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Abstract Mining geo-spatial data is an important task in
many application domains, such as environmental science,
geographic information science, and social networks. In
this paper, we introduce a data mining framework, which
includes pre-processing of environmental and geo-spatial
data, geo-spatial data mining techniques, and visual anal-
ysis of environmental and geo-spatial data. In particular, we
propose new density-based clustering algorithms to iden-
tify interesting distribution patterns from geo-spatial data,
a change pattern discovery technique to detect dynamic
change patterns within spatial clusters, and a post-processing
technique to extract interesting patterns and useful knowl-
edge from geo-spatial data. Our density-based clustering
algorithms are based on the well-established density-based
shared nearest neighbor clustering algorithm, which can
find clusters of different shape, size, and densities in high-
dimensional data. The post-processing analysis technique
allows automatic screening of interesting spatial clusters.
The change pattern discovery algorithm is able to detect
and analyze dynamic patterns of changes within spatial
clusters. This paper focuses on developing a framework
integrating a sequence of data mining process including clus-
tering algorithm, analysis technique and pattern changing
discovery algorithm. In contrast to previous works in this
area, our approaches can cluster and analyze dynamically
evolved complex objects, i.e., polygons. We evaluate the
effectiveness of our techniques through a challenging real
case study involving ozone pollution events in the Houston–
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Galveston–Brazoria area. The experimental results show that
our approaches can discover interesting patterns and useful
information from geo-spatial air-quality data.
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1 Introduction

Due to technological advances, such as smartphones, general
mobile devices, remote sensors, and sensor networks, differ-
ent types of location-based data become increasingly avail-
able. Such data are called geo-spatial data. Geo-spatial data
have explicit geographic positioning information included
such as latitude and longitude. The geo-spatial data can also
integrate multiple other types of data, such as temporal infor-
mation, social information, textual data, multimedia data,
and scientificmeasurements called enriched geo-spatial data.
Such enriched geo-spatial data provide tremendous poten-
tials and research challenges for discovering new useful
knowledge. For example, the hourly ozone concentration is
an ordinary data. If we add the monitor station location (lati-
tude and longitude), we will get the geo-spatial data. We can
also integrate the corresponding meteorological data such as
outdoor temperature andwind speed fromdifferent resources
to make it the enriched geo-spatial data for our analysis.

Meanwhile, mining geo-spatial data is an important task
in many application domains, such as environmental sci-
ence, geographic information systems, and social networks.
However, traditional datamining techniques are inefficient in
mining geo-spatial data because they do not incorporate the
idiosyncrasies of the spatial domains such as spatial auto-
correlation, spatial context, and spatial constraints. Spatial
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auto-correlation in GIS helps understand the degree to which
one object is similar to other nearby objects. Applying tradi-
tional data mining techniques to geo-spatial data can result
in patterns that are biased or that do not fit the spatial data
well [1]. Chawla et al. [2] highlight three reasons that geo-
spatial data pose new challenges to data mining tasks: “First,
classical data mining deals with numbers and categories. In
contrast, spatial data are more complex and include extended
objects such as points, lines, and polygons. Second, classical
data mining works with explicit inputs, whereas spatial pred-
icates (e.g., overlap) are often implicit. Third, classical data
mining treats each input to be independent of other inputs,
whereas spatial patterns often exhibit continuity and high
auto-correlation among nearby features.” Chawla et al. [2]
suggest that traditional data mining tasks be extended to deal
with the unique characteristics intrinsic to geo-spatial data.
Therefore, new data mining techniques are needed to address
these challenges to provide effective solutions to search and
mine the wealth of the geo-spatial data.

Clustering can help reveal interesting distribution patterns
and serve as the foundation for other datamining and analysis
techniques. It is one of themost commonly used data analysis
techniques in many application domains. However, most of
the existing clustering techniques are inefficient in dealing
with enriched geo-spatial data. Moreover, several types of
geo-spatial data, i.e., points, trajectories, and polygons, are
available in realworld applications.Clustering techniques for
polygons are still rarely reported in the literature. Section 2
discussed related works in more details. Detail discussion of
related works is that polygons serve an important role in the
analysis of geo-spatial data as they provide a natural repre-
sentation for certain types of objects, such as city blocks, city
neighborhoods, and pollution hot-spots.We propose two new
density-based clustering algorithms by extending the well-
established density-based shared nearest neighbor (SNN) [3]
clustering algorithm for polygons. Advantages of our clus-
tering algorithms include its capability to find clusters with
different shapes, sizes, anddensities in high-dimensional data
and its tolerance to noise. In addition, our algorithms do not
require the number of clusters to be determined in advance.

Geographic dynamics refer to changes that occur across
both spatial and temporal dimensions. Different change anal-
ysis techniques for geo-spatial data have been developed.
However, most of them focus on points and trajectories.
The current state-of-the-art is still lacking techniques for
analyzing dynamic changes that may occur within the
polygon-based spatial clusters across in both spatial and tem-
poral dimensions, as well as formalizing their properties.
New change detection algorithms are needed to automate
the identification, representation, and computation of geo-
graphic dynamics for polygons. We propose a method which
can incorporate spatial and temporal distance functions and
thresholds to discover dynamic change patterns. The thresh-

olds can be set by the domain experts based on their need of
analysis.

The changing discovery algorithm utilizing polygonmod-
els can automatically detect and analyze changes occurred
across both the spatial and temporal dimensions within geo-
spatial clusters. Change analysis is performed by comparing
sets of polygon models which capture various types of
changes such as expansion, dissipation, and disappear across
both the spatial and temporal dimensions. For example, the
pattern changing discovery algorithm can be used to study
the change patterns of the ozone pollution events such as
their formation and expansion. This type of study can help
domain experts perform trend analysis and make prediction
for future events.

Post-processing analysis techniques are also important
tasks in data mining, which can help domain experts to
explore and explain this data and the clustering results from
a variety of viewpoints. Therefore, we also propose a post-
processing analysis technique to extract interesting patterns
and useful knowledge from geo-spatial clusters, and to detect
dynamic change patterns within spatio-temporal clusters of
polygons.

