
Int J Data Sci Anal (2019) 8:269–284
https://doi.org/10.1007/s41060-017-0078-6

REGULAR PAPER

Online conformance checking: relating event streams to process
models using prefix-alignments

Sebastiaan J. van Zelst1 · Alfredo Bolt1 · Marwan Hassani1 ·
Boudewijn F. van Dongen1 · Wil M. P. van der Aalst1

Received: 26 May 2017 / Accepted: 11 October 2017 / Published online: 27 October 2017
© The Author(s) 2017. This article is an open access publication

Abstract Companies often specify the intended behaviour
of their business processes in a process model. Conformance
checking techniques allow us to assess to what degree such
process models and corresponding process execution data
correspond to one another. In recent years, alignments have
proven extremely useful for calculating conformance check-
ing statistics. Existing techniques to compute alignments
have been developed to be used in an offline, a posteriori
setting. However, we are often interested in observing devi-
ations at the moment they occur, rather than days, weeks or
even months later. Hence, we need techniques that enable
us to perform conformance checking in an online setting. In
this paper,we present a novel approach to incrementally com-
pute prefix-alignments, paving the way for real-time online
conformance checking. Our experiments show that the reuse
of previously computed prefix-alignments enhances mem-
ory efficiency, whilst preserving prefix-alignment optimality.
Moreover, we show that, in case of computing approximate
prefix-alignments, there is a clear trade-off between memory
efficiency and approximation error.

B Sebastiaan J. van Zelst
s.j.v.zelst@tue.nl

Alfredo Bolt
a.bolt@tue.nl

Marwan Hassani
m.hassani@tue.nl

Boudewijn F. van Dongen
b.f.v.dongen@tue.nl

Wil M. P. van der Aalst
w.m.p.v.d.aalst@tue.nl

1 Department of Mathematics and Computer Science,
Eindhoven University of Technology, P.O. Box 513, 5600 MB
Eindhoven, The Netherlands

Keywords Process mining · Conformance checking · Event
streams

1 Introduction

Today’s information systems track, in great detail, the exe-
cution of business processes within companies. Often, a
company has an idea, or even a formal specification, of how
their business process is required to be executed. In other
cases, laws, regulations and/or legislations dictate the exact
way the process is to be executed. Such process specifica-
tion is often recorded in a process model, i.e. a behavioural
specification. However, in many cases, the actual execution
of the process, as recorded by the information system, is
not in line with the behaviour described by the correspond-
ing process model. Conformance checking, a sub-field of
process mining [1], aims at assessing to what degree the
behaviour described by a process model is in line with
behaviour captured in an event log. In particular, the tech-
niques are able to check conformance based on process
modelling formalisms that allow for describing concurrency,
i.e. the possibility to specify order-independent execution of
activities.

Early conformance checking techniques, e.g. “token-
based replay” [2], often lead to ambiguous and/or unpre-
dictable results. Hence, alignments [3] were developed with
the specific goal in mind to explain and quantify devia-
tions in a non-ambiguous manner. Alignments have rapidly
developed into the de facto standard conformance check-
ing technique. Moreover, alignments serve as a basis for
techniques that link event data to process models, e.g.
they support performance analysis, decision mining [4],
business process model repair [5] and prediction tech-
niques.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s41060-017-0078-6&domain=pdf
http://orcid.org/0000-0003-0415-1036

270 Int J Data Sci Anal (2019) 8:269–284

Fig. 1 Schematic overview of
online conformance checking

Information System

T
im

e

E
ve

n
t
S
tr
ea

m

Event

Event

Event

c1

c2

...

cn

...

Process Model

Prefix-Alignments

(a, t1), (b, t2), ...

(b,), (a, t1), ...

...

(a, t1)

...

Cases

{activity b occurred
prior to activity a

Techniques to compute alignments are only defined in
an offline setting. However, early process-oriented devia-
tion detection is critical for many organizations in different
domains. For example, within hospitals, deviating process
executions often lead to higher costs, and/or delays in exam-
ination time. Similarly, within highly complex administrative
processes, e.g. provision of mortgages, notary processes and
unemployment administration, deviant behaviour often leads
to excessive process execution timeand costs.Upondetection
of a deviation, a process owner, or the supporting informa-
tion system, is able to take adequate actions such as blocking
the current process instance, assigning a case manager for
additional specialized intervention and restarting the process
instance.

In this paper, we present a new approach to com-
pute alignment-based conformance checking statistics in an
online setting. Instead of conventionally used event logs,
i.e. a static data source describing past process execution
behaviour,we rely on event streams. An event stream is a con-
tinuous data stream that describes a potentially unbounded
sequence of events. The fundamental difference of event
streams w.r.t. event logs is related to the fact that the knowl-
edge of executed events for a case changes over time, i.e. new
events related to the same case can occur in the future. Hence,
at any point in time, we are unaware whether the sequence of
events observed for a certain case is complete or not.As a con-
sequence, we aim at computing prefix-alignments rather than
conventional alignments as they describe the events observed
for a case in the best possible way w.r.t. the reference model
without requiring explicit termination. In Fig. 1, we present
a schematic overview of online conformance checking. We
have two main sources of input, i.e. an event stream gen-
erated by an information system and a reference process
model. Over time, we observe events emitted on the event
stream which tell us what activity has been performed in
context of what case. For each case we maintain a prefix-
alignment. Whenever we receive a new event for a case, we

recompute its prefix-alignment. We try to recompute prefix-
alignments greedily; however, in somecasesweneed to resort
to solving a shortest path problem. The focus of this paper is
mainly towards the efficiency of solving such shortest prob-
lem.

Our proposed approach entails an incremental algorithm
that allows for computing both optimal and approximate
prefix-alignments. We additionally show that the cost of
an optimal prefix-alignment is always an underestimate for
the cost of a conventional alignment of any of its possible
suffixes. As a consequence, when computing optimal prefix-
alignments, our approach underestimates alignment costs for
completed cases. This implies that once we detect a devia-
tion from the reference model, we are guaranteed that the
behaviour related to the case is not compliant with the refer-
encemodel.Computing approximate prefix-alignments leads
to an increase in memory efficiency, however, at the cost of
losing prefix-alignment optimality.We experimentally assess
the trade-off between memory efficiency and optimality loss
using several artificially generated process models. We addi-
tionally assess the applicability of our technique using a real
data set originating from a hospital information system. Our
experiments show that reusing previously computed prefix-
alignments positively impacts the efficiency of computing
new prefix-alignments. Moreover, in case of approximation,
we observe a clear trade-off between memory usage and pre-
fix alignment optimality loss.

The remainder of this paper is structured as follows: In
Sect. 2, we present related work. In Sect. 3, we present
background concepts. In Sect. 4, we introduce event streams
and motivate the need for computing prefix-alignments. In
Sect. 5, we present our incremental algorithm for prefix-
alignment computation together with two memory optimiza-
tion techniques. InSect. 6,we evaluate theproposed approach
in terms of performance and approximation accuracy. In
Sect. 7, we provide a discussion of the proposed approach.
Section 8 concludes the paper.

123

Int J Data Sci Anal (2019) 8:269–284 271

2 Related work

A plethora of different process mining techniques exists,
ranging from discovery to prediction. However, given the
focus of this paper, we limit related work to the field of
alignment computation and online process mining. Hence,
we refer to [1] for an overview of different process mining
techniques.

Early work in conformance checking uses token-based
replay [2]. The techniques replay a trace of executed events
in a process model (Petri net) and add missing tokens if tran-
sitions are not able to fire. After replay, remaining tokens
are counted and a conformance statistic is computed based
on missing and remaining tokens. Alignments were intro-
duced in [3] and have rapidly developed into the de facto
standard for conformance checking. In [6,7], decomposition
techniques are proposed together with computing align-
ments. Using decomposition techniques greatly enhances
computation time, i.e. the techniques successfully apply
the divide-and-conquer paradigm; however, the techniques
provide lower bounds on conformance checking statistics,
rather than computing alignments. More recently, general
approximation schemes for alignments, i.e. computation of
near-optimal alignments, have been proposed in [8].

A relatively limited amount of work has been done in the
area of online process mining. In [9], a first design of an
online process discovery algorithm was proposed, based on
the HeuristicMiner [10]. The approach was improved in [11]
by adopting a different internal storage model. In [12], the
work was generalized and converted in an architecture that
covers a wide range of process discovery algorithms. In [13],
an alternative discovery approach is presented for the purpose
of discovering declarative process models.

To the best of our knowledge this paper is the first work
that covers conformance checking/alignments in online/
incremental settings.

3 Background

In this section, we briefly present key process mining con-
cepts such as event logs, workflow nets and alignments. We
assume the reader to be familiar with mathematical concepts
such as sets, multisets, functions and sequences. We only
present notational conventions regarding these concepts, as
used in this paper.

