib Linear [7], a widely used and efficient
toolkit for logistic regression which uses truncated Newton
optimization [9]. In a recent paper, Zaidi et al. [27] note

that among the many optimization methods that have been
evaluated, the truncated Newton method has been shown to
converge the fastest, which provides support that Lib Lin-
ear is a competitive, state-of-the-art method to apply in our
evaluation, as a baseline point of comparison. As with MVP,
the appended term on LR denotes the maximum polynomial
degree of the regressors.

We compared CG, CGd, MVP 1, LR 1, MVP log n, LR
log n, and MN by simulating 200 and 1000 samples from
graphs of average degree 2 and 4 with 100 measured vari-
ables. As a search algorithm, we again used fGES. Here we
also use the discretization heuristic with b = 3 for CGd
and the binomial structure prior set to 1 for all scores. Addi-
tionally, boldface text highlights the best performing score
for each statistic for each group in the table. The results
are shown in Tables 5 and 6. For the results in Table 6,
we extended our method for simulating data. Since MVP
is designed to handle nonlinearity, while CG is not, we mod-
ified the continuous child phase of data generation to allow
for nonlinearities. To do so, we additionally generate sec-
ond, and third order polynomial terms. However, because
of the nature of these nonlinear functions, the values of the
data often become unmanageably large. To correct for this
issue, we resample a variable with square-root and cube-root
relationships if the values are too large. Appendix B contains
details about how the data were simulated and the parameters
used.

Table 5 shows the results when using linearly generated
data and 100 variables. As a general pattern, MN had better
precision than the CG methods which had better precision
than the MVP and LR methods. For recall, just the opposite
pattern tended to occur. In terms of timing, in general, MN
was faster than the CG methods, which were faster than the
MVP methods, which were considerably faster than LR.

Table 6 shows the results when using nonlinearly gen-
erated data and 100 variables. MN tended to have a higher
precision than the MVP and LR methods, which often had

123

International Journal of Data Science and Analytics (2018) 6:3–18 15

higher precision than the CG methods. The relatively good
performance of MN is surprising; although multinomial dis-
tributions can represent nonlinear relationships, the process
of discretizing continuous variables loses information; the
manner in which we generated the data (see the beginning of
Sect. 6) when there is a discrete child and continuous parents
may play a role in producing this result. The relatively better
precision performance of theMVPmethods compared to CG
methods is not surprising, given that MVP can model non-
linear relationships and CG cannot. In terms of recall, MVP
and CG performed comparably, while both performed better
than MN. The relative timing results in Table 6 are similar to
those in Table 5.

In Tables 5 and 6, there is almost no difference in pre-
cision and recall performance between MVP and LR. This
result is understandable, since MVP is using an approxima-
tion to logistic regression in the case of a discrete child with
continuous parents and performing all other cases identically.
However, MVP is often tenfold or more faster than LR.

Table 7 shows the results of assessing the scalability of
the methods. We simulated linear data on 500 variables. For
average degree 4, no MVP results are shown because our
machine ran out of memory while searching. Also, LR is
not included at all in Table 7, because LR (as implemented)
cannot scale to networks of this size due to time complexity.
Table 7 shows that the CG methods had similar precision to
MN, which generally had better precision than MVP. For the
results shown, the recall of the MVP and CG methods were
similar, which were generally better than the recall for MN.
MN and the CG methods had similar timing results, which
were faster than those of MVP.

In Table 7, we see that the CG andMVPmethods are capa-
ble of scaling to graphs containing 500 measured variables,
albeit sparse ones. CG was able to scale to a slightly denser
graph of 500 variables. In general, we see the same perfor-
mance on these larger networks as before on the networks of
100 measured variables. Additionally, for the smaller sample
size of 200, MN performed comparably to CDd, but with a
slightly higher precision and lower recall.

7 Conclusions

This paper introduces two novel scoring methods for learn-
ing Bayesian networks in the presence of both continuous
and discrete variables. One of the methods scales to net-
works of 500 variables or more on a laptop. We introduce
a structure prior for learning large networks and find that
using a structure prior with BIC generally leads to relatively
good network discovery performance, while requiring con-
siderably less computation time. We showed how the CG
andMVP scoring methods are readily adapted as conditional

independence tests for constraint-based methods to support
future use in algorithms such as FCI.

TheMVP and LRmethods had precision and recall results
that were almost identical; however, MVP was considerably
faster than LR. Such a speed difference is particularly impor-
tant when performing Bayesian network learning, where
the scoring method must be applied thousands of times in
the course of learning a network. Using a different imple-
mentation of LR might affect the magnitude of this speed
difference, but for the reasons we give in Sect. 4.3, we would
not expect it to lead to LR becoming faster than MVP.