We demonstrate the effectiveness of our clustering and
analysis techniques through a challenging real case study
involving ozone pollution events in the Houston–Galveston–
Brazoria (HGB) area. Ozone has been the major air-quality
concern in the HGB area formany years. Due to this concern,
an air-quality-monitoring network has been well established
to continuously monitor the ground-level ozone concentra-
tion in this area. Various types of meteorological data related
to ozone formation and transportation, such as outdoor tem-
perature, solar radiation, wind speed, and wind direction, are
also recorded by different monitoring stations in this area.
Time series of NOx concentrations measured in the HGB
area are collected as well. All these multi-source geo-spatial
data provide tremendous potential for discovering newuseful
knowledge about ozone pollution formations and transporta-
tion in HBG area. Our approaches can help domain experts
identify interesting spatial patterns of ozone pollution events,
examine important factors for controlling ozone concentra-
tions, investigate the efficacy of emission control strategies,
as well as make preliminary predictions for future ozone
pollution events. Clustering algorithms can identify hourly
patterns of high ozone concentrations occurred at similar
areas. People with respiratory problems and people who are
physically active outdoors can benefit from this analysis so
that they can make plans in advance about spending time
outdoors. For example, our analysis results could be used
to suggest people avoid high ozone concentration time and
location, such as 2: 00 pm to 4:00 pm near Highway I 45
daily. Decisions that areas along highway traffic and chem-
ical plants could have high frequencies of ozone pollution
events during summer time and people should try to avoid
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planning outdoor activities at these areas and time can be
implied by the analysis step findings.

Our research contributions are summarized below:

– A new framework for clustering and analyzing geo-
spatial data is presented.

– Two new density-based clustering algorithms are devel-
oped.

– A post-processing analysis technique is implemented to
identify interesting geo-spatial clusters.

– A change pattern discovery algorithm is introduced to
detect and analyze dynamic patterns of changes within
spatial clusters.

The rest of the paper is organized as follows. Section 2 dis-
cusses the related work. Section 3 introduces the framework.
Section 4 presents two density-based clustering algorithms
for geo-spatial data in detail. Section 5 introduces two anal-
ysis techniques for spatial clusters, e.g., anomalous clusters
discovery and change pattern discovery techniques. Section
6 evaluates our work with case studies on geo-spatial ozone
pollution data in the Houston–Galveston–Brazoria (HGB)
area. Section 7 concludes our study and discusses potential
future works.

2 Related work

Spatio-temporal clustering for point-wise objects and tra-
jectories has been heavily studied in past work. Kulldorff
[4] introduced basic spatial scan statistics to search spatio-
temporal cylinders representing areaswhere the point objects
occur consistently for a significant amount of time; spatio-
temporal cylinders are circular regions occurring within a
certain time interval. Iyengar [5] extended the basic spa-
tial scan statistics [4] using flexible square pyramid shapes
instead of cylinders for spatio-temporal clusters that can
either grow or shrink over time and that can also move over
time.Wang et al. [6] proposed two spatio-temporal clustering
algorithms, i.e., ST-GRID and ST-DBSCAN. ST-DBSCAN
is an extension of the DBSCAN algorithm to perform spatio-
temporal clustering by introducing the second parameter of
temporal neighborhood radius in addition to the spatial neigh-
borhood radius. ST-GRID is a grid-based clustering approach
which maps the spatial and temporal dimensions into cells.
Birant et al. [7] also improved DBSCAN for spatio-temporal
clustering and applied it to discover spatio-temporal distribu-
tions of physical seawater characteristics in Turkish seas. A
density factor is assigned to each cluster for detecting some
noise points when clusters of different densities exist. The
density factor of a cluster captures the degree of the den-
sity of the cluster. ST-SNN and ST-SEP-SNN algorithms are
based on the Shared Nearest Neighbor clustering algorithm

[3], which can automatically find clusters of different densi-
ties in high-dimensional data for complex geometry objects,
i.e., polygons.

There are extensive studies of spatio-temporal trajectory
clustering techniques [8] as well. Gaffney et al. [9] proposed
a clustering algorithm for continuous trajectories, which is
based on a principled method for probabilistic modeling of
a set of trajectories as individual sequences of points gen-
erated from a finite mixture model consisting of regression
model components. Pelekis et al. [10] introduced different
trajectory distance functions for trajectory clustering tak-
ing into account several spatio-temporal characteristics of
the trajectories, such as direction, velocity, and co-location
in space and time. Nanni and Pedreschii [11] presented
an OPTICS-based temporal focusing approach for cluster-
ing moving object trajectories based on a simple notion of
distance between trajectories. It clusters trajectories using
all possible time intervals, evaluates the results and finds
the best clustering. Rinzivillo et al. [12] proposed a pro-
gressive clustering approach to analyze the trajectories of
moving objects supported by visualization and interaction
techniques. It progressively applies different distance func-
tions for spatio-temporal data in each step to optimize the
outcome of the algorithm. Li et al. [13] introduced the con-
cept of moving micro-cluster to catch some regularities of a
moving object. The micro-clusters are kept geographically
small at any time.

Joshi et al. [14] proposed a spatio-temporal polygonal
clustering algorithm, STPC. STPC extends DBSCAN algo-
rithm to cluster spatio-temporal polygons by redefining the
neighborhood of a polygon as the union of its spatial neigh-
borhood and temporal neighborhood. The temporal aspect is
constant or reduced to a fixed interval or time instance when
calculating spatial neighbors of a polygon. Moreover, the
spatial dimension is instead held to a constant spacewhen cal-
culating temporal neighbors of a polygon. Therefore, STPC
only clusters polygons that do not change their locations,
sizes, and shapes over time. Only the non-spatial attributes or
properties might change with time.Wang et al. [15] proposed
a density-based clustering algorithm called DCONTOUR
that uses contour lines to determine cluster boundaries, two
distance functions for geo-spatial polygons to measure the
distance between pair of overlapping polygons, and a clus-
tering algorithm called POLY-SNN for geo-spatial polygons
which does not consider the spatial and temporal domains
during clustering. Therefore, POLY-SNN cannot identify
spatio-temporal clusters. In contrast to STPC and POLY-
SNN, ST-SNN and ST-SEP-SNN algorithms can cluster
polygons that dynamically change their sizes and shapes
through time and can move over time. Furthermore, ST-SNN
and ST-SEP-SNN cope better with high-dimensional data
and respond better to data with varying densities compared
to DBSCAN-based clustering algorithms.
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Research studies on spatio-temporal change discovery
of point-based or trajectory data, such as moving clusters
[16], flocks [17,18], convoys [19], and trajectory clustering
[20,21], are increasingly common in the literature. Fewer
methods are available for polygons. McIntosh and Yuan [22]
introduced a methodology for analysis of polygon distribu-
tions, which focuses on the analysis of the internal values of
polygon attributes, rather than changes in the spatial proper-
ties of the polygons. Rinsurongkawong et al. [23] proposed
an approach to analyzing changes in spatial data by utiliz-
ing polygon models. Change patterns capture how the most
recent data differ from the data model established from the
historical data. Change analysis is performed by comparing
sets of polygons which capture various types of changes.
However, our change pattern discovery algorithm is for
detecting geographic dynamics, which refer to the changes
that occur across both the spatial and temporal dimensions
simultaneously within spatio-temporal clusters of polygons.
Stell et al. [24] proposed a novel approach to modeling the
evolution of spatial entities over time by using bigraphs. The
links in a bigraph are used to represent the sharing of a
common ancestor and the places in a bigraph to represent
spatial nesting. The bigraphical reaction rules provided are
able to model situations such as two crowds of people merg-
ing together while still keeping track of the resulting crowd’s
historical links.