Given set X and y /∈ X we write X y for X ∪ {y}. N

denotes the set of natural numbers, N0 includes 0. A multiset
generalizes the concept of a set and allows elements to have
a multiplicity exceeding one. Let X = {e1, e2, . . . , en} be
a set, a multiset M over X is a function M : X → N0. We
write a multiset as M = [ek11 , ek22 , . . . , ekmm] (m ≤ n), where
for each i ∈ {1, . . . ,m} we have M(ei) = ki . If M(ei) = 0,

we omit ei from multiset notation, and, if M(ei) = 1 we
omit ei ’s superscript. We write sequence σ of length n as
σ = 〈σ(1), σ (2), . . . , σ (n)〉, where for 1 ≤ i ≤ n, σ(i)
denotes the i th element ofσ . The set of all possible sequences
over X is written as X∗. Concatenation of sequences σ1 and
σ2 is written as σ1 · σ2. An empty sequence is written as ε.
Given a sequence σ ∈ (X1 × X2 × · · · × Xn)

∗ we define,
for 1 ≤ i ≤ n, πi (σ) ∈ X∗

i with πi (σ)(j) = σ(j)(i),∀ j ∈
{1, 2, . . . , |σ |}, e.g. given σ ∈ (X × Y)∗, we have π1(σ) ∈
X∗ and π2(σ) ∈ Y ∗. Given σ ∈ X∗ and Y ⊆ X we define
σ↓Y ∈ Y ∗ recursively with ε↓Y = ε and (〈x〉 · σ ′)↓Y =
〈x〉 · σ ′↓Y

if x ∈ Y and σ ′↓Y
if x /∈ Y .

3.1 Event logs and process models

The execution of business processeswithin a company gener-
ates traces of event data in its supporting information system.
Typically we are able to extract such data from the com-
pany’s information system describing, for specific cases, e.g.
an insurance claim, what activities have been performed over
time. We often refer to a collection of such data as an event
log. From a formal perspective, an event log is considered to
be a multiset of sequences of executed process activities, or
simply events. Consider Table 1, which depicts a simplified
view of an event log. The event log describes the execution of
activities related to a fictional compensation request process
for concert tickets. For example, consider all events related to
case 13 (represented byCase-id 13), i.e. a new request is reg-
istered by Luke, Harry subsequently examines the request,
Pete checks the corresponding ticket, etc.

For each event recorded in the event log, we have infor-
mation regarding its id, what activity it related to, which
resource executed the activity and at what time it was exe-
cuted. In general, we are able to obtain even more event
data, for example what is the corresponding ticket id, what
concert the ticket belongs to, what is the ticket price, etc.
However, for the sake of simplicity we abstract from such
data. In particular, in context of this paper, we are only inter-
ested in actual activities performed, instead of all possible
data/resource aspects involved in the activity execution, i.e.
we focus on the control-flow perspective. For example, based
on Table 1 we deduce that for case 13, the sequence 〈register
request, examine, check ticket, decide, pay compensation〉
was performed. We assume the execution of activities to be
atomic; hence, given the universe of activities A, an event
log L is a multiset over sequences of A, i.e. L : A∗ → N0.

A process model describes the intended behaviour of a
process. Althoughmany processmodelling formalisms exist,
we focus on (labelled) Petri nets [14], which allow us to
explicitly model concurrency in a concise and compact man-
ner. In Fig. 2, we depict an example Petri net. The Petri net,
like the example event log in Table 1, describes handling of
a compensation request. It dictates that the first activity to be

123

272 Int J Data Sci Anal (2019) 8:269–284

Table 1 Example event log
fragment

Event-id Case-id Activity Resource Time-stamp

.

5 12 Decide (d) Boris 2017-05-08 09:45

6 13 Register request (a) Luke 2017-05-08 10:12

7 12 Update records (h) Harry 2017-05-08 10:14

8 13 Examine (b) Harry 2017-05-08 10:31

9 13 Check ticket (c) Pete 2017-05-08 10:40

10 13 Decide (d) Harry 2017-05-08 10:49

11 13 Pay compensation (e) Harry 2017-05-08 11:01

12 14 Register request (a) Boris 2017-05-08 11:03

.

Fig. 2 Example Petri net N1
(adopted from [1]) with initial
marking [pi]

pi t1

a

register
request

p1

t2

b

examine

p2 t3

c

check ticket

p3

p4

t5

d

decide

t4

d

decide

p5

t6

f

t7

e

pay
compensation

t8

f

reject request

po

performed should always be register request. Subsequently,
the examine and check ticket activities can be performed con-
currently. However, we are also allowed to only perform the
check ticket activity and subsequentlymake a decision, i.e. to
skip the examination. After a decision is made, we are able to
redo the examination and ticket check. However, such deci-
sion, i.e. to redo these activities, is not explicitly captured by
the system. Eventually, either the pay compensation or the
reject request activity is performed.

A Petri net consists of places and transitions. Places are
used to represent the state of the described process, whereas
transitions represent possible executable activities, subject to
the state. The Petri net in Fig. 2 consists of 7 places (denoted
P), i.e. P = {pi , p1, . . . , p5, po}, visualized as circles. For-
mally, we represent the state of a Petri net in terms of a
marking M , which is a multiset of places, i.e. M : P → N0.
For example, in Fig. 2 place pi is marked with a token, visu-
alized by a black dot. Thus, the marking of the Petri net in
Fig. 2, as visualized, is [pi]. The Petri net furthermore con-
tains 8 transitions (denoted T), i.e. {t1, . . . , t8}, visualized
as boxes. Transitions allow us to manipulate a Petri net’s
marking. A transition t ∈ T is enabled if all places p that
have an outgoing arc to t contain a token. If a transition is
enabled in marking M , we write M[t〉. An enabled transition
is able to fire. If we fire a transition t , it consumes a token
from each place that has an outgoing arc to t . Subsequently,

a token is produced in each place that has an incoming arc
from t . For example, in Fig. 2, t1 is the only enabled transi-
tion in marking [p0], and, if it fires we obtain new marking
[p1, p2]. In marking [p1, p2], we are able to fire both t2 and
t3, in any order. We are thus able to generate sequences of
fired transitions, e.g. 〈t1, t2, t3〉 and 〈t1, t3, t2〉, which both
yield marking [p3, p4]. Note that, in marking [p1, p2], tran-
sition t4 is not (yet) enabled. If we fire t3, leading to marking
[p1, p4], transition t4 is enabled.When executing a sequence
σ ∈ T ∗ of transitions from marking M results in M ′, we
write M

σ−→ M ′. We let M denote the universe of all possi-
ble markings.

All transitions, except transition t6, have a single character
label, e.g. transition t1 has label a. Typically, these labels
represent actual activities that can be executed in the process
described by the Petri net. For convenience, we also added
more descriptive names, e.g. register request. Transition t6 is
an invisible transition, i.e. it is able tomanipulate themarking
of the Petri net, without being noticed by the outside world.
Also, there are two transitions with label d, i.e. t4 and t5.

We formally define a Petri net N as a tuple N =
(P, T, F, λ), where P represents its places, T its transitions,
F ⊆ (P × T) ∪ (T × P) represents the flow relation, i.e.
the arcs in Fig. 2. Observe that a place is only connected to
a transition and vice versa, i.e. there is never an arc between
two places/transitions. Finally, given a set of activity labels

123

Int J Data Sci Anal (2019) 8:269–284 273

γ1 : a b c d e
t1 t2 t3 t5 t7

γ2 : x a d e z
t1 t3 t4 t7

Fig. 3 Example alignments for 〈a, b, c, d, e〉 and 〈x, a, d, e, z〉 with
N1

Λ and τ /∈ Λ, λ : T → Λτ represents the labelling function
of N . For example, λ(t1) = a and λ(t6) = τ .

We assume that a reference model of a process is designed
by a human business process analyst/designer. We therefore
assume that a processmodel has a certain level of quality, e.g.
the Petri net is a sound workflow net [15, Definition 7]. We
do not introduce the characteristics of such models, however,
soundness guarantees that we are always able to reach a des-
ignated final marking M f , from any marking M reachable
from designated initial marking Mi . For the purpose of this
paper, we assume that the Petri nets we consider also con-
sist of this property, which we deem the proper termination
assumption.

3.2 Alignments

When we reconsider the example sequence of activities
related to case 13, i.e. written short-hand as 〈a, b, c, d, e〉,
we observe that indeed by firing transitions t1, t2, t3, t5 and
t7, such sequence of activities is produced by N1 in Fig. 2.
If we consider another example trace, i.e. 〈x, a, d, e, z〉, we
observe some problems. For example, activities x and z are
not labels of N1. Furthermore, according to N1, at least c
must be executed in-between a and d.