The fully discrete approach, MN, performed surprisingly
well in our experiments in terms of precision and speed,
although recall was often lower, and sometimes much lower,
than that of CG and MVP.

The results of the experiments reported here support using
CGwhen recall is a priority and the relationships are linear. If
the relationships are likely to be nonlinear and recall remains
a priority, then we suggest using MVP when there 100 or
fewer variables and using CG when there are 500 variables
or more. If precision is a priority, then our results support
using MN.

All algorithms and simulation reported here were imple-
mented in the Tetrad system [22], and the code is available
in the Tetrad repository on GitHub.1

There are several directions for future work. First, we
would like to apply the methods to real datasets for which
knowledge of the causal relationships is available. Second,
we would like to expand the CG andMVPmethods to model
ordinal discrete variables. Although the nominal discrete
variables that these methods currently model can represent
ordinal variables, we would expect the methods to have
greater power when they take advantage of knowledge about
particular discrete variables being ordinal versus nominal.
Third, we would like to further explore how to adaptively
discretize variables in theMNmethod in order to improve its
recall, while not substantially reducing its precision. Fourth,
we would like to investigate alternative basis functions to
polynomials for the MVP method.

Acknowledgements We thank Clark Glymour, Peter Spirtes, Takis
Benos, Dimitrios Manatakis, and Vineet Raghu for helpful discussions
about the topics in this paper. We also thank the reviewers for their
helpful comments.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

1 https://github.com/cmu-phil/tetrad.

123

https://github.com/cmu-phil/tetrad.

16 International Journal of Data Science and Analytics (2018) 6:3–18

Appendix A

Proposition 1 The Conditional Gaussian Score is score
equivalent.

Proof Let G1 and G2 be directed acyclic graphs with Condi-
tional Gaussian scores S1 and S2, respectively. Further, let
G1
= G2, but G1 and G2 in the same Markov equivalence
class. ��

Remove all shared local components between S1 and S2

and the corresponding edges in G1 and G2. Call the newly
pruned scores S ′

1 and S ′
2 and the newly pruned graphs G′

1
and G′

2, respectively. Note that we have removed all initial
unshielded colliders common to both G1 and G2. Addition-
ally, it follows fromMeek’s rules that G′

1 and G′
2 must contain

no unshielded colliders since any component which could
have become an unshielded collider is necessarily shared
between graphs G1 and G2 and thus pruned [14].

SinceG′
1 andG′

2 are acyclic graphswithout any unshielded
colliders, we can represent them both as a join tree of cliques.
Further, they share the same skeleton because they come from
the same Markov equivalence class, and thus, they can be
represented by the same join tree of cliques.

It follows from Pearl, Probabilistic Reasoning in Intelli-
gent Systems 3.2.4, Theorem 8, that the distribution encoded
by G′

1 and G′
2 can be written as a product of the distribu-

tions of the cliques of G′
1 and G′

2 divided by a product of the
distributions of their intersections [16]. Therefore, when we
calculate S ′

1 and S ′
2, we can use the same ratio of joint distri-

butions to obtain the log likelihood and degrees of freedom
terms. Hence S ′

1 = S ′
2 and therefore, after adding back the

shared local components, we have S1 = S2.

Proposition 2 If the approximating polynomial from Weier-
strass Approximation Theorem for the data generating func-
tion is a polynomial of degree d, and the maximum-degree
polynomial used by MVP is at least d, then the MVP score
will be consistent in the large sample limit.

Proof Let p be the approximating polynomial(s) fromWeier-
strass Approximation Theorem [11]. Assuming the least
squares estimate(s) contains the same polynomials degrees as
p, the least squares estimate will converge to p as the number
of samples n → ∞ [1]. Therefore, by Weierstrass Approxi-
mation Theorem, the least squares estimate(s) will converge
to the true data generating function(s). Accordingly, the log
likelihood term of MVP will be maximal for any model that
has either been correctly specified or over specified, where
by over over specified we are referring to a model containing
all the true parameters and more. ��

However for any over specified model, the parameter
penalty will necessarily be larger and hence the MVP score
in that case will be lower for the over specified model.

Additionally, in the case of an underspecified model, note
that the parameter penalty term is of order O(log n) while
the likelihood term is of order O(n). This means that in the
large sample limit, when comparing an underspecifiedmodel
to any model containing the correctly specified model, the
MVP score will be lower for the under specified model since
the log likelihood is not maximal while in the other case it is.

Therefore, the MVP score is consistent.

Proposition 3 The approximated values from least squares
regression sum to one.