3 Framework architecture

Our framework is an integration of pre-processing tech-
niques, two density-based clustering algorithms, a post-
processing analysis technique, a change pattern discovery
algorithm, and visualization techniques. The architecture of
our framework is summarized in Fig. 1. It consists of the
following five steps:

– Step 1 pre-processing of geo-spatial data.
– Step 2 generate polygons from geo-spatial point data.
– Step 3 integrate domain knowledge and apply clustering
algorithms to group polygons based on their spatial and
temporal similarities to identify interesting distribution
patterns.

– Step 4.a utilize post-processing analysis technique to
identify interesting clusters whose member variables
have attribute values that deviate significantly from those
of the entire population.

– Step 4.b detect and analyze dynamic patterns of change
within geo-spatial clusters .

– Step 5 Visualize interesting clusters and change patterns.

We collected air-quality-related data from TCEQ’s (Texas
CommissiononEnvironmenReciprocalAreaFinalClustering.

Fig. 1 Framework architecture

pngtal Quality) Web site [25]. TCEQ uses a network of
44 monitoring stations in the HGB area which covers the
geographical region within the longitude of [−95.8070,
−94.7870] and the latitude of 0.5cm [29.0108, 30.7440].
Ozone has been the main air-quality concern in the HGB
area for many years. Regional meteorological conditions
combined with the variety of emissions from industries and
transportation make the city a prime media for ground-level
ozone formation [25]. The rapid growth of the city causes
regional emissions to continue increasing.

We apply the standard Kriging interpolation method to
compute the ozone hourly concentrations on 20 × 27 grids
that cover the HGB area and feed the interpolation function
into the DCONTOUR algorithm [26] with a defined thresh-
old, i.e., 80 ppb (pats per billion) to compute polygons. Such
polygons describe ozone pollution hot-spots (areas whose
hourly ozone concentrations are above the input threshold,
i.e., 80 ppb). Next, clustering algorithms are adopted to
cluster those polygons based on their spatial and temporal
similarities to identify the ozone pollution spatio-temporal
patterns in the HGB area. After that, we apply analysis
techniques to identify interesting spatio-temporal clusters of
polygons, and to detect and analyze the dynamic change
patterns within spatio-temporal clusters of polygons. Our
approaches can help analysts find interesting spatio-temporal
patterns from ozone pollution events and make preliminary
predictions for ozonepollution events in the future. For exam-
ple, our algorithms can find hourly patterns of high ozone
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concentrations that occurred in similar areas. Moreover, our
post-processing analysis technique can identify clusters of
polygons with attribute values that aremuch smaller or larger
than others. Such anomalous clusters are exceptional in some
sense and are often of unusual importance.

4 Spatio-temporal clustering algorithms

Spatio-temporal clustering is an upcoming research topic
which focuses on studying and implementing novel clus-
tering techniques for spatio-temporal data. The Shared
Nearest Neighbor (SNN) clustering algorithm [3] is a well-
established density-based clustering algorithm. SNN defines
the similarity between pairs of points in terms of how many
nearest neighbors the two points share. The SNN clustering
algorithm works well for ordinary data (non-spatial and non-
temporal data).However, it is impractical to use for clustering
spatio-temporal data. The clustering process for spatio-
temporal data is more complex than for non-spatial and
non-temporal data because spatio-temporal clustering algo-
rithms have to consider the spatial and temporal neighbors
of objects. Therefore, we improve SNN for spatio-temporal
data. We extend SNN to cluster polygons generated from
geo-spatial point data by redefining the spatio-temporal sim-
ilarity between pairs of polygons taking into account both
their spatial and temporal similarities. We also redefine the
density-based concepts of core polygons. Each polygon p
is associated with a time t when it occurs, and a set of
non-spatial attributes. Henceforth, all polygons are spatio-
temporal polygons unless specified otherwise. A spatio-
temporal cluster of polygons is a group of polygons that lie in
close proximity in both space and time domains. Given below
are the definitions for the SNN-based concepts for polygons.

We propose two spatio-temporal clustering algorithms,
ST-SNN and ST-SEP-SNN. The difference between ST-SNN
and ST-SEP-SNN is based on the user-defined parameters
given as input and how to compute the spatio-temporal dis-
tance between two objects. Any function that can compute
the distance between a pair of polygons, such asHausdoff dis-
tance [27], Fréchet distance [28], PDF [29], Overlay distance
[30], Hybrid distance [15], etc., can be used in our clustering
algorithms. Any function that can compute the temporal dis-
tance between a pair polygons can be adopted as well such as
Eq. 1. Moreover, different temporal distance functions might
be used for different analysis tasks. The following temporal
distance function is an example used for our case study:

distt (p, q)=
{
abs(h(p) − h(q)), abs(h(p) − h(q)) ≤ 12

24 − abs(h(p) − h(q)), otherwise

(1)

where p and q are a pair of polygons, h(p) function returns
the hour information associatedwith polygon p (0 ≤ h(p) ≤

23) , function abs() returns the absolute value. The follow-
ing Hybrid distance [15] is applied to compute the spatial
distances between polygons due to its capability of handling
overlapping polygons:

dists(p, q) = ws × distOverlay(p, q)

+ (1 − ws) × distHausdorff(p, q) (2)

wherews is theweight factor associatedwith theOverlay dis-
tance (0 ≤ ws ≤ 1). The k-nearest spatial neighbor list and
k-nearest temporal neighbor list for each polygon p, denoted
by k-SPN-List(p) and k-TN-List(p), are generated by com-
puting its k-nearest spatial neighbor and k-nearest temporal
neighbor only. The nearest spatio-temporal neighbor list of a
polygon p, denoted by NN (p), is calculated as the intersec-
tion of the k-nearest spatial neighbor list and the k-nearest
temporal neighbor list of polygon p:

NN (p) = k-SPN-List(p) ∩ k-TN-List(p) (3)

The similarity between a pair of polygons p andq, denoted
by similari t y(p, q), is the number of the nearest spatio-
temporal neighbors that they share:

similari t y (p, q) = |NN (p) ∩ NN (q)| (4)

where NN (p) is the set of k nearest spatio-temporal neigh-
bors of polygon p.