Alignments allow us to identify and quantify the afore-
mentioned problems and moreover allow us to express these
deviations in terms of the reference model. Conceptually,
an alignment is a mapping between the execution of transi-
tions in the process model and the activities observed in a
trace σ in a given event log L . Consider Fig. 3, in which we
present alignments for traces 〈a, b, c, d, e〉 and 〈x, a, d, e, z〉
w.r.t. Petri net N1. Alignments are sequences of pairs, e.g.
γ1 = 〈(a, t1), (b, t2), . . . , (e, t7)〉. Each pair within an align-
ment is referred to as a move. The first element of a move
refers to an activity of the trace, whereas the second element
refers to a transition. The goal is to create pairs of the form
(a, t) s.t. λ(t) = a, e.g. all moves in γ1 are of this form. The
sequence of activity labels in the alignment needs to equal
the input trace. The sequence of transitions in the alignment
needs to correspond to a σ ∈ T ∗ s.t., given a designated ini-
tial marking Mi and final marking M f , we have Mi

σ−→ M f .
For N1, we have Mi = [pi] and M f = [po]. In some cases,
we are not able to construct a move of the form (a, t) s.t.
λ(t) = a. In case of trace 〈x, a, d, e, z〉, we are not able to

map x and z to any transition in N1 with an equally valued
label. Furthermore, we at least need to execute transition t3 in
order to forma sequence of transitions that generatesmarking
M f fromMi . In some cases we need to fire a transition t with
λ(t) = τ , for whichwe again are not able to construct a label-
transition mapping. In such cases, we use skip-symbol in
either the activity or the transition part of a move. For exam-
ple, consider γ2 in Fig. 3, which contains three skip symbols.
Verify that again, when ignoring skip symbols, the sequence
of activity labels equals the input trace, and the sequence of
transitions is valid for Mi and M f . If a move is of the form
(a, t), we call this a synchronous move, (a,) is an activity
move and (, a) is a model move.

Definition 1 (Alignment)Letσ ∈ A∗. Let N = (P, T, F, λ)

be a Petri net and let Mi , M f denote N ′s initial and final
marking. Let /∈ A ∪ T ∪ Λ with �= τ . A sequence
γ ∈ (A × T)∗ is an alignment iff:

1. (π1(γ))↓A = σ ; activity part (excluding ’s) equals σ .

2. Mi
(π2(γ))↓T−−−−−−→ M f ; transition part (excluding ’s) in

Petri net language.
3. ∀(a,t)∈γ (a �= ∨t �=); (,) is not valid in an align-

ment.

We let Γ denote the universe of alignments, and let Γ (N ,
σ, Mi , M f) denote all alignments of N and σ given Mi and
M f .

Given the definition of alignments as presented in Defini-
tion1, several alignments, i.e. sequences of moves adhering
to Definition1, exist for a given trace and Petri net. For
example, consider alignment γ3 depicted in Fig. 4 which,
according to Definition 1, is an alignment of 〈x, a, d, e, z〉
and N1 as well. The main difference between γ2 and γ3,
i.e. both aligning trace 〈x, a, d, e, z〉 with N1, is the fact
that γ2 binds the execution of t4 to the observed activity d,
whereas γ3 binds the execution of t5 to the observed activity
d. Clearly, both explanations are possible, however, to be able
to bind executed activity d to t5, and alignment γ3 requires
the explicit execution of transition t2 as well. Since activity
b is not observed in the given trace, we observe the presence
of move (, t2) in γ3, which is not needed in γ2. Both align-
ments are feasible; however, we prefer alignment γ2 over γ3
as it minimizes non-synchronous moves, i.e. moves of the
form (a,) or (, t).

As exemplified by alignments γ2 and γ3, we need means
to be able to rank and compare alignments and somehow
express our preference of certain alignments w.r.t. others.
To this end, we define a cost function over the moves of

Fig. 4 Two possible alignments
for 〈x, a, d, e, z〉 and N1

γ2 : x a d e z
t1 t3 t4 t7

γ3 : x a d e z
t1 t2 t3 t5 t7

123

274 Int J Data Sci Anal (2019) 8:269–284

an alignment. The cost of an alignment is simply the sum
of the costs of its individual moves. Typically synchronous
moves are assigned a low, or even 0, cost. The costs of model
and activity moves are usually higher than the costs of syn-
chronous moves. Assume we assign cost 0 to synchronous
moves and cost 1 to activity/model moves. In this case, the
cost of γ1 is 0. The cost of alignment γ2 is 3, whereas the
cost of alignment γ3 is 4. Hence, the cost of γ2 is lower than
the cost of γ3, and we prefer it over γ2. Formally, we define
the cost of a move as a function δ : A × T → R0. The
costs κδ of a sequence of moves γ , given move cost func-
tion δ, are defined as κδ(γ) = ∑|γ |

i=1 δ(γ (i)). In general,
we are able to use an arbitrary instantiation of δ; however,
in the remainder of the paper, we adopt the unit-cost func-
tion:

1. δ(a, t) = 0 ⇔ a ∈ A, t ∈ T and λ(t) = a or a =, t ∈
T and λ(t) = τ ,

2. δ(a, t) = ∞ ⇔ a ∈ A, t ∈ T and λ(t) �= a,
3. δ(a, t) = 1 otherwise.

Since we assume unit-costs throughout the paper, we omit δ
as superscript and simply refer to κ(γ).Wewrite γ opt to refer
to an optimal alignment, i.e. γ opt = arg minγ∈Γ (N ,σ,Mi ,M f)

κ(γ). Consequently, computing an optimal alignment is sim-
ply defined as a minimization problem. In [3], it is shown
that computing an optimal alignment is equivalent to solving
a shortest path problem on the state space of the syn-
chronous product net of N and σ . The exact nature of such
synchronous product net and an equivalence proof of the
two problems is outside the scope of this paper. Hence,
we refer to [3] for these definitions and proofs. In this
paper, we use the fact that an algorithm to find an opti-
mal alignment exists and we use it as a black box. Finally,
it is important to note that multiple optimal alignments
exist.

4 Computing prefix-alignments on event streams

We aim at computing conformance checking statistics in
an online fashion in order to observe deviations at the
moment they occur. Hence, we define the notion of event
streams. Subsequently, we motivate why computing conven-
tional alignments on event streams overestimate the potential
deviation severity, and therefore, we resort to computing
prefix-alignments.

4.1 Event streams

Formally, an event stream is a, possibly infinite, sequence of
events. An event is a pair consisting of a case-identifier and
an activity. An event describes what activity is performed in
context of what process instance (represented by the case-
identifier). Event streams differ from event logs in two ways:
(1) an event stream is potentially infinite and (2) behaviour
seen for a case is incomplete, i.e. in future new events may
be executed in context of a case.

Definition 2 (Event stream) Let C denote the universe of
case identifiers. Let A denote the universe of possible activ-
ities. An event stream S is an infinite sequence over C × A,
i.e. S ∈ (C × A)∗.

A pair (c, a) ∈ C × A represents an event, i.e. activity a
was executed in context of case c. S(1) denotes the first event
that we receive, whereas S(i) denotes the i th event. Consider
stream S1 in Fig. 5 as an examplewherewe show the emission
of activities based on the process model in Fig. 2 using short-
hand activity names. Observe that event (3, d) is emitted first
(S1(1) = (3, d)), event (4, a) is emitted second, etc. Our
knowledge after receiving the third event, i.e. S1(3) = (5, a),
w.r.t. case 5, is different from our knowledge after receiving
the fifth event. After the third event, for case 5, we observed
〈a〉, whereas after the fifth event this is 〈a, b, c〉.

We aim at computing alignments for the cases emitted
onto an event stream, as they allow us to quantify deviations
in a clear manner. Assume that we have only seen the first
three events, i.e. (3, d), (4, a) and (5, a), of S1. The only
activity seen for case 5 is activity a. An optimal alignment
for case 5 is 〈(a, t1), (, t3), (, t4), (, t7)〉. After receiv-
ing the fourth event, i.e. (5, b), an optimal alignment for
case 5 is 〈(a, t1), (b, t2), (, t3), (, t5), (, t7)〉. In both
cases, the costs of the alignments are 3.However, after receiv-
ing the first nine events on stream S1 we obtain activity
sequence 〈a, b, c, d, e〉 for case 5with correspondingoptimal
alignment 〈(a, t1), (b, t2), (c, t3), (d, t5), (e, t7)〉 with costs
0. Thus, since the knowledgewe possess about cases changes
over time, computing conventional alignments prior to case
completion is expected to lead to an overestimation of the
true alignment costs. We do not assume explicit knowledge
of case termination w.r.t. the events observed on the stream.
Moreover, we aim at detecting potential behaviour during
case execution as opposed to computing such figures after
case completion. As indicated, doing so with conventional
alignments is expected to lead to cost overestimation, and as
a consequence, false positives from a deviation perspective.

Fig. 5 Example event stream
S1

S1 ∞(3, d), (4, a), (5, a), (5, b), (5, c)(6, a), (4, d), (5, d), (5, e), · · ·

123

Int J Data Sci Anal (2019) 8:269–284 275

γ1 : a c d
t1 t3 t4

γ2 : a c d
t1 t2 t3 t5

Fig. 6 Two prefix-alignments for 〈a, c, d〉 and N1

Therefore, we aim at computing prefix-alignments, which are
specifically designed to incorporate trace incompleteness.