Proof Let the terms in the below equation be defined accord-
ing to Sect. 4.3.

d∑

h=1

X pβ̂h = X p(XT
p X p)

−1XT
p

d∑

h=1

1{ yp=h}

= X p(XT
p X p)

−1XT
p1p

= 1p

For the last step, we use that 1p is in the column space of X p

and is thus projected to itself. ��
Proposition 4 If the approximating polynomial from Weier-
strass Approximation Theorem for the data generating func-
tion is a polynomial of degree d, and the maximum-degree
polynomial used by MVP is at least d, then the least squares
approximations for probability mass functions will be strictly
nonnegative in the large sample limit.

Proof Let f be a generating component of a conditional
probabilitymass function. Since theWeierstrass Approxima-
tion Theorem is satisfied by the assumptions of MVP, there
must exists a polynomial p such that for every ε > 0 and all
x ∈ [a, b], we have | f (x) − p(x)| < ε [11]. ��

For x ∈ [a, b] where p(x) ≥ f (x), p(x) is trivially non-
negative since f (x) > 0.

For x ∈ [a, b] where p(x) < f (x), let m = f (x) and
choose ε = m

2 . Then,

| f (x) − p(x)| < ε

f (x) − p(x) < ε

p(x) > f (x) − ε

p(x) > m − m

2
p(x) > 0

since m > 0.
Assuming the least squares estimate(s) contains the same

polynomials degrees as p, the least squares estimatewill con-
verge to p as the number of samples n → ∞ [1]. Thus, as
the number of samples n → ∞, the least squares approxi-
mations are strictly nonnegative.

123

International Journal of Data Science and Analytics (2018) 6:3–18 17

Appendix B

In this appendix, we detail the parameters used for simulation
of the data. Each parameter will be followed by the values
we used in simulation and a short description. We split the
parameters into 3 groups: general parameters used across
all simulations, parameters specific to linear simulation, and
parameters specific to nonlinear simulation.

General Parameters

numRuns: 10 - number of runs
numMeasures: 100, 500 - number ofmeasured variables
avgDegree: 2, 4 - average degree of graph
sampleSize: 200, 1000 - sample size
minCategories: 2 - minimum number of categories
maxCategories: 5 - maximum number of categories
percentDiscrete: 50 - percentage of discrete variables (0
- 100) for mixed data
differentGraphs: true - true if a different graph should
be used for each run
maxDegree: 5 - maximum degree of the graph
maxIndegree: 5 - maximum indegree of graph
maxOutdegree: 5 - maximum outdegree of graph
coefSymmetric: true - true if negative coefficient values
should be considered

Linear Parameters

varLow: 1 - low end of variance range
varHigh: 3 - high end of variance range
coefLow: 0.05 - low end of coefficient range
coefHigh: 1.5 - high end of coefficient range
meanLow: -1 - low end of mean range
meanHigh: 1 - high end of mean range

Nonlinear Parameters

dirichlet: 0.5 - alpha parameter for Dirichlet to draw
multinomials
interceptLow: 1 - low end of intercept range
interceptHigh: 2 - high end of intercept range
linearLow: 1.0 - low end of linear coefficient range
linearHigh: 2.0 - high end of linear coefficient range
quadraticLow: 0.5 - low end quadratic coefficient range
quadraticHigh: 1.0 - high end of quadratic coefficient
range
cubicLow: 0.2 - low end of cubic coefficient range
cubicHigh: 0.3 - high end of cubic coefficient range
varLow: 0.5 - low end of variance range
varHigh: 0.5 - high end of variance range

References

1. Anderson, T., Taylor, J.B.: Strong consistency of least squares esti-
mates in normal linear regression. The Ann. Stat., pp. 788–790
(1976)

2. Bishop, C.M.: Pattern Recognition and Machine Learning.
Springer, Berlin (2006)

3. Bøttcher, S.G.: Learning bayesian networks with mixed variables.
Ph.D. thesis, Aalborg University (2004)

4. Chen, J., Chen, Z.: Extended bic for small-n-large-p sparse glm.
Statistica Sinica pp. 555–574 (2012)

5. Chickering, D.M.: Optimal structure identification with greedy
search. J. Mach. Learn. Res. 3, 507–554 (2002)

6. Daly, R., Shen, Q., Aitken, S.: Review: learning bayesian networks:
approaches and issues. TheKnowl. Eng. Rev. 26(2), 99–157 (2011)

7. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: LIB-
LINEAR: a library for large linear classification. J. Mach. Learn.
Res. 9, 1871–1874 (2008)

8. Heckerman, D., Geiger, D.: Learning bayesian networks: a uni-
fication for discrete and gaussian domains. In: Proceedings of
Conference on Uncertainty in Artificial Intelligence, pp. 274–284.
Morgan Kaufmann Publishers Inc. (1995)