The SNN density of polygon p is defined as the number
of polygons that share Eps or more nearest neighbors with
polygon p:

densi ty(p) = |{q ∈ D|similari t y(p, q) ≥ Eps}| (5)

The core polygons are identified by using a user-specified
parameterMinPs and all polygons in the dataset D that have
the SNN density of at least MinPs:

CoreP(D) = {p ∈ D|densi ty(p) ≥ MinPs} (6)

Clusters are then formed by computing the transitive clo-
sure of the polygons that can be reached from an unprocessed
core polygonusing their respective nearest neighbor lists; this
process continues until all core polygons have been assigned
to a cluster. The remaining polygons that are not within a
radius of Eps of any core polygons are classified as outliers
and not included in any clusters.

We use two polygons p and q as an example to illustrate the
computation. For example, polygon p represented an ozone
hot-spot occurred at 4:00 pm, polygon q occurred at 2:00
pm, the temporal distance between p and q is 2 based on Eq.
1. Assume the overlay distance between polygons p and q
is 0.5; the Hausdorff distance between p and q is 0.3; the
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hybrid distance between p and q is 0.4 based on Eq. 2 with
weight w equal to 0.5. If we choose (k=5), assume the K-
nearest temporal neighbor list for polygon p 5-TN-List (p) is
{5,10,12,15,20}; the 5-nearest spatial neighbor list k-SPN-
List (p) is {10,12,15,25,27}, the nearest spatio-temporal
neighbor list of polygon p,NN(p) is {10, 12, 15} based onEq.
3. The 5-nearest temporal neighbor list for polygon q, 5-TN-
List(p), is {3,10,12,16,25}; the 5-nearest spatial neighbor list
of polygon q, 5-SPN-List(q), is {10,12,16,25,29}; the near-
est spatio-temporal neighbor list of polygon q, NN(q), is {10,
12, 16, 25}. The similarity between p and q is 3 according to
Eq. 4 because the intersection of NN(p) and NN(q) is {10,
12, 16}. The rest of algorithm is performed as SNN.

ST-SEP-SNN does not integrate spatial distance and
temporal distance as a single spatio-temporal distance. In
contrast to ST-SEP-SNN, ST-SNN uses a weighted sum of
the spatial distance and the temporal distance between two
polygons p and q to calculate the spatio-temporal distance
between polygons p and q, denoted by distst (p, q):

distst (p, q) = wsp × dists(p, q) + (1−wsp) × distt (p, q)

(7)

where wsp is the weight factor associated with the spatial
distance (0 ≤ wsp ≤ 1); dists is any function that can com-
pute the normalized spatial distance between two polygons
p and q; distt is any functions that can compute the normal-
ized temporal distance between two polygons p and q. Then,
we rank the obtained spatio-temporal distance matrix to get
the k-nearest spatio-temporal neighbor list for each polygon.
In this case, the sizes of the nearest neighbor lists for all
polygons in the data are the same. ST-SNN form clusters the
sameway as ST-SEP-SNN. The pseudo-code of ST-SNN and
ST-SEP-SNN is given in Algorithm 1.

In general, ST-SEP-SNN uses separate k-nearest spatial
neighbor list and k-nearest temporal neighbor list and does
not try to integrate the spatial distance and the temporal
distance into a single spatio-temporal distance. The nearest
neighbor lists of all polygonsmay have different cardinalities
m(m ≤ k). This property distinguishes ST-SEP-SNN from
ST-SNN.

Both ST-SNN and ST-SEP-SNN require several user-
definedparameters that have significant impacts on clustering
results. These user-defined parameters need to be changed
and adapted according to the data being clustered:

– k the size of the nearest neighbor list. It is the most
important parameter as it determines the granularity of
the clusters. In general, if k is too small, both ST-SNN
and ST-SEP-SNN will tend to find many small clusters
and a lot of outliers. On the other hand, if k is too large,
both ST-SNN and ST-SEP-SNN will tend to find only a
few large clusters.

Input: polygon dataset D = {p1, p2, ..., pn}, size of nearest
neighbor list k, the core polygon threshold MinPs, the similarity
threshold Eps
Output: set of clusters Ci of polygons
Algorithm:

1. for every polygon p in D
2. compute k-nearest neighbor list: N N (p)
3. mark p ‘unprocessed’.
4. end for
5. for every pair of polygons p and q in D
6. compute similari t y(p, q);
7. end for
8. for every polygon p in D
9. compute densi t y(p)
10. if densi ty(p) ≥ MinPs then
11. mark p as ‘core polygon’;
12. end if
13. end for
14. for every core polygon p in D
15. if p is marked ‘unprocessed’ then
16. form a cluster Ci that can be reached from

p following the entries of the respective
NN-lists of core polygons;

17. end if
18. mark all polygons in Ci ‘processed’;
19. end for
20. return set of generated clusters Ci of polygons;

Algorithm 1: Pseudo-code of ST-SNN and ST-SEP-SNN

– MinPs the core polygon threshold. It is the minimum
number of the shared neighbors required for the core
polygons. It allows users to control how many poly-
gons are needed to qualify a polygon as a core polygon.
MinPs should be smaller than k.

– Eps the density threshold. It is used as the criteria to
define the SNN density of each polygon. Eps should be
smaller than k as well.

Both ST-SNN and ST-SEP-SNN follow the structure of
SNN. The time complexity of ST-SNN and ST-SEP-SNN
are the same as SNN which is O(n2) without the use of an
indexing structure, where n is the number of polygons in the
dataset. If an indexing structure such as a k–d tree or an R∗ is
used, the time complexity will be reduced to O(n × log(n)).
The space complexity is O(k × n) since only the k-nearest
neighbor need to be stored, while the k-nearest neighbor can
be computed once and used repeatedly for different runs of
the algorithms with different parameter values.

5 Analysis techniques for spatio-temporal clusters

5.1 Post-processing analysis technique

Our post-processing analysis technique allows automatic
screening of the obtained clusters to identify interesting ones,
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whose members have attribute values that deviate signifi-
cantly from those of the entire population. For example, we
try to find clusters of polygons with attribute values that are
much smaller or larger than others, e.g., cluster of polygons
with extremely high ozone concentrations. Such anoma-
lous clusters are exceptional in some sense and are often
of unusual importance. The domain experts could use our
post-processing analysis technique to automatically identify
such clusters. Therefore, it is desirable to have some assess-
ment of the degree to which the attribute values of a cluster
are anomalous. Since box plots is a commonly used method
for showing the distribution of values of a single numeri-
cal attribute, and for comparing how attribute values vary
among different clusters of objects, our post-processing anal-
ysis technique is developed based on box plots. We assume a
dataset Dwith n attributes and a set of clusters in D identified
by spatio-temporal clustering algorithm; e.g., ST-SEP-SNN
andST-SNN.Let (ai, j , bi, j ) be the interquartile range (I QR)
for attribute j of a cluster Ci , with ai, j > bi, j , and (a′

j , b
′
j )

be the I QR for attribute j of dataset D with a′
j > b′

j , we
compute the degree of deviation for attribute j in cluster Ci

compared with the dataset D as follows:

Ri, j = 1 + max(a′
j − ai, j , 0) + max(b′

j − ai, j , 0) − max(a′
j − bi, j , 0) − max(b′

j − bi, j , 0)

ai, j − bi, j
(8)

Ri, j could be any numbers between −1 and 1. We explain
the equation described above with the help of several exam-
ples shown in Fig. 2, which displays the box plots for wind
direction of several selected clusters, e.g., clusters 2,6,8,10,
and the dataset D.