4.2 Prefix-alignments

Prefix-alignments are a relaxed alternative to conventional
alignments [3, Sect. 4.5]. In essence, they relax requirement
two of Definition 1 in such way that after executing the T-
part of the alignment, projected onto T , the final marking
M f can still be reached. Formally, we rephrase requirement

two to ∃σ ′∈T ∗
(

Mi
(π2(γ))↓T ·σ ′
−−−−−−−→ M f

)

. Consider Fig. 6 in

which we depict two example prefix-alignments of incom-
plete trace 〈a, c, d〉 and N1. Observe that, for both alignments
we need to append either 〈t7〉 or 〈t8〉 to obtain marking
M f , and thus, the relaxed requirement is satisfied. Sim-
ilar to conventional alignments, several prefix-alignments
exist that correctly align a prefix and a Petri net. Hence, we
again need means to rank and compare prefix-alignments.
For example, in Fig. 6 we prefer γ 1 over γ 2, since it only
contains synchronous moves, whereas γ 2 contains a model
move.Again, we define a cost function for prefix-alignments.
Since a prefix-alignment, like a conventional alignment, is
a sequences of moves, the cost of a prefix alignment is
defined in the exact samemanner to the costs of conventional
alignments, i.e. it is simply the sum of the costs of its indi-
vidual moves. Observe that cost function κ is defined over
a sequence of moves, and thus, given some prefix-alignment
γ , κ(γ) is readily defined.

As a consequence, we again have the notion of opti-
mality. For example, γ 1 is an optimal prefix-alignment for
〈a, c, d〉 and N1. We let Γ denote the universe of possible
prefix-alignments and let Γ (N , σ, Mi , M f) denote all pos-
sible prefix-alignments of σ and N given Mi and M f .

Interestingly, any optimal prefix-alignment of any prefix
of a trace is always underestimating the costs of the optimal
alignment of any of its possible suffixes, and thus, of the
eventual completed trace.

Proposition 1 (Prefix-alignments underestimate alignment
costs) Let σ ∈ A∗. Let N = (P, T, F, λ) be a Petri net
with corresponding initial- and final marking Mi , M f . Let
γ ∈ Γ (N , σ, Mi , M f) be optimal. If σ is a prefix of σ and
γ ∈ Γ (N , σ , Mi , M f) is an optimal prefix-alignment, then
κ(γ) ≤ κ(γ).

Proof (Contradiction) Let us write γ as γ = γ ′ · γ ′′, s.t.
(π1(γ

′))↓A = σ . By definition, γ ′ is a prefix-alignment of

σ . In case κ(γ) > κ(γ), then also κ(γ) > κ(γ ′), which
contradicts optimality of γ . ��

The underestimating property is useful since, in an online
setting, once an optimal prefix-alignment has nonzero costs,
it guarantees that a deviation from the reference model is
present.On the other hand, if a case is not properly terminated
and will never terminate, yet the sequence of activities seen
so far has a prefix-alignment cost of zero, we do not observe
this type of deviation until we compute a corresponding con-
ventional (optimal) alignment.

Any shortest path algorithm to compute conventional
alignments, i.e. as briefly discussed in Sect.3.2, is easily
altered to compute prefix-alignments. In fact, in line with the
relaxation of requirement two of Definition 1, such alteration
only consists of adding more states to the set of final states
of the search problem. Hence, to compute optimal (prefix-
)alignments we are able to use any algorithm designed for
finding shortest paths in a graph. However, in [3] the A∗
algorithm [16] is proposed and evaluated. In this paper, we
simply assume that we are able to use an algorithm α, i.e.:

α : N × A∗ × M × M → Γ

Here, we assume α(N , σ, Mi , M f) ∈ Γ (N , σ, Mi , M f) and
it is optimal. Observe that the proper termination assump-
tion, w.r.t. the process models considered, guarantees that α
always find an optimal prefix-alignment.

5 Computing prefix-alignments incrementally

In this section, we present an incremental algorithm for
the purpose of online prefix-alignment computation. Subse-
quently,wepresent effective parametrization of the algorithm
that allows us to reducememory usage and computation time.

5.1 An incremental framework

We aim at computing a prefix-alignment for each sequence
of events seen so far for each case c ∈ C. In this paper,
we primarily focus on the performance of prefix-alignment
computation in an incremental setting; we therefore do not
consider (the impact of) storing the information seen on
the event stream in great detail. Henceforth, we assume
the existence of a case administration DC : C × N0 → Γ ,
where, for i ≥ 1, DC(c, i) represents the currently known
prefix-alignment related to case c after receiving events
S(1), S(2), . . . , S(i). Initially, we have DC(c, 0) = ε,∀c ∈
C. For now, we assume that DC is able to store all most recent
prefix-alignments for all cases. Such assumption, theoreti-
cally, requires infinite memory; hence in Sect. 5.3, we briefly

123

276 Int J Data Sci Anal (2019) 8:269–284

Algorithm 1: Incremental Prefix-Alignments

input: N = (P, T, F, λ), Mi , M f : P → N0, α : N × A∗ × M × M →
Γ , S ∈ (C × A)∗

begin
1 i ← 0;
2 while true do
3 i ← i + 1;
4 (c, a) ← S(i);
5 γ ← DC (c, i − 1);
6 copy all alignments of DC (c′, i − 1) to DC (c′, i) for all c′ ∈ C;
7 let M be the marking of N obtained by γ ;
8 if ∃t∈T (λ(t) = a) then
9 if ∃t∈T (λ(t) = a ∧ M[t〉) then

10 let t denote such transition;
11 DC (c, i) ← γ · 〈(a, t)〉;
12 else
13 σ ← (π1(γ))↓A ;

14 DC (c, i) ← α(N , σ · 〈a〉, Mi , M f);

15 else
16 DC (c, i) ← γ · 〈(a,)〉;

discuss how to handle this problem, and the corresponding
limitations in practice.

To compute prefix-alignments based on the event stream,
we conceptually perform the following steps. When we
receive an event related to a certain case, we check whether
we previously computed a prefix-alignment for that case. In
case we are guaranteed that the event refers to an activity
move, i.e. because the activity simply has no corresponding
label in the reference model, we append such activity move
to the prefix-alignment. If this is not the case, we fetch the
marking in the reference model, corresponding to the previ-
ous prefix-alignment. For example, given prefix alignment
〈(a, t1)〉 based on N1 (Fig. 2), the corresponding marking is
[p1, p2]. If the event is the first event received for the case,
we simply obtain marking Mi . In case we are able to directly
fire a transition within the obtained marking with the same
label as the activity that the event refers to, we append a cor-
responding synchronous move to the previously computed
prefix-alignment. Otherwise we use a shortest path algo-
rithm, of whichwe present some parametrization in Sect. 5.2,
to find a new (optimal) prefix-alignment. In Algorithm 1,
we present an algorithmic description of the aforementioned
rationale.

The algorithm expects a Petri net, initial- and final mark-
ing, an algorithm that computes optimal prefix-alignments
and an event stream as an input. Note that, after receiv-
ing a new event, the case administration for index i − 1 is
copied into the i th version, i.e. line 6. This operation is O(1)
in practice. Since optimal prefix-alignments underestimate
conventional alignment costs (Proposition 1), we are inter-
ested to what extent Algorithm 1 guarantees optimality of
the prefix-alignments stored in DC .

Theorem 1 (Optimality of Algorithm 1) We let DC : C ×
N0 → Γ , with DC(c, 0) = ε, ∀c ∈ C, and, assume DC is

updated according to Algorithm 1. For any c ∈ C, i ∈ N

and γ = DC(c, i) we have γ ∈ Γ and γ is optimal for
(π1(γ))↓A .

Proof (Induction on i)

• Base Case I : i = 0 All alignments are ε.
• Base Case I I : i = 1 Let (c, a) be S(i). We know

DC(c, i − 1) = DC(c, 0) = ε. In case we are able to fire
some t withλ(t) = a inM0, we obtain alignment 〈(a, t)〉,
which, under the unit-cost function, is optimal.1 In case
�t∈T (λ(t) = a) we obtain 〈(a,)〉 which is trivially
an optimal prefix-alignment for trace 〈a〉. In any other
case, we compute α(N , Mi , M f , 〈a〉) which is optimal
by definition.

• Induction Hypothesis Let i > 1. For any c ∈ C, we
assume that for γ = DC(c, i), we have γ ∈ Γ and γ is
optimal.