9. Hsia, C.Y., Zhu, Y., Lin, C.J.: A study on trust region update rules
in newton methods for large-scale linear classification. In: Asian
Conference on Machine Learning, pp. 33–48 (2017)

10. Huang, T., Peng, H., Zhang, K.: Model selection for gaussian mix-
ture models. Statistica Sinica 27(1), 147–169 (2017)

11. Jeffreys, H., Jeffreys, B.: Weierstrasss theorem on approximation
by polynomials. Methods of Mathematical Physics pp. 446–448
(1988)

12. Peters, J., Janzing,D., Schölkopf,B.: Elements ofCausal Inference:
Foundations and Learning Algorithms. TheMIT Press, Cambridge
(2017)

13. McGeachie, M.J., Chang, H.H., Weiss, S.T.: Cgbayesnets: con-
ditional gaussian bayesian network learning and inference with
mixed discrete and continuous data. PLoS Comput. Biol. 10(6),
e1003676 (2014)

14. Meek, C.: Complete orientation rules for patterns (1995)
15. Monti, S., Cooper, G.F.: A multivariate discretization method for

learning bayesian networks frommixed data. In: Proceedings of the
Conference on Uncertainty in Artificial Intelligence, pp. 404–413.
Morgan Kaufmann Publishers Inc. (1998)

16. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks
of Plausible Inference. Morgan Kaufmann, Burlington (1988)

17. Raftery, A.E.: Bayesian model selection in social research. Sociol.
Methodol., pp. 111–163 (1995)

18. Ramsey, J., Glymour, M., Sanchez-Romero, R., Glymour, C.: A
million variables andmore: the fast greedy equivalence search algo-
rithm for learning high-dimensional graphical causal models, with
an application to functionalmagnetic resonance images. Int. J. Data
Sci. Anal., pp. 1–9 (2016)

19. Ramsey, J., Zhang, J., Spirtes, P.: Adjacency-faithfulness and
conservative causal inference. In: Proceedings of Conference on
Uncertainty in Artificial Intelligence, pp. 401–408. AUAI Press,
Arlington, Virginia (2006)

20. Ramsey, J.D., Malinsky, D.: Comparing the performance of graph-
ical structure learning algorithms with tetrad. arXiv preprint
arXiv:1607.08110 (2016)

21. Romero, V., Rumí, R., Salmerón, A.: Learning hybrid bayesian
networks using mixtures of truncated exponentials. Int. J. Approx.
Reason. 42(1–2), 54–68 (2006)

22. Scheines, R., Spirtes, P., Glymour, C., Meek, C., Richardson, T.:
The tetrad project: constraint based aids to causal model specifica-
tion. Multivar. Behav. Res. 33(1), 65–117 (1998)

123

http://arxiv.org/abs/1607.08110

18 International Journal of Data Science and Analytics (2018) 6:3–18

23. Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6(2),
461–464 (1978)

24. Sedgewick, A.J., Shi, I., Donovan, R.M., Benos, P.V.: Learning
mixed graphical models with separate sparsity parameters and
stability-basedmodel selection. BMCBioinform. 17(Suppl 5), 175
(2016)

25. Sokolova, E., Groot, P., Claassen, T., Heskes, T.: Causal discovery
from databases with discrete and continuous variables. In: Euro-
pean Workshop on Probabilistic Graphical Models, pp. 442–457.
Springer (2014)

26. Spirtes, P., Glymour, C.N., Scheines, R.: Causation, Prediction, and
Search. MIT Press, Cambridge (2000)

27. Zaidi, N.A., Webb, G.I.: A fast trust-region newton method for
softmax logistic regression. In: Proceedings of the 2017 SIAM
International Conference on Data Mining, pp. 705–713. SIAM
(2017)

123

	Scoring Bayesian networks of mixed variables
	Abstract
	1 Introduction
	2 Scoring Bayesian networks
	2.1 The Bayesian information criterion

	3 The conditional Gaussian score
	3.1 Modeling a set of variables
	3.2 Calculating the log likelihood and degrees of freedom

	4 The mixed variable polynomial score
	4.1 Partitioned regression
	4.2 Modeling a continuous child
	4.3 Modeling a discrete child

	5 Implementation details and adaptations
	5.1 Binomial structure prior
	5.2 Multinomial scoring with continuous parents
	5.3 As a conditional independence test

	6 Simulation studies
	6.1 The conditional Gaussian approximation
	6.2 Binomial structure prior
	6.3 Conditional independence tests
	6.4 Tests against baseline scores

	7 Conclusions
	Acknowledgements
	Appendix A
	Appendix B
	General Parameters
	Linear Parameters
	Nonlinear Parameters

	References