For example, the deviation degree of wind direction for
cluster 2, R2, j can be calculated as:

R2, j = 1 + 0 + 0 − 0 − 0

a2, j − b2, j
= 1 (9)

where a2, j > b2, j > a′
j > b′

j holds as shown in Fig. 2. R2, j

is equal to 1, which means that cluster C2 has significant

Fig. 2 Box plots for attribute j

different values (much larger) of wind directions compared
to the entire dataset D, as shown in Fig. 2.

Consider cluster 6, its box plot overlaps with the box plot
for D and a6, j > a′

j > b6, j > b′
j . R6, j can be calculated

as:

R6, j = 1 + 0 + 0 − (a′
j − b6, j ) − 0

a6, j − b6, j
= b6, j − a′

j

a6, j − b6, j
(10)

Apparently, 0 < R6, j < 1. As shown in Fig. 2, the box plots
of cluster 6 overlap with the box plot for dataset D above its
50th percentile line. Therefore, R6, j is greater than 0 but less
than 1 which means the wind directions of cluster 6 do not
deviate significantly from those of the entire population.

For cluster 8, its box plot is covered completely by the box
plot for D, and a′

j > a8, j > b8, j > b′
j which means that

the wind directions of cluster 8 have similar values with the
entire dataset D. Therefore, the wind directions of cluster 8
are not interesting attributes.

R8, j = 1 + (a′
j − a8, j ) + 0 − (a′

j − b8, j ) − 0

a8, j − b8, j
= 0 (11)

Consider cluster 10, its box plot overlaps with the box plot
for D below its 50th percentile line, and a′

j > a10, j > b′
j >

b10, j :

R10, j = 1 + (a′
j − a10, j ) + 0 − (a′

j − b10, j ) − (b′
j − b10, j )

a10, j − b10, j

= b10, j − b′
j

a10, j − b10, j
(12)

Obviously, −1 < R10, j < 0. As shown in Fig. 2, the wind
directions of cluster 10 overlap with dataset D below its 50th
percentile linewhichmeans that thewinddirections of cluster
10 have smaller values compared with dataset D. For cluster
12, its box plot is displayed below the box plot for D, and
a′
j > b′

j > a12, j > b12, j whichmeans thewind directions of
cluster 12 have much smaller values compared with dataset
D. Therefore, cluster 12 is an interesting cluster based on
wind directions.

R12, j = −a′
12, j + b12, j

a12, j − b12, j
= −1 (13)

In general, Ri, j is interesting if Ri, j is equal to 1 or −1,
which means that cluster Ci has significant different values
of attribute j compared to the entire dataset D. The interest-
ingness score of cluster Ci is calculated based on the values
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of all Ri, j associated withCi . Let Oi = {ri,1, ri,2, ..., ri,n} be
the set of deviation degrees of n attributes in Ci ; in general,
the interestingness score of cluster Ci is a function of Oi :

I (Ci ) = f (Oi ) (14)

Different interestingness functionsmay be adopted for differ-
ent analysis tasks. Moreover, domain knowledge is crucial in
determining interestingness functions. Therefore, the follow-
ing interestingness functions are proposed based on domain
experts’ notion of interestingness. For a clusterCi , we calcu-
late the Ozone Formation Potential Index (OFP I ) defined
by the following equation:

OFP Ii = 1

3
Ri,NOx + 1

3
Ri,T + 1

3
Ri,SR (15)

where Ri,NOx is the degree of deviation of NOx concen-
trations in Ci , Ri,T is the degree of deviation of the outdoor
temperatures in Ci , Ri,SR is the degree of deviation of solar
radiations in Ci . Note that OFP I function is a linear func-
tion of these three variables, i.e., Ri,NOx , Ri,T , and Ri,SR ,
because NOx concentration, outdoor temperature and solar
radiation are key control factors in ozone pollution events.
The negative Ri, j values will contribute negatively to OFP I
because lower temperatures, lower NOx concentrations, and
lower amounts of solar radiation will slow down the ozone
formation process. However, the other two attributes, i.e.,
wind speed andwind direction, contribute to the ozone pollu-
tion dispersion process. Hence, the Ozone Dispersion Index
(ODI ) for cluster Ci is calculated as follows:

ODIi = exp(1 − 0.4 × |Ri,WD| + 0.6 × Ri,WS) (16)

where Ri,WD is the degree of deviation of wind directions in
Ci , Ri,WS is the degree of deviation of wind speeds in Ci .
Note that ODI is an exponential function due to the fact that
dispersion distribution satisfiesGaussian air pollutant disper-
sion equation. We use the absolute value of Ri,WD because
the lower degree of wind direction and high degree of wind
direction contribute equally to the impact scope of the ozone
dispersion process. The interestingness score (I S) for cluster
Ci is computed as follows:

ISi = OFPIi × ODIi (17)

The proposed interestingness function is only an example
for identifying interesting clusters related to ozone pollution
impact scope. Our goal is to find clusters with either relative
high or low interestingness scores, i.e., clusters with either
relative large or small ozone pollution impact scopes under
unusual environmental conditions and NOx concentrations.
Those are the anomalous clusters that domain experts are

interested in and want to further analyze. Other interesting-
ness functions for different analysis tasks can be developed
as well.

5.2 Change pattern discovery algorithm

In this section,we introduce amethodology for discovery and
analysis of changes that may occur within a spatio-temporal
cluster. The study of the change patterns within clusters
can help us classify areas experiencing similar phenomenon
across a period of time and to perform trend analysis and
make predictions about the future occurrence of ozone pol-
lution events. For example, in order to perform trend analysis
and make predictions, it will be very helpful if we can study
the change patterns of the ozone pollution events such as
their formation and expansion. Therefore,we categorize indi-
vidual changes according to the spatial relationship among
polygons within the same cluster into the following four
primitive patterns:

– Formation when the number of polygons at time ti is
increased from zero at time ti−1.