• Inductive Step We prove that, for any c ∈ C, for γ =
DC(c, i + 1), we have γ ∈ Γ and γ is optimal. Let
(c, a) be S(i + 1). In case DC(c, i) = ε we know that
γ is optimal (Base Case i = 1). Let DC(c, i) = γ ′ s.t.
γ ′ �= ε. In case we are able to fire some t with λ(t) = a
in M0 we obtain γ = γ ′ · 〈(a, t)〉. Since, under unit-
cost function, δ(a, t) = 0, if γ is non-optimal, then also
γ ′ is non-optimal which contradicts the IH. A similar
rationale holds in case �t∈T (λ(t) = a). In any other case,
we compute α(N , Mi , M f , σ · 〈a〉) which is optimal by
definition. ��

Theorem 1 proves that Algorithm 1 always computes opti-
mal prefix-alignments for (πA(γ))↓A , i.e. the sequence
of activities currently stored within DC for some c ∈ C.
Hence, combining this resultwith Proposition 1,we conclude
that whenever the algorithm observes certain alignment costs
exceeding 0, the corresponding conventional alignment has
at least the same costs, or higher.

5.2 Parametrization

In the previous section, we used α completely as a black
box and always solved a shortest path problem starting from
Mi . In this section, we show that we are able to exploit the
previously calculated alignment for a case c in order to prune
the search state-space. Moreover, we showmeans to limit the
search by changing its starting point.

5.2.1 Cost upper-bounds

Assume that we receive the i th event (c, a) on the stream and
we let γ ′ = DC(c, i − 1) and γ = DC(c, i). Let us write

1 Observe that this is true under the proper termination assumption.

123

Int J Data Sci Anal (2019) 8:269–284 277

a b x c d
t1 t2 t3 t5

Receive b−−−−−−−→
a b c d b
t1 t2 t3 t5 t6 t2

x

Fig. 7 Partially reverting (k = 2) the prefix-alignment of 〈a, b, x, c, d〉 and N1 in case of receiving new activity b. The grey coloured moves are
not considered when computing the new alignment

the corresponding sequence of activities as σ = σ ′ · 〈a〉. By
Proposition 1,we know that γ ′ is an optimal prefix-alignment
for σ ′. It is easy to see that the costs of γ ′ together with an
activity move on a are an upper bound for the costs of γ , i.e.
κ(γ) ≤ κ(γ ′) + δ(a,). We are able to utilize this knowl-
edge within the shortest path search algorithm α. Whenever
we encounter a path within the search that is (guaranteed to
be) exceeding κ(γ ′) + δ(a,), we simply ignore it, and all
paths extending it.

As indicated, in alignment computation, the A∗ algorithm
is often used as an instantiation for α. The A∗ algorithm tra-
verses the state space in an implicit manner, i.e. it expects
each state it visits to tell which states are their neigh-
bours, and, at what distance. Moreover, it assumes that
each state is able to estimate its distance to the closest
final state, i.e. each state has a heuristic distance estima-
tion to the closest final state. For the purpose of computing
(prefix-)alignments, there are two of these heuristic distance
functions defined [3, Chapter 4]. The exact characterization
of these heuristic functions is out of this paper’s scope, i.e.
it suffices to know that we are able to, for each marking
in the synchronous product net, compute the estimated dis-
tance (in terms of alignment costs) to final marking M f .
Moreover, such estimation is always underestimating the
true distance. Thus, whenever we encounter a marking M
in the state space of which the distance to reach M from
Mi , combined with the estimated distance to M f , exceeds
κ(γ ′) + δ(a,), we ignore it and all of its possible subse-
quent markings.

5.2.2 Limiting the search

Again, assume we receive the i th event (c, a) and we let
marking M be the marking obtained by executing the tran-
sitions of γ ′ = DC(c, i − 1). In case there exist transitions t
with λ(t) = a, yet none of these transitions are enabled inM ,
the basic algorithm simply utilizes α(N , σ · 〈a〉, Mi , M f).
In general, the shortest path algorithm does not need Mi

as a start state, i.e. we are able to choose any marking of
N as a start state. Hence, we propose to partially revert
alignment γ ′ up to a maximal revert distance k and start
the shortest path search from the corresponding marking.
Doing so however no longer guarantees optimality as we
are no longer searching for a global optimum in the state
space.

Consider Fig. 7, where we depict a prefix-alignment for
〈a, b, x, c, d〉 and N1 (Fig. 2). Assume we receive a new
event that states that activity b follows 〈a, b, x, c, d〉 and we
use a revert window size of k = 2. Note that the marking
related to the alignment is [p5]. In this marking, no tran-
sition with label b is enabled and the algorithm normally
calls α(N1, 〈a, b, x, c, d, b〉, [pi], [po]). However, we revert
the alignment two moves, i.e. we revert (d, t5) and (c, t3)
and call α(N1, 〈c, d, b〉, [p2, p3], [po]) instead. The result
of this call is 〈(c, t3), (d, t5), (, t6), (b, t2)〉, depicted on
the right-hand side of Fig. 7. Note that after this call, the
window shifts, i.e. the call appended two moves, and thus,
(c, t3) and (d, t5) are no longer considered upon receiving of
new events.

5.3 Administering cases in finite memory

Thus far, we assumed DC to be of infinite memory, an
infeasible assumption in practice. In an online setting, case
administration DC needs to deploy some form of memory
management that removes entries based on some case char-
acteristic, e.g. age, relative frequency on the stream, etc.
Examples of such mechanisms are reservoirs [17,18], time
decay-based data structures [19] and frequency approxima-
tion algorithms [20]. These techniques, at somepoint, remove
prefix-alignments related to some, seemingly inactive, case.
Note that this no longer guarantees that a prefix-alignment
maintained in DC is always an underestimation for all activ-
ities emitted on the stream for case c. In fact, Theorem 1
actually does not prove this, as it proves optimality for
(π1(γ))↓A , which under assumption of infinite memory is
equivalent to the previous statement. Moreover, if we receive
activities related to a case that was previously deleted, we
are falsely starting to compute new prefix-alignments for the
case, i.e. there was some past behaviour that we no longer
possess.

A way to solve this problem is by tracking what cases
are removed from case administration. If new events appear
related to such case, we simply ignore them. In such way,
any element of the case administration truly relates to all
behaviour emitted on the stream related to the case. How-
ever, again, at some point in time we need to drop cases from
the secondary storage component. It is, however, reasonable
to assume that the number of distinct cases is orders of mag-
nitudes smaller than the number of events emitted onto the
event stream.

123

278 Int J Data Sci Anal (2019) 8:269–284

Table 2 Parameters used in experiments

Parameter Type Values

Use Upper-Bound Boolean true, false

Window Size Integer {1, 2, 3, 4, 5, 10, 20,∞}

6 Evaluation

We have evaluated the proposed algorithm, including its
parametrization, using the RapidProM [21] extension for
RapidMiner.2 As a search algorithm, we use a the A∗
algorithm provided by hipster4j [22]. To evaluate the
proposed algorithm, we generated several process models
with different characteristics, i.e. different degrees of par-
allelism, choice and loops. Additionally we evaluated our
approach using real event data, related to the treatment of
hospital patients suspected of having sepsis. In this experi-
ment, we additionally compare computing prefix-alignments
with repeatedly computing conventional alignments on an
event stream.

6.1 Experimental set-up

We used a scientific workflow implemented in RapidProM
which, conceptually, performs the following steps:

1. Generate a (block-structured)workflownetwith k labelled
transitions, where k is drawn from a triangular distribu-
tion with parameters {10, 20, 30}, for increasing levels of
Parallelism, Choice and Loops (from 0 to 50% in steps
of 10%) [23].

2. For each workflow net, generate an event log with 1000
cases.

3. For each event log, add increasing levels (from 0 to 50%
in steps of 10%) of one type of noise, i.e. remove activity,
add activity or swap activities.

4. For each “noisy” event log, do incremental conformance
checking against the workflow net it was generated from,
using all parameter combinations presented in Table2.

Observe that within the experiments we mimic event
streams by visiting each event in a trace, one by one, e.g.
if we have event log L = [〈a, b, c〉, 〈a, c, b〉], we gener-
ate event stream 〈(1, a), (1, b), (1, c), (2, a), (2, c), (2, b)〉.
Moreover, we align every trace-variant once, i.e. if 〈a, b, c〉
occurs multiple times in the event log, we only align it once.
In total, we have generated 18 different models, for which we
generate 18 different event logs, each containing 1000 traces,

2 All (raw) experiment results, data and scientific workflows
used are available via https://github.com/s-j-v-zelst/research/releases/
download/2017_jdsa/experiments.tar.gz.

yielding 18.000 noise-free traces. After applying the differ-
ent types of noise,we obtain a total of 324.000 traces. Clearly,
the number of events per trace greatly varies depending on the
generated model; however, within our experiments, in total
44.537.728 events were processed (with varying algorithm
parametrization).Out of these events, 12.151.510 state-space
searches were performed.

6.2 Results

Here, we present the results of the experiments, in line with
the parametrization options as described in Sect. 5.2. We first
present results related to using cost upper-bounds; later we
present the results related to limited search.