– Expansion the overall areas covered by all polygons
occurred at time ti is increased compared to time ti−1.

– Dissipation the overall areas covered by all polygons
occurred at time ti is decreased compared to time ti−1.

– Disappear the number of polygons at time ti is changes
to zero from nonzero at time ti−1.

These individual changes can alsobe linked into sequences
to describe the evolution of a spatio-temporal cluster over
time. Duration represents the amount of time that the ozone
pollution events exist within a cluster. The pseudo-code of
polygon-based change pattern discovery algorithm (Poly-
CD) is given in Algorithm 2.

Poly-CD also measures the spatial properties of multi-
ple polygons within a cluster, such as overlap, distance, and
directional relation. Hausdorff distance [31] is applied to
compute the distance between a pair of polygons. Overlay
distance [30] is utilized to calculate the overlap between apair
of polygons. In order to track the movement of the spatio-
temporal clusters with respect to space and time, Poly-CD
also computes the centroid of each polygon. Tracking the
movement of the centroids of polygons in a clusterwill enable
us to identify the directions of the clusters’ movement. The
change pattern vector can be used to find similar change pat-
terns at different locations and may in turn help in predicting
the future change patterns of ozone pollution events. The
change patterns discovered from the spatio-temporal clus-
ters can be used in order to make preliminary predictions for
the future movement of the cluster. For example, if a cluster
is more likely to expand in the near future, more resources
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Input: set of spatio-temporal clusters Ci in D
Output: a vector of change pattern of cluster Ci , duration of Ci
Algorithm:

1. for every spatio-temporal cluster Ci in D
2. initialize changeci = null; durationci = 0;
3. end for
4. for each time t in Ci
5. compute the number of polygons Nt occurred at time t.
6. end for
7. for every two continues time ti and ti−1 occurred in cluster Ci
8. compute the change patterns:
9. if Nt ≥ 1 and Nt−1 = 0 then
10. changeci .add (formation);durationci + +;
11. if Nt ≥ 1 and Nt−1 �= 0 and areat > areat−1then
12. changeci .add (expansion);durationci + +;
13. if Nt ≥ 1 and Nt−1 �= 0 and areat < areat−1 then
14. changeci .add(dissipation); durationci + +;
15. if Nt = 0 and Nt−1 ≥ 1 then
16. changeci .add(disappear);
17. end for
18. return the change pattern vector of cluster Ci , changeci ,and the

duration of cluster Ci , durtionci

Algorithm 2: Pseudo-code of Poly-CD

should be assigned to this region in order to prevent the clus-
ter from expanding.

6 Case study

6.1 Multi-source geo-spatial data

Anareawith specified air-quality index violating theNAAQS
(National Ambient Air Quality Standards) is defined as the
air-quality non-attainment area. The HGB area is currently
classified as an ozone non-attainment area [25]. To improve
the air quality in this area, an air-quality-monitoring net-
work has been well established to continuously monitor the
ground level of ozone concentration, various meteorological
conditions, and NOx concentration in this area, which pro-
vide large amounts of spatio-temporal data associated with
ozone pollution events. Time series measurements for such
data constitute enriched geo-spatial data. Data mining tech-
niques are needed to facilitate the information extraction and
knowledge discovery from such enriched geo-spatial data.
In particular, we collected the raw data from the time-frame
of 1 am on April 1, 2010, through 11 pm on November
30, 2010, from TCEQ’s Web site [25]. These data include
hourly measurements of ground-level ozone concentration,
solar radiation, outdoor temperature, wind direction, wind
speed, and NOx concentration. We then apply the DCON-
TOUR algorithm to generate polygons. These polygons are
represented by closed contour lines. The area within each
polygon has an hourly ozone concentration higher than the
user input threshold, e.g., 80 ppb. The shape and area of a

Fig. 3 Statistical distribution of ozone pollution data

polygon reflect the impact location and scope of an ozone
pollution event. The ozone pollution events are affected by
multiple factors of ozone precursors andmeteorological con-
ditions. A total of 460 polygons have been identified for
the density threshold of 80 ppb. Figure 3 provides the box
plots for the statistical distributions of four corresponding
meteorological attributes and NOx concentration. It can be
observed that the distribution of wind directions cover from
0◦ to 360◦, and the majority are between 120◦ and 200◦,
which means that the wind can come from any direction,
e.g., the wind can blow from the Gulf of Mexico as the
result of a typical sea breeze encompassing east-southeast
to south on shore winds in the HGB area [32]. This winds
can help transport the emissions from point sources, area
sources, and on-road mobile sources from upwind to differ-
ent downwind regions. The solar radiation is between 0.3 and
1.05 langleys/min, which is relatively strong and in favor of
ozone formation. The higher wind speed between 4 and 9
miles/h promotes the precursor transportation. The average
NOx concentration is below 10 ppb and the peak concen-
tration is 183 ppb. The outdoor temperatures are between 75
and 90◦F. In summary, the integrated conditions of high out-
door temperature, high NOx concentration, and high solar
radiation create suitable conditions of high ozone concen-
tration events in the HGB area. The spatio-temporal clusters
identified by our clustering algorithms satisfy all of these
conditions.

6.2 Spatio-temporal clustering evaluations

In the following section, we focus on demonstrating the
effectiveness of both ST-SNN and ST-SEP-SNN cluster-
ing algorithms in finding interesting spatio-temporal patterns
from ozone pollution events in HGB area. A spatio-temporal
cluster of polygons is a group of polygons representing high
ozone concentration hot-spots that are in close proximity in
both space and time, and possibly share other attributes. Sta-
tistical analyses are also presented to interpret the discovered
patterns. Hybrid distance [15] is applied to compute the spa-
tial distance between a pair of polygons due to its capability
of handling overlapping polygons.
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6.2.1 ST-SNN clustering and analysis

The task of this case study is to apply ST-SNN to find inter-
esting spatio-temporal patterns from ozone pollution data in
HGB area. In particular, we are interested in finding hourly
patterns of ozone pollution events that occurred in similar
areas. This type of study can help domain experts identify
not only similar impact scopes of the ozone pollution events
in space but also their corresponding time instants or time
intervals. This can help domain experts gain knowledge from
the past. Unlike the time slicing approaches, which perform
a snapshot clustering at each time stamp or time interval,
ST-SNN takes into account both spatial and temporal dis-
tances between polygons and is able to detect clusters of
polygons that are similar in both spatial and temporal dimen-
sions simultaneously.

The input parameters for ST-SNN are k = 5, MinPs =
3, Eps = 2, w = 0.5.We use a relatively smaller value for k,
i.e., 5, to find smaller compact clusters. There are 17 clusters
found by ST-SNN. Figures 4, 5, 6 and 7 visualize the clusters
9, 11, 14, and 16, respectively.