6.2.1 Cost upper-bounds

In this section, we present the results related to the perfor-
mance of using cost upper-bounds. Within these results, we
only focus on execution of α with M0 as a start state, i.e. we
do not incorporate results related to varying window sizes. In
Fig. 8, we present, in terms of the level of introduced noise,
the average number of enqueued states, queue size, visited
nodes and traversed arcs for each search in the state space.

Clearly, using the upper bound as a cut-off value in state-
space traversal greatly enhances the memory efficiency. We
observe that, when using the upper bound defined in Sect. 5.2,
the average number of states enqueued during the search
is less than half compared to not using the upper bound.
The average queue size, i.e. average number of states in
the queue throughout the search, is much lower in case of
using a lower bound. We observe that the search efficiency
(Fig. 8c, d) is positively affected by using the upper bound;
however, the difference is less severe and in some cases neg-
ligible (0% noise level). Thus, using previously computed
prefix-alignment values for a case allows effective states-
space pruning in the shortest path algorithm.

In Fig. 9, we show the effect of the length of the prefix
that needs to be aligned in terms of memory consumption.
We only show results for length ≤100. Both in case of using
and not using the upper bound, we observe a linear increase
in number of states queued and average queue size. However,
the rate of growth is much lower when using an upper bound.
We observe a small region of spikes in both charts around
prefix-length 20–25. After investigating the distribution of
prefix-length w.r.t. type of process model, i.e. containing
loops vs. not containing loops, we observed that most traces
exceeding such length are related to the models containing
loops. As the other group of models contains relatively more
parallelism and/or choices, the complexity of the underlying
shortest path search is expected to be slightly more complex,
which explains the spikes for relatively short prefix-lengths.

123

https://github.com/s-j-v-zelst/research/releases/download/2017_jdsa/experiments.tar.gz
https://github.com/s-j-v-zelst/research/releases/download/2017_jdsa/experiments.tar.gz

Int J Data Sci Anal (2019) 8:269–284 279

0

50

100

150

200

0.0 0.1 0.2 0.3
% Noise

A
vg

. E
nq

ue
ue

d
St

at
es

Upper bound
True
False

(a)

0

20

40

60

0.0 0.1 0.2 0.3
% Noise

A
vg

. Q
ue

ue
 S

iz
e

Upper bound
True
False

(b)

0

20

40

60

80

0.0 0.1 0.2 0.3
% Noise

A
vg

. V
is

ite
d

St
at

es

Upper bound
True
False

(c)

0

100

200

0.0 0.1 0.2 0.3
% Noise

A
vg

. T
ra

ve
rs

ed
 A

rc
s

Upper bound
True
False

(d)

Fig. 8 Performance results of using upper bounds while searching for optimal prefix-alignments. a average number of states enqueued, b average
number queue size, c average number of states visited and d average number of traversed arcs

0

100

200

300

400

500

0 25 50 75 100
Prefix Length

A
vg

. E
nq

ue
ue

d
St

at
es

Upper bound
True
False

(a)

0

50

100

150

0 25 50 75 100
Prefix Length

A
vg

. Q
ue

ue
 S

iz
e

Upper bound
True
False

(b)

Fig. 9 Memory performance per prefix-length (up to length 100). a Average number of states enqueued and b average queue size

6.2.2 Reverting alignments

In this section, we present results related to the perfor-
mance and approximation quality of using revert windows
as described in Sect. 5.2.2. In Fig. 10, we present perfor-
mance results in terms of memory efficiency and approx-
imation error, plotted against noise level. In Fig. 10a, we
show the average number of states enqueued when using
different revert window sizes. Clearly, the memory usage
increases when we increase the window size. Interest-
ingly, this increase seems linear. The approximation error
(Fig. 10b) shows an inverse pattern; however, the decrease
in approximation error seems nonlinear, when the window

size increases. Moreover, in case we set the window size to
5 we observe that the approximation error, within this exper-
iment, is negligible, whereas memory-wise window sizes of
10 and 20 use much more memory while hardly improving
the quality of the result.

In Fig. 11, we present performance results in terms of
memory efficiency and approximation error, plotted against
prefix length. We observe that in terms of enqueued nodes
(Fig. 11a), at first a rapid increase appears, after which a
steep decline is present. Stabilization around lengths ≥25
is again due to the fact that all traces of such length originate
from models with loops. The peak and decline behaviour is
explained by the fact that the complexity of solving state-

123

280 Int J Data Sci Anal (2019) 8:269–284

0

10

20

30

40

50

0.0 0.1 0.2 0.3
% Noise

A
vg

. E
nq

ue
ue

d
St

at
es

Window Size
1
2
3
4
5
10
20

(a)

0.0

0.1

0.2

0.3

0.0 0.1 0.2 0.3
% Noise

A
vg

. C
os

t D
iff

er
en

ce

Window Size
1
2
3
4
5
10
20

(b)

Fig. 10 Memory performance and cost difference w.r.t. optimal prefix-alignments when using different revert window sizes. a Average number
of states enqueued and b average cost difference

10

15

20

25

30

0 25 50 75 100
Prefix Length

A
vg

. E
nq

ue
ue

d
St

at
es

Window Size
1
2
3
4
5

(a)

0.0

0.2

0.4

0.6

0 25 50 75 100
Prefix Length

A
vg

. C
os

t D
iff

er
en

ce

Window Size
1
2
3
4
5

(b)

Fig. 11 Memory usage and cost difference w.r.t. optimal prefix-alignments per prefix-length, with different revert window sizes. aAverage number
of states enqueued and b average cost difference

space-based search within the models is most likely to be
most complex in the middle of the trace. Towards the end of
a model’s behaviour, we expect less state-space complexity,
which explains the decline in the chart around prefix length
10–20.

In Fig. 11b, we observe similar results as observed in
Fig. 10b. A window size of 1 is simply too small and it seems
that, when the prefix length increases, the costs increase
linearly. However, when using a window ≥2 we observe
asymptotic behaviour in terms of approximation error. Again
we observe that using a window of at least size 5 leads to neg-
ligible approximation errors.

6.3 Evaluation using real event data

In this section, we discuss the results of applying incremen-
tal alignment calculation based on real event data. We focus
on the under/overestimation of true eventual conventional
alignment cost, as well as the method’s performance. As a
baseline, we compute conventional alignments every timewe
receive a new event. We use an event log originating from a
Dutch hospital related to the treatment of patients suspected
of having sepsis [24]. Sincewedonot have a referencemodel,

wegeneratedonebasedon a subset of the data. This generated
process model still describes around 90% of the behaviour
within the event log (computed using conventional align-
ments). The data set contains 15.214 events divided over
1.050 cases. Prefix-alignments were computed for 13.775
different events. We plot all results w.r.t. the aligned prefix
length as noise percentages, i.e. used in Figs. 8 and 10, are
unknownwhen using real event data. Finally note that the dis-
tribution of trace length within the data is heavily skewed and
has a long infrequent tail. The majority of the trace’s length
is below 30, hence, figures for prefix lengths above this value
refer to a relatively limited set of cases. Nonetheless, we plot
all results for all possible prefix lengths observed.

In Fig. 12, we present results related to computed align-
ment costs.We show results for using the incremental scheme
proposed in this paper with window sizes 5, 10 and 20, and,
the baseline (“Conventional”). In Fig. 12a, we show the aver-
age absolute alignment costs per prefix length. We observe
that using a window size of 5 in general leads to higher
alignment costs. This is explained by the fact that the rel-
atively little window size does not allow us to revert any
choices made in previous alignments, which consequently
does not allow us to find an eventual global optimum. Inter-

123

Int J Data Sci Anal (2019) 8:269–284 281

0

50

100

150

0 50 100 150
Prefix Length

A
vg

. A
lig

nm
en

t C
os

t

Version
Prefix (Window = 5)
Prefix (Window = 10)
Prefix (Window = 20)
Conventional

(a)

0

40

80

120

0 50 100 150
Prefix Length

A
vg

. C
os

t D
iff

er
en

ce

Version
Prefix (Window = 5)
Prefix (Window = 10)
Prefix (Window = 20)
Conventional

(b)

Fig. 12 Average cost results per prefix-length, with different revert window sizes. a Average (prefix-) alignment cost and b average cost difference
w.r.t. eventual optimal conventional alignment

estingly, both window sizes 10 and 20 lead to, on average,
comparable alignment costs to simply computing conven-
tional alignments. However, in the beginning of cases, i.e. for
small prefixes, as expected, computing conventional align-
ments leads to higher values. In Fig. 12b,we show the average
cost difference w.r.t. the eventual alignment costs, i.e. after
case completion. Interestingly, after initially overestimating
eventual costs, conventional alignments underestimate the
costs of conventional alignments quite severely. This can be
explained by the fact that partial traces are aligned by a short
path of model moves through the model combined with a
limited set of activity moves.

In order to quantify the potential business impact of
applying the (prefix-)alignment approach, we derive several
different measures of relevance for the three different win-
dow sizes and the baseline. These figures are presented in
Table3. To obtain the results as presented, for each received
event we define:

– If the difference of the current (prefix-)alignment cost
with the eventual alignment cost is zero, and the eventual
costs exceed zero, we define a True Positive, i.e. we have
an exact estimate of non-compliant behaviour.

– If the difference of the current (prefix-)alignment cost
with the eventual alignment cost is greater than zero,
we define a False Positive, i.e. we overestimate non-
compliant behaviour.

– If the difference of the current (prefix-)alignment cost
with the eventual alignment cost is zero, and the eventual
costs equals zero, we define a True Negate, i.e. we have
an exact estimate of the fact that no deviation occurs.

– If the difference of the current (prefix-)alignment cost
with the eventual alignment cost is lower than zero,
we define a False Negative, i.e. we underestimate non-
compliant behaviour.

We acknowledge that alternative definitions of True/False
Positives/Negatives are possible. Therefore, the results

obtained are specific for the definition provided, as well as
the data set of use. We observe that computing conventional
alignments, for every event received, leads to better recall,
i.e. T P

T P+FN . This implies that the ratio of correctly observed
deviations w.r.t. neglected deviations is better for the con-
ventional approach. However, using the incremental scheme
leads to significantly higher specificity (T N

T N+FP) and preci-

sion values (T P
T P+FP). Specifically for window sizes 10 and

20 we observe very high precision values. This in fact is in
line with Proposition 1 and, moreover, shows that the results
obtained with these window sizes are close to results for an
infinite window size. Finally, we observe that the accuracy
of window sizes 10 and 20 is comparable and higher than the
alternative approaches, i.e. window size 5 and conventional.
However, in terms of F1-score, simply calculating conven-
tional alignments outperforms using the incremental scheme
as proposed.

In Fig. 13, we show the performance of the different
approaches in terms of enqueued states and visited states.
Note that the results presented consider the full incremental
scheme, i.e. if we are able to execute a synchronous move
directly, queued/visited states equals 0. As expected, using a
window size of 5 is most efficient. Window sizes 10 and 20
are less efficient yet for longer prefix lengths, they outper-
form computing conventional alignments. For window size
20, we do observe a peak in terms of computational complex-
ity for prefix lengths of 10–20. Such peak is explained by the
relatively inaccurate heuristic used within the A∗-searches
performed for prefix-alignment computation. The drops in
the chart relate to purely incremental alignment updates.
We observe that computational complexity of conventional
alignment computation is in general increasing when prefix
length increases. The incremental-based approach seems not
to suffer from this and shows relatively stabilizing behaviour.

Based on the experiments using real hospital data, we
conclude that, for this specific data set, a window size of
10 is appropriate. As opposed to computing conventional

123

282 Int J Data Sci Anal (2019) 8:269–284

Table 3 Measures of relevance
for different window-sized
approaches versus computing
conventional alignments

VariantWindow ∼ 5Window ∼ 10Window ∼ 20Conventional

Variant Window ∼ 5 Window ∼ 10 Window ∼ 20 Conventional
True Positive 1517 2060 2110 3179
False Positive 2076 204 13 5215
True Negative 2962 3340 3377 1424
False Negative 7220 8171 8275 3957

Recall 0.173629392 0.201348842 0.20317766 0.445487668
Specificity 0.587931719 0.942437923 0.996165192 0.214490134
Precision 0.422209852 0.909893993 0.99387659 0.378722897
Negative Predictive Value 0.29090552 0.290157241 0.28982149 0.264634826

False Negative Rate 0.826370608 0.798651158 0.79682234 0.554512332
Fall-out 0.412068281 0.057562077 0.003834808 0.785509866
False Discovery Rate 0.577790148 0.090106007 0.00612341 0.621277103
False Omission Rate 0.70909448 0.709842759 0.71017851 0.735365174

Accuracy 0.325154265 0.392014519 0.398330309 0.33415608
F1-Score 0.246066504 0.329731893 0.337384074 0.409401159

1

100

0 50 100 150
Prefix Length

A
vg

. E
nq

ue
ue

d
St

at
es

Version
Prefix (Window = 5)
Prefix (Window = 10)
Prefix (Window = 20)
Conventional

(a)

1

100

0 50 100 150
Prefix Length

A
vg

. V
is

ite
d

St
at

es
Version

Prefix (Window = 5)
Prefix (Window = 10)
Prefix (Window = 20)
Conventional

(b)

Fig. 13 Performance results based on the hospital data set (logarithmic scales). a Average number of states enqueued and b Average number of
traversed arcs

alignments, it achieves precise results, i.e. whenever a devi-
ation is detected it is reasonable to assume that this is indeed
the case. Moreover, it outperforms computing conventional
alignments in terms of computational complexity and mem-
ory usage.

7 Discussion

The aim of the incremental technique presented in this paper
is to compute approximations of alignments, by means of
utilizing the concept of prefix-alignments, based on event
streams. In particular, we aim at computing these approxima-
tions more efficiently w.r.t. simply computing conventional
alignments, whilst at the same time limiting the loss in result
accuracy.

In general, we conclude that the use of the technique pro-
posed is justified in cases where computational resources
are limited, and/or there is a need for high precision, i.e.

we aim at high degrees of certainty when we observe a
deviation. In cases where computational complexity is not
an urgent issue, and/or high recall is more preferable, one
can resort to computing conventional alignments. However,
recall that conventional alignments initially overestimate
alignment costs and thus are not able to properly detect devia-
tions in early stages of a case. Hence, when resorting to using
conventional alignments, a warm-up period is advisable.

In the experiments performed using real data, we observe
a certain unpredictabilityw.r.t. memory usage/computational
efficiency of prefix-alignment computation, i.e. consider the
peeks for window size 20 in Fig. 13. In general, although
the search algorithm used in prefix-alignment computation is
A∗ [16], the practical search performance is, however, equal
to the performance of Dijkstra’s shortest path algorithm [25].
This is mainly related to the fact that when computing prefix-
alignments we need to resort to a rather inaccurate heuristic
function. By partially reverting the alignments, combined
with applying the upper-bound pruning,we are able to reduce

123

Int J Data Sci Anal (2019) 8:269–284 283

the search complexity, however, at the cost of losing accuracy.
When computing conventional alignments, we are able to
resort to a more accurate heuristic which explains the more
predictable computational efficiency trends in Fig. 13.

8 Conclusion

In this paper, we proposed an online, event stream-based,
conformance checking technique based on the use of prefix-
alignments. The algorithmonly performs a state-space search
to compute a new prefix-alignment if no direct label- or syn-
chronous move is possible. We presented two techniques to
increase the search efficiency of the underlying shortest path
problems solved. Thefirst technique preserves optimality and
allows for effective state-space pruning. The second tech-
nique uses an approximation scheme providing a balance
between optimality and memory usage. In our evaluation,
we primarily focussed on the performance of the underly-
ing shortest path problems solved. Our results show that we
are able to effectively prune the state space by using previ-
ously computed alignment results. Particularly in terms of
memory efficiency, these results are promising. When using
our approximation approach, we observe a linear trend in
needed memory when increasing window sizes. However,
the approximation error seems to decrease more rapidly, i.e.
in a nonlinear fashion when increasing window sizes.
Future Work We aim to extend our work as follows.
We plan to extend our experiments, using more levels of
choice/parallelism/loops, more models per level and larger
data sets. Moreover, we plan to perform more experiments
using real event data. We also plan to define alterna-
tive accuracy measures regarding under/overestimation of
conventional alignments to more accurately measure the
indicative behaviour of prefix-alignments. Finally, the state
of a prefix-alignment, in terms of the underlying reference
model, carries some predictive value w.r.t. case termination.
Thus, in cases we do not know explicit case termination, it is
interesting to study the effect of using prefix-alignments as
a case termination predictor.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

1. van der Aalst, W.M.P.: Process Mining—Data Science in
Action, 2nd edn. Springer, Berlin (2016). https://doi.org/10.1007/
978-3-662-49851-4

2. Rozinat, A., van der Aalst, W.M.P.: Conformance checking of pro-
cesses based on monitoring real behavior. Inf. Syst. 33(1), 64–95
(2008). https://doi.org/10.1016/j.is.2007.07.001

3. Adriansyah, A.: Aligning Observed and Modeled Behavior. Ph.D.
thesis, Eindhoven University of Technology, Department of Math-
ematics and Computer Science (2014). https://doi.org/10.6100/
IR770080

4. de Leoni, M., van der Aalst, W.M.P.: Data-aware process mining:
discovering decisions in processes using alignments. In: Shin, S.Y.,
Maldonado, J.C. (eds.) Proceedings of the 28th Annual ACMSym-
posium on Applied Computing, SAC’13, Coimbra, Portugal, pp.
1454–1461. ACM, 18–22 March 2013 (2013). https://doi.org/10.
1145/2480362.2480633