As expected, ST-SNN is able to find clusters of polygons
that are very similar in space and time; for example, ST-
SNN could successfully identify 17 clusters of polygons that
are very close spatially and occur at the exact same time on
different dates.We also identify the locations of the emission
sources and monitor stations represented by the blue points
and red points, respectively, on each figure. Clusters 9 and 11
lie closely in space, but are identified as two different clusters
due to different temporal similarities, i.e., all five polygons
in cluster 9 occurred at 1 pm, whereas all four polygons in
cluster 11 occurred at 3 pm. Clusters 14 and 16 are also
detected due to the high spatial and temporal similarities. All
five polygons in cluster 14 occurred at 2 pm along highway
interstate 10 east. All six polygons in cluster 16 occurred at 3

Fig. 4 Visualization of cluster 9 identified by ST-SNN

Fig. 5 Visualization of cluster 11 identified by ST-SNN

Fig. 6 Visualization of cluster 14 identified by ST-SNN

Fig. 7 Visualization of cluster 16 identified by ST-SNN
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Fig. 8 Box plots for cluster 11
identified by ST-SNN

pm along highway interstate 45 north. Clusters 6 and 14 are
formed due to the emissions from highway traffic vehicles
and strong solar radiation which usually happen between 2
pm and 3 pm each day.

Further, we closely inspect cluster 11. Polygons 37, 157,
112, and 80 in cluster 11 are in the ascending order accord-
ing to their impact scopes. Their extending directions are to
the east. The box plots shown in Fig. 8 provide the statistical
comparisons of NOx concentration, solar radiation, outdoor
temperature, wind speed, wind direction, and relative humid-
ity of these polygons, respectively. It can be observed that
the majority of wind directions associated with these poly-
gons distribute in the range between 60◦ and 180◦, which
means that the wind comes from the Gulf of Mexico as the
result of a typical sea breeze encompassing east-southeast to
south on the shore winds in the HGB area [32]. The wind
transports the emissions from both point sources and high-
way traffic vehicles that locate at the upwind direction to this
area, creating a suitable condition for ozone formation in this
area. Polygon 80 has relatively stronger solar radiationwhich
facilitates the ozone formation and higher wind speed which
speeds up the emission transportation. Therefore, polygon
80 has the largest impact scope in cluster 11. Polygon 37
has the lowest wind speed, the largest distribution of wind
directions, and low solar radiation, which cause polygon 37
to have the smallest impact scope in cluster 11, even though
it has higher NOx concentrations compared with other poly-
gons in cluster 11. All the information suggests that the wind
speed, wind direction, and solar radiation may be major con-
tributors for the impact scope of ozone pollutant events in this
area, while NOx concentration, relative humidity, and out-
door temperature may not. It also demonstrates that the land
and sea breeze can affect ozone formation by transferring the
emissions from the emission sources.

If the value of k is large, such as 8, or 10, ST-SNN finds
fewer clusters. If we increase the weight associated with spa-
tial distancew, clusters that are closer in space and less close
in time will be identified, such as clusters of polygons that
occur within several hour intervals but lying very closely in
space. If we use w equal to 1.0, ST-SNN becomes a spatial
clustering algorithm. We can also adopt different temporal
distance functions, for example, in order for ST-SNN to find
groups of polygons that lie closely in space and occur within
certain time intervals instead of a particular time instant; the
following temporal distance function could be adopted:

distt (p, q) =
{
1, abs(h(p) − h(q)) < t

0, otherwise
(18)

where p and q are two polygons, h(p) returns the value of
hour information associated with polygon p, function abs()
return the absolute value, and t is the time interval threshold
input by the users.

6.2.2 ST-SEP-SNN clustering and analysis

In this case study, we apply ST-SEP-SNN and the same
temporal distance function for the purpose of comparison.
The input parameters for ST-SEP-SNN are k = 5 and
MinPs = 3. There are 12 clusters identified by ST-SEP-
SNN. Six of them contain polygons that occurred at the same
time on different dates at similar locations, which are very
similar to the clusters identified by ST-SNN. However, the
other six clusters contain polygons that occurred within cer-
tain time intervals, such as 3 or 4 h, instead of a particular
time. Unlike ST-SNN, ST-SEP-SNN intends to group poly-
gons that lie at similar locations but occur within certain

123



94 Int J Data Sci Anal (2018) 5:83–98

Fig. 9 Visualization of cluster 4 identified by ST-SEP-SNN

Fig. 10 Visualization of cluster 9 identified by ST-SEP-SNN

time intervals into one large cluster instead of dividing them
into two or more smaller compact clusters. This is because
ST-SNN uses the weighted sum of the spatial distance and
temporal distance to compute the spatio-temporal distance
between a pair of polygons; then, it ranks the spatio-temporal
distance matrix to get the k-nearest neighbor list for each
polygon, whereas the ST-SEP-SNNfirst ranks the spatial dis-
tance matrix and temporal distance matrix separately; next,
it computes the nearest neighbor list using the intersection of
the k-nearest spatial neighbor list and the k-nearest temporal
neighbor list. Thus, the k-nearest temporal neighbor list may
include some polygons that have larger temporal distances if
they were ranked in the top k, which may be excluded in the
k-nearest neighbor list by ST-SNN due to their large tempo-
ral distances. Figures 9 and 10 visualize two such clusters,
i.e., clusters 4 and 9.

Cluster 4 is an interesting cluster. It includes eight poly-
gons, i.e., polygons 9, 13, 14, 15, 16, 144, 153, and 160.
Polygons 14, 15 and 16, shown in red in Fig. 9, occurred
in three continuous hours, i.e., 1 pm, 2 pm, and 3 pm on
the same day. They are in the ascending order according
to the area each polygon covered, and the scope extending
direction is to the northeast. The box plots in Fig. 11 pro-
vide the statistical comparisons of NOx concentration and

relatedmeteorological data. Based on Fig. 11, from 1 pm to 3
pm, the mean of the wind direction rotated clockwise and the
wind speed increased gradually, which enhanced the disper-
sion effect. Therefore, the areas covered by polygons 14, 15,
and 16 were enlarged. However, these enhancement factors
were counterbalanced by the reduction in the solar radiation
from 1 pm to 3 pm, which resulted in the slow change of the
areas covered by polygons 14, 15, and 16 over time. Com-
pared with other polygons, these three polygons have large
variances of solar radiation, wind direction, and wind speed,
and lower mean values of relative humidity, while their NOx

concentrations and outdoor temperatures are quite similar to
those of the other polygons. Further investigations of such
clusters may help domain experts detect dynamic evolution
of the ozone pollution events in this area.

6.3 Post-processing analysis technique evaluation

The goal of our post-processing analysis technique is to help
domain experts identify interesting clusters generated by
spatio-temporal clustering algorithms that are unusual com-
pared to other clusters.We apply the post-processing analysis
techniques discussed in Sect. 5.1 to identify those two
clusters. We considered Ozone Formation Potential Index
(OFPI), Ozone Dispersion Index(ODI), and Interestingness
Scores (IS) for the purpose of post-processing analysis. Fig-
ures 12 and 13 visualize two such clusters identified by our
post-processing analysis technique, i.e., cluster 23, and 26,
respectively. It can be observed that cluster 23 has a very
small impact scope within the 2 h duration, whereas cluster
26 has relatively larger impact scopes within the 3 h duration.
Table 1 summarizes the corresponding results of Ozone For-
mation Potential Index (OFP I ), Ozone Dispersion Index
(ODI ), and Interestingness Scores (I S) for clusters 23 and
26. The deviation degrees of all attributes in clusters 23 and
26 are summarized in Table 2. The OFP I value of cluster
23 is 0.13 because cluster 23 has relatively low values of the
solar radiation (deviation degree 0.39) and low NOx con-
centration (deviation degree −1) compared with the entire
dataset. Furthermore, cluster 23 has the lowest ODI value
(1.00) among all clusters because it has the lowestwind speed
and the smallest range of wind direction as revealed by devi-
ation degrees are−1 for both attributes shown in Table 2. On
the contrary, cluster 26 has a larger value of OFP I (0.70)
and ODI (1.78) due to the high values of solar radiation
(deviation degree 1) and high values of temperatures (devi-
ation degree 1). Therefore, cluster 26 has a larger I S value
(1.25).

6.4 Change pattern discovery evaluation

In this case study, we use Hybrid distance [15] to compute
the spatial distance between polygons. The spatial distance
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Fig. 11 Box plots for cluster 4
identified by ST-SEP-SNN

Fig. 12 Visualization of cluster 23

Fig. 13 Visualization of cluster 26

threshold θs is set to the average distance of the data; temporal
distance threshold θt is set to 24 h because domain experts
are interested in daily ozone pollution patterns. Note that

Table 1 The interesting scores of clusters 23 and 26

Cluster ID OFPI ODI IS

23 0.13 1.00 0.13

26 0.70 1.78 1.25

Table 2 The deviation degrees of clusters 23 and 26

Cluster
no.

Temperature Wind
direction

Wind
speed

NOx Solar
radiation

23 1.00 −1.00 −1.00 −1.00 0.39

26 1.00 −0.19 −0.58 0.11 1.00

different temporal distance functions and thresholds can be
adopted for different analysis tasks.We use a relatively small
number as core polygon threshold MinPs, i.e., 2. There are
45 clusters identified by ST-SNN. Figures 14, 15 and 16
visualize three clusters, i.e., cluster 10, 12, and 35, respec-
tively. The centroid of each polygon is marked as a red dot.
As shown in Fig. 15, there are three ozone pollution hot-spots
occurred at 10:00 am at different locations in HGB area. It is
possible that multiple ozone pollution events occurred con-
currently at different locations in HGB area. Therefore, there
are three centroids at the same time, i.e., 10:00 am.

The dynamic change patterns of daily ozone pollution
events in a specific region are very complex. The main con-
cern is the expansion and duration of the impact region during
ozone pollution events. A long duration time means that the
corresponding ozone pollution event is very serious and may
be caused by abnormal emissions from local industrial plants.
For example, the duration of cluster 35 is 5 h, and the impact
regions of the ozone pollution events in cluster 35 have been
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Fig. 14 Visualization of cluster 10

Fig. 15 Visualization of cluster 12

Fig. 16 Visualization of cluster 35

largely expanded because the wind is not fast enough to
effectively transport the ozone pollution to the downwind
direction. The change pattern for cluster 35 is formation →
expansion → expansion → expansion → expansion → dis-
appear.

Fig. 17 Dynamic changes of 3DNOx concentration profiles for cluster
10

Fig. 18 Dynamic changes of 3D solar radiation profiles for cluster 10

Further, we closely inspect cluster 10, which is a typical
change pattern of daily ozone pollution events. The dynamic
profiles of NOx concentration, solar radiation, and outdoor
temperature for these three polygons in cluster 10 are shown
in Figs. 17, 18 and 19, respectively. Figure 17 displays the
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Fig. 19 Dynamic changes of 3D outdoor temperature profiles for clus-
ter 10

dynamic changes of 3D NOx concentration profiles dis-
closed from 10 am to 12 pm. The peak NOx concentration
occurred at 11 am. For solar radiation shown in Fig. 18, the
maximum value occurred at 12 pm. Note that an ozone pollu-
tion event was started at 10 am due to the impact of the high
NOx concentration, solar radiation, and outdoor tempera-
ture; in the following continuous 2 h, the pollution hot-spots
were expanded because the major impacts were enhanced;
meanwhile, the ozone pollution hot-spots were continuously
moving toward the northwest direction partially due to the
impact of the wind flow.

7 Conclusion and future work

The main goal of our research is to develop novel spatio-
temporal clustering and analyze framework for spatio-
temporal data. Polygons are very useful as they provide a
natural representation for particular types of spatial objects
and provide a useful tool to analyze discrepancies, pro-
gression, change, and emergent events. Two density-based
spatio-temporal clustering algorithms, called ST-SNN and
ST-SEP-SNN, are developed by extending the generic shared
nearest neighbor clustering algorithm. We redefine the near-
est spatio-temporal neighborhood of a polygon and the
density-based concepts for polygons. Both ST-SNN and ST-
SEP-SNN can find clusters of varying shapes, sizes, and den-
sities in high-dimensional data, even in the presence of out-
liers. We also propose a change pattern discovery algorithm
to atomically detect and analyze dynamic changes within

spatio-temporal clusters of polygons and a post-processing
analysis technique to identify interesting spatio-temporal
clusters of polygons for domain experts. Experiments on
spatio-temporal data involving ozone pollution events in the
HGB area demonstrate that our methodology is effective and
can discover interesting spatio-temporal patterns and change
patterns of ozone pollution events. Moreover, statistic and
post-processing analysis techniques can help domain experts
to identify interesting patterns, to learn from the past, and be
better prepared for the future.

In terms of futurework,we plan to design and develop effi-
cient algorithmic solutions and computing infrastructures for
integrating large-scale spatio-temporal analysis with modern
computing frameworks (e.g., cluster), and taking advantage
of existing the powerful computational resources such as
Hadoop-GIS to support efficient big spatio-temporal data
analysis.
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