5. Fahland,D., vanderAalst,W.M.P.:Model repair—aligningprocess
models to reality. Inf. Syst. 47, 220–243 (2015). https://doi.org/10.
1016/j.is.2013.12.007

6. van der Aalst, W.M.P.: Decomposing Petri nets for process min-
ing: a generic approach. Distrib. Parallel Databases 31(4), 471–507
(2013). https://doi.org/10.1007/s10619-013-7127-5

7. Munoz-Gama, J., Carmona, J., van der Aalst, W.M.P.: Single-entry
single-exit decomposed conformance checking. Inf. Syst. 46, 102–
122 (2014). https://doi.org/10.1016/j.is.2014.04.003

8. Taymouri, F., Carmona, J.: A recursive paradigm for align-
ing observed behavior of large structured process models.
In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016,
Riode Janeiro, Brazil, Proceedings,Lecture Notes in Computer
Science, vol. 9850, pp. 197–214. Springer,18–22 Sept 2016
(2016). https://doi.org/10.1007/978-3-319-45348-4_12.http://dx.
doi.org/10.1007/978-3-319-45348-4

9. Burattin, A., Sperduti, A., van der Aalst, W.M.P.: Control-flow dis-
covery from event streams. In: Proceedings of the IEEE Congress
on Evolutionary Computation, CEC 2014, Beijing, China, pp.
2420–2427. IEEE, 6–11 July 2014 (2014). https://doi.org/10.1109/
CEC.2014.6900341

10. Weijters, A.J.M.M., Ribeiro, J.T.S.: Flexible heuristics miner
(FHM). In: Proceedings of the IEEESymposiumonComputational
Intelligence and Data Mining, CIDM 2011, Part of the IEEE Sym-
posium Series on Computational Intelligence 2011, Paris, France,
pp. 310–317, 11–15 April 2011 (2011). https://doi.org/10.1109/
CIDM.2011.5949453

11. Hassani, M., Siccha, S., Richter, F., Seidl, T.: Efficient process
discovery from event streams using sequential pattern mining.
In: IEEE Symposium Series on Computational Intelligence, SSCI
2015, Cape Town, South Africa, pp. 1366–1373. IEEE, 7–10 Dec
2015 (2015). https://doi.org/10.1109/SSCI.2015.195

12. van Zelst, S.J., van Dongen, B.F., van der Aalst, W.M.P.:
Event stream-based process discovery using abstract repre-
sentations. Knowl. Inf. Syst. (2017). https://doi.org/10.1007/
s10115-017-1060-2

13. Burattin, A., Cimitile, M., Maggi, F.M., Sperduti, A.: Online dis-
covery of declarative process models from event streams. IEEE
Trans. Serv. Comput. 8(6), 833–846 (2015). https://doi.org/10.
1109/TSC.2015.2459703

14. Murata, T.: Petri nets: properties, analysis and applications. Proc.
IEEE 77(4), 541–580 (1989). https://doi.org/10.1109/5.24143

15. van der Aalst, W.M.P.: The application of Petri nets to workflow
management. J. Circuits Syst. Comput. 8(1), 21–66 (1998). https://
doi.org/10.1142/S0218126698000043

16. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuris-
tic determination of minimum cost paths. IEEE Trans. Syst. Sci.
Cyberne. 4(2), 100–107 (1968). https://doi.org/10.1109/TSSC.
1968.300136

17. Aggarwal, C.C.: On biased reservoir sampling in the presence of
stream evolution. In: Dayal, U., Whang, K., Lomet, D.B., Alonso,
G., Lohman, G.M., Kersten, M.L., Cha, S.K., Kim, Y. (eds.) Pro-
ceedings of the 32nd International Conference on Very Large Data

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1016/j.is.2007.07.001
https://doi.org/10.6100/IR770080
https://doi.org/10.6100/IR770080
https://doi.org/10.1145/2480362.2480633
https://doi.org/10.1145/2480362.2480633
https://doi.org/10.1016/j.is.2013.12.007
https://doi.org/10.1016/j.is.2013.12.007
https://doi.org/10.1007/s10619-013-7127-5
https://doi.org/10.1016/j.is.2014.04.003
https://doi.org/10.1007/978-3-319-45348-4_12
http://dx.doi.org/10.1007/978-3-319-45348-4
http://dx.doi.org/10.1007/978-3-319-45348-4
https://doi.org/10.1109/CEC.2014.6900341
https://doi.org/10.1109/CEC.2014.6900341
https://doi.org/10.1109/CIDM.2011.5949453
https://doi.org/10.1109/CIDM.2011.5949453
https://doi.org/10.1109/SSCI.2015.195
https://doi.org/10.1007/s10115-017-1060-2
https://doi.org/10.1007/s10115-017-1060-2
https://doi.org/10.1109/TSC.2015.2459703
https://doi.org/10.1109/TSC.2015.2459703
https://doi.org/10.1109/5.24143
https://doi.org/10.1142/S0218126698000043
https://doi.org/10.1142/S0218126698000043
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1109/TSSC.1968.300136

284 Int J Data Sci Anal (2019) 8:269–284

Bases, Seoul, Korea, pp. 607–618. ACM, 12–15 Sept 2006 (2006).
http://dl.acm.org/citation.cfm?id=1164180

18. Vitter, J.S.: Random sampling with a reservoir. ACM Trans. Math.
Softw. 11(1), 37–57 (1985). https://doi.org/10.1145/3147.3165

19. Cormode, G., Shkapenyuk, V., Srivastava, D., Xu, B.: Forward
decay: a practical time decay model for streaming systems. In:
Ioannidis, Y.E., Lee, D.L., Ng, R.T. (eds.) Proceedings of the
25th International Conference on Data Engineering, ICDE 2009,
Shanghai, China, pp. 138–149. IEEE Computer Society, 29 March
2009–2 April 2009 (2009). https://doi.org/10.1109/ICDE.2009.65

20. Cormode, G., Hadjieleftheriou, M.: Methods for finding frequent
items in data streams. VLDB J. 19(1), 3–20 (2010). https://doi.org/
10.1007/s00778-009-0172-z

21. van der Aalst, W.M.P., Bolt, A., van Zelst, S.J.: RapidProM:
mine your processes and not just your data. CoRR (2017).
arXiv:1703.03740

22. Rodrguez-Mier, P., Gonzalez-Sieira, A., Mucientes, M., Lama, M.,
Bugarin, A.: Hipster: an open source java library for heuristic
search. In: 2014 9th Iberian Conference on Information Systems
and Technologies (CISTI). IEEE (2014). https://doi.org/10.1109/
cisti.2014.6876914

23. Jouck, T., Depaire, B.: PTandLogGenerator: a generator for artifi-
cial event data. In: Azevedo, L., Cabanillas, C. (eds.) Proceedings
of the BPM Demo Track 2016 Co-located with the 14th Interna-
tional Conference on Business Process Management (BPM 2016),
Rio de Janeiro, Brazil, CEUR Workshop Proceedings, vol. 1789,
pp. 23–27. CEUR-WS.org, 21 Sept 2016 (2016). http://ceur-ws.
org/Vol-1789/bpm-demo-2016-paper5.pdf

24. Mannhardt, F.: Sepsis cases–event log (2016). https://doi.org/10.
4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460

25. Dijkstra, E.W.: A note on two problems in connexion with
graphs. Numer. Math. 1(1), 269–271 (1959). https://doi.org/10.
1007/BF01386390

123

http://dl.acm.org/citation.cfm?id=1164180
https://doi.org/10.1145/3147.3165
https://doi.org/10.1109/ICDE.2009.65
https://doi.org/10.1007/s00778-009-0172-z
https://doi.org/10.1007/s00778-009-0172-z
http://arxiv.org/abs/1703.03740
https://doi.org/10.1109/cisti.2014.6876914
https://doi.org/10.1109/cisti.2014.6876914
http://ceur-ws.org/Vol-1789/bpm-demo-2016-paper5.pdf
http://ceur-ws.org/Vol-1789/bpm-demo-2016-paper5.pdf
https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
https://doi.org/10.1007/BF01386390
https://doi.org/10.1007/BF01386390

	Online conformance checking: relating event streams to process models using prefix-alignments
	Abstract
	1 Introduction
	2 Related work
	3 Background
	3.1 Event logs and process models
	3.2 Alignments

	4 Computing prefix-alignments on event streams
	4.1 Event streams
	4.2 Prefix-alignments

	5 Computing prefix-alignments incrementally
	5.1 An incremental framework
	5.2 Parametrization
	5.2.1 Cost upper-bounds
	5.2.2 Limiting the search

	5.3 Administering cases in finite memory

	6 Evaluation
	6.1 Experimental set-up
	6.2 Results
	6.2.1 Cost upper-bounds
	6.2.2 Reverting alignments

	6.3 Evaluation using real event data

	7 Discussion
	8 Conclusion
	References